线性代数 大作业(二)
11296224417(线性代数与概率统计第二次作业)
第二次网络作业:(一)单项选择题:1、设A ,B 为任意两个事件,则下列关系成立的是[ C ]。
()()()()()()()()A A B B AB A B B AC A B B AD A B B A +-=+-⊃+-⊂-+=2、如果A ,B 为两个事件,则下列条件中,[ C ]成立时,A 与B 为对立事件。
()()()()A AB B A B C AB A B D AB =Φ+=Ω=Φ+=Ω=Φ且3、一批产品的次品率为(01)p p <<,为发现一件次品至少要检查2件产品的概率是[ C ]。
2()()1()(1)()(1)A p B p C p p D p p --- 4、两封信随机投入4个邮筒,则前两个信筒都没有投入信的概率为[ C ]。
22244222!2!2()()()()4!4!44C C A B C D5、设A ,B 为随机事件,()0.7,()0.3P A P A B =-=,则()P A B =[ A]。
()0.6()0.5()0.4()0.35A B C D6、设事件A 与B 相互独立,则下列各式中成立的是[ A]。
()()()()()()0()()()()()()1()()A P A B P A P B B P AB C P A B P A P B D P A B P A P B +=+=-=-+=-7、某人射击时,中靶率为34,如果射击直到中靶为止,则射击次数为3的概率为[ C ]。
3223331131()()()()444444A B C D ⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭8、袋中装有5个大小相同的球,其中3个白球,2个黑球,甲先从袋中随机取出一球后,乙再从中随机地取一球,则乙取出的球的白球的概率为[ C ]。
1231()()()()5554A B C D9、每次试验成功的概率为(01)p p <<,则在3次重复试验中至少失败一次的概率为[ B ]。
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数第二次作业
线性代数第二次作业3.计算()()()⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⨯+⨯⨯+⨯⨯+⨯⨯+⨯=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛6-15-3-10017-15-4-10019336-242-210019336-3012002231-1101-21原式:解100131123-3012021-124⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛-=-=-=⎪⎪⎪⎪⎭⎫⎝⎛1001360cos 360sin 360sin 360cos 30cos 30sin 30sin 30cos ,可得cos sin sin cos cos sin sin cos 又有30cos 30sin 30sin 30cos 则上式可表示为30sin 21,30sin 21,30cos 23令:解232121-23求.5121212ϕϕϕϕϕϕϕϕn n n n n16.解下列矩阵方程()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()330131638631818601020031128531008501221031326531506511则原式为502431211,502613803设:解502431211502613803)1(333323321331322322221221311321121111111-=⨯--⨯⨯-==⨯-⨯⨯-==-⨯-⨯⨯-==-⨯-⨯⨯-==-⨯--⨯⨯-==⨯--⨯⨯-=-=-⨯--⨯⨯-==-⨯--⨯⨯-==⨯--⨯-⨯-==⇒=⇒=⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛---+++++++++---A A A A A A A A A BA XB A AX A B AX B A X()()()()()()()()()()()()()()()()()()()()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫⎝⎛⨯+⨯+⨯⨯+⨯+-⨯-⨯+-⨯+⨯⨯-+⨯-+⨯-⨯-+⨯-+-⨯--⨯-+-⨯-+⨯-⨯-+⨯+⨯-⨯-+⨯+-⨯--⨯-+-⨯+⨯-=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----==⎪⎪⎪⎭⎫ ⎝⎛-----=-⨯--⨯⨯-⨯-⎪⎪⎪⎭⎫⎝⎛--=---⎪⎪⎪⎭⎫ ⎝⎛--==-+*-19244001050511534022033012231012564123063113261113584025083015281015502431211302613805302613805285311302613805526138033026138051221B A X A A A ()()()()()()()()()()()()()()()()()()()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⨯+⨯-⨯+-⨯--⨯-+⨯-⨯-+-⨯=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--==--⎪⎪⎭⎫⎝⎛-⨯-⨯-⨯--⨯-=⎪⎪⎭⎫ ⎝⎛--=⨯-⨯⨯⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛⨯-⨯-⨯-⨯-==⇒=⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--++++-++++---35231243322311423122352313422312352331512131231231222312231221311121则原式为1342,3523,2312设:解13423523231221122211211122211211111CBA X BA CBA X C AXBC B A X()()()()()()()()()()()⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛⨯-+⨯⨯-+⨯⨯+⨯-⨯+⨯-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=18341324314212514312392759373523141297()()()无解02141212142为单位矩阵由于则原式为:解1001,12142设1001121423111X AA X A AA XB BA X B XA B A X ∴==⨯---⨯=--==⇒=⇒=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛-----17.()()()()()()()()()()()()()()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛------------−−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛-++----+-----------−−−−→−⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+----------------−−−−→−⎪⎪⎪⎭⎫⎝⎛-------−−−−→−⎪⎪⎪⎭⎫ ⎝⎛=⎪⎩⎪⎨⎧--=-+--=--+=-++-++↔λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ4121101210011101542221122122252210011101542112212522112011101542122211101---5421---54-2-24--5212-2-2以下初等行变换对方程组的增广矩阵做:解解并在有无限解时求其通?无解或有无限多个解.一解此齐次线性方程组有唯,为何值时问15422452122-2设13312312221321321321r r r r r r r r B x x x x x x x x x根据定理:设A 为方程组系数矩阵()()()()()()()()⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=++-=⎪⎪⎪⎭⎫⎝⎛-−−−−→−⎪⎪⎪⎭⎫ ⎝⎛==<===<=====≠≠÷001102012:为此时方程组通解可表示,为自由变量,为自由变量设,122则000000001221000000002-44-2-,时1当.4;方程组有无限多个解,31方程组秩,时1当.3;方程组无解,,3,2方程组秩,时10当.2;方程组有唯一解,3方程组秩,时10时且1当.121231232121c c x c x c x x x x B B R A R B R A R B R A R B R A R r λλλλλ。
线代习题二答案
习题二A 组1. 设121243212121,212112340101=⎛⎫⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B (1) 计算3-2+3,A B A B ;(2) 若X 满足+=A X B ,求X ;(3) 若Y 满足()()2+2=--A Y B Y O ,求Y ;解:(1)3A -B =3636636333912⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦=1315828237913-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
2A +3B =242442422468⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦+1296363630303⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦=14138725252165⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦。
(2)因A +X =B ,则X =B -A ,即X =432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦-121221211234⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=311140401335-⎡⎤⎢⎥--⎢⎥⎢⎥----⎣⎦。
(3)因为(2A -Y )+2(B -Y )=0,所以3Y =2A +2B ,即Y =23(A +B )=23(432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦+121221211234⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦)=55332020231133⎡⎤⎢⎥⋅⎢⎥⎢⎥⎣⎦ =1010223344033222233⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。
2. 计算下列矩阵的乘积:(1)()123213⎛⎫ ⎪ ⎪ ⎪⎝⎭;(2)30010422015-1⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)()201-10334⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭;(4)123211321102120431240-⎛⎫⎛⎫ ⎪⎪-- ⎪⎪ ⎪⎪-⎝⎭⎝⎭; (5)()111213112321222323132333a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(6)31-23-4⎛⎫ ⎪⎝⎭; (7)101kλ⎛⎫ ⎪⎝⎭(k 为正整数);(8)设100000000100,00100000101=aaa ab b b b ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A B ,求ABA ; 解:(1)()132123216423963⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)3001304226015-13⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭; (3)()201-1031434⎛⎫⎪⎪= ⎪ ⎪⎝⎭;(4) 12321135113121102121654043124032168---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--=- ⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭(5)()1112131123212223231323333322211122233312211213311323322311()()()ij i ji j a a a x x x x a a a x a a a x a x a x a x a a x x a a x x a a x x a x x ==⎛⎫⎛⎫⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭=++++++++=∑∑;(6)31-213143-42122-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭; (7) 令D k =101kλ⎡⎤⎢⎥⎣⎦(k 为正整数),则当k =2时,有: D 2=101λ⎡⎤⎢⎥⎣⎦101λ⎡⎤⎢⎥⎣⎦=1021λ⎡⎤⎢⎥⎣⎦; 假设D m =101mλ⎡⎤⎢⎥⎣⎦=101m λ⎡⎤⎢⎥⎣⎦成立,则 D m +1=101m λ⎡⎤⎢⎥⎣⎦101λ⎡⎤⎢⎥⎣⎦=10(1)1m λ⎡⎤⎢⎥+⎣⎦; 故有101kλ⎡⎤⎢⎥⎣⎦=101k λ⎡⎤⎢⎥⎣⎦。
河北工业大学2017年春线性代数作业
河北工业大学线性代数作业(1)学院班级姓名学号一. 讨论下列齐次方程组是否有非零解,若有,求出其通解.⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+=+-+-=---0136152032024303524321432143214321x x x x x x x x x x x x x x x x二.求出下列线性方程组的通解.⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x三.用初等变换化下列矩阵为简化梯形矩阵,指出矩阵的秩是多少:1.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--370320852373812023012.nn 11111001110001100001⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------四. (1)当λ取什么值时,方程组⎪⎩⎪⎨⎧0=++0=++0=++321321321x x x x x x x x x λλλ 只有零解?有非零解?若有非零解,则确定其通解.(2)当λ分别取什么值时,下面方程组有唯一解?有无穷多解?无解?在它有无穷多解时,求出它的通解.⎪⎩⎪⎨⎧=++=+--=++-2321321321λλλ222x x x x x x x x x河北工业大学线性代数作业(2)学院 班级 姓名 学号一.填空题 1. 若行列式0=3333222211111xx x ,则.________,___,=x 2.0100002000010n n=-L L L L L L L L L.3. 1070002000003000000400050= .4. =--nn n 0000000000100002000200010000.5.=0000041323123222114131211a a a a a a a a a a . 6. 当____x 时,0010413=xx x .7.若23013221D 1=,则==ca c ab a b 2033202D 2 . 8.若1333231232221131211-=a a a a a a a a a ,则=---333231312322212113121111324324324a a a a a a a a a a a a . 二.计算下列行列式的值:1.20104110631432111112.333333222222111111b a a c c b b a a c c b b a a c c b +++++++++3.dd c c b b a a d c b a dc b a 3434343412121212111122222222--------4.111222+++γγβγαβγββααγαβα河北工业大学线性代数作业(3)学院班级姓名学号一.选择题1.若()r R =A ,则A 中( )r 阶子式不等于零.()a 任意一个; ()b 只有一个; ()c 至少有一个; ()d 至多有一个.2.克拉默法则仅适用于解( )方程组.()a 非齐次线性方程组; ()b 齐次线性方程组;()c 任何有解的方程组;()d 方程个数=未知量个数,系数矩阵的行列式不等于零.3.设n m ⨯A ,则下列说法不正确的是( ).()a 若()r R =A ,则n m ⨯A 不存在等于零的1-r 阶子式; ()b ()()T R R A A =; ()c (){}min ,R m n ≤A ;()d 当n m =时,若A 为降秩(退化、奇异)方阵,则()n,det 0R <=A A .二.计算下面的n 阶行列式.1.nn n n a x a a a a a x a a a a a x a a a a a x ++++3213213213212.122222222232222n3.nnnnnn n n n n n nn n n n11321221----4.xyy x y x y x 0000000000三.用初等变换法求下面矩阵的秩A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--05916410202131412311.河北工业大学线性代数作业(4)学院班级姓名学号一.填空题1.若矩阵X 满足方程()()0=-2+-2X B X A ,则X= . 2. 设A 为3阶矩阵,3=A ,则A 2 =.3.已知[]321=x x x ,,A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B 321x x x ,则=AB ,__________=BA .4. 设B A ,为n 阶方阵,则()()22B A B A B A -=-+成立的条件为_______. 二. 单项选择题1.设有矩阵,,3223⨯⨯B A 33⨯C , 则下列运算可以进行的是( ).()a ABC ;()b TAB; ()c BC AB +; ()d ΒΑ23+.2.设A 为n m ⨯矩阵,则TAA 是( ).()a m 阶方阵; ()b n 阶方阵;()c n m ⨯矩阵;()d m n ⨯矩阵.三. 计算2--3B A C ,已知,,⎥⎦⎤⎢⎣⎡1-1012-7=⎥⎦⎤⎢⎣⎡3021-21=B A C ⎥⎦⎤⎢⎣⎡01726-3-=.四. 计算下列矩阵的乘积(如不符合两矩阵相乘的条件,则说明不能相乘). 1. ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡6234021231 2. ⎥⎦⎤⎢⎣⎡3402⎥⎦⎤⎢⎣⎡104312 3. []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321333231232221131211321x x x a a a a a a a a a x x x河北工业大学线性代数作业(5)学院班级姓名学号一. 填空题1. 设A 为n 阶矩阵,且0≠=a A det ,A adj 为其转置伴随阵,则det(adj A )= .2. 设4阶矩阵A 的秩为2,则其转置伴随阵A adj 的秩为 .3. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡740530002=A ,则=1-A .4. 设B A ,为n 阶矩阵,且I AB =,则=BA .5.设A 为n 阶可逆矩阵,则()12T-T ⎡⎤=⎢⎥⎣⎦Α .二.单项选择题1.设B A ,均为n 阶可逆方阵,则=⎥⎦⎤⎢⎣⎡-100B A ( ).()⎥⎦⎤⎢⎣⎡001-1-B A a ; ()⎥⎦⎤⎢⎣⎡001-1-BA b ; ()⎥⎦⎤⎢⎣⎡001-1-AB c ; ()⎥⎦⎤⎢⎣⎡001-1-A B d . 2.设C B A ,,是同阶方阵,且A 可逆,则下列各式中不一定成立的是( ).()a 若AC AB =,则=B C ;()b =ΑΒCA ,则=BC ;()c 若0=AB ,则0=B ; ()d 若CA BA =,则=BC .3.下列矩阵可逆的是( ).()a n 阶对角矩阵; ()b n 阶满秩矩阵;()c n 阶实对称矩阵; ()d n 阶上三角阵.4.设A 为n 阶对称矩阵,且A 可逆,那么有( ).()a T A A =-1; ()b A A T -=;()c IA A T =-1; ()d 以上结论都不对.5.B A,为n 阶矩阵,下列运算正确的是( ).()a ()k k k B A AB =; ()b ()111---=B A AB ;()c A A AA T T= ; ()d AA A A adj adj =.三.设A 满足,O I A A =4--2证明I A I A 2--,,都可逆.四. 设A ,B 均为2阶矩阵,且2=1-=B A det ,det ,求()]2det[21-ΒΑΤ.五.设A 是n 阶矩阵,A adj 是A 的转置伴随阵,若5=A det ,求 det[(5adj A )1-]的值.河北工业大学线性代数作业(6)学院班级 姓名 学号一.填空题 1.3阶初等阵=12R, ()=12det R,()=-112R .2.3阶初等阵 ()=23R , ()()=2det 3R ,()()=-132R .3.3阶初等阵()=-413R, ()()=-4det 12R,()()=--1134R.4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3-3-3-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211a a a a a a a a a a a a a a a a a a a a a A ,则A = .5.初等矩阵C 31()3-右乘矩阵123[,,]a a a =A ,相当于对A 进行初等 变换,结果为______.6.矩阵A 经过有限次初等变换化为矩阵B ,则矩阵A 与B 的秩 .二. 单项选择题1.在下列矩阵中,不是初等矩阵的是( ).()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100001a ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101-0100b ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000520001.c ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡105010001d . 2.下列说法正确的是( ).()a 对单位阵施行初等变换后所得的矩阵都是初等矩阵; ()b 初等矩阵的乘积还是初等矩阵;()c 可逆阵经过初等变换后仍为可逆阵; ()d 任何矩阵都可以表示有有限个初等阵的乘积.三. 用行初等变换法求下列矩阵的逆矩阵:1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡14-52-431-21=A2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11-0000011-000011-00001= A四. 从矩阵方程B AX =中解出X ,其中1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1513-3421-2-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡311=B2.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡41-31-351-24=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4611-31=B河北工业大学线性代数作业(7)学院班级姓名学号一. 填空题 1. 方程组⎩⎨⎧=3++3+3=2++2+22121b x x x ax x x n n 有解的条件为___________.2.二维向量α[]T21=a a ,,β[]T21=b b ,线性相关的充要条件为 .3.若向量组1a ,2a ,a 3线性相关,且123⎡⎤=⎣⎦A aa a ,则R )(A .4.若向量组321a a a ,,线性无关,当常数m l ,满足_______时,向量组 l 1a ,-3a m 2a ,31-a a 线性无关.二. 选择题1.若向量b 可以由向量组m21a ,,a ,a 线性表示,则下列结论正确的是( ).()a 存在常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()b 存在不全为零的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()c 存在唯一的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ; ()d 存在唯一不全为零的常数m k k k ,,21,使b =1k 1a +2k 2a ++ m k m a .2.设b ,a ,,a ,a n21是m 维向量,则关于方程组1k 1a +2k 2a ++ n n a k =b 的说法正确的是( ).()a 若方程组无解,则向量组b ,a ,,a ,a n 21 线性无关; ()b 若方程组有解,则向量组b ,a ,,a ,a n 21 线性相关; ()c 若n 21a ,,a ,a 线性相关,则方程组一定有解;()d 若n 21a ,,a ,a 线性无关,则方程组一定无解.3. 若向量组1a [],,,Τ001=T a ],,[0112=,=3a T cb a ],,[线性无关,则要求( ).()a c b a ==; ()b 0==c b ; ()c 0=c ; ()d 0≠c .三.已知321a a a ,,线性相关,432a a a ,,线性无关,试问: (1)1a 能否由32a a ,线性表示?(2)4a 能否由321a a a ,,线性表示?(3)当上面的表示式成立时,其表示式是否唯一?四.证明:若向量组321a ,a ,a 线性无关,则向量组,,212321122a a b a a a b +=-+=32134+3+2=a a a b也线性无关.河北工业大学线性代数作业(8)学院班级 姓名 学号一. 填空题1.设向量组r21a ,,a ,a 线性无关,则R {}=21r a a a ,,, .2.设a 为任一n 维向量,n21e ,,e ,e 为n 维单位向量,则向量组,,,21e e a ne , 线性____关.3.由一个方程0=+++21n x x x 构成的方程组的系数矩阵的秩r ____=,该方程组通解为.二.选择题1.向量组1M 和2M 的秩相等,则( ).()a 1M 与2M 等价; ()b 1M 与2M 所含向量个数相等;()c 1M 与2M 所含向量个数不等; ()d 以上结论都不对.2.设A 为n m ⨯矩阵,且R =)(A n m <,则( ).()a A 的行、列向量组均线性无关; ()b A 的行、列向量组均线性相关;()c A 的行向量组线性相关,列向量组线性无关; ()d A 的行向量组线性无关,列向量组线性相关.三. 设[][]T a a a a ],,,[,],,,[,,,,,,,,03121100101010014321=-===T TT.(1)将4a 用321a ,a ,a 线性表示.(2)由定义判定321a ,a ,a 是向量组321a ,a ,a ,4a 的一个最大线性无关向量组.(3)指出向量组321a ,a ,a ,4a 的秩和矩阵=A [321a ,a ,a ,4a ]的秩.四.设向量组为[],,,,T=31211a [],,,,T---=65142a []Ta 74313---=,,,,[]T-=01124,,,a .求该向量组的秩,并具体找出一个最大线性无关组.再把不属于最大线性无关组的向量用最大线性无关组的向量表示出来.河北工业大学线性代数作业(9)学院班级 姓名 学号一.填空题1.在基[][][]TTT===213132321321,,,,,,,,a a a 下,坐标为210,,的向量为________.2.在n R 中取r 个线性无关的向量r a a a ,,, 21,r<n ,由r21a ,,a ,a 生成的子空间记为S ,则=S dim ,S 的一个基为___________.3. n 阶矩阵Α的秩为r ,则其解空间的维数是 .二.选择题1.设向量组ma a a ,,, 21线性相关,V 为由m21a ,,a ,a 生成的向量空间,则V dim ( ).()a m =; ()b m <; ()c m ≤; ()d 无法确定.2. 向量空间W w {=[]},,,,a d cb a dc b a ==++=T0的维数为( ).()a 1 ()b 2; ()c 3; ()d 4.3.若齐次方程组0=x A 有非零解,则其基础解系是( ).()a 唯一的,其中的向量线性相关;()b 唯一的,其中的向量线性无关; ()c 不唯一,其中的向量线性相关;()d 不唯一,其中的向量线性无关.4.设有4⨯3矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有解的充分条件为( ).()a R ()2≤A ; ()b R ()3≤A ; ()c R ()3=A ; ()d R ()3=A .6.设有5⨯5矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有无穷多组解的充分条件是( ).()a ()5<A r ; ()b ()5=r ; ()c ()()5==A A r r ; ()d ()()4≤=A A r r .三.证明[],,,,T=00011a [],,,,T=00112a [][]TT==1111011143,,,,,,,a a 是4R 的一组基,并求向量[]T=4721,,,b 在这组基下的坐标.四 试求下列齐次方程组的基础解系,并说明解空间的维数1.⎪⎩⎪⎨⎧=++-=++-=++-01117840246303542432143214321x x x x x x x x x x x x五. 求解下列非齐次方程组.⎪⎩⎪⎨⎧-=+-=-+--=+352231232132131x x x x x x x x河北工业大学线性代数作业(10)学院班级 姓名 学号一.填空题 1.向量[]T11-1-1=,,,a 的规范化向量为=a e _____________.二.选择题1.设A ,B 为正交矩阵,则下列说法错误的是( ).()a 则1-A 和T A 也为正交矩阵,且有T -=A A 1;()b A 的每一行(列)向量都是单位向量,且其中的任意两个行(列)向量正交;()c AB 也为正交矩阵;()d B A +也是正交矩阵.三. 证明x V {=},,,),,(R x x x x x x x x x T ∈=++=3213213210构成3R 的一个子空间,并给出一组基.四.设[][][]TTT=-=-=103211112201,,,,,,,,,,,c b a ,1.求a 、b ,a 与b 的夹角;2.计算c b a b a ),(--23;3.证明c 与b ,a 都正交.五.}|{0==Ax x W 称为矩阵A 的零空间。
川大2011年春线性代数作业2
一、单项选择题。
本大题共12个小题,每小题 4.0 分,共48.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1、对行列式做种变换不改变行列式的值。
D
A.互换两行
B.非零数乘某一行
C.某行某列互换
D.非零数乘某一行加到另外一行
2、D
3D
A 3
B 4
C 5
D 6
4C
A 必有一个向量为零向量
B 必有二个向量对应分量成比例 C必有一个向量是其
余向量的线性组合 D任一列向量是其余列向量的线性组合
5A
6. B
7A
8B
9. 10.
九题那个都对,10B
11B
12.C
三、判断题。
本大题共13个小题,每小题 4.0 分,共52.0分。
1.两个同型矩阵秩相等的充要条件是它们的标准形相同。
(√ )
2.假设矩阵A不可能通过初等变换化为同型矩阵B,则A与B的秩一定不相
等.( ×)
3.假设矩阵A不可能通过初等行变换化为同型矩阵B,则A与B的秩一定不
相等.(× )
4.√
5.
6.不存在其秩大于其行数与列数的矩阵.(√ )
7.若AB为单位阵,则A、B互为逆矩阵.(× )
8.√
9.√
10.√
11.若行列式中没有两行或两列对应元素成比例,则行列式不为零.若行列式
中没有两行或两列对应元素成比例,则行列式不为零.( √)
12.×
13.增广矩阵的秩最多比系数矩阵的秩大1.( √)。
线性代数阶段性作业21
中国地质大学(武汉)远程与继续教育学院线性代数课程作业2(共 4 次作业)学习层次:专升本涉及章节:第3章1.把下列矩阵化为行最简形矩阵:(1)1021 2031 3043-⎛⎫ ⎪ ⎪⎪-⎝⎭;解102120313043-⎛⎫⎪⎪⎪-⎝⎭2131(2)(3)~r rr r+-+-102100130020-⎛⎫⎪-⎪⎪-⎝⎭23(1)(2)~rr÷-÷-102100130010-⎛⎫⎪-⎪⎪⎝⎭32~r r-102100130003-⎛⎫⎪-⎪⎪⎝⎭33~r÷102100130001-⎛⎫⎪-⎪⎪⎝⎭233~r r+102100100001-⎛⎫⎪⎪⎪⎝⎭1213(2)~r rr r+-+100000100001⎛⎫⎪⎪⎪⎝⎭(2)0231 0343 0471-⎛⎫ ⎪-⎪ ⎪--⎝⎭解023103430471-⎛⎫⎪-⎪⎪--⎝⎭21312(3)(2)~r rr r⨯+-+-023100130013-⎛⎫⎪⎪⎪--⎝⎭32123~r rr r++0201000130000⎛⎫⎪⎪⎪⎝⎭12~r÷010500130000⎛⎫⎪⎪⎪⎝⎭。
2.求下列矩阵的秩,并求一个最高阶非零子式:(1)3102 1121 1344⎛⎫ ⎪--⎪ ⎪-⎝⎭;解 310211211344⎛⎫ ⎪-- ⎪ ⎪-⎝⎭12r r ↔~112131021344--⎛⎫ ⎪⎪ ⎪-⎝⎭21313112104650465~r r r r ----⎛⎫ ⎪-⎪ ⎪-⎝⎭32112104650000~r r ----⎛⎫ ⎪⎝⎭ 所以秩为2, 一个最高二阶子式为 31411=--;(2) 321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; 解 321322131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭1221311344120711957021332715~r r r r r r ---------⎛⎫ ⎪⎝⎭ 321344171195~00003r r ----⎛⎫- ⎪⎝⎭. 所以秩为2, 一个最高二阶子式 32721=--.3.求解下列齐次线性方程组:(1) 12341234123420,20,2220;x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+++=⎩解 对系数矩阵实施行变换:112121112212-⎛⎫ ⎪- ⎪ ⎪⎝⎭1010013140013~⎛⎫ ⎪-⎪- ⎪ ⎪- ⎪⎝⎭ , 即得 1424344443343x x x x x x x x⎧=⎪⎪=-⎪⎨⎪=⎪⎪=⎩故方程组的解为1234433431x x k x x ⎛⎫ ⎪⎛⎫⎪ ⎪- ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭;(2) 12341234123420,3630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩解 对系数矩阵实施行变换:1211361351015-⎛⎫⎪-- ⎪ ⎪-⎝⎭120100100000~-⎛⎫ ⎪ ⎪ ⎪⎝⎭ 即得1242234420x x x x x x x x =-+⎧⎪=⎪⎨=⎪⎪=⎩ 故方程组的解为 12123421100001x x k k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
武汉理工大学whut线性代数考试试题及其参考答案(二)
标准答案及评分标准用纸 课程名称:线性代数 ( A 卷) 一、选择题(每小题3分,共12分) 1.B 2.C 3.B 4.D二、填空题(每小题3分,共12分)1.2;2.113021002⎛⎫ ⎪- ⎪ ⎪⎝⎭; 3.a=1;4. 2,2,5;(注:本小题每个数字为一分,错一个则减一分)三、解答题(每小题8分,共40分)1. 解:从第二列起,将其后各列加到第一列,有:1(1)1110111011011101(1)1011101111111111c n n n n D n n n ÷---==---121(1)(2)(1)12200010010(1)01001111(1)(1)(1)(1)(1)nn n nr r r r r r n n n n n n n n -----+----=--=-⋅--=--4分注:若采用其他方法计算出正确结果也应给满分,其正确的步骤也相应给分。
2. 由题,有E A B E A +=-)(2 2分且2202030360,402A E --==≠--故2()A E -可逆。
2分在等式左右两边左乘21()A E --得21()()B A E A E -=-+ 2分 11001001/2()010*********A E ---⎛⎫⎛⎫⎪ ⎪=-== ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭3.解:2分2分2分2分11111131132231213331 3--------=-=-=-⎛⎫=- ⎪⎝⎭*()A A A A A A A A A 2分 1133-=∴= ,A A ,上式=311339⎛⎫-⨯=- ⎪⎝⎭2分注:若前面所有步骤正确,最后计算出现符号错误,扣一分。
4.解:令矩阵123413011031(,,,)27124142A αααα⎛⎫⎪-- ⎪== ⎪⎪⎝⎭,并通过初等行变化化成最简形,有:1301103010310110271200014142A r -⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭4分 故向量组A 的的一个最大无关组为124,,ααα, 2分 且3123ααα=-+。
大学线性代数作业答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载大学线性代数作业答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一章行列式1.1 二阶、三阶行列式一、计算下列行列式1、2、3、二、解方程1、解:计算行列式得,因此2、解:计算行列式得,得,因此1.2 n阶行列式定义及性质一、计算下列行列式1、2、3、4、5、将第2、3、4列乘以-1加到第一列得6、将第2、3、4行全部加到第1行将第1行乘以-1加到第2、3、4行二、计算下列行列式1、第1行加到第2、3行2、按第1列展开3、按第4行展开4、按第1行展开5、第1列乘以-1加到第2、3、4列第2列乘以-1加到第3、4列计算下列n阶行列式:1、按第1列展开2、将第2、3、…、n行全部加到第1行第1行乘以-1加到以下各行3、范德蒙行列式4、已知,计算和 .解:将上式设为,此式设为,可直接计算此行列式结果为3,也可按以下方法来做:题目中的原行列式设为由行列式的性质得:则:三、解下列方程1、解:第1行乘以-1加到2、3、4行,得将1、2、3列加到第4列得将第2、3行交换,1、4行交换后得上三角形行列式,因此,因此,2、解:此行列式是范德蒙行列式,得因此,3、解:由行列式的加法则,再相加,此行列式为范德蒙行列式得因此1.4 克莱姆法则一、解线性方程组1、解:,,解得2、解:,,解得二、求一个二次多项式使得解:设,,解得三、已知线性方程组只有零解,求的取值范围.解:系数行列式为,因此四、设线性方程组有非零解,则应取何值?若线性方程组的右端变为2,3,2,则为何值时,新的线性方程组有唯一解?解:系数行列式为则当时方程组有非零解;若线性方程组的右端变为2,3,2,则当时方程组有唯一解.第二章矩阵2.1 矩阵定义及其运算一、填空题1、设为三阶方阵,且,则.说明:2、的充分必要条件是.二、选择题1、设都是阶矩阵,则的充分必要条件是( C ).(A) (B) (C) AB=BA (D)2、设都是阶矩阵,则( C ).(A) (B) (C) (D)3、设为阶矩阵,若,则等于( C ).(A) (B) (C) (D)说明:由题意知矩阵与不能交换,因此只有(C)正确.4、设都是阶对称矩阵,则下面四个结论中不正确的是( B ).(A) 也是对称矩阵(B) 也是对称矩阵(C)(m为正整数) 也是对称矩阵(D)也是对称矩阵理由:,因此(B)错误.三、设,为二阶单位阵,满足, 求.解:由得,即,两边取行列式得,而,因此.四、1、已知,,,求.结果为2、已知,,求.结果为3、已知,,求,,.结果为4、计算,结果为05、计算五、设证明:当且仅当.证:必要性,已知,即,则,得.充分性,已知,则,因此.2.2 逆矩阵一、填空题1、设为三阶方阵,且,则 4 , 4 ,.说明:,,2、设为矩阵,为矩阵,则 -8 .说明:3、设为矩阵,则是可逆的充分必要条件.4、已知,且可逆,则=.说明:等式两边同时左乘5、为三阶方阵,其伴随阵为,已知,则.说明:二、选择题1、若由必能推出其中为同阶方阵,则应满足条件( B )(A)(B)(C)(D)2、设均为阶方阵,则必有( C )(A)(B)(C)(D)三、计算题1、判断下列矩阵是否可逆,若可逆,求其逆矩阵.(1),可逆,(2),可逆,2、解矩阵方程:解:,3、利用逆矩阵,解线性方程组解:系数矩阵为,则,则四、设方阵满足方程.证明:和都可逆,并求他们的逆矩阵.证:因此,和都可逆,且,2.3 初等变换与初等矩阵一、填空题=.说明:由于,,因此二、选择题:1、设为阶可逆矩阵,则( B )(A)若,则;(B)总可以经过初等变换化为;(C).对施行若干次初等变换,当变为时,相应地变为;(D)以上都不对.说明:(B)为定理,正确;(A)少条件,若加上矩阵可逆,才能正确;(C)将“初等变换”改为“初等行变换”才正确;2、设,,,则必有( C )(A)(B)(C)(D)利用初等变换求矩阵的逆矩阵1、,逆矩阵为:2、,逆矩阵为:3、,逆矩阵为:4、,其中,将最后1行调整到第1行三、已知,求解:由于,则,由,因此.四、已知,,求矩阵.解法1:由得:,即,此式两边同时左乘,再右乘,得(1)再由得:,即,两边同时右乘,得,此式与(1)式结合得:解法2:将变形得,可得,两边加得:,即,则,因此.五、已知,其中,求矩阵.解:由得:,即因此,六、设,为三阶可逆矩阵,求.解:,则因此,2.5 矩阵的秩一、填空题1、在秩是的矩阵中,所有的阶子式都为0 .2、设是矩阵,,,则 3 .说明:可逆矩阵与其它矩阵相乘,不改变其它矩阵的秩.3、从矩阵中划去一行得到矩阵,则的秩的关系为.4、设, 秩,则 -3 .说明:将2、3、4行加到第一行,再从第一行提出公因子将第1行乘以-1加到以下各行,因此当或时,,但时显然,因此.5、设, 秩,则 1 .说明:二、求下列矩阵的秩1、,2、,3、,三、设,1)求;2)求秩(要讨论).解:则当时,;当时,.四、讨论矩阵的秩.解:当且、、时,;其它情况,.第三章向量3.1 向量的概念及其运算1、已知,求,及.结果:2、已知,,满足,求.结果:3、设,其中,,,求.结果:4、写出向量的线性组合,其中:(1)(2)结果:1) 2)5、已知向量组,问:向量是否可以由向量线性表示?若可以,写出其表达式;解:设即可得方程组:,用克拉默法则可得:,,则向量可以由向量线性表示,.3.2 线性相关与线性无关1、判断向量组的线性相关性,并说明原因.1)线性相关.包含零向量的向量组都是线性相关的.2)线性无关.两个向量线性无关的充要条件是对应分量不成比例.3),因此向量组线性无关.4)线性相关.5)线性相关.向量个数大于向量维数,必线性相关.2、填空题设向量组线性相关,则 2说明:,则设向量组线性无关,则必满足关系式说明:若维单位向量组可由向量组线性表示,则说明:书72页推论13、选择题1)向量组线性无关的充要条件是(C)向量组中必有两个向量的分量对应不成比例向量组中不含零向量向量组中任意一个向量都不能由其余的个向量线性表示存在全为零的数,使得2)设其中是任意实数,则(C)向量组总线性相关向量组总线性相关向量组总线性无关向量组总线性无关4、已知向量组线性无关,证明:(1) 线性无关证明:设即,由线性无关得,即,因此线性无关.(2) 线性相关证法1:设即,由线性无关得,当时方程组成立,因此线性相关.证法2:由,得线性相关.5、已知,,问:向量能否由向量组唯一线性表示?解:设,即方程组系数行列式,,,因此可由向量组唯一线性表示,.3.3 向量组的秩1、填空题(1)若,则向量组是线性无关说明:由知线性无关,线性无关的向量组减少向量个数还是线性无关.(2)设向量组的秩为,向量组的秩为,且,则与的关系为2、选择题(1)若向量组是向量组的极大线性无关组,则论断不正确的是( B )可由线性表示可由线性表示可由线性表示可由线性表示(2)设维向量组的秩,则( B )向量组线性无关向量组线性相关存在一个向量可以由其余向量线性表示任一向量都不能由其余向量线性表示(3)若和都是向量组的极大线性无关组,则(C)3、求下列向量组的秩(必须有解题过程)(1)解:由,得向量组的秩为3.(2)(要讨论)解:当,时秩为3;当时秩为2;当时秩为1;4、利用矩阵的初等变换求下列向量组的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.(1)解:为极大线性无关组,且.(2),,解:为极大线性无关组,,5、已知向量组的秩为,1)求2)求向量组的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.解:(1),(2)为极大线性无关组,.6、设维单位向量可由维向量组线性表出,证明向量组线性无关.证明:由维单位向量可由维向量组线性表出,且维单位向量可由维向量组线性表出,因此这两个向量组等价,由的秩为,因此的秩为,因此线性无关.7、设,,,,证明:线性无关.证明:设,即则由得:,系数行列式因此线性无关.8、设,若各向量组的秩分别为:,,证明:向量组的秩为4.证明:反证法,假设向量组的秩小于4,由知,线性无关,根据书69页定理5知:可由线性表示,设为,即(1)再由,得线性相关,再由刚才定理知:可由线性表示,设为,代入(1)得:因此可由线性表示,则线性相关,与矛盾.因此向量组的秩为4.3.4 向量空间1、设问是不是向量空间,为什么?解:是向量空间,不是向量空间.(大家自己证明)2、向量在基,,下的坐标是.说明:设方程,解之即可.3、略4、试证:由生成的向量空间就是,并求的一组标准正交基.证:由,则线性无关,,则为四个三维向量,必线性相关,且可由线性表示,因此,所生成的向量空间为.由施密特正交化法:,单位化得:,,,为空间的一个标准正交基.第四章线性方程组1、填空题1)线性方程组无解,且,则应满足=4 ;线性方程组有解,且,则应满足=32)设是方阵,线性方程组有非零解的充要条件是.说明:由,得3)设元线性方程组有解,若,则的解空间维数为 2 .说明:解空间的维数+结果为.4)设为四元非齐次线性方程组,,是的三个非零解向量,,则的通解为.说明:由4-3=1知该方程组对应的齐次线性方程组的基础解系中应包括一个向量,而是的一个解,因此齐次线性方程组的通解为,再由,,以上二式相加除以2知,是的一个特解,因此的通解为5)若既是非齐次线性方程组的解,又是的解,则.说明:由是非齐次线性方程组的解,可知为非零向量,因此有非零解,则其系数行列式必为0,推出.2、选择题1)若齐次线性方程组仅有零解,则(C)2)线性方程组有唯一解的条件是(B)只有零解、、都不对3)若方程组中,方程的个数少于未知量的个数,则(B)一定无解必有非零解仅有零解的解不能确定3、求下列齐次线性方程组的基础解系1)解:方程组化为:,设,解得,,基础解系为:2)解:方程组化为令,解得:,令,解得:,基础解系为:,4、求方程组的特解.解:方程组化为,令,得,因此方程组的一个特解为:.5、求下列线性方程组的通解1)解:方程组化为:,设,得,,通解为:2)解:方程组化为:选为自由未知量并令,(注意此处特解的取法)解得,于是该方程组的一个特解为其导出组的同解方程组为,选为自由未知量并令,解得,于是导出组的一个基础解系为方程组通解为:(3)四元线性方程组解:由知原方程组有无穷多组解.先求原方程组一个特解,选为自由未知量并令,得,于是该方程组的一个特解为在其导出组中选为自由未知量并令得,令得,于是导出组的一个基础解系为故原方程组的通解为,其中为任意常数.6、综合题(1)已知三元非齐次线性方程组有特解,,,,求方程组的通解.解:因为为三元方程组而,所以的基础解系中含有两个解向量,由解的性质,均是的解,显然它们线性无关,可以构成的一个基础解系.由解的结构知的通解为,其中为任意常数即.(2)取何值时,齐次线性方程组有非零解?并求出一般解.解:因为所给方程组是含三个方程三个未知量的齐次方程组,故可以利用克拉默法则,当系数行列式为0时方程组有非零解.由可得,所以当时原方程组有非零解.当时,原方程组变为,选为自由未知量并令并令得,,得于是方程组的一个基础解系为通解为,其中为任意常数.(3)取何值时,齐次线性方程组有非零解?并求出其通解.解:因为所给方程组是含三个方程三个未知量的齐次方程组,故可以利用克拉默法则,当系数行列式为0时方程组有非零解.由可得或时原方程组有非零解.当时,原方程组系数矩阵为,选为自由未知量,取,得,方程组的一个基础解系为通解为,其中为任意常数.当时,原方程组系数矩阵为,选为自由未知量,取,得,方程组的一个基础解系为通解为,其中为任意常数.(4)讨论当取何值时方程组无解?有唯一解?有无穷多解?在有无穷多解的情况下求出其通解.解:当,即,时,原方程组无解.当,即,时,原方程组有唯一解.当,即,或者时,原方程组有无穷多解.当时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.当时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.(5)已知线性方程组问方程组何时无解?何时有唯一解?何时有无穷多解?在有无穷多解的情况下求出其通解.解:当,即,或时,原方程组无解.当,即,时,原方程组有唯一解.当,即,且时,原方程组有无穷多解.当且时,原方程组中,选为自由未知量,在对应的中令得导出组的一个基础解系在中令得一个特解于是方程组的通解为,其中为任意常数.(6)若是方程组的基础解系,证明:也是该方程组的基础解系.证明:由于,同理可以验证也是的解,由题设知的一个基础解系中含3个解向量,下面只需证明是线性无关的.设整理得由于线性无关,故有又系数行列式,故从而线性无关,是方程组的一个基础解系.(7)设方程组证明:此方程组对任意实数都有解,并且求它的一切解.证明:由于,故对任意实数原方程组都有解.对,选为自由未知量,在对应的中令得,导出组的一个基础解系为在中令得,原方程组的一个特解于是方程组的通解为,其中为任意常数.(8)设是()的两个不同的解,的一个非零解,证明:若,则向量组线性相关.证明:因为,所以的基础解系中只含有一个解向量.由解的性质,是的非零解,又题设中是的非零解,显然它们线性相关,即存在不全为零的数满足,整理得,从而向量组线性相关.第五章矩阵的特征值与矩阵的对角化5.1 矩阵的特征值与特征向量1、填空题1) 矩阵的非零特征值是 3 .2) 阶单位阵的全部特征值为 1 ,全部特征向量为全体n维非零实向量3) 已知三阶方阵的特征值为,则的特征值为的特征值为,的特征值为,的特征值为.4) 已知为二阶方阵,且,则的特征值为 0,1 .2、选择题1) 设是阶矩阵,若,则的特征值( C )全是零全不是零至少有一个是零可以是任意数2) 若是阶矩阵是可逆阵,则的特征值( B )全是零全不是零至少有一个是零可以是任意数(3) 设=2是可逆矩阵的一个特征值,则矩阵的一个特征值等于(B )4) 若为阶方阵,则以下结论中成立的是( D )的特征向量即为方程组的全部解向量;的特征向量的任一线性组合仍为的特征向量;与有相同的特征向量;若可逆,则的对应于特征值的特征向量也是的对应于特征值的特征向量5) 与阶矩阵有相同特征值矩阵为 D3、求下列矩阵的全部特征值及特征向量1)解:特征方程为特征植为当时,,对应齐次方程组为,基础解系为,对应的特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系为,对应的特征向量,其中为非零常数.2)解:特征方程为特征植为当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.当时,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.3)解:特征方程为特征植为对,,对应齐次方程组为,基础解系,对应特征向量,其中为不全为零的常数4)解:特征方程为特征植为对,,对应齐次方程组为,基础解系,对应特征向量,其中为非零常数.4、设为三阶方阵,且,其中是的伴随矩阵,求的特征值和特征向量.解:由于,故的特征植为又,对应方程组为,可选一个基础解系为基本单位向量组,故的特征向量为,其中为不全为零的常数.5.2 相似矩阵、矩阵的对角化1、填空题1) 若四阶方阵与相似,矩阵的特征值为,为四阶单位矩阵,则 24说明:由与相似,则的特征值也为,的特征值为,为全部特征值的乘积,因此为24.2) 若矩阵相似于矩阵,则 1说明:,由于与均可逆,则2、选择题1) 阶方阵具有个互不同的特征值是相似于对角矩阵的(B)充分必要条件充分而非必要条件必要而非充分条件即非充分也非必要条件2) 阶方阵相似于对角矩阵的充要条件是有个(C)相同的特征值互不相同的特征值线性无关的特征向量两两正交的特征向量3) 设三阶矩阵的特征值分别是,其对应的特征向量分别是,设,则(A)4) 若,都是阶矩阵,且可逆,相似于,则下列说法错误的是 C相似于相似于相似于三者中有一个不正确3、设三阶方阵的特征值为1)2) 设,求的特征值及其相似对角阵,并说明理由由于,故即,所以的特征值为0,-4,-1.3)4、判断下列矩阵是否相似1)与解:特征方程为特征值为故可对角化,2)与解:特征方程为特征值为对,系数矩阵,秩为2,说明只有一个线性无关的特征向量,故它不可对角化,不相似与所给的对角矩阵.3)与解:特征方程为特征值为对,系数矩阵,秩为1,说明有两个线性无关的特征向量,故它可对角化,相似与所给的对角矩阵.5、判断下列矩阵能否对角化?若能,则求可逆矩阵,使为对角矩阵.1)解:特征方程为特征值为对,系数矩阵,秩为2,说明此时只有一个线性无关的特征向量,故它不可对角化.2)解:特征方程为特征值为对,系数矩阵,秩为1,说明有两个线性无关的特征向量,故它可对角化.对此齐次方程组取一个基础解系对,系数矩阵,秩为2,说明有一个线性无关的特征向量,取一个基础解系.取,有3)解:特征方程为特征值为对,系数矩阵,秩为2,说明此时只有一个线性无关的特征向量,故它不可对角化.6、设阶方阵的特征值为,,它们对应的特征向量依次为,求.解:由于有3个互不相同的特征值,故它可对角化.从而5.3 实对称矩阵的对角化1、填空题1)任一方阵的属于不同特征值的特征向量必线性无关(填向量之间的关系)实对称矩阵的属于不同特征值的特征向量必正交(填向量之间的关系)2)为三阶实对称矩阵,是矩阵的重特征值,则齐次线性方程组的基础解系包含 3 个解向量.2、设,求正交矩阵,使得解:特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系正交化:,,单位化:,,取,有3、设,求.解:由于相似矩阵有相同的行列式和迹,故解方程组得4、设1) 求、2) 求正交矩阵,使得解:1)由于相似矩阵有相同的特征值,的特征值为0,1,2即,解得2)此时,,其一个基础解系,其一个基础解系,其一个基础解系单位化:,,,有5、设,求(为正整数)解:特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系,有,故从而6、设为阶非零矩阵,若存在正整数,使,称为幂零矩阵.证明:1)幂零矩阵的特征值全为零.2)不能相似于对角矩阵.证明:证明:1)设为幂零矩阵,有特征值,即,,又,带入上式得,即,又,只有从而2)反证法:假设相似于对角矩阵,由于相似矩阵有相同的特征值,故为零矩阵,且存在可逆矩阵满足,有,与题设为非零矩阵矛盾,假设错误不能相似于对角矩阵.第六章二次型6.2 化二次型为标准型一、填空题1、二次型的矩阵是2、二次型的矩阵是,该二次型的秩是 33、二次型的秩为 2 .说明:对应矩阵为,该矩阵行列式为0,秩为2.4、矩阵为二次型的二次型矩阵.若该二次型的秩是,则 1说明:令,求得二、选择题二次型的矩阵是(D)(A) (B)(C) (D)说明:本二次型是三元二次型,因此排除A、B,又由于C不是对称矩阵,排除,因此选D.三、设二次型(1)写出其矩阵表达式;(2)用正交变换将其化为标准形,并写出所用的正交变换.解:(1)(2)特征方程为特征值为对,系数矩阵,对应的齐次方程组取一个基础解系,系数矩阵,对应的齐次方程组取一个基础解系由于相互正交,只需对它们单位化:单位化:,,取,作正交变换,即则将化为标准形四、用配方法将下列二次型化为标准型,写出所做的实可逆线性变换并指出原二次型的秩:(1)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(2)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(3)令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(4)解:令,显然它是一个可逆变换,它的逆变换也是可逆线性变换,这个线性变换将化为标准形该二次型是一个秩为3的二次型.(5)解:令令,它的逆变换,带入得,这个线性变换将化为标准形该二次型是一个秩为3的二次型.五、设二次型经过正交变换化为标准形,求常数.解:,该二次型的矩阵为,它可经过正交变换化为标准形,故0,1,2是矩阵的三个特征值.从而有即,解得六、已知是二次型的矩阵的特征向量,求这个二次型的标准形.解:该二次型的矩阵为,由题设是矩阵的特征向量,故存在特征值满足,即,可得此时,特征方程解得特征值为二次型的标准形为6.4 正定二次型一、填空题(1)设,则不是正定矩阵;式子不是二次型;式子不是二次型(填“是”或者“不是”).(2)设是正定的,则.(3)若二次型是正定的,则t的取值范围是.二、(1)二次型的正惯性指数与负惯性指数与符号差分别为 A .(A) 2,0,2 (B) 2,0,0(C) 2,1,1 (D) 1,1,0(2) 二次型是 A .(A)既不正定也不负定(B)负定的(C)正定的(D)无法确定(3) 如果A是正定矩阵,则 C .(A是A的伴随矩阵)(A) A′和A-1也正定,但A不一定(B)A-1和A也正定,但A′不一定(C)A′、A-1、A也都是正定矩阵(D) 无法确定(4)二次型是正定二次型的充要条件是 C(A)存在维非零向量,使(B),(C)的正惯性指标为(D)的负惯性指标为(5)对正定二次型矩阵下列结论不正确的为( D )(A)合同于一个同阶单位阵(B)所有特征值都大于0(C)顺序主子式都大于0(D)不能对角化(6)以下命题正确的是(题目错,无正确答案)(A)若阶方阵的顺序主子式都大于零,则是正定矩阵(B)若阶方阵的特征值都大于零,则是正定矩阵(C)若阶实对称矩阵不是负定的,则是正定的(D)若阶实对称矩阵的主对角线元素不全为零,则一定不是正定的三、判断下列二次型的正定性:(1)解:该二次型的矩阵为,因为,二次型非正定.(2)解:该二次型的矩阵为,因为,,,,二次型正定.四、求值,使下列二次型为正定二次型(1)解:该二次型的矩阵为,要使得二次型正定,只有:,,同时成立,所以二次型正定可得.(2)解:该二次型的矩阵为,要使得二次型正定,只有:,,同时成立,所以二次型正定可得.线性代数试题(一)一、填空题(每题4分,5小题共20分)1、已知为阶方阵,为的伴随矩阵,若,则=.提示:,因此,得2、设、是三阶方阵,是三阶单位阵,且,则 -4 .提示:由得,则3、向量在基,,下的坐标为(1,2,3).4、若向量组,,的秩为2,则 3 .5、阶方阵,若满足,则的特征值为 0或1 .二、选择题(每小题3分,共15分)1、设和都是阶方阵,且,是阶单位阵,则( B ).。
线性代数 习题二答案
1. 241110331032350382A B -⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,110020130350011361B C --⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,2410204222323032011091A C ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.2.由32A X B -=可得()341231010283211153312111125211222234221171157115222X A B ⎡⎤-⎢⎥⎛⎫-⎡⎤⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥=-=---=-=- ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦.3. 由22422243a b a b c d c d +--⎛⎫⎛⎫=⎪ ⎪+--⎝⎭⎝⎭可得,24222423a b a b c d c d +=⎧⎪-=-⎪⎨+=⎪⎪-=-⎩ 解方程组可得0,2,1,2a b c d ====. 4.设()ijm nA a ⨯=,当kA O =时,由零矩阵定义,有0ij ka =,则0k =或0ij a =,即0k =或A O =.5.(1)()()()323122382031237243181141142184011437813203515112581051137402++-+⎡⎤⎡⎤⎡⎤-⎛⎫⎢⎥⎢⎥⎢⎥-=-+-+--+=- ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥++-+-⎣⎦⎣⎦⎣⎦ .(2)()()()1311113213804220142232701371021310-+---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=+-+=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦⎣⎦. (3)()()()()()13121110132101312111013210321023222120264203332313039630-⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥-==⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦ .(4)()()()()1132211322151⎡⎤⎢⎥=++-=⎢⎥⎢⎥-⎣⎦. (5)()()()()210112113121121111120101321101-⎡⎤⎢⎥-=-+--+-+-⎢⎥⎢⎥-⎣⎦()325=--.(6)()()111211222211121122221212111a a b x x xy a a b y a x a y b a x a y b b x b y c y b b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()111211222212a x a y b x a x a y b y b x b y c =++++++++()2212111222222c b x b y a x a xy a y =+++++.6.21010101121A λλλ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,我们猜测101nA n λ⎛⎫= ⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()110101010111111nn A A A n n n λλλλλ-⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭,因此101n A n λ⎛⎫=⎪⎝⎭.7.(1)设cos sin sin cos A θθθθ-⎛⎫=⎪⎝⎭, 则2cos 2sin 2sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭,3cos3sin3sin3cos3A θθθθ-⎛⎫= ⎪⎝⎭,因此,我们猜测cos sin sin cos nn n A n n θθθθ-⎛⎫=⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()()()1cos 1sin 1cos sin sin 1cos 1sin cos n n n n A A A n n θθθθθθθθ----⎛⎫-⎛⎫==⎪⎪--⎝⎭⎝⎭ ()()()()()()()()cos 1cos sin 1sin cos 1sin sin 1cos sin 1cos cos 1sin sin 1sin cos 1cos n n n n n n n n θθθθθθθθθθθθθθθ-------⎛⎫=⎪-+---+-⎝⎭cos sin sin cos n n n n θθθθ-⎛⎫=⎪⎝⎭,因此cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭.(2)设142032043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,则2100010001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以2100010001k A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,21142032043k A +⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦, 即()()()()()()122111012111022121n nn nnn n A ⎡⎤----⎢⎥⎢⎥=-+--+-⎢⎥----⎢⎥⎣⎦.(3)设1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,则 241111111140001111111104004111111110040111111110004A E ------⎡⎤⎡⎤⎛⎫⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥------⎣⎦⎣⎦⎝⎭, 所以244k k A E ==,2111111111411111111k k A +---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦. (4)1112233111121311112233112233212223313233()()()()T T T T T T T T n Tnn n T n a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b αβαβαβαβαβαβαβαβαβαβ----===++⎡⎤⎢⎥=++=++⎢⎥⎢⎥⎣⎦8, (1)设矩阵11122122x x B x x ⎛⎫=⎪⎝⎭与矩阵A 可交换, 则112112222122x x x x AB x x ++⎛⎫=⎪⎝⎭,111112212122x x x BA x x x +⎛⎫= ⎪+⎝⎭,由AB BA =得210x =,1122x x =.(2)设矩阵111213212223313233x x x B x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭与矩阵A 可交换, 则212223313233000x x x AB x x x ⎛⎫⎪= ⎪ ⎪⎝⎭,111221223132000x x BA x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭, 由AB BA =得2131320x x x ===,112233x x x ==,1223x x =9. 设矩阵111213212223313233x x x B x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵A 可交换,则111213212223313233ax ax ax AB bx bx bx cx cx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111213212223313233ax bx cx BA ax bx cx ax bx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 由AB BA =得2131321213230x x x x x x ======,即与A 可交换的矩阵必为对角距阵. 10. 因为A T=A , 所以(P TAP)T=P T(P TA)T=P T A TP =P TAP ,从而P TAP 是对称矩阵. 11. 证明充分性: 因为A T=A , B T=B , 且AB =BA , 所以 (AB)T=(BA)T=A T B T=AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T=AB , 所以AB =(AB)T=B T A T=BA.12.(1)因为AB BA =,所以()222222A B A AB BA B A AB B +=+++=++,得证.(2)因为AB BA =,所以右边2222A AB BA B A B =-+-=-=左边,得证. (3)因为AB BA =, 所以()()()()()()()()()()()()()1p p pAB AB AB AB AB AB AB A BA BA BA BA BA BA B -==()()()()()()()()()()1222p p A AB AB AB AB AB AB B A BA BA BA BA B --==()()()()()()()()()23223311p p p p p pA AB AB AB AB B A AB AB AB AB B A AB B A B ----===== ;如果AB BA ≠,则上述等式不成立. 13, 1001A -⎛⎫=⎪-⎝⎭14, 充分性:因为2B E =, 所以()()()22111222442A B E B E B E B A =++=+=+=; 必要性:因为2A A =, 所以()()()22111222442A B E B E B B E =++=+=+, 整理得2B E =.15, 因为A 是反对称矩阵,B 是对称矩阵, 所以TA A =-,TB B =, (1)()()()22TT T AA A A A A ==--=,即2A 是对称矩阵.(2)()()()()()TTTT T T TAB BA AB BA B A A B B A A B AB BA -=-=-=---=-,即AB BA -是对称矩阵.(3)充分性:因为AB BA =,所以()()TT TAB B A B A BA AB ==-=-=-,即A 是反对称矩阵;必要性:因为A 是反对称矩阵,所以()()TT TAB B A B A BA AB ==-=-=-,即AB BA =. 16,设111211112222121121111121n n n n n n n n n n nnn nnn a a a a a a a a A a a a a a a a a --------⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则2A 主对角线上的元素分别为22221112111n n a a a a -++++ ,22221222212n n a a a a -++++ ,…,2222121n n n n nn a a a a -++++ ,又因为2A O =,所以222211121110n n a a a a -++++= ,222212222120n n a a a a -++++= ,…,22221210n n n n nn a a a a -++++= ,解得11121222320n n nn a a a a a a a ========== , 即A O =.17.设111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,则112111222212m m T nn mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 222111212222122222212n Tn m m mn a a a a a a AA a a a ⎡⎤+++⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦因为TAA O =,则222111210n a a a +++= ,222212220n a a a +++= ,…,222120m m mn a a a +++= , 所以1112121222120n n m m mn a a a a a a a a a ======+==+++= ,即A O =. 18,(1)2111111141132222232323872341A A --------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=-=⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)321411141110325432548723872301A A A E ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭91128554024303221316141015046036-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 19,因为()21fλλλ=-+,所以()21551222310014391331100100531371331200110612f A A A E ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-+=--+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,11A d =,12A c =-,21A b =-,22A a =,所以d b A c a *-⎛⎫= ⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 21,11A d =,12A c =-,21A b =-,22A a =, 所以d b A c a *-⎛⎫=⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 22.(1)200A =-≠,所以矩阵A 可逆,又112A =-,123A =-,216A =-,221A =,所以113261110103131202020A A A -*⎛⎫ ⎪--⎛⎫=== ⎪ ⎪-- ⎪⎝⎭- ⎪⎝⎭. (2)10A =≠,所以矩阵A 可逆,又11cos A θ=,12sin A θ=-,21sin A θ=,22cos A θ=,所以1cos sin 1sin cos A A A θθθθ-*⎛⎫== ⎪-⎝⎭. (3)10A =≠,所以矩阵A 可逆,又111A =,120A =,130A =,212A =-,221A =,230A =,317A =,322A =-,331A =,所以11271012001A A A -*-⎛⎫⎪==- ⎪ ⎪⎝⎭. (4)()()()()2123134141000100010001000112000100020011002213000100130201011214000102141001r r r A E r r r r r r ⎛⎫⎛⎫+-→ ⎪ ⎪- ⎪⎪=+-→ ⎪⎪- ⎪⎪+-→-⎝⎭⎝⎭ ()()32323424100010001000100020130201001302010020011000060312020214100100543021r r r r r r r r ⎛⎫⎛⎫ ⎪ ⎪+-→-- ⎪ ⎪↔ ⎪ ⎪---+-→ ⎪ ⎪---⎝⎭⎝⎭()343100010000130201010014010100543021r r r ⎛⎫⎪- ⎪+-→ ⎪--- ⎪--⎝⎭()()232434100010001110001000010000223010122313111001401010010052630024352615110001824124r r r r r r ⎛⎫⎪⎛⎫ ⎪-⎪⎪+→--- ⎪ ⎪→ ⎪----- ⎪+-→ ⎪⎪--⎝⎭⎪-- ⎪⎝⎭所以,距阵A 可逆,且1100011002211102631511824124A -⎛⎫ ⎪ ⎪- ⎪ ⎪=-- ⎪ ⎪ ⎪-- ⎪⎝⎭. (5)因为0A =, 所以1A -不存在.(6)50A =≠,所以矩阵A 可逆,又113A =,122A =,131A =-,213A =-,223A =,231A =,311A =-,324A =-,332A =,所以13315551234555112555A A A-*⎛⎫-- ⎪⎪ ⎪==- ⎪ ⎪ ⎪- ⎪⎝⎭. (7)2312223341000100110000100010010100(,)001000100100100001001010001a a a a r ar a a a A E r ar a a r ar -⎡⎤⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦ 所以,距阵A 可逆,且11110110010001a a A a --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦22,(1)1100500510121012271003403453753712333023023X -⎛⎫⎪⎛⎫⎪---⎛⎫⎛⎫⎛⎫ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎪⎪-⎝⎭⎪⎝⎭;(2)1100001100001001100a a a a Xb b b bc c c c -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎪⎝⎭; (3)111111211000111112100001110120000011000210000100012X -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11000211000110012100001000120000011000210000100012-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦1110011100011000001100012--⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(4)由XP PB =得:111001001002100002102110012111001010010021000021020021101411611X PBP --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦511111111111111151()()()()()()()()()X PBP PBP PBP PBP PBP PBP PBP PBP PBP PBP PB P P B P P B P P B P P BP PB P----------------====5B B =,故55100200611X XB X XBX ⎡⎤⎢⎥===⎢⎥⎢⎥--⎣⎦23,100110111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦故:11210010(2)(2)110120111112100100200110120120011112112A E A A E ---⎡⎤⎡⎤⎢⎥⎢⎥++-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=---=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦24,1311110,211A --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 由1111*111,,3A A A A A A A ----====-,得*1113A A A A --==,*1**1211211()111,()1119154154A A ---⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦25,1*11210121001210121,0012001200010001A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥===⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦而*A 中的所有元素即为A 中所有元素的代数余子式,即A 所有元素的代数余子式为0. 26,由题意得:*1()*E A A kA AA kE A E kE -=-+=--=--,即 13k A =--=- 27,(1).因为2AX B X =+, 所以()2A E X B -=,又因为()111013112111110112211A E ----⎛⎫⎛⎫⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭则()13112135242110012201211103311X A E B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭(2)由题意得:11()()()()AXA BXB AXB BXA EA B X A B E X A B A B --+--=⇒--=⇒=-- 故:11111111125011011012001001001X ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(3)由12*0,2n A A AA A ->==⇒=1*1002211002210022A A A A-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==-⇒=-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦由111111133()31263()332231122ABA BA E ABA BA E A E BA E B A E A -------=+⇒-=⇒-=⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⇒=-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦28,因为A ,B ,C 都是非奇异矩阵,所以1A -,1B -,1C -存在,又111111ABC C B A C B A ABC E ------==, 则由推论知ABC 可逆,且()1111ABC C B A ----=29,111111AB BA B ABBB BAB B A AB ------=⇔=⇔=,111111AB BA A ABA A BAA BA A B ------=⇔=⇔=, ()()111111AB BA AB BA B A A B ------=⇔=⇔=,综上可得11111111AB BA ABB A A B BA A B B A --------=⇔=⇔=⇔=.30,(1)不成立,A B =-时不成立.(2)成立,A ,B 可逆,0A ≠,0B ≠,0AB A B =≠,则AB 可逆. (3)成立,AB 可逆,0AB A B =≠,0A ≠,0B ≠,则A ,B 可逆. 31,()2200A A E A A E A E A E A -+=⇒-=⇒-=⇒≠, 即A 为非奇异矩阵. 32,因为B 可逆,所以0B ≠,20B B B =≠,又22A AB B O ++=,则22A AB B +=-,()()22210nA AB A A B A A B B B +=+=+=-=-≠,即0A ≠,0A B +≠, 由推论知A 和A B +都可逆. 33,证明:假设*A 可逆,则1*00n A AA -=≠⇒≠,即A 可逆,1A -存在,再由2211A A A A AA A E --=⇒=⇒=与题设A E ≠矛盾,故假设不成立即*A 不可逆,证毕。
线性代数 大作业(二)
线性代数 大作业(二)学号:02121443 姓名:惠政 成绩:____________ 1.在钢板热传导的研究中,常常用节点温度来描述钢板温度的分布。
假设下图中钢板已经达到稳态温度分布,上下、左右四个边界的温度值如图所示,而T1,T 2,T 3,T 4表示钢板内部四个节点的温度。
若忽略垂直于该截面方向的热交换,那么内部某节点的温度值可以近似地等于与它相邻四个节点温度的算术平均值,如T 1=(30+40+T 2+T 3)/4,请计算该钢板的温度分布。
(1)根据已知条件可以得到以下线性方程组得矩阵形式:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0114140110414110 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321T T T T =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡70505030 (2)给出方程组的解。
T 1=30。
C,T 2=25。
C,T 3=25。
C,T 4=20。
C A=[0 -1 -1 4;-1 4 0 -1;-1 0 4 -1;4 -1 -1 0];b=[30;50;50;70]; U=rref([A,b]) U =1 0 0 0 30 0 1 0 0 25 0 0 1 0 25 0 0 0 1 20请过这六个点作一个五次多项式函数p 5(x)=5544332210x x x x x αααααα+++++,并求当x=6时的函数值p 5(6) 。
p 5(6)=3956 x=[0;1;2;3;4;5];2030404020C CC CC Cy=[2;6;0;26;294;1302];A=[x.^0 x.^1 x.^2 x.^3 x.^4 x.^5]; a=A\y;disp('五次多项式系数为:') disp(a); x0=6;y0=a(1)+a(2)*x0+a(3)*x0^2+a(4)*x0^3+a(5)*x0^4+a(6)*x0^5; disp(y0);五次多项式系数为: 2.0000 5.0000 1.0000 -0.0000 -3.0000 1.0000 3.9560e+003假设一个城市的总人口数固定不变,但人口的分布情况变化如下:每年都有12%的市区居民搬到郊区;而有10%的郊区居民搬到市区。
考研线性代数习题及答案(二)
习题二 (A )1.设矩阵232121a b a c A b c a b c +--⎡⎤=⎢⎥+--+-⎣⎦,且A O =,求a ,b ,c 的值.解: A =0时2302102100a b a c b c a b c +=⎧⎪--=⎪⎨+-=⎪⎪-++=⎩,则3,2,5a b c ==-=2.设201312A -⎡⎤=⎢⎥⎣⎦,112215B -⎡⎤=⎢⎥-⎣⎦求(1)2A B +,(2)3A B -.解: 20111231022312215431A B --⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 201112537333122159217A B ----⎛⎫⎛⎫⎛⎫-=-=⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭3.如果矩阵X 满足2X A B X -=-,其中2112A -⎡⎤=⎢⎥-⎣⎦,0220B -⎡⎤=⎢⎥-⎣⎦求X .解:2X A B X -=- 22X A B =+ 12X A B =+ 21022211220222---⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭4.某石油公司所属的三个炼油厂A 1,A 2,A 3在2003年和2004年所生产的四种油品B 1,B 2,B 3,B 4的数量如下表(单位:104t ):(1)作矩阵34A ⨯和34B ⨯分别表示2003年、2004年工厂A i 产油品B j 的数量; (2)计算A B +和B A -,分别说明其经济意义;(3)计算1()2A B +,并说明其经济意义.解: 1) 582715472201856525143A ⎛⎫⎪= ⎪ ⎪⎝⎭ 632513590302078028185B ⎛⎫⎪= ⎪ ⎪⎝⎭ 2) 1215228916260381214553328A B ⎛⎫⎪+= ⎪ ⎪⎝⎭上式表明:123,,A A A 三个在2003年,2004年生产1234,,,B B B B 四种油品的总产量.52211802215342B A --⎛⎫⎪-= ⎪ ⎪⎝⎭上式表明:123,,A A A 三厂在2004年生产的1234,,,B B B B 四种与2003年相比的增加量.3) 12192614221()813019621455316422A B ⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭上式表明123,,A A A 三厂在2003年、2004年生产1234,,,B B B B 四种油品的平均产量.5.计算下列矩阵的乘积:(1)01121043⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦; (2)5112207432-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦; (3)(-1,3,2)304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (4)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(-1,2); (5)112120124305--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(6)(1,-1,2)120201013112-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦解:1) 4312⎛⎫=⎪⎝⎭2) 126241114⎛⎫⎪=-- ⎪ ⎪-⎝⎭ 3) =54) 241236-⎛⎫⎪=- ⎪ ⎪⎝⎭5) 1332⎛⎫ ⎪= ⎪ ⎪⎝⎭6) =156.设311212123A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦111210111B -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦求(1)AB 和BA ;(2)AB-BA .解:1) 612610842AB -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 400410222AB ⎛⎫⎪= ⎪ ⎪⎝⎭2) 212220660AB BA -⎛⎫⎪-=- ⎪ ⎪-⎝⎭7.求所有与A 可交换的矩阵: (1)1011A ⎡⎤=⎢⎥⎣⎦; (2)11001101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.解:1) 设ab Xcd ⎛⎫=⎪⎝⎭,则 XA =AX 得 a =d b =0 0a X c a ⎛⎫∴=⎪⎝⎭2) 设111222ab c Y a b c a b c ⎛⎫⎪= ⎪ ⎪⎝⎭,则 YA AY =得 1220a a b === 12b c a == 1c b =00a b c Y a b a ⎛⎫⎪∴= ⎪ ⎪⎝⎭8.设矩阵A 与B 可交换.证明:(1)22()()A B A B A B +-=-;(2)222()2A B A AB B ±=±+.解:1) 2222()()A B A B A AB BA B A B +-=-+-=- 2) 22222()2A B A AB BA B A AB B ±=±±+=±+9.计算(1)31111⎡⎤⎢⎥--⎣⎦; (2)1301n⎡⎤⎢⎥⎣⎦; (3)2212301111⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦; (4)000000na b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)311110111001101⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6)1111111111111111n---⎡⎤⎢⎥---⎢⎥⎢⎥---⎢⎥---⎣⎦解:1) 0000⎛⎫=⎪⎝⎭ 2) 1301n ⎛⎫=⎪⎝⎭3) 507527622⎛⎫⎪= ⎪ ⎪---⎝⎭4) 000000n n n a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭5) 13610013600130001⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭6) 2,1,nE n n A n ⎧⎪=⎨-⎪⎩为偶数2为奇数10.设2210()f x a x a x a =++,A 是n 阶矩阵,定义2210()f A a A a A a E =++. (1)如果2()1f x x x =-+211312110A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求()f A .(2)如果35)(2+-=x x x f⎥⎦⎤⎢⎣⎡--=3312A 求)(A f .解:1) 2713()823210f A A A E ⎛⎫⎪=-+= ⎪ ⎪-⎝⎭2) 200()5300f A A A E ⎛⎫=-+= ⎪⎝⎭11.设521341A -⎡⎤=⎢⎥-⎣⎦,320201B -⎡⎤=⎢⎥-⎣⎦, 计算(1)AB T ;(2)B T A ;(3)A T A .解:1) 32521199203411701TAB --⎛⎫---⎛⎫⎛⎫⎪== ⎪⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭2) 21211042341TB A ---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭ 3) 34222206262TA A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭12.设某港口在一月份出口到三个地区的两种货物的数量以及两种货物的单位价格、重量、体积如下表:(1)利用矩阵乘法计算经该港口出口到三个地区的货物总价值、总重量、总体积各为多少? (2)利用(1)的结果计算经该港口出口的货物总价值、总重量、总体积为多少?解:1) 0.20.35820655335200010008000.0110.05827633.8120013005000.120.5840770346⎛⎫⎛⎫⎛⎫ ⎪⎪=⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭⎝⎭2) 82065533511810827633.81191.884077034611956⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭总价值为1810,总重量为191.8,总体积为195613.设A 为n 阵对称矩阵,k 为常数.试证kA 仍为对称矩阵.证明: 设111212122212n n n n nn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎪⎝⎭,则 111212122212()n n T n n nn ka ka ka ka ka ka kA kA ka ka ka ⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭则kA 为对称矩阵14.(1)证明:对任意的m ×n 矩阵A ,A T A 和AA T 都是对称矩阵.(2)证明;对任意的n 阶矩阵A ,A +A T 为对称矩阵,而A -A T 为反对称矩阵. 解:1) 证明: ()()T T T T T TA A A A A A == ()()T T T T T TAA A A AA == ,T TA A AA ∴都是对称矩阵2) ()(),T T T T T T TA A A A A A A A A A +=+=+=++为对称矩阵 ()()()T T T T T TA A A A A A A A -=-=-=-- 则TA A -为对称矩阵15.设A 、B 是同阶对称矩阵,则AB 是对称矩阵的充分必要条件是AB =BA .解:()TTTAB AB B A AB BA AB =⇔=⇔=16.判断下列矩阵是否可逆.若可逆,利用伴随矩阵法求其逆矩阵:(1)5432⎡⎤⎢⎥⎣⎦; (2)1326-⎡⎤⎢⎥-⎣⎦; (3)021111312⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (4)100120123⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.解:1) 1123522A --⎛⎫ ⎪= ⎪- ⎪⎝⎭2)不可逆3) 1153444131444131222A -⎛⎫- ⎪⎪⎪=- ⎪ ⎪⎪- ⎪⎝⎭4) 11001102211033A -⎛⎫⎪⎪⎪=-⎪ ⎪⎪- ⎪⎝⎭17.设n 阶矩阵A 可逆,且det A =a ,求1det A -,det *A .解:1AA E -= 111det det AA a-==∴ *det AA A E =⋅∴*11det (det )n n A A a --==18.设A 为n 阶矩阵,A ≠O 且存在正整数k ≥2,使k A O =.求证:E A -可逆,且121()k E A E A A A ---=++++证明: 21()()k E A E A A A--+++2121()k k k E A A A A A A E A E E A --=++++----=-=- 21K E A A A -=+++19.已知n 阶阵A 满足232A A E O --=.求证:A 可逆,并求A -1。
线性代数习题 第二章 (附详解)
线性代数习题 第二章 (附详解)第二章 矩阵及其运算【编号】ZSWD2023B0061 1 已知线性变换3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换解: 由已知221321323513122y y y x x x故3211221323513122x x x y y y321423736947y y y 321332123211423736947x x x y x x x y x x x y2 已知两个线性变换32133212311542322y y y x y y y x y y x 323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解: 由已知221321514232102y y y x x x321310102013514232102z z z321161109412316z z z所以有 3213321232111610941236z z z x z z z x z z z x3 设 111111111A150421321B 求3AB 2A 及A TB解:1111111112150421321111111111323A AB2294201722213211111111120926508503092650850150421321111111111B A T4 计算下列乘积(1)127075321134解:127075321134 102775132)2(7111237449635(2)123)321(解:123)321( (1 3 2 2 3 1) (10)(3))21(312解: )21(31223)1(321)1(122)1(2632142(4)20413121013143110412 解:20413121013143110412 6520876(5)321332313232212131211321)(x x x a a a a a a a a a x x x 解:321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3 a 13x 1 a 23x 2 a 33x 3)321x x x322331132112233322222111222x x a x x a x x a x a x a x a5 设3121A2101B 问(1)AB BA 吗? 解: AB BA 因为6443AB8321BA 所以AB BA(2)(A B)2A 22AB B 2吗? 解: (A B)2A 22AB B 2因为5222B A52225222)(2B A2914148但 43011288611483222B AB A27151610 所以(A B)2A 22AB B 2(3)(A B)(A B) A 2B 2吗?解: (A B)(A B) A 2B 2因为5222B A1020B A906010205222))((B A B A而718243011148322B A 故(A B)(A B) A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0解: 取0010A 则A 20 但A 0 (2)若A 2A 则A 0或A E 解: 取0011A 则A 2A 但A 0且A E (3)若AX AY 且A 0 则X Y 解: 取0001A 1111X1011Y则AX AY 且A 0 但X Y7 设101 A 求A 2A 3A k解:12011011012 A1301101120123 A A A101 k A k8 设001001A 求Ak解: 首先观察0010010010012A2220020123232323003033 A A A43423434004064 A A A545345450050105A A AkA k k kk k k k k k k 0002)1(121用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,0010010002)1(1211k k k k k k k k k k k k A A A11111100)1(02)1()1(k k k k k k k k k k 由数学归纳法原理知k k k k k k k k k k k A 0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵 证明: 因为A TA 所以(B TAB)TB T(B TA)TB T A TB B TAB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明: 充分性 因为A TA B TB 且AB BA 所以(AB)T(BA)TA TB TAB即AB 是对称矩阵必要性 因为A TA B TB 且(AB)TAB 所以AB (AB)TB T A TBA11 求下列矩阵的逆矩阵 (1)5221 解:5221A |A| 1 故A 1存在 因为1225*22122111A A A A A故 *||11A A A1225(2)cos sin sin cos 解cos sin sin cos A |A| 1 0 故A 1存在 因为cos sin sin cos *22122111A A A A A所以 *||11A A Acos sin sin cos(3)145243121解145243121A |A| 2 0 故A 1存在 因为214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A1716213213012(4)n a a a 0021(a 1a 2a n0)解 n a a a A 0021由对角矩阵的性质知n a a a A 1001121112 解下列矩阵方程 (1)12643152X解:126431521X1264215380232(2)234311*********X 解: 1111012112234311X0332321012343113132538122(3)101311022141X解: 11110210132141X2101101311421212101036612104111 (4)021102341010100001100001010X解: 11010100001021102341100001010X01010000102110234110000101020143101213 利用逆矩阵解下列线性方程组(1) 3532522132321321321x x x x x x x x x解: 方程组可表示为321153522321321x x x故0013211535223211321x x x从而有 001321x x x(2) 05231322321321321x x x x x x x x x解: 方程组可表示为012523312111321x x x故3050125233121111321x x x 故有 305321x x x14 设A kO (k 为正整数) 证明(E A) 1E A A 2A k 1证明: 因为A kO 所以E A kE 又因为E A k(E A)(E A A 2A k 1)所以 (E A)(E A A 2A k 1) E由定理2推论知(E A)可逆 且 (E A) 1E A A 2A k 1证明 一方面 有E (E A) 1(E A)另一方面 由A kO 有E (E A) (A A 2) A 2A k 1(A k 1A k)(E A A 2 Ak 1)(E A)故 (E A) 1(E A) (E A A 2A k 1)(E A)两端同时右乘(E A) 1就有 (E A) 1(E A) E A A 2A k 115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E) 1证明: 由A 2A 2E O 得A 2A 2E 即A(A E) 2E或 E E A A)(21 由定理2推论知A 可逆 且)(211E A A 由A 2A 2E O 得A 2A 6E 4E 即(A 2E)(A 3E) 4E或 E A E E A)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A| 2即 |A||A E| 2 故 |A| 0所以A 可逆 而A 2E A 2|A 2E| |A 2| |A|20 故A 2E 也可逆由 A 2A 2E O A(A E) 2EA 1A(A E) 2A 1E )(211E A A又由 A 2A 2E O (A 2E)A 3(A 2E) 4E (A 2E)(A 3E) 4 E所以 (A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1)3(41)2(1A E E A16 设A 为3阶矩阵 21||A 求|(2A) 15A*| 解: 因为*||11A A A所以 |||521||*5)2(|111 A A A A A |2521|11 A A | 2A 1| ( 2)3|A 1| 8|A| 18 2 1617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*) 1(A 1)*证明: 由*||11A A A得A* |A|A 1所以当A 可逆时 有|A*| |A|n|A 1| |A|n 10 从而A*也可逆因为A* |A|A 1所以(A*) 1|A| 1A又*)(||)*(||1111A A A A A 所以 (A*) 1|A| 1A |A| 1|A|(A 1)* (A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A| 0 则|A*| 0 (2)|A*| |A|n 1证明:(1)用反证法证明 假设|A*| 0 则有A*(A*) 1E 由此得A A A*(A*) 1|A|E(A*) 1O所以A* O 这与|A*| 0矛盾,故当|A| 0时 有|A*| 0(2)由于*||11A A A则AA* |A|E 取行列式得到 |A||A*| |A|n若|A| 0 则|A*| |A|n 1若|A| 0 由(1)知|A*| 0 此时命题也成立 因此|A*| |A|n 119 设321011330A AB A 2B 求B解: 由AB A 2E 可得(A 2E)B A 故321011330121011332)2(11A E A B01132133020 设101020101A 且AB E A 2B 求B解: 由AB E A 2B 得(A E)B A 2E即 (A E)B (A E)(A E)因为01001010100|| E A 所以(A E)可逆 从而201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B 解: 由A*BA 2BA 8E 得 (A* 2E)BA 8E B 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A)18(|A|E 2A) 18( 2E 2A) 14(E A)14[diag(2 1 2)] 1)21 ,1 21(diag 4 2diag(1 2 1)22 已知矩阵A 的伴随阵8030010100100001*A 且ABA 1BA 13E 求B解: 由|A*| |A|38 得|A| 2由ABA 1BA 13E 得AB B 3AB 3(A E) 1A 3[A(E A 1)] 1A11*)2(6*)21(3A E A E103006060060000660300101001000016123 设P 1AP 其中1141P2001 求A 11解: 由P 1AP 得A P P 1所以A 11A=P 11P 1. |P| 31141*P 1141311P而11111120 012001故31313431200111411111A6846832732273124 设AP P 其中111201111P511求 (A) A 8(5E 6A A 2) 解: ( ) 8(5E 6 2)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0) (A) P ( )P 1*)(||1P P P1213032220000000011112011112111111111425 设矩阵A、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明: 因为A 1(A B)B 1B 1A 1A 1B 1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A 1B 1可逆(A 1B 1) 1[A 1(A B)B 1] 1B(A B) 1A26 计算30003200121013013000120010100121 解: 设10211A30122A 12131B30322B则 2121B O B E A O E A222111B A O B B A A而4225303212131021211B B A90343032301222B A 所以 2121B O B E A O E A 222111B A O B B A A9000340042102521即30003200121013013000120010100121900034004210252127 取1001D C B A 验证|||||||| D C B A D C B A解:4100120021010*********0021010010110100101D C B A 而01111|||||||| D C B A 故|||||||| D C B A D C B A28 设22023443O O A 求|A 8|及A 4解: 令 34431A22022A则21A O O A A故 8218 A O O A A8281A O O A 1682818281810|||||||||| A A A A A464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1O B A O解: 设43211C C C C O B A O 则O B A O 4321C C C Cs n E O O E BC BC AC AC 2143 由此得 s n E BC O BC O AC E AC 2143 121413B C O C O C A C所以O A B O O B A O 111(2)1B C O A解: 设43211D D D D B C O A 则s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 s n E BD CD O BD CD O AD E AD 423121 14113211B D CA B D O D A D所以11111B CA B O A BC O A30 求下列矩阵的逆阵(1)2500380000120025 解: 设1225A2538B 则5221122511A8532253811B于是850032000052002125003800001200251111B A B A(2)4121031200210001 解: 设 2101A 4103B2112C 则1111114121031200210001B CA B O A BC O A411212458103161210021210001。
线性代数课程作业及答案2
线性代数作业2单项选择题第1题设A为方阵,则A的行列式det(A)=0是A的列向量组线性相关的___。
A、充分条件B、必要条件C、充要条件D、既非充分条件,也非必要条件答案:C第2题答案:D第3题答案:D第4题设α1,α2,α3是方程组Ax=0的基础解系,则下列向量组中也可作为方程组Ax=0的基础解系的是___。
A、α1+α2,α2+α3,α3-α1B、α1+α2,α2+α3, α1+2α2+α3C、α1,α1+α2,α1-α2D、α1+α2,α1-α2,α3答案:D第5题答案:A第6题 9——设Ax=0是非齐次线性方程组Ax=b对应的是非齐次线性方程组,则必成立___。
A、若Ax=0仅有零解,则Ax=b有唯一解;B、若Ax=0有非零解,则Ax=b有无穷多个解C、若Ax=b有唯一解,则Ax=0有非零解D、若Ax=b有无穷多个解,则Ax=0有非零解答案:D第7题已知4阶方阵A的行列式det(A)=0,则A中___。
A、必有两列的元素对应成比例B、必有一列的元素全为零C、必有一列向量是其余列向量的线性组合D、任一列向量是其余列向量的线性组合答案:C第8题设A为m×n矩阵,则方程组Ax=0仅有零解的充要条件是___。
A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关答案:A第9题答案:C第10题向量组(I):α1,α2,…,αm(m≥3)线性无关的充要条件是___。
A、存在一组不全为零的数k1,k2,…,k m,使k1α1+ k2α2+…+ k mαm≠0B、存在一组不全为零的数k1,k2,…,k m,使k1α1+ k2α2+…+ k mαm≠0C、(I)中存在一个向量,它不能由其余m-1个向量线性表出D、(I)中任一向量都不能由其余m-1个向量线性表出答案:D第11题设向量组(I):α1,α2,…,αm的秩为r,且r< m,则___。
A、(I)中必有r个向量线性无关,且(I)中任意r+1个向量都线性相关B、(I)中任意r个向量都线性无关C、(I)中任意r个向量都构成(I)的最大无关组D、(I)中任一向量都可由该组中其它任意r个向量线性表出答案:A第12题设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是___。
线性代数第二章作业答案与提示.ppt
BZ, X
ABZ; AB
6 12
1 4
3 9
10 1 16
1 1 1 1 2 3
2.设A
1
1
1, B 1
2
4
,求3AB 2A及AT B
1 1 1 0 5 1
2 13 22
0 5 8
答案:3AB 2A= 1 2
4 ;
AT
B
0
5
6
0 5 1
2 9 0
作业及其提示
1 0 1
XA
B,
X
BA1
2 8
3
2 5
1 2
3
; 其中A1
3 2
3 1
1 1
3
2 3
0
1(1 2) 10
1 0
0 1 0X 0
0 0
0 1 1 2
4 0
3 1
0 0 1 0 1 0 1 2 0
AXB C : X A1CB1
2 1 0 X 1 3 4
0
kk 1 k
0 2 6 2 1 k(k 1) 2
0
0
1 k(k 1)k2
2
kk 1
,
k
其中,k 2
作业及其提示
第二章:矩阵及其运算
6.设A、B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是:AB BA
证:必要性:若AB对称,则( AB)T AB
A、B对称,( AB)T BT AT BA,即AB BA
答案:Y
A1 X
, 其中A1
7 6
4 3
9 7
3 2 4
y1 7x1 4x2 9x3
y2
6x1
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数作业题(第2套)
线性代数作业题(第2套)1.下列三阶行列式:(1)381141102---; (2)ba c a cb cb a(3)222111c b a c b a ; (4)yx y x x y x y y x y x +++.2.按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3. 计算下列各行列式(1)7110251020214214; (2)2605232112131412-; (3)dc b a 100110011001---.4. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x5. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?6. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .7. 计算下列乘积:(1)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; (2)⎪⎪⎭⎫ ⎝⎛123)321(; (3)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 8. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B ,试判断(1)AB =BA 吗?(2)(A +B )2=A 2+2AB +B 2吗?9. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎭⎫⎝⎛---145243121;10. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;11. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.12. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .13. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; (2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.14. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x15. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x ;(2) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x16. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.17. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; (2)a 1T=(1, 2, 1, 3), a 2T=(4, -1, -5, -6), a 3T=(1, -3, -4, -7).18. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2)⎪⎪⎪⎭⎫⎝⎛---1401131302151201221119.求下列方程组的解的结构⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x。
线性代数练习题二
一、单项选择题 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( )A .-3B .-1C .1D .32.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.483.设3阶方阵A 的行列式为2,则12A -=( ) A.-1 B.14- C.14D.14.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .65.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( ) A.-12B.-6C.6D.126.设A 为3阶方阵,且|A |=2,则|2A -1|=( ) A .-4 B .-1 C .1D .47.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d c b a ,则A *=( )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫ ⎝⎛--a bc dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫⎝⎛--a b c d8.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 9.设A 是3阶方阵,且|A |=-21,则|A -1|=( ) A .-2 B .-21 C .21 D .2 10.设A 为n 阶方阵,λ为实数,则|λA |=( ) A .λ|A | B .|λ||A | C .λn |A | D .|λ|n |A | 11.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111 C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--111112.设A 为3阶方阵,且已知|-2A |=2,则|A |=( ) A .-1 B .-41 C .41 D .1 13.设矩阵A ,B ,C 为同阶方阵,则(ABC )T =( ) A .A T B T C T B .C T B T A TC .C T A T B TD .A T C T B T14.设A 为三阶方阵且,2-=A 则=A A T 3( ) A.-108 B.-12 C.12 D.10815.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=BA B.()111---+=+B A B A C.B A B A +=+D.()T T TB A B A +=+16.设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8D.1217.设矩阵⎪⎪⎭⎫ ⎝⎛+d b a 04=⎪⎪⎭⎫⎝⎛-32c b a ,则( ) A .a=3,b=-1,c=1,d=3B .a=-1,b=3,c=1,d=3C .a=3,b=-1,c=0,d=3D .a=-1,b=3,c=0,d=318.设A 为n 阶方阵,n ≥2,则A 5-=( ) A .(-5)n AB .-5AC .5AD .5n A19.设A=⎪⎪⎭⎫ ⎝⎛4321,则*A =( )A .-4B .-2C .2D .4 20.设A ,B 为同阶可逆方阵,则下列等式中错误..的是( ) A.|AB |=|A | |B | B. (AB )-1=B -1A -1 C. (A+B )-1=A -1+B -1 D. (AB )T =B T A T 21.设A 为三阶矩阵,且|A |=2,则|(A *)-1|=( )A.41 B.1 C.2 D.422.设A 为3阶方阵,且==-||3131A A 则,( ) A .-9 B .-3 C .-1D .923.设A 、B 为n 阶方阵,满足A 2=B 2,则必有( ) A .A =BB .A = -BC .|A |=|B |D .|A |2=|B |2 24.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.(A +B )T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CA D.(AB )T =B T A T 25.若矩阵A 可逆,则下列等式成立的是( ) A.A =*1A AB.0=AC.2112)()(--=A AD.113)3(--=A A26.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .227.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B28.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( )A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a29.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( )A. A -1B -1C -1B. C -1B -1A -1C. C -1A -1B -1D. A -1C -1B -130.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4 D.3231.设A 为3阶矩阵,|A|=1,则|-2A T |=( ) A.-8 B.-2 C.2 D.8 32.设矩阵A=⎪⎪⎭⎫ ⎝⎛-11,B=(1,1),则AB=( )A.0B.(1,-1)C. ⎪⎪⎭⎫ ⎝⎛-11D. ⎪⎪⎭⎫ ⎝⎛--111133.设A ,B 是任意的n 阶方阵,下列命题中正确的是( ) A.222()2+=++A B A AB B B.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A ED.222()=AB A B34.设向量组α1,α2,…,αs 线性相关,则必可推出( )A .α1,α2,…,αs 中至少有一个向量为零向量B .α1,α2,…,αs 中至少有两个向量成比例C .α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合D .α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合35.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关 D .A 的行向量组线性相关 5.设A 为m n ⨯矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 36.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( ) A. 4321,,,αααα线性无关 B. 4321,,,αααα线性相关 C. 1α可由432,,ααα线性表示D. 43,αα线性无关37.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( ) A.α1,α3线性无关 B.α1,α2,α3,α4线性无关 C.α1,α2,α3,α4线性相关 D.α2,α3,α4线性相关 38.设向量,若有常数a ,b 使,则( )A .a =-1, b =-2B .a =-1, b =2C .a =1, b =-2D .a =1, b =239.设向量α=(1,-2,3)与β=(2,k ,6)正交,则数k 为( ) A.-10 B.-4 C.3D.1040.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T 41.设A 为n 阶正交矩阵,则行列式|A 2|=( ) A .-2 B .-1 C .1 D .242.下列向量中与α=(1,1,-1)正交的向量是( ) A. 1α=(1,1,1) B. 2α=(-1,1,1) C. 3α=(1,-1,1)D. 4α=(0,1,1)43.设向量α=(4,-1,2,-2),则下列向量是单位向量的是( ) A .31α B .51α C .91α D .251α 44.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关45.设1α,2α是Ax=b 的解,η是对应齐次方程Ax=0的解,则( ) A. η+1α是Ax =0的解 B. η+(1α-2α)是Ax=0的解 C. 1α+2α是Ax=b 的解D. 1α-2α是Ax=b 的解46.设321,,ααα是齐次线性方程组Ax =0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( ) A .2121,,αααα+ B .133221,,αααααα+++ C .2121,,αααα-D .133221,,αααααα---47.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( ) A .n r =)(A B .m r =)(AC .n r <)(AD .m r <)(A48.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.4 49.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( ) A .α+β是Ax =0的解 B .α+β是Ax =b 的解 C .β-α是Ax =b 的解D .α-β是Ax =0的解_____.二、填空题1.设向量α=(6,-2,0,4),β=(-3,1,5,7),向量γ满足βγα32=+,则γ=_________________________.2.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________. 3.已知α1-5α2+2α3=β,其中α1=(3,4,-1),α2=(1,0,3),β=(0,2,-5),则α3=____________. 4.设向量α=(1,1,1),则它的单位化向量为_____________. 5.已知向量组α1=⎪⎪⎪⎭⎫ ⎝⎛-211,α2=⎪⎪⎪⎭⎫ ⎝⎛-121,α3=⎪⎪⎪⎭⎫⎝⎛11t 的秩为2,则数t=______________.6.已知向量α=(3,5,7,9),β=(-1,5,2,0),如果α+ξ=β,则ξ=_________.7.设向量组1α=(a ,1,1),2α=(1,-2,1), 3α=(1,1,-2)线性相关,则数a =________. 8.已知向量组T T T a ),2,3(,)2,2,2(,)3,2,1(321===ααα线性相关,则数=a ______. 9.已知3维向量=(1,-3,3),(1,0,-1)则+3=__________. 10.设向量=(1,2,3,4),则的单位化向量为__________.11.设A 是m ×n 矩阵,A x =0,只有零解,则r (A )=____________________ 12.已知行列式422221111-=-+-+b a b a b a b a ,则=2211b a b a ______.13.行列式2110的值为_________. 14.若,0211=k 则k=___________.15.已知行列式011103212=-a ,则数 a =__________.16.3阶行列式313522001=_________.17.已知3阶行列式33323123222113121196364232a a a a a a a a a =6,则333231232221131211a a a a a a a a a =_______________. 18.设3阶行列式D 3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D 3=__________________. 19.若==k k 则,012131012_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数 大作业(二)
学号:02121443 姓名:惠政 成绩:____________ 1.在钢板热传导的研究中,常常用节点温度来描述钢板温度的分布。
假设下图中钢板已经达到稳态温度分布,上下、左右四个边界的温度值如图所示,而T1,T 2,T 3,T 4表示钢板内部四个节点的温度。
若忽略垂直于该截面方向的热交换,那么内部某节点的温度值可以近似地等于与它相邻四个节点温度的算术平均值,如T 1=(30+40+T 2+T 3)/4,请计算该钢板的温度分布。
(1)根据已知条件可以得到以下线性方程组得矩阵形式:⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡-------0114140110414110 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321T T T T =⎥⎥⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡70505030 (2)给出方程组的解。
T 1=30。
C,T 2=25。
C,T 3=25。
C,T 4=20。
C A=[0 -1 -1 4;-1 4 0 -1;-1 0 4 -1;4 -1 -1 0];
b=[30;50;50;70]; U=rref([A,b]) U =
1 0 0 0 30 0 1 0 0 25 0 0 1 0 25 0 0 0 1 20
请过这六个点作一个五次多项式函数p 5(x)=5
54
43
32
2
10x x x x x αααααα+++++,并求当x=6时的函数值p 5(6) 。
p 5(6)=3956 x=[0;1;2;3;4;5];
2030404020C C
C C
C C
y=[2;6;0;26;294;1302];
A=[x.^0 x.^1 x.^2 x.^3 x.^4 x.^5]; a=A\y;
disp('五次多项式系数为:') disp(a); x0=6;
y0=a(1)+a(2)*x0+a(3)*x0^2+a(4)*x0^3+a(5)*x0^4+a(6)*x0^5; disp(y0);
五次多项式系数为: 2.0000 5.0000 1.0000 -0.0000 -3.0000 1.0000 3.9560e+003
假设一个城市的总人口数固定不变,但人口的分布情况变化如下:每年都有12%的市区居民搬到郊区;而有10%的郊区居民搬到市区。
若开始有800000人口居住在市区,200000人口居住在郊区。
那么,20年后市区和郊区的人口数各是多少?
解:设第n 年市区人数和郊区人数分别为x n 和y n ,则第n+1年的市区和郊区为
⎩⎨⎧+=+=++n
n n n
n n y y y x x 9.0x 12.01.088.011,则矩阵表示为⎥⎦⎤⎢⎣⎡++11n n y x =⎥
⎦⎤⎢⎣⎡9.012.01.088.0⎥⎦⎤⎢⎣⎡n n y x A=[0.88 0.10;0.12 0.90];
x0=[800000;200000]; x20=A^20*x0; disp(x20);
1.0e+005 * 4.5695
5.4305
故20年后市区和郊区的人口数分别为456950,543050。
3.一个混凝土生产企业可以生产出三种不同型号的混凝土,它们的具体配方比例如表1所示。
表1 混凝土的配方
现在有一个用户要求混凝土中含水、水泥、砂、石子及灰的比例分别为:24,52,73,133,12.那么能否用这三种型号混凝土配出满足用户要求的混凝土?如果需要这种混凝土520吨,问三种混凝土各需要多少?
解:A=[10 10 10;22 26 18; 32 31 29;53 64 50;0 5 8]; b=[24;52;73;133;12]; [U,r]=rref([A,b]) U =
1.0000 0 0 0.6000 0 1.0000 0 0.8000 0 0 1.0000 1.0000 0 0 0 0 0 0 0 0 r =
1 2 3
故能用这三种型号的混凝土配出满足用户要求的混凝土,如果需要这种混凝土520吨,型号1混凝土需要130t,型号2混凝土需要173
31t,型号3凝土需要2163
2
t 。
4.某城市有如下图所示的交通图,每一条道路都是单行道,图中数字表示某一个时段该路段
的车流量。
若针对每一个十字路口(节点),进入和离开的车辆数相等。
请计算每两个相邻十字路口间路段上的交通流量x i (i=1,2,…,4)。
解 根据已知条件可以得到4个节点的流通方程为 节点A :x 1+360=x 2+260 节点B :x 2+220=x 3+292 节点C :x 3+320=x 4+357 节点D :x 4+260= x 1+251 将以上方程组进行整理得
⎪⎪⎩⎪⎪
⎨
⎧-=+-=-=--=-9
3772
100x 41433221x x x x x x x A=[1 -1 0 0;0 1 -1 0;0 0 1 -1;-1 0 0 1]; b=[-100;72;37;-9]; U=rref([A,b])
U =
1 0 0 -1 9 0 1 0 -1 109 0 0 1 -1 37 0 0 0 0 0
若以x 4为自由变量,方程组的解可以表示为
⎪⎩⎪
⎨⎧+=+=+=37
109943
4241x x x x x x。