七年级数学找规律(2015最新最好最全的)
(完整版)七年级数学找规律题
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。
初一找规律经典题型(含部分答案)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
初一数学找规律题及答案
初一数学找规律题及答案归纳法——找规律研究归纳法——找规律的具体方法和步骤是:(1)通过对几个特例的分析,寻找规律并归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确。
下面通过举例来说明这些问题。
一、数字排列规律题1、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律1)猜想:1+3+5+7+…+2005+2007的值是多少?2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?xxxxxxxx____3、请填出下面横线上的数字。
____214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字xxxxxxxx___第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1.那么这100个数中“ ”的个数为_________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4。
1+2+3+2+1=9。
1+2+3+4+3+2+1=16。
1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n1n n1,其中n是正整数。
(完整版)七年级数学找规律题
(完整版)七年级数学找规律题归纳—猜想~~~找规律给出⼏个具体的、特殊的数、式或图形,要求找出其中的变化规律,从⽽猜想出⼀般性的结论. 解题的思路是实施特殊向⼀般的简化;具体⽅法和步骤是(1)通过对⼏个特例的分析,寻找规律并且归纳;(2)猜想符合规律的⼀般性结论;(3)验证或证明结论是否正确, 下⾯通过举例来说明这些问题.⼀、数字排列规律题1、观察下列各算式:1+3=4=2 的平⽅,1+3+5=9=3的平⽅,1+3+5+7=16=4的平⽅?按此规律(1)试猜想:1+3+5+7+?+2005+2007的值?(2)推⼴:1+3+5+7+9+ ?+(2n-1)+ (2n+1)的和是多少?2、下⾯数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下⾯横线上的数字。
1 123 5 8 _______ 214、有⼀串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、??聪明的你猜猜第100 个数是什么?5、有⼀串数字3 6 10 15 21 ___ 第6 个是什么数?6、观察下列⼀组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、?,那么第2005 个数是(). A.1 B.2 C.3 D.47、100 个数排成⼀⾏,其中任意三个相邻数中,中间⼀个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为 ___ 个.⼆、⼏何图形变化规律题1、观察下列球的排列规律(其中?是实⼼球,○是空⼼球):○○??○○○○○?○○??○○○○○?○○??○○○○○从第1 个球起到第2004个球⽌,共有实⼼球个.2、观察下列图形排列规律(其中△是三⾓形,□是正⽅形,○是圆),□○△□□○△□○△□□○△□┅┅,若第⼀个图形是正⽅形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下⾯的⼏个算式:1+2+1=4 ,1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=2,5 ?根据你所发现的规律,请你直接写出下⾯式⼦的结果:21+2+3+?+99+100+99+?+3+2+1= .13、1+2+3+?+100=?经过研究,这个问题的⼀般性结论是 1+2+3+?+ n 1n n 1 ,其中n是正整数 . 现在我们来研究⼀个类似的问题: 1×2+2×3+?n n 1=?观察下⾯三个特殊的等式11 2 1 2 3 0 1 23 12 3 2 3 4 1 2 33 13 4 3 4 5 2 3 431将这三个等式的两边相加,可以得到1×2+2×3+3×4= 13 4 5 203 读完这段材料,请你思考后回答:⑴22 3100 101⑵1 23 2 34nn 1 n2⑶1 232 34 nn 1 n24、已知:2 2 22 2,3 3323,4 4 2 4 5 42,552 254, 3388 15 15 24b 2 b 则a b ?若10102符合前⾯式⼦的规a a参考答案:⼀、1、(1)1004的平⽅( 2)n+1的平⽅2 、23 30 。
初一数字找规律的方法
数字找规律方法第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50A.35B.33C.37D.36[解析] 相邻两位数之差分别为3, 5, 7, 9, 是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
(完整版)七年级找规律方法总结
七年级找规律方法总结有理数及其运算篇【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方 一、 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化. 二、 相反数看似简单,但互为相反数的两个数相加等于 0这个性质有时总忘记用 三、 绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我 们要从七年级把绝对值学好,理解它的几何意义 . 四、 乘方的法则我们不仅要会正向用, 也要会逆向用,难点往往出现在逆用法则 方面. 【核心例题】 例1计算:丄」 —...... 1—— 1 2 2 3 3 4 2006 2007 例2已知有理数a 、b 、c 在数轴上的对应点分别为 A B C (如右图).化简 b C b a a例3计算: 100 1 99 98字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法•例1 152=225=100X 1 (1+1) +25, 25 2=625=100X 2 ( 2+1) +25352=1225=100X 3 ( 3+1) +25, 45 2=2025=100X 4 ( 4+1) +252 275 =5625= ____________ , 85 =7225= _____________(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.例2如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数•(1)当n=4 时,S _____ ,(2)请按此规律写出用n表示S的公式.【核心练习】1、观察下面一列数,探究其中的规律:—1111 丄 1,2,3,4,5,6①填空:第11, 12, 13三个数分别是______ , ____, ____ ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?2、观察下列各式:1+1 X 3 = 2 2, 1+2 X4 = 3 2, 1+3 X 5 = 4 2,……请将你找出的规律用公式表示出来: _______________ 找规律方法总结:基本方法——看增幅增幅相等;增幅不相等(增幅有规律、增幅无规律);二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初一找规律经典题型(含部分答案)
初一找规律经典题型(含部分答案)初一数学规律题应用知识汇总有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
因此,将变量和序列号放在一起比较,就更容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例如,对于数列4、10、16、22、28……,求第n位数。
我们可以发现,从第二位数开始,每位数都比前一位数增加6,增幅都是6.因此,第n位数是4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
例如,古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它们之间有一定的规律性。
要求第24个三角形数与第22个三角形数的差,我们可以通过求出第24个和第22个三角形数的值,再相减得到答案。
除了基本方法外,还可以用分析观察的方法求解。
例如,在一个面积为S的等边三角形中,我们将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形。
当n=5时,共向外作出了4个小等边三角形;当n=k时,共向外作出了k-2个小等边三角形。
中考规律类试题在素材选取、文字表述、题型设计等方面都别具一格,旨在考察学生的创新意识与实践能力。
初一数学找规律方法
初一数学找规律方法一、基本方法——看增幅一如增幅相等此实为等差数列:对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+n-1b,其中a为数列的第一位数,b为增幅,n-1b为第一位数到第n位的总增幅.然后再简化代数式a+n-1b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+n-1×6=6n-2二如增幅不相等,但是,增幅以同等幅度增加即增幅的增幅相等,也即增幅为等差数列.如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×n-2=2n-1,总增幅为:[3+2n-1]×n-1÷2=n+1×n-1=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.三增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.三增幅不相等,且增幅也不以同等幅度增加即增幅的增幅也不相等.此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧一标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.二公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,,,的第n为2n-12 三看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n四有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用一、二、三技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:n2-1+2=n2+1五有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?第一百个数同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.六同技巧四、五一样,有的可对每位数同加、或减、或乘、或除同一数一般为1、2、3.当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.七观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法一解题.2、如不相等,综合运用技巧一、二、三找规律3、如不行,就运用技巧四、五、六,变换成新数列,然后运用技巧一、二、三找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法二解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······1第一组有什么规律?2第二、三组分别跟第一组有什么关系?3取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.要求写出最后的计算结果和详细解题过程.3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差1 4,16,36,64,,144,196,… 第一百个数2 2,6,18,,162,486,3 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:12的平方,4的平方,6的平方,8的平方,10的平方,12的平方,.第一百个2*100的平方=4000022,2*3=6,2*3*3=18,2*3*3*3=54,2*3*3*3*3=162,486,1458318894N+2^2-N^2=4N+4=888,再算出N223的平方-221的平方=888最简根式的条件:最简根式三条件,号内不把分母含,幂指数根指数要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点x,y,横在前来纵在后;+,+,-,+,-,-和+,-,四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=kx+0+b,二次函数的解析式写成y=ax+h2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三象限,k为负,图在二、四象限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷余邻直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角平分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.感谢您的阅读,祝您生活愉快。
(完整版)七年级数学找规律题
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论. 解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确, 下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方⋯按此规律(1)试猜想:1+3+5+7+⋯+2005+2007的值?(2)推广:1+3+5+7+9+ ⋯+(2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 _______ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、⋯⋯聪明的你猜猜第100 个数是什么?5、有一串数字3 6 10 15 21 ___ 第6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、⋯,那么第2005 个数是(). A.1 B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为 ___ 个.二、几何图形变化规律题1、观察下列球的排列规律(其中•是实心球,○是空心球):•○○••○○○○○•○○••○○○○○•○○••○○○○○•⋯⋯从第1 个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4 ,1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=2,5 ⋯根据你所发现的规律,请你直接写出下面式子的结果:21+2+3+⋯+99+100+99+⋯+3+2+1= .13、1+2+3+⋯+100=?经过研究,这个问题的一般性结论是 1+2+3+⋯+ n 1n n 1 ,其中n是正整数 . 现在我们来研究一个类似的问题: 1×2+2×3+⋯n n 1= ? 观察下面三个特殊的等式11 2 1 2 3 0 1 23 12 3 2 3 4 1 2 33 13 4 3 4 5 2 3 431将这三个等式的两边相加,可以得到1×2+2×3+3×4= 13 4 5 203 读完这段材料,请你思考后回答:⑴22 3100 101⑵1 23 2 34nn 1 n2⑶1 232 34 nn 1 n24、 已知:2 2 22 2,3 3323,4 4 2 4 5 42,552 254, 3388 15 15 24b 2 b 则a b ⋯若10102符合前面式子的规a a参考答案:一、1、(1)1004的平方( 2)n+1的平方2 、23 30 。
七年级的找规律的题知识点
七年级的找规律的题知识点七年级数学找规律的题知识点随着教育改革的深入,学生的数学学习也在不断提高。
在七年级的数学学习中,找规律的题目是重点和难点之一。
如何发现规律,并能够运用所学知识进行解题,是每个学生需要掌握的技能。
本文将介绍七年级找规律题目需要掌握的基本知识点和解题技巧。
一、数列的概念数列是由一定的规则依次排列而成的数的集合。
数列中的每个数叫做这个数列的项。
数列的第一个数叫做首项,数列的第n项叫做通项公式,用an来表示。
二、通项公式的推导要求解数列中的第n项,就需要求出通项公式。
通项公式的推导方法有很多种,但其中一种是比较普遍和简单的方法,可以用来解决大部分的数列问题。
例如:已知数列1,3,5,7,9,求第n项,找到数列中的规律后可以列出如下公式:an=2n-1这个公式是通过观察数列中每一个项的变化得到的。
具体方法是找到相邻两项之间的差值,得到2,2,2,2,然后再找到相邻两项差值之间的差值,发现是一个定值,为2。
于是得出了通项公式an=2n-1。
三、常用的数列类型1.等差数列等差数列是指相邻两项之间的差值都是一个定值。
例如:1,3,5,7,9,……就是一个公差为2的等差数列。
求等差数列的通项公式有多种方法,其中比较简单的一种是利用首项和公差来表示第n项:an=a1+(n-1)d其中a1是首项,d是公差。
2.等比数列等比数列是指相邻两项之间的比值都是一个定值。
例如:2,4,8,16,32,……就是一个公比为2的等比数列。
求等比数列的通项公式也有多种方法,其中比较简单的一种是利用首项和公比来表示第n项:an=a1×q^(n-1)其中a1是首项,q是公比。
3.斐波那契数列斐波那契数列是指前两项是1,从第三项开始,每一项都是前两项之和。
例如:1,1,2,3,5,8,13,21,……就是一个斐波那契数列。
斐波那契数列是一种特殊的数列,求其通项公式的方法也比较特殊,需要利用斐波那契数列的特性来推导。
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
初一找规律经典题带答案
初一找规律经典题带答案一、数字排列1、按照题目给出的规律,可以猜想1+3+5+7+…+2005+2007的值为1004×1004=xxxxxxx。
推广式子为1+3+5+7+9+…+(2n-1)+(2n+1)=n(2n+1)。
2、数列后两位应该填上22,因为每个数都是前两个数之和。
3、横线上的数字应该填13,因为每个数都是前两个数之和。
4、这串数的排列规律为1、2、3、2、3、4、3、4、5、4、5、6、…,即从1开始,每次增加1,到达一个峰值后再减少1.第100个数为13.二、几何图形变化1、实心球和空心球交替出现,每两个球中有一个实心球。
因此,2004个球中实心球的个数为1002个。
2、第一个图形是正方形,按照规律,每隔两个图形就循环一次□○△。
因此,第2008个图形是○。
三、数、式计算1、根据题目给出的等式,可以得出第5个等式为13+23+33+43+53=225.2、根据规律,1+2+3+…+n=(1+n)×n/2,因此1+2+3+…+99+100+99+…+3+2+1=2×(1+2+3+…+99)+100=.3、根据题目给出的规律,可以得出10+ =102×,因此a+b=22.规律发现:1.第n个图案中有白色地砖n-1块。
2.将正方形沿着对角线对折,可以得到两个直角三角形,其斜边长均为1.因此,将矩形纸片按照斜边长度从小到大排列,可以拼成一个直角三角形,其面积为1/2.根据等差数列求和公式,可以得到1/2×(1+1/4+1/9+…+1/n^2)=1/2×π^2/6=π^2/12.4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线)。
继续对折,每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕。
那么对折四次可以得到几条折痕?如果对折n次,可以得到多少条折痕?答案:对折四次可以得到15条折痕,对折n次可以得到2^n-1条折痕。
七年级找规律知识点归纳
七年级找规律知识点归纳在七年级数学课程中,找规律是一个重要的知识点。
它可以培养学生的观察力和思维能力,同时也是日常生活中必须掌握的技能之一。
下面我们将对七年级找规律知识点进行归纳总结,帮助大家更好地理解和掌握这一知识点。
一、数列的概念数列是由一些按照特定顺序排列的数所组成的序列,其中每一个数称为该数列的项。
数列可以写成$a_1,a_2,a_3,...,a_n$的形式,其中$a_1$为第一项,$a_2$为第二项,$a_3$为第三项,以此类推,$a_n$为第n项。
二、等差数列的性质等差数列是指每个数与它的前一个数之差等于同一个常数$d$的数列。
具体来说,等差数列的特点包括:1. 第一项$a_1$2. 公差$d$3. 通项公式$a_n=a_1+(n-1)d$4. 前n项和公式$S_n=\frac{n}{2}(a_1+a_n)$三、等比数列的性质等比数列是指每个数都是前一个数与同一个常数$q$相乘得到的数列。
具体来说,等比数列的特点包括:1. 第一项$a_1$2. 公比$q$3. 通项公式$a_n=a_1q^{n-1}$4. 前n项和公式$S_n=\frac{a_1(1-q^n)}{1-q}$四、找规律的方法找规律是指通过观察一组数据的特点和规律,推出其中的通项公式或递推公式。
找规律的方法可以分为以下几种:1. 数列的加减规律通过计算相邻两项之间的差值或和值,提取出数列的加减规律,从而得到通项公式。
2. 数列的乘除规律通过计算相邻两项之间的比值或积值,提取出数列的乘除规律,从而得到通项公式。
3. 数学归纳法通过数学归纳法来证明数列的通项公式或前n项和公式的正确性。
五、例题解析1.已知等差数列的首项为$a=5$,公差为$d=3$,求前10项的和。
解:根据前n项和公式可知,$S_{10}=\frac{10}{2}\times(5+a_{10})=\frac{10}{2}\times(5+28)=1 65$。
初一数学规律题公式大全
初一数学规律题公式大全
初一数学规律题公式包括但不限于:
1.过两点有且只有一条直线。
2.两点之间线段最短。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过-点有且只有一条直线和已知直线垂直。
6.直线外-点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第3条直线平行,这两条直线也互相平行。
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.两直线平行,同位角相等。
12.两直线平行,内错角相等。
13.两直线平行,同旁内角互补。
14.三角形两边的和大于第三边。
15.三角形两边的差小于第三边。
16.三角形内角和定理:三角形三个内角的和等于180°。
17.直角三角形的两个锐角互余。
18.三角形的一一个外角等于和它不相邻的两个内角的和。
19.三角形的一个外角大于任何一个和它不相邻的内角。
20.全等三角形的对应边、对应角相等。
以上信息仅供参考,建议查阅数学书籍或咨询数学老师获取更多信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23 4
56 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
二、图形问题:
问题一: 用火柴棍拼一排由三角形组 成的图形,如果图形中含有1,2,3或4个 三角形,分别需要多少根火柴?如果图形 中含有n个三角形,需要多少根火柴棍?
数,再改序数为n;
②平方规律:把第一项折为(序数+某数)2;
③分裂、折叠规律:2n;
④握手问题和单循环比赛问题:
n(n
-1)
2
如果一列数,从第二项起,每一项与 它前一项的差都相等,那么这列数叫做 等 差数列。每相邻两项的差叫做公差。
等差规律:公差×序数+某数
(4)观察一组数据6,11,16,21,第n个数 是( 5n+1 )
第n数=差×序+某= 2n +2
等差规律:差乘序+某数
(1)1、3、5、7、相邻之差是2
差×序+某= 2×① -1 第n个数是2n-1
(2)6、8、10、12
相邻之差是2 差×序+某= 2×① +4 第n个数是2n+4
等差规律:差乘序+某数
(3)6、11、16、21、
相邻之差是5 差×序+某= 5×① +1
对于此类型的题目,我们应该
学
先观察排列的规律, 然后把它 们转化为数据,并根据规律用
生
代数式、方程、函数、不等 式等数学模型表示事物的数
总
量关系、变化规律的过程。
结
将正偶数按下表排成 5列,并根据右表的规 律,2002应排在 ( ) 第1行 (A)第126行,第1列 第2行 (B)第126行,第2列 (C)第251行,第1列 第3行 (D)第251行,第2列 ……
等差规律:差乘序+某数
13:正方形的个数如图,将
一张正方形纸片剪成四个
小正方形,然后将其中的
一个正方形再剪成四个小
正方形,再将其中的一个 操
正方形剪成四个小正方形 作
,如此继续下去,……,
次 数
根据以上操作方法,请你 N
填写下表
正
4=差×序+某= 3×① +1
方 形
的
改序为n
个 数
1 2 3 4 5… n…
依此规律,在此数列中比2000大的最小整
数是 。
我们来观察(2): 2×4=32-1; 3×5=42-1; 4×6=52-1; …;
第2014个等式是(
我校全体学生按如下的规律排 成一列纵队参加社会服务课活动
男女男男女女男男男女男女男男 女女男男男女男女男男女女…… 则队伍前2003名学生中, 共有 名女学生。
●
● 等差
●
●
●
● 每边等差变化,边数不变,则总点数等差变化。
总点数分别是5,8,11,。。。。等差,差为3
图1=5=差乘序+某=3×①+2,
所以第n个图=3n+2
等差规律:差乘序+某数
2.观察下列正方形图案,每条边上有个圆点
,每个图案中圆点的总数式,按此规律推
断s与n的关系式为
;
………………
………………
数
4
9
16 25 … (n+1)2
例:3,15,24,35,。。。。。 观察知,数列比4,16,25,36都小1
3=4-1=(序 +某)2-1= (① +1)2-1 第n个数=(n+1)2-1
平方数列规律:(序 +某)2
平方数列规律:(序 +某)2 练习(1)9,16,25,36,。。。。。
第一个数9=(序 +某)2= (① +2)2 第n个数=(n+2)2
组合图(由一个小图重叠部分而成) 组各图分割成小图+重叠, 总边数=小图边数乘n+重叠边数
分割图形
···· ··
小图是三根火柴,重叠一根火柴,n个这 样的正方形有3n+1根火柴
……
第n个图要多少火柴 一个小图是4根,重叠1根。第n个图有n个小图
4n+1根 ……
第n个图要多少火柴 一个小图是5根,重叠1根。第n个图有n个小图
练习(2)5,10,17,26,。。。。。
5=4+1=(序 +某)2+1= (① +1)2+1 第n个数=(n+1)2+1
平方数列规律:(序 +某)2 正方形点图,点变边也变(平方列规律)
总点数分别是4,9,16,平方列规律(n+1)2
平方数列规律:(序 +某)2
正方形点变边变(平方规律)+1 正方形框的点数分别是1,4,9,16.规律 是n2
第n个数是5n+1 (4) 1、4,7,10,13,16,19,…….,
相邻之差是3 差×序+某= 3×① -2
第n个数是3n-2
等差规律:差乘序+某数年数n 高度h(单位:
树的高度与树生长的年数
厘米)
有关,测得某棵树的有 1 115 关数据如下表:(树苗
原高100厘米)年数n高 2 130
度h(单位:厘米)
图案中白色正方形的个数为
;
第n个图案中白色正方形的个数为______。
…
第1个
第2个
第10题图
第3个
每边小正方形个数等差变化,黑的也是等差
变化,和差也是等差变化
第1个白=3×3-1=8 第2个白=3×5-2=13 8=5×①+3 第3个白=3×7-3=18
我们来观察(1)
一列数3,8,13,18,23,28……
1)填出第4年树苗可能达 3
145
到的高度;
4
(2)请用含n的代数式表示
高度h:____________ …
……
115=差×序+某= 15×① +100改序为n
等差规律:差乘序+某数
第一排
等差规律的应用: 第二排
第三排 第n排 …………………
如图,第n排有_2_n_-__1_个三角形.
从第一排起三角形的个数分别是1,3,5.。。。 等差,差为2,1=差乘序+某=2 ×① -1,改 序为n
第1列 16
第2列 2 14 18
……
第3列 4 12 20 28
第4列 6 10 22 26
第5列 8
24
(5)有一列单项式:-x,2x2,-3x3, …-19x19, 20x20, …①写出第100个,第101个单项式②写
出第n个,第n+1个单项式
序号数 符号
123 … 负 正负 …
系数的绝对值 1
5n+1根
7.为庆祝“六一”儿童节,某幼儿园举行用 火柴棒摆“金鱼”比赛.如图所示
按照上面的规律,摆n个“金鱼”需用火柴棒 的根数______________
……
①
②
③
一个小图是6根,重叠2根。第n个图有n个小图
6n+2根
随堂练习
1.观察一列单项式:0,3x2,-8x3,15x4,- 24x5… 按此规律写出第10个单项式是_99_x1_0 ,第n个单项 式是_(-1_)n(_n2_-1)_xn_ 。
唉! 又要考试了!
肯定有规律题
规律题?
怎 么 办 ?
甭发愁!
有办法!
七年级数学(人教版)上册
探究规律题的一般步骤:
①观察(发现特点); ②找出规律(找出某个数与其对应序号 之间的关系); ③实验(用具体数值代入规律)。
探究新知
一、数字问题:
(1)观察一列数2,4,6,8,( 10 ),( 12 )…第 n个数是( 2n )
序号数 1 2 3 4 … n 找规律 1×2 2×2 3×2 4×2 … n×2
数 2 4 6 8 … 2n
一、数字问题:
(2)观察一组数据3,5,7,9,( 11 ),( 13)… 第n个数是( 2n+1 )
序号数 1 2 3 4 … n 找规律 1×2+1 2×2+1 3×2+1 4×2+1 … n×2+1
解:相邻两数的差是5,即公差为5,
第1个数=5×1+1; 第2个数=5×2+1; 第n个数=5×n+1=5n+1
等差规律:差乘序+某数
4、 6、 8、 10、 12……
相邻之差是2 第一数4=差×序+某= 2×① +2 第二数6=差×序+某= 2×② +2
第三数8=差×序+某= 2×③ +2
第四数10=差×序+某= 2×④ +2
, 5 ,6
26 37
1n n
n2 1
…… .
7.观察一组数据1,3,7,13,21,31, …第n
个数是_(n_-1)_2+.n
8.观察一列数:95
,16 ,25 ,36
12 21 32
,……
(n 2)2
根据规律,请你写出第n个数是 n(n 4) 。
9.观察规律,用含n的式子表示:第n行的最后一 个数是 n² ,第n行的第一个数是 (n-1)²+1,第
23
…
x的指数 1 2 3 …
单项式
-x 2x2 -3x3 …
n
(-1)n
n n
(-1)nnxn
解: ①第100个单项式为100x100第101个单项式 为-101x101; ②第n个单项式为(-1)nnxn;第