随机信号分析习题1

合集下载

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

随机信号分析 第三版 第一章 习题答案

随机信号分析 第三版 第一章 习题答案

1. 2. 3. 4. 5.6. 有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少? (2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ==== ()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()0()2xxxf x dx ae dx a e dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a = (2)()1()2x xtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14. 若随机变量X 与Y 的联合分布律为求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

随机信号分析试题

随机信号分析试题

姓名年级学院专业学号密封线内不答题一.填空题(每空3分共33分) 1.随机变量X ,Y 独立的条件是 。

2.若窄带信号()X t 通过一个幅度为A 的宽带系统输出()Y t ,则二者的关系为 。

3.白噪声通过理想带通系统后,其输出功率谱密度为 分布。

4.实信号)(t x 的解析信号是 。

5.随机变量X 服从0,1分布(P x p ==)1()的特征函数()X φυ= 。

6.若信号()X t 与()Y t 恒有12(,)0R t t =,则()X t 与()Y t 彼此 。

7.若信号()X t 与()Y t 无关, 如果 则 ()X t 与()Y t 独立。

8.若信号()X t 与()Y t 都是高斯信号,则()X t 与()Y t 独立的充要条件是 。

9.随机信号的平稳性包括 。

10.白噪声信号的()R τ= 。

11.随机信号()X t 均值各态历经表示 。

二、(12分)设正态分布随机变量),(~2σμN X 的特征函数。

姓名年级学院专业学号密封线内不答题三、(12分)假定三维随机变量),(~),,(321x x C X X X μ⎪⎪⎪⎭⎫ ⎝⎛=321x μ, ⎪⎪⎪⎭⎫ ⎝⎛=820242024x C 求(1)1X 的密度函数;(2)),(21X X 的密度函数;(3)31X X +的密度函数。

姓名年级学院专业学号密封线内不答题四、(14分)已知)()cos()()()(0t N t a t N t S t X ++=+=θω,其中θω,,0a 为常数,白噪声)(t N 的功率谱为2/0N 。

求此RC 电路输入前、后的信噪比?姓名年级学院专业学号密封线内不答题五、(15分) 1. 给出严格平稳随机过程和广义平稳随机过程的定义。

2.给出严格各态历经和广义各态历经的定义。

姓名 年级 学院 专业 学号 密封线内不答题 3.解释等效噪声带宽。

六、(14分)设随机过程()cos()X t A t ωϕ=+,其中ϕ是在(−π, π)中均匀分布的随机变量,A 、ω为常数。

随机信号分析习题答案(部分)

随机信号分析习题答案(部分)

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

(完整word版)随机信号分析习题.(DOC)

(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

随机信号分析试题

随机信号分析试题

i 一.填空题(每空3分共18分):1.随机信号功率谱的物理意义是。

22.广义各态历经是指。

33.白噪声通过理想低通系统后,功率谱为。

号;4.希尔伯特变换中系统的冲激响应h(t)传递函数;H( ) 。

5 5.随机信号x(t)的解析函信号是。

二.判断题(每小题3分共15分)题小答1.随机变量X, Y独立,则有E(XY) E(X)E(Y)。

() 不内2.理想白噪声过程在不同时刻的两个状态独立。

()封3.一可以成为平稳过程的自相关函数。

曲密()4.功率谱密度S x()是实函数并且是偶函数。

()5.实平稳随机过程X(t)通过线性时不变系统的输出为Y(t),则有S x( )S Y( ) S XY()S YX() ( )三.(12分)若有一随机变量X,其概率密度函数为f(t) -e ax u(t)o2 求:(1) a的值;(2) X的特征函数X v ;第1页共4页(3)随机变量Y 2X 1,求Y的一阶概率密度函数。

.( 15 分) 已知随机相位正弦信号X(t) cos 0t , 0为常数,为在[0, 2兀]内均匀分布的随机变量。

试求:(1) X(t)的数学期望和自相关函数;(2)判定X(t)是否为平稳过程;(3)计算x(t)的功率谱密度。

五.(15分)若输入信号X(t) X。

cos( o t )作用于图XX所示RC电路,其中X。

为[0,1]上均匀分布的随机变量,为[0,2兀]上均匀分布的随机变量,并且X。

与彼此独立。

求输出信号Y(t) 的功率谱与相关函数。

题业答专才不内线密六.(15分)复随机过程Z(t) e j(0t),式中。

为常数,是在。

2):上均匀分布的随机变量。

求:(1)E[Z(t *(5和E[Z(t)Z(t)第3页共4页第4页共4页];:(2)信号的功率谱。

七.(15分)平稳随机过程x(t)作用到冲激响应分别为几代)和卜2代)的 串联系统。

用h i (t)、h 2(t)和X(t)的自相关函数R x ()表示的Y i (t)和丫2⑴ 的互相关函数,并计算丫(t)和Y 2(t)的功率谱。

随机信号分析英文作业1

随机信号分析英文作业1

8.1-1 The outcome of an experiment is an integer I whose value is equally likely to be any integer in the ranfe1112I ≤≤. Let A be the event that I is odd,let B be the event that I is exactly divisible by 3,and let C be the event that I is exactly divisible by 4.Draw the Venn diagram and find the probabilities of the eventsA,B,C,AB,AC,BC and . c A B 8.1-8 An honest coin is tossed twice and you are given partial information about the outcome.(a ) find theprobability of a match when you are toke that the first toss came up heads.(b ) find the probability of a match when you are told that heads came uo on at leasr one toss.(c ) find the probability of heads on at least one toss when you are told that a match has ocurred.()1/4.P H =8.1-9 Do Prob,8.1-8 for a loaded coin having212X N =8.2-1 Let ,where N is a random integer whose value is equally likely to be any integer in the range Plot the CDF of X and use iot to evaluate the probabilities of:and1N −≤≤3. 2.X ≥0,23,2,X X X ≤<≤<8.2-5 Suppose a certain random variable has the CDF20()100X F x Kx K ⎧⎪=⎨⎪⎩00110x x x 0≤<≤>(5P X Evaluate K, write the corresponding PDF,and find the values of )≤ and(57).P X <≤8.2-11 Let X have a uniform PDF over .Find and sketch the PDF of Z defined by the transformation1x −≤≤3Z =.8.3-2 Find the mean, second moment, and standard deviation of X when with .0a >2()()ax x p x a xe u x −=cos Y a X =8.3-6 Find the mean ,second moment, and standard deviation of ,where a is a constant and X has auniform PDF over 2x θθπ≤≤+.8.3-16 Let X have a known PDF and let , so()Y g X = ()()()[]()j g X j g x Y x E e e p x dx ννν∞−∞Φ==∫ If this integral can be rewritten in the form()()j Y e h d νλνλλ∞−∞Φ=∫2()2()ax X p x axe u x −=2Y X = then .Use this method to obtain the PDF of ()()Y P y h y = when .8.4-7 Observations of a noise voltage X are found to have a gaussian distribution with and 100m =2σ=. Evaluate 2X m σ± and the probability that X falls outside the range .213X =8.4-8 A gaussian RV has 2X = and . Evaluate the probabilities of the events and .5X >25X <≤。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

随机信号分析第一次阶段测试题

随机信号分析第一次阶段测试题
均值为 和相关函数为 。

6)若平稳随机过程 Xin a ,其中 a 为正的常数,则 a
X t 的起伏速度比 Y t 的起伏速度

其中 A, 均为常数,N t 是均值为 0 方差为 的 7) 设随机过程 X t A cos t N t ,
X (1 , t ) a cos t X ( 2 , t ) a cos(t )
t t
其 中 a 0 , P (1 ) 2 / 3 , P ( 2 ) 1 / 3 。 ( 1 ) 求 X t 的 一 维 分 布 函 数 FX ( x; 0) 和 (2)求 X t 的二维分布函数 FX ( x1 , x2 ;0, / 4) 。 FX ( x; / 4) ;

2)设随机过程 X (t ) A cos(t ) ,其中 A、 为常数,随机变量 在 , 中服从均 匀分布,随机过程 Y t B cos t ,其中 B 是概率密度函数为 f Y B 量,且 与 B 彼此独立,则 R XY t1 , t 2 。
,并说
1 1 2a 2
(2)f
1 , 1 0, 1
(3)f
2, 0 e , 0
10)假定某天文台观察到的流星流是一个泊松过程,据以往资料统计,每小时平均观察到 3 颗流星,则在上午 8 点到 12 点期间,该天文台没有观察到流星的概率 P 。 二.(15 分)设随机过程 X t 只有两条样本函数
四.(20分)设齐次马尔可夫链 X ( n), n 1 的状态空间 E 1,2,3 ,其中一步转移概率矩阵为 :
1 / 3 2 / 3 0 P= 1 / 4 1 / 4 1 / 2 0 1 / 2 1 / 2

随机信号分析1-3部分答案

随机信号分析1-3部分答案

1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由 1)(=⎰∞∞-dx x f得2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A 21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

随机信号分析(第3版)第一章 习题答案

随机信号分析(第3版)第一章 习题答案

解: (1)用 Bi 表示第 i 批的所有零件组成的事件,用 D 表示所有次品零件组成的事件。
P ( B1 ) = P ( B2 ) = P ( B3 ) = P ( B4 ) =
100 = 0.05 2000 100 P ( D B3 ) = = 0.1 1000
1 4
P ( D B1 ) =
200 = 0.4 500 100 P ( D B4 ) = = 0.1 1000
22. 23. 24. 已知随机变量 X 服从 [0, a] 上的均匀分布。 随机变量 Y 服从 [ X , a] 上的均匀分布, 试求 (1) (2)
E (Y X ), (0 ≤ X ≤ a ) ; EY a+X 2
⎞ a+a/2 3 = a ⎟= 2 4 ⎠
解: (1)对 x ∈ [0, a ] 有, E (Y X ) =
1 −x f XY ( x, y ) = e 2π
2
+ y2 2
, ( x, y ) ∈ R 2 1 2 =−1, 1 2 − 2 , (u, v ) ∈ R 2
2
u+v 1 ⎧ x= ⎪ ⎪ 2 ,J = 2 由反函数 ⎨ 1 ⎪y = u −v ⎪ ⎩ 2 2
1 −u fUV ( u , v ) = e 4π 1 −u (2)由于, e 4π
2 2
(2) f ( x ) = 0.3δ ( x − 1) + 0.7δ ( x + 1)
E ( X ) = φ ′(0) / j = 1× 0.3 + ( −1) × 0.7 = −0.4 E ( X 2 ) = −φ ′′(0) = 12 × 0.3 + ( −1) × 0.7 = 1 Var ( X ) = E ( X 2 ) − E 2 ( X ) = 1 − 0.16 = 0.84

随机信号分析题目及答案

随机信号分析题目及答案

1. (10分)随机变量12,X X 彼此独立,且特征函数分别为12(),()v v φφ,求下列随机变量的特征函数:(1) 122X X X =+ (2)12536X X X =++解:(1)()121222()jv X X jvX jv X jvXX v E e E e E e e φ+⎡⎤⎡⎤⎡⎤===⋅⎣⎦⎣⎦⎣⎦(2)()1212536536()jv X X jv X jv X jv X v E e E e e e φ++⎡⎤⎡⎤==⋅⋅⎣⎦⎣⎦2. (10分)取值()1,1-+,概率[0.4,0.6]的独立()半随机二进制传输信号()X t ,时隙长度为T ,问: (1) 信号的均值函数()E X t ⎡⎤⎣⎦; (2) 信号的自相关函数(),X R t t τ+; (3) 信号的一维概率密度函数();X f x t 。

解:(1)()10.410.60.2E X t =-⨯+⨯=⎡⎤⎣⎦ (2) 当,t t τ+在同一个时隙时:当,t t τ+不在同一个时隙时: (3)()()();0.610.41X f x t x x δδ=-++3. (10分)随机信号0()sin()X t t ω=+Θ,()()0cos Y t t ω=+Θ,其中0ω为常数,Θ为在[]-,ππ上均匀分布的随机变量。

(1) 试判断()X t 和()Y t 在同一时刻和不同时刻的独立性、相关性及正交性;(2) 试判断()X t 和()Y t 是否联合广义平稳。

解:(1) 由于X (t )和Y(t )包含同一随机变量θ,因此非独立。

根据题意有12f ()θπ=。

[]001sin()02E[X(t )]E t sin(w t )d ππωθθπ-=+Θ=+=⎰, 由于0XY XY R (t,t )C (t,t )==,X (t )和Y(t )在同一时刻正交、线性无关。

除()012w t t k π-=±外的其他不同时刻12120XY XY R (t ,t )C (t ,t )=≠,所以1X (t)和2Y(t )非正交且线性相关。

随机信号李晓峰版第一章习题答案

随机信号李晓峰版第一章习题答案

ve e φ-=+; (3)()4/(4)v jv φ=; (4)()(sin 5)/(5)v v v φ=; 解:(1)1()i k jvxiivpe φ==∑ ()()1 k i i i f x p x x δ==-∑ 2424()0.20.30.20.20.1j v j v j v j v v e e e e φ--=++++ ()()()()()() 0.20.320.240.220.14f x x x x x x δδδδδ=+-+-++++ ()()()(0)/20.340.220.240.10.6E X j φ'==?+?+-?+-?= ()()()()22 2 2 2 2 (0) 20.340.220.240.1 6.8 EX j φ''=-=?+?+-?+-?= ()()()22 6.80.36 6.44Var X E X E X =-=-= (2)() 11 ()0.30.7jv jv v e e φ??-=+ ()()()0.310.71f x x x δδ=-++ ()()(0)/10.310.70.4E X j φ'==?+-?=()()()
25. 设太空梭飞行中,宇宙粒子进入其仪器舱的数目N 服从(参数为λ)泊松分布。进舱后每个粒子造成损坏的概率为p ,彼此 独立。求:造成损坏的粒子平均数目。解:每个粒子是否造成损坏用i X 表示 1,1,2,,0i X i N ?==? ? 造成损坏没有造成损害 , 造成损坏的粒子数 1 N i i Y X ==∑ ,于是 () 1 1 (|)(|) |n iin i i E Y N n E X N n E X N n =======∑∑ 可合理地认为N 和i X 是独立的,于是 ()1 (|)n i i E Y N n E X np ====∑ ()()()()(|)E Y E E Y N E Np pE N p λ==== 27. 若随机变量X 的概率特性如下,求其相应的特征函数: (1)X 为常数c ,即{}1P X c ==; (2)参数为2的泊松分布; (3)(-1,1)伯努利分布: ()0.4(1)0.6(1)f x x x δδ=-++ (4)指数分布: 30 3(), x x e f x -≥?=??其他 解:(1)()jvX jvc jvc X v E e E e e φ????===???? , 如果c=0,则()1X v φ=。 (2)

随机信号分析与处理答案(罗鹏飞,张文明编著)

随机信号分析与处理答案(罗鹏飞,张文明编著)
画系统模型时, n(t ) 为输入, Y (t ) 为输出。带一个加法器和延时器 T 传 递 函 数 幅 频 图 , 即 H( f )
H( f )
2 2
f 图 ( 利 用 w 2 f , 得 到
2
4 2si nT)f ( ) H( f ) (注意图中要标出最大值及所对应的频率,且
为正数) 4.
(2)
R(0,1) E[ X (0) X (1)] E[2 cos 2 cos(2 )] 4 E[cos cos ] 1 1 4 [(cos 2 0) (cos 2 ) ] 2 2 2 1 4 2 2
5. P85:2.6 问题还需增加“求均值,自相关函数及验证平稳性”
作业一的参考答案 1. P28:1.10
f XY ( x, y ) fY ( y )
1 0
解:利用 f X /Y ( x / y )
fY ( y )
所以


f XY ( x, y)dx
2ax 2by a 2by dx ab ab
f X /Y ( x / y )
解: (1)
互相关系数 XY
Cov( X , Y ) 2 3 D( X ) D(Y )
CZW Cov(2 X Y , X 2Y )
(2)
E[(2 X Y )( X 2Y )] E (2 X Y ) E ( X 2Y ) 2
(3)
因为 X , Y 为高斯随机变量 所以
解:
因为 A , B 为独立的高斯随机变量 所以
E( AB) E( A) E( B) 0 E[ X ] E( A)cos wt E( B)cos wt 0

随机信号分析基础作业题

随机信号分析基础作业题

第一章1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。

如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。

如果她迟到了,问她最可能搭乘的是哪种交通工具?解:P (A )=0.3P (B )=0.2P (C )=0.1P (D )=0.4P (E |A )=0.25E -迟到,由已知可得P (E |B )=0.4P (E |C )=0.1P (E |D )=0全概率公式:P (E )=P (EA )+P (EB )+P (EC )+P (ED )贝叶斯公式:P (A |E )=P (EA )P (E |A )⋅P (A )0.075P (E )=P (E )=0.165=0.455P (B |E )=P (E |B )⋅P (B )0.08P (E )=0.165=0.485P (C |E )=P (E |C )⋅P (C )0.01P (E )=0.165=0.06P (D |E )=P (E |D )⋅P (D )P (E )=0综上:坐轮船⎧2x -x 3、设随机变量X 服从瑞利分布,其概率密度函数为f ⎪e 2σX 2x(x )=⎨2,⎪σX⎩0,数σX>0,求期望E (X )和方差D (X )。

考察:已知f x(x ),如何求E (X )和D (X )?x >0式中,常x <E (X )=⎰x ⋅f (x )dx-∞22D (X )=E [(X -m x)]=⎰(X -m x)f (x )dx-∞∞∞D (X )=E (X )-E (X )⇒E (X )=⎰x 2⋅f (x )dx-∞222∞6、已知随机变量X 与Y ,有EX =1,EY =3,D (X )=4,D (Y )=16,ρXY=0.5,令U =3X +Y ,V =X -2Y ,试求EU 、EV 、D (U )、D (V )和Cov (U ,V )。

随机信号分析习题.doc

随机信号分析习题.doc

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数。

并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为 ⎥⎦⎤⎢⎣⎡++-=)52(21ex p 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值(2)确定Y 的分布。

(3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f 。

8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度? 9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析习题一:
1. 设函数⎩⎨⎧≤>-=-0 ,
0 0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数。

并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为
(), 0, 0(,)0 , other
x y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为
⎥⎦⎤⎢⎣⎡++-=)52(21exp 1
),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y
(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y
4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3
()Y g X X X ==-。

(1)求Y 的可能取值
(2)确定Y 的分布。

(3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为: )()(3
1)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ 试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:
ϕϕ
sin cos ==Y X
ϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2
bX Y =的概率密度)(y f 。

8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?
9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y
\
10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数
22
2W X Y Z X ⎧=+⎨=⎩
设X ,Y 是相互独立的高斯变量。

求随机变量W 和Z 的联合概率密度函数。

11. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数
2()
W X Y Z X Y =+⎧⎨=+⎩ 已知(,)XY f x y ,求联合概率密度函数(,)WZ f z ω。

12. 设随机变量X 为均匀分布,其概率密度1,()0X a x b f x b a ⎧≤≤⎪=-⎨⎪⎩,
其它
(1)求X 的特征函数,()X ϕω。

(2)由()X ϕω,求[]E X 。

13. 用特征函数方法求两个数学期望为0,方差为1,互相独立的高斯随机变量1X 和2X 之和的概率密度。

14. 证明若n X 依均方收敛,即 l.i.m n n X X →∞
=,则n X 必依概率收敛于X 。

15. 设{}n X 和{}n Y (1,2,)n = 为两个二阶矩实随机变量序列,X 和Y 为两个二阶矩实随机变量。

若l.i.m n n X X →∞=,l.i.m n n Y Y →∞=,求证lim {}{}m n m n E X X E XY →∞
→∞=。

相关文档
最新文档