微波技术传输线的阻抗匹配
阻抗匹配概念
阻抗匹配概念阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
阻抗匹配设计原理及方法
阻抗匹配设计原理及⽅法阻抗匹配(Impedance matching)是微波电⼦学⾥的⼀部分,主要⽤于传输线上,来达⾄所有⾼频的微波信号皆能传⾄负载点的⽬的,⼏乎不会有信号反射回来源点,从⽽提升能源效益。
阻抗匹配有两种,⼀种是透过改变阻抗⼒(lumped-circuit matching),另⼀种则是调整传输线的波长(transmission line matching)。
要匹配⼀组线路,⾸先把负载点的阻抗值,除以传输线的特性阻抗值来归⼀化,然后把数值划在史密斯图上。
改变阻抗⼒把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈⾛动。
如果把电容或电感接地,⾸先图表上的点会以图中⼼旋转180度,然后才沿电阻圈⾛动,再沿中⼼旋转180度。
重复以上⽅法直⾄电阻值变成1,即可直接把阻抗⼒变为零完成匹配。
阻抗匹配:简单的说就是「特性阻抗」等于「负载阻抗」。
调整传输线由负载点⾄来源点加长传输线,在图表上的圆点会沿着图中⼼以逆时针⽅向⾛动,直⾄⾛到电阻值为1的圆圈上,即可加电容或电感把阻抗⼒调整为零,完成匹配。
阻抗匹配则传输功率⼤,对于⼀个电源来讲,单它的内阻等于负载时,输出功率最⼤,此时阻抗匹配。
最⼤功率传输定理,如果是⾼频的话,就是⽆反射波。
对于普通的宽频放⼤器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远⼤于电缆长度,即缆长可以忽略的话,就⽆须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产⽣反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
⾼速PCB布线时,为了防⽌信号的反射,要求是线路的阻抗为50欧姆。
这是个⼤约的数字,⼀般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整⽽已,为了匹配⽅便.阻抗从字⾯上看就与电阻不⼀样,其中只有⼀个阻字是相同的,⽽另⼀个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延⼀点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
传输线理论阻抗匹配
2. 串联单支节公式:
BL
t
tg
d
BL
2Y0
GL Y0
Y0
GL
2
BL2
GL Y0
GL Y0 GL Y0
d的两个主要解为:
d
d
1
2
1
2
arctgt t
+arctgt
0
t
0
Z0
Z 1/Y Z0
ZL
Z0
l
短路或 开路
2020/7/22
28
短路支节:lsc
1
2
arctg
(3.3)
假定信号源阻抗是固定的,考虑以下三种负载阻抗情况:
负载与传输线匹配(ZL= Z0)
传给负载传输的功率
ГL=0
P
1 2
EG
2
Z0
Z0
RG 2 XG 2
(3.4)
2020/7/22
6
信号源与端接传输线匹配(Zin= ZG) Гin=0
传给负载传输的功率
P 1 2
EG 2 4
RG
RG2
yL
负载匹配,加+j 0.3
归一化导纳落在
zL
1 j圆b周上
归一化导纳 y 0.4 j0.5
z 1 j1.2
阻抗 z 1 j1.2 要落在归一化阻抗圆周上 1 jx
串联电抗 x j1.2
2020/7/22
14
由此得到相应的元件值为:
C b 0.92pF;
2 fZ0
C 1 2.61pF;
Zin
Z
* G
假定信号源的内阻抗为固定,可改变输入阻抗Zin使送 到负载的功率最大。
微波阻抗匹配
(b) 并联单支节调配器
Zl d a r c tg 2 Z0 Z lZ 0 l a r c tg ( ) 2 Zl Z0
(1)由负载阻抗 Z l 求出归一化导纳 Y
l
并在导纳圆图上找到与它对应的点P,该点对应的反射系 数的模为 1 (相应的驻波比为 1 )。
单支节匹配的主要缺点是它仅能实现在点频上匹配, 要展宽频带,可采用多支节结构来实现。
•双支节调配器
(1)在导纳圆图,根据双支节匹配器两支节之间距离确定辅 助圆。设本匹配的双支节匹配器两支节之间距离为 d2 / 8 ,那么辅助圆就和 G 1 圆上所对应的点反射系数相角都分 别相差 ( 4 d / / 2 ) r a d如图1-6-9所示。 2
某 天 线 阻 抗 圆 图
某 天 线 阻 抗 圆 图
并联单支节匹配器串联单支节匹配器第一章均匀传输线理论之阻抗匹配微波技术基础a串联单支节调配器已知负载可求得反射系数和驻波比此处为第一波腹点此处输入阻抗应等于特性阻抗第一章均匀传输线理论之阻抗匹配微波技术基础第一章均匀传输线理论之阻抗匹配微波技术基础1由负载阻抗求出归一化导纳并在导纳圆图上找到与它对应的点p该点对应的反射系2由p点开始沿等反射系数圆顺时针方向旋转对应于传输线上的点向波源方向移动与的圆相交于m和n两点它们距终端负载的距离分别为jbjb处并联一个短路支线并调节其长度使其归一化的输入电纳为则在处总的等效的归一化输入导于是传输线得到了匹配
* Zin Z g
Zin=Z0
2. 阻抗匹配的实现方法
隔离器 或 衰减器
阻抗 匹配
负载匹配的方法:从频率上划分有窄带匹配和宽带匹配; 从实现手段上划分有/4阻抗变换器法、支节调配法。
微波技术基础 第2章 传输线理论
内容提要
一、传输线基本概念
1、传输线的种类
2、分布参数及分布参数电路
二、传输线方程的解
1、传输线方程的解
2、入射波和反射波
三、传输线的特性参量
传播常数、特性阻抗、相速和相波长、输入阻抗、反
射系数、驻波比(行波系数)和传输功率
2020/1/23
1
西安电子科技大学
四、均匀无耗传输线工作状态的分析
,
a b
ad
D
a
W
, d
L1(H / m)
ln b 2 a
D D2 d2
ln
d
d
W
C1(F / m)
2 / ln b
a
/ ln D D2 d 2
d
W
d
R1( / m)
Rs
2
1 a
1 b
2Rs
d
2Rs W
G1(S / m)
数电路,用一个 型网络来等效。于是整个传输线可等效成 无穷多个 型网络的级联.
2020/1/23
6
西安电子科技大学
二、传输线方程
i(z,t)
L1 z
(z, t) R1 z
G1z
i(z z,t)
C1z (z z,t)
z
1) 一般传输线方程或电报方程
z,t z z,t z,t z
2
2
I (d ) VL ILZ0 e d VL ILZ0 e d I (d ) I (d )
2Z0
2Z0
V (d) ch d
I
(d
《微波技术与天线》第二章 传输线理论part4
利用在传输线上并接或串接终端短路或开路的支节线。
分类
单支节匹配器 双支节匹配器 三支节匹配器
2020/3/1
12
传输线的阻抗匹配
单支节匹配器
串联单支节匹配
离负载第一个电压波腹点位置及该点输入阻抗:
lmax1 L / 4 , Z1' Z0
参考面AA’处输入阻抗为:
Z in1
1
lmax1
0.1462m
调配支节的长度为
1
l2 2 arctan
0.1831m
2020/3/1
16
传输线的阻抗匹配
单支节匹配器
并联单支节匹配
离负载第一个电压波节点位置及该点输入导纳:
lmin1 L / 4 / 4,Y1' Y0
参考面AA’处输入导纳为:
负载阻抗匹配(匹配负载) :负载阻抗等于传输线 的特性阻抗。
负载阻抗匹配时:传输线上只有从信源到负载的入射波, 而无反射波。匹配负载完全吸收了由信源入射来的微波功 率。
负载阻抗失配时:传输大功率时易击穿,因为有驻波的存 在。
源阻抗匹配(匹配源) :电源的内阻等于传输线的 特性阻抗。
源阻抗匹配时:给传输线的入射功率是不随负载变化的。 负载有反射时,反射回来的反射波被电源吸收。
单支节匹配器
串联单支节匹配
要使其与传输线特性阻抗匹配,应有:
Zin Z0 R1 Z0 , X1 Z0 tan(l2 ) 0
tan(l1')
Z0 Z1 '
1
, tan(l2 )
Z1' Z0 1
Z 0 Z1 '
阻抗匹配的基础解说
阻抗匹配的基础解说怎样理解阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。
负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。
再来计算一下电阻R消耗的功率为:P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r]=U*U/{[(R-r)*(R-r)/R]+4*r}对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。
注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。
即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。
对于纯电阻电路,此结论同样适用于低频电路及高频电路。
当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。
在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。
从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。
微波技术传输线的阻抗匹配详解
2. 阻抗匹配问题 1). 共轭匹配 目的:使信号源的功率输出最大。 * 条件: Zin Z g ( Rin Rg , X in X g ) 满足共轭匹配条件的信号源输出的最大功率为:
2
Pmax
E g Rin Z g Z in
2
Eg
2
4 Rg
2) 无反射匹配
目的:使传输线上无反射波,即工作于行波状态。 条件:Zg= ZL= Z0 。 实际中传输线的始端和终端很难做到无反射匹配, 通常在信号源输出端接入隔离器以吸收反射波,而在传 输线与负载之间使用匹配装置用来抵消反射波。 信号源
隔离器
匹配器
负载
隔离器又称单向器,是非互易器件,只允许入射 波通过而吸收掉反射波,使信号源端无反射, 以稳定 信号源的工作状态。
二、阻抗匹配的方法 阻抗匹配的方法是 在负载与传输线之间接 入匹配器,使其输入阻
Z0 Z0
匹 配 器
~ ZL
抗作为等效负载与传输线的特性阻抗相等。 匹配器是一个两端口的微波元件,要求可调以适应 不同负载,其本身不能有功率损耗,应由电抗元件构成。 匹配阻抗的原理是产生一种新的反射波来抵消实际 负载的反射波(二者等幅反相),即“补偿原理”。 常用的匹配器有l/4 阻抗变换器和支节匹配器。
第六节 传输线的阻抗匹配
一、阻抗匹配的概念 阻抗匹配是使微波系统无反射、载行波尽量接近行 波状态的技术措施。 1. 阻抗匹配的重要性 (1) 匹配时传输功率最大,功率损耗最小; (2) 阻抗匹配可改善系统的信噪比; (3) 功率分配网络(如天线阵的馈源网络)中的阻抗匹 配将降低幅度和相位的误差; (4) 阻抗匹配可保持信号源工作的稳定性; 2 (5)阻抗匹配可提高传输线的功率容量( Pbr 1 U br K )。
2015年微波工程导论第2章传输线理论与阻抗匹配
第二章传输线理论与阻抗匹配微波传输线理论(或长线理论)是微波技术的基础。
本章首先从“路论”的观点研究普通的TEM波传输线,给出传输线的基本概念、传输特性、计算公式,这一节是微波传输线的基础;然后介绍阻抗匹配理论及其匹配方法。
2.1 传输线基本概念(1)什么是传输线?传输线的作用是什么?广义地讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同组成的导波系统,都可以称为传输线。
传输线是微波技术中最重要的基本元件之一,这是因为它不仅可以把电磁波的能量从一处传输到另一处,而且还可用它作为基本组成部分来构成各种用途的微波元(器)件。
(2)传输线有哪几类?具体传输线的种类是很多的,而且可按不同的标准分类。
若按传输线所导引的电磁波的波型(亦称模、场结构或场分布)来划分,则可分为三种类型,图2.1-1给出了这三种类型传输线中比较典型和常用的传输线的结构简图,但并非是传输线的全部。
图2.1-1 传输线的种类(1)TEM波和准TEM波传输线;(2)TE波和TM波传输线;(3)表面波传输线。
(a)平行双导线;(b)同轴线;(c)带状线;(d)微带线;(e)矩形波导;(f)圆形波导;(g)脊形波导;(h)椭圆波导;(i)介质波导;(j)镜像线;(k)单根表面波传输线①TEM波传输线,如双导线、同轴线、带状线和微带线(严格地讲,是准TEM波)等,它们都属于双导体传输系统,多导体系统也可以传输TEM波;②TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,它们是由空心金属管构成的,属于单导体传输系统(双导体和多导体传输系统在一定条件下,例如,当传输线的横向尺寸与工作波长相比足够大时,也可以传输TE和TM 波,但一般不常用,常用的是主模TEM波);③表面波传输线,如介质波导(包括光波导),介质镜像线,以及单根的表面波传输线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般的是混合波型(TE波和TM波的叠加),某种情况下也可传播TE或TM波。
电子设计中的阻抗匹配技术
电子设计中的阻抗匹配技术
在电子设计领域中,阻抗匹配技术是一项非常重要的技术。
阻抗匹配是指将信号源、传输介质和负载之间的阻抗调整到最佳匹配状态,以最大限度地传输信号能量,减小信号反射和降低功耗。
阻抗匹配技术主要应用于无线通信系统、射频电路、微波电路以及其他高频电路设计中。
在这些系统中,往往需要将不同阻抗的元件连接在一起,因此需要进行阻抗匹配来确保信号的正常传输和工作效率。
阻抗匹配技术的一种常见方法是通过使用阻抗转换网络来实现。
阻抗转换网络可以将不匹配的阻抗转换为匹配的阻抗,从而提高信号传输效果。
常见的阻抗转换网络有匹配变压器、L型匹配网络、π型匹配网络等。
另一种常见的阻抗匹配技术是使用阻抗匹配电路,包括电阻、电容、电感等元件来调整阻抗,以实现信号源、传输线和负载之间的阻抗匹配。
这种方法通常可以在电路板设计中方便地实现。
除了阻抗匹配技术,还有一种被广泛应用的技术是阻抗匹配网络的设计。
通过使用软件仿真工具和网络分析仪器,工程师可以精确地设计阻抗匹配网络,以满足特定的阻抗要求。
这种方法可以在设计阶段提前解决阻抗匹配的问题,提高整体设计的准确性和效率。
总的来说,阻抗匹配技术在电子设计中起着至关重要的作用,能够确保信号的正常传输和系统的高效性能。
工程师在设计高频电路时,需要充分了解阻抗匹配的原理和方法,灵活运用各种技术手段,以实现电路的稳定性和可靠性。
只有保证阻抗匹配的准确性,才能使电子系统发挥出最佳的性能和效果。
微波技术基础7-阻抗匹配
传输线的电路理论—阻抗匹配
常用的匹配方法
g 4阻抗变换器
置于特性阻抗不同的均匀传输线之间或传 输系统与负载之间起阻抗匹配作用。
传输线的电路理论—阻抗匹配
对于该图所示的结构,容易推导要使T处 in 0 0 0L
由于无耗传输线的特性阻抗是实数,因此,g / 4阻抗变
传输线的电路理论
➢阻抗匹配
阻抗匹配的重要性: 使微波传输系统能将波源的功率有效地传给负载; 关系到系统的传输效率、功率容量与工作稳定性; 关系到微波元器件的性能以及微波测量的系统误差
和测量精度。 阻抗匹配的分类:
无反射匹配 共轭匹配
传输线的电路理论—阻抗匹配
无反射匹配
负载匹配—负载与传输线之间的匹配; 匹配条件:L 0 匹配后传输线状态:负载经匹配后不产生波的反射,
传输线上呈行波状态。 波源匹配—波源与传输线之间的匹配; 匹配条件: g 0 匹配后传输线状态:波源经匹配后对传输线不产生波
的反射。 实际情况:负载不匹配而产生反射波,但波源匹配将
不产生二次反射。
传输线的电路理论—阻抗匹配
共轭匹配
特点:负载吸收最大功率的匹配。 匹配条件:传输线上任一参考面T向负载看去的输入 阻抗与向波源看去的输入阻抗互为共轭,即
b 1 ln RL 1 ln R L 0 L
(R为阻抗变换比)
1
2
eL j 2 z
0
d dz
ln R L
z
ln
0 dz
1 2
e jL
ln
R
sin L L
1 ln R sin L
2
L
1 ln R sin L
微波技术与天线-阻抗匹配
Zg g
Z
g
g
Z
g
g
Zg Zi*n g *in
信号源有 最大 输出功率, 并通过传输线提供给 负载 。
Zg Eg
Zin in
Z0
Zl
Z
in
in
Zl
l
信号源输出最大资用功率
T1
T2
T3
Pmax Eg2 / 8Rg
Zg
传输线任意参考面等效信源 Eg
阻抗与等效负载阻抗共轭
Z
g
Z
g
Zin = 传Z输in 线 +负载 Zl
Y2 jb
Yin 在匹配圆轨迹。通过传输线λ/8 (即向负载方向转90°),构成 Y4 轨迹。
Y2 l2
辅助圆
(在双枝节匹配中,Y4轨迹称为辅助圆)。
Y3 Yl gl jbl
0
Y1 jbl
按等 gl 圆旋转到辅助圆上,由此算出 Y1 jbl 。
Y4
Y3
Yl
Y1 l1
i Y4 轨迹
等 g l圆
电压波节点 Z0 Z0 K
dumin l / 4 0.25
Z0
Z0 g / 4 dumax Zl
Z0
Z
0
g / 4
dumin
Zl
g
3108 300 106
1m
2 2
Z0
g
1
1
21
Yl
Zl
200
j250
1025
j 410
1
Yin jY0 c tan lmin - j 410
lmin 0.11m
Eg
Eg
Zg Zin* g in*
此时传输线与负载不一定匹配
微波的测量实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
微波技术与天线-微波元件_阻抗匹配与变换元件
电抗补偿法——销钉
(a)
电容销钉
➢ 销钉为垂直对穿波导的金属细圆棒
➢ 销钉的工作原理与膜片类似
(b)
电感销钉
电抗补偿法——螺钉调配器
1、宽边
2、可控
l
结构
磁场结构
电场结构
一、附近高次模电场集中
C
二、宽壁上的轴向电流流
进螺钉产生附加磁场
L
电抗补偿法——螺钉调配器
➢ 当旋入深度 h 较小时,WE>WH,等效为一电容;
Z L Z0
2 Z0
2 m
Wq 2 arccos
ln Z L Z 0
4
2
反射系数模值
近似公式 ln
m
1
N
阻抗变换法——渐变线阻抗变换器
把离散的(不连续的)各段变为连续变化的工
作段,则在输入端有更多的反射波互相抵消,
故在长度不增加的情况下,可展宽工作频带。
阻抗变换法——渐变线阻抗变换器
波导型
同轴线型
微波元件
微带线型
……
微波元件的分类
★ 按功能分
微波元件
匹配
元件
连接
转换
元件
功率分配元件铁氧体元件
……
匹配的实质
设法在终端负载附近产生一新的反射波,使
电抗:容抗和感抗
它恰好和负载引起的反射波等幅反相,彼此抵消
波导型电抗匹配元件:膜片、
,从而达到匹配传输的目的。
谐振窗、销钉、可调螺钉
匹配的方法
➢ 第二个分支的作用是改变位于 G 1 圆上的输入导
纳 Y2' 的虚部,使其回到匹配原点,实现匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点:存在得不到匹配的盲区。克服缺点的办法是 采用三支节或多支节匹配器。
d2 = l/8 时, 盲区为 G~ 2;
d2 = l/4 时, 盲区为 G~ 1。
0
G~2 0.25
d2= l/8 双支节匹配器的盲区
3). 三支节匹配器
C
B
A
d3
其参量为:
Z0U Iii((zz))
L0 , C0
2p , lp
பைடு நூலகம்
vp
c,
r
l p
l, r
3. 均匀无耗传输线有三种工作状态: (1) 当ZL=Z0 (匹配)时,线上只有入射波行波,电压、
电流振幅不变,相位沿传播方向滞后;
Zin(z)=Z0 ;电磁能量全部被负载吸收。 (2) 当ZL=0、、jXL 时,线上载驻波。入射波和反
4
Z~L lm in
把Z021Z0R 代 入: 得
G(RZ0) R 2 jZ0 Z0Rtg l
(1)
G
1
(2)
2
12RRZZ00 sec
在 中 心 频 , 率 l附 2lpl近 40 (ll0)(p2)p2
sec
G RZ0 cos
(3)
2 Z0R
当0,相当l于 0,此时阻抗变换, G 器 最不 大 。存
marcco1s2GGm 2m(R Z0RZ0)
(5)
通常用分数带宽Wq表示频带宽度, Wq与m有如下关系
Wq
f2f1 f0
21 0
(p pm /)2 m2p 4m
(6)
对于单一频率或窄频带的阻抗匹配而言,一般单节 l/4 阻抗变换器提供的带宽能够满足要求。但若要求在宽 带内实现阻抗匹配,就必须采用双节、三节或多节 l/4 阻抗变换器 (可参阅有关资料) 。
节匹配器。
~ l~ l~ l~ lEF00..2255
~ lF B~ F
C G~ 1
0.25
D
B~~E lE
~ l
导纳园图
2). 双支节匹配器
在单支节匹配器中改变d 是为了找到归一化电导分量
为1的参考面。由:
Y~in
1 Z~ in
1 Z~L
jZ~L tgd jtgd
可知,线上某参考面的输入导纳不仅决定于该面与终
d2
d1
~ Y~0
Y~L
Y~0
C’
Y~0
B’ Y~0
A’
l3
l2
l1
三支节匹配器为二支节匹配器的组合。l1、l2 为一组, l2、l3 为一组。首先, l3 = l /4 (闲置),由l1、l2 调配;若 G~a 落在盲, 区 则 l1 = l /4 (闲置),由l2、l3 进行调配。
*第七节 传输线的计算机辅助计算
端的距离 d ,还决定于负载的情况。亦即改变负载情
况也可找到归一化电导分量为 1 的参考面。改变负载
的办法是在给定的负载上、或在离负载一定距离 d1 的 参考面上附加纯电纳。
双支节匹配器是在d1 处并联一长度为 l1 的短路支 节, 第二个短路支节的长度为l2 ,两支节的距离d2 固定; 为便于计算,常取 d2 l/8、l/4 或 3l/8,但是d2 l/2。 d1 、 d2 一确定,即可调节 l1 和 l2 而达到匹配。
Y~in
d
~ Y~0
~
Y Y~2 Y~1
0
Y~L
Y~0
d~~lC~lA
B~
d~~ lD~ lA
A
G~ 1 C
0
l
0.25
单支节匹配器
导纳园图
D B~
C 点 Y ~2B ~ E点
D点
Y ~2B ~F 点
有两组解,通 常选d、l 较短的一
~l
组解。
负载改变,则实 现匹配的 d、l 将随 0 之而变,这对同轴 线、带状线等传输 线十分不便,解决 的办法是采用双支
2. 支节调配器
支节调配器是在距终端负载的某一处并联或串联短
路或开路支节。有单支节、双支节或多支节匹配器,常
用并联调配支节。 1). 单支节匹配器 并联单支节匹配器是在距
Y~in
d
~ Y~0
~
Y Y~2 Y~1
0
Y~L
负载 d 处并联长度为 l 的短路
Y~0
支节,利用调节 d 和 l 来实现
匹配的。
Y~2 Y~aY~1jB ~2~ l1
D E ~ G1 C
B~2
B~3
F G~ 1
B~3
针 (4 ) d ~ Y 2 ~ a 落 沿 转 G ~ G 园 在 1 等 园 (顺 F 点 上 Y ~ 时 3) 1 得 jB ~ 3 。
Y~4 Y~bY~3 jB~3
~ l2
~ d2
1 8
0.25
~ l2 ~l1
长l2度 所产生 Y ~ 4 B ~ 的 3来电 抵 。纳 消
2) 调配过程
(1) 作辅助园: G ~Yd~~1(L1(3 得 2)沿 1)Y~Y1Y园 ~~沿 1L等 GG~G 1园 ~逆 园 Z~11L顺 转 (jCB时 ~1点动 时 (d~D)2,针 点 。 交 针)。辅 转 转 d~1助 0 园于E点得Y~a G~1 jB~a 。
2. 传输线方程可由传输线的等效电路导出,它是传
输线理论中的基本方程。
均匀无耗传输线方程:
d
2U dz
(
2
z)
2
U
(
z)
0
d
2
I(
z
)
dz2
2
I(z)
0
其通解为(以终端为坐标原点):
U (z)A 1ejzA 2ejzU i(z)U r(z)U i(z)1 [G (z)] I(z)Z 1 0(A 1ejzA 2ejz)Ii(z)Ir(z)Ii(z)1 [G (z)]
2
Pmax
Eg
Rin
2
Zg Zin
2
E
g
4Rg
2) 无反射匹配
目的:使传输线上无反射波,即工作于行波状态。 条件:Zg= ZL= Z0 。 实际中传输线的始端和终端很难做到无反射匹配, 通常在信号源输出端接入隔离器以吸收反射波,而在传 输线与负载之间使用匹配装置用来抵消反射波。
信号源 隔离器
ZL RL
ZinZ01Z R0 L 1jjZ R 0L1ttg g ((l l4 4))
Z 01 2 RL
匹配时, Zin Z0 ,必须使
Z01 Z0RL
(252)
由于无耗线的特性阻抗为实数,故 l/4 阻抗变换器
只能匹配纯电阻负载。当ZL=RL+jXL为复数时, 根据行 驻波的电压波腹和波节点处的输入阻抗为纯组:
双支节匹配器的工作原理:
B
A
d2
d1
~ 1). 分析:
假定已匹配好。
Y~0 Y~b
Y ~3应 ((12)) BG~落 -BG ~1’ 面园 1 在 园 :逆 Y上 ~b 时 1。 , 针
方
Y~0
向
l
2
Y~4
Y~3
B’
Y~a
Y~2
Y~0 l1
Y~1
A’
Y~L
转 设 落 G ~1园 ((过 4 3G dG ~ ~ )) 21 A ~ Y , 在 la 移 为 -则 1 点 A电 ’Y ~ 面1 上 园 动 落 长 :Y~沿 aY ~ 度 应 G 直 3 ~ 点 1 得 园 落 得 在 。 其 至 Y G ~在 3园 辅 。 的 调 交 。 辅 与 助 上 所 ,电 交 助顺 园 辅 B ~双园 3,节 纳 1 支可 点 Y在 ~的 a上 节助 与 时 匹Y 通 配~ 即 Y~a1器的 园 。等 d 支 l1 2 过 针 为 长 , 电 l 使 相 电 Y 调 ~ 导 1 沿 方 2节 的 , 相 度 节 长
4. 传输线具有阻抗变换作用, Zin(z)为分布阻抗,
Zin(l)Z0Z Z0 L jjZ Z L 0ttg g ll,
l
Zin(4)
Z02 ZL
,
Zin(l2)ZL。
Zin不能直接测量,需借助 G 或 来确定:
作业
1-18, 1-19, 1-20, 1-21
第18题:
ZL 改 为 Z ~L
第六节 传输线的阻抗匹配
一、阻抗匹配的概念
阻抗匹配是使微波系统无反射、载行波尽量接近行
波状态的技术措施。
1. 阻抗匹配的重要性
(1) 匹配时传输功率最大,功率损耗最小;
(2) 阻抗匹配可改善系统的信噪比;
(3) 功率分配网络(如天线阵的馈源网络)中的阻抗匹
l
匹, 配 Y ~ in Y ~ 1 时 Y ~ 2 1 。
Y ~2为 纯电 (B ~)纳 Y ~ 11B ~,
Y~1应在导纳园园 图 (G ~的 1)可 上 。匹配
Y~L(A)
C点 D点
dd~ ~~lC ~ lD~lA~ lA ~ Y~Y11 11 jjB B ~ ~ YY ~~ 22 B ~B ~
匹配器
负载
隔离器又称单向器,是非互易器件,只允许入射 波通过而吸收掉反射波,使信号源端无反射, 以稳定 信号源的工作状态。
二、阻抗匹配的方法
阻抗匹配的方法是 在负载与传输线之间接 入匹配器,使其输入阻
匹
Z0
Z0 配
器
Z~L
抗作为等效负载与传输线的特性阻抗相等。 匹配器是一个两端口的微波元件,要求可调以适应
配将降低幅度和相位的误差;
(4) 阻抗匹配可保持信号源工作的稳定性;
(5)阻抗匹配可提高传输线的功率容量(