光立方制作方法
光立方原理
光立方原理1. 简介光立方是一种3D显示技术,利用光学原理和立方体结构,可以呈现逼真的立体图像。
光立方通常由透明的立方体结构和投影系统组成,能够在空中投射出立体图像,给人一种身临其境的感觉。
本文将介绍光立方的工作原理、应用场景以及发展前景。
2. 工作原理光立方的工作原理基于透明立方体和投影系统。
首先,在立方体内部使用多边形镜面反射结构,将投影系统的图像反射到不同的面上。
然后,通过透射和反射效果,立方体能够形成逼真的立体图像。
最后,通过适当的灯光照射,使得投影出的立体图像更加清晰和真实。
光立方主要依靠以下原理来实现立体图像的生成:•投影原理:使用投影系统将图像投影到立方体的反射面上。
•反射原理:立方体的多边形镜面反射结构将投影的图像反射到不同的方向。
•透射原理:由于立方体的透明性,图像可以通过立方体透射到空气中形成立体图像。
3. 应用场景光立方由于其独特的显示效果,在各个领域都有着广泛的应用。
以下是一些常见的应用场景:3.1 艺术展览光立方能够呈现逼真的3D图像,使得艺术展览更加生动和吸引人。
艺术家可以通过光立方展示设计作品、雕塑等,为观众带来不同寻常的观赏体验。
3.2 教育和培训光立方可以用于教育和培训领域,比如地理教学、生物展示等。
通过光立方,学生可以观察到地球的形状、动植物的结构等,增强对知识的理解和记忆。
3.3 广告宣传商家可以利用光立方来展示产品,吸引消费者的注意。
立体的广告图像更加生动,可以有效地吸引消费者的眼球,提升品牌和产品的关注度。
3.4 游戏娱乐光立方在游戏娱乐领域也有着广泛的应用。
游戏开发者可以利用光立方技术来打造逼真的虚拟场景,使得玩家身临其境,提升游戏的沉浸感。
4. 发展前景随着技术的不断进步,光立方显示技术有着广阔的发展前景。
未来,光立方有望在以下方面实现进一步的突破:•分辨率提升:随着投影技术和显示屏技术的改进,光立方的分辨率将会提升,呈现出更加逼真和清晰的立体图像。
光立方制作+程序讲解
光立方教程今天,给大家带来光立方的制作教程,基于本人制作的经验,给各位想要做的朋友分享制作过程。
对于第一次制作的朋友,我们要先制作好一个日程表,如下图:我们要弄好一个计划,就好像单片机运行程序一样。
当然,废话少说。
接下来,我们需要一份购买材料的清单如上图所示,我们需要购买的万能板需要购买18*30的规格。
这样子才有足够的空间去安装我们的电子元件。
首先,我们需要用万能板作为骨架,每2cm*2cm就要焊接一个排针,上下左右间隔一样。
不过对于初学者来说,一次性焊接64颗排针有点困难,所以我们需要用胶布把每一颗排针固定好,然后上焊,当然这是一个快捷的方法,也适合所有的初学者当我们把排针固定好后,我们只需要把板子翻过来焊接就可以了。
接下来,我们要把每一颗led灯折弯后侧着放置在排针中。
从左到右,从上至下的安放,安放好后,我们只需要把他们的脚焊接即可。
折弯时记住使用镊子折弯。
效果图如下图所示显而易见,这是非常需要考焊功的活,各位制作时候要注意节点与节点之间的间距,并且注意焊点不要点太多的锡,会影响做出来的效果与美观。
接下来,我们把弄好的8排led插在万能板上,注意:我们要注意每排之间的间隔。
下一步,我们需要在把每排led的共阴极连接在一起,一共8层,每层都要连接好,当我们把每层连接好后,我们要在每层的末端或者初始端接一条输出线,作为共阴极连接UNL2803。
当然,我们连接UNL2803的前提是先把芯片接好。
小编我直接把芯片焊接在板子上,这种方法对于初学者来说不可取,需要弄芯片底座,不然芯片烧掉了就很难拆下来了。
接下来我们要按照电路图接线路了(是不是很开心,终于可以接线路了,好戏在后头),下面是74HC573集成电路的接法:首先我们先分析一下原理图:74HC573的1D~8D都连接在一起,然后再接到单片机的P0.0~P0.7端口;1Q~8Q分别连接每排的共阳里,就是焊接在电路板上的光立方引脚;至于LE要分别接到单片机的P2.0~P2.7。
光立方设计制作(全过程、带程序连接)
摘要之前在网上看了一些光立方的演示视频,被它那些立体感吸引了。
想到自己学单片机也这么久了,于是乎就想做一个玩玩,同时可以复习一学期以来自己的编程能力和动手的能力,一举两得是一件很不错的事情。
向朋友要了一些资料,就开工了。
光立方顾名思义就是一个立方体,采用的是8*8*8的模式,整个立方大概是16cm*16cm*18cm(长.宽.高)的样子,主要分为三个模块:主控模块、驱动模块、显示模块;我所做的光立方,主控电路采用的主控芯片是STC12C5A60S2芯片,驱动电路是采用我们常用的74HC573数字芯片,以及ULN2803达林顿管。
关键字:光立方 74HC573 STC12C5A60S2 ULN2803电路原理图:图1.电路原理图元件的选择:(1)由于光立方的程序量比较大,而且要求相对比较高,因此经过考虑之后我们决定用51系列的增强型芯片STC12C5A60S2,选择的理由:1.无法解密,采用第六代加密技术;2.超强抗干扰;3.内部集成高可靠复位电路,外部复位可用可不用;4.速度快,比8051快8-12倍;(2)由于灯的个数比较多,因此所需要的电流相对也比较大,所以选择ULN2803,ULN2803是八重达林顿,1 至8脚为8路输入,18 到11脚为8路输出。
驱动能力500MA \50V。
应用时9脚接地,要是驱动感性负载,10脚接负载电源V+。
输入的电平信号为0,或5V。
输入0是,输出达林顿管截止。
输入为5V电平时,输出达林顿饱和。
输出负载加在电源V+和输出口上,当输入为高电平时,输出负载工作;(3)由于在刚刚接触锁存器的时候,就接触了74HC573,对它的使用也比较成熟,因此在驱动部分使用了熟悉的74HC573,其优点有:1.高阻态;就是输出既不是高电平,也不是低电平,而是高阻抗的状态;在这种状态下,可以多个芯片并联输出;2.数据锁存;当输入的数据消失时,在芯片的输出端,数据仍然保持;3.数据缓冲; 加强驱动能力;(4)LED灯的选择,出于外观和整体的形状美观,个人推荐雾面蓝光方型LED。
光立方教程(含HEX烧录文件)
先上效果图首先,准备材料和工具。
材料:1, 雾面蓝色(喜欢其他色的随意)LED (3MM 或者5MM 都行),最好是雾面LED ,不懂得购买的时候跟老板说清楚就ok~2,STC12C5A60S2单片机一片3,DIP-40的插座一个4,22.1184MHZ晶振一个5,单排圆孔插针座20个(建议多准备些)6,单排插针4个7,USB母座一个8,0.3--0.8镀锡铜线一米左右,没有的也行,根据自己的焊接习惯。
个人比较喜欢镀锡铜线。
工具1,剪线钳2,尖嘴钳3,电烙铁4,焊丝5,松香6,镊子7,其他(总之就是焊接用的那些了,根据个人情况。
)———————————分割线———————————首先,电路图很简单了电路图很简单,稍微有点单片机基础都可以做。
然后呢,开动你灵活的小左和小右吧~准备绘制焊接图纸。
首先,确定你要做多大尺寸的光立方,4*4*4也就是64个灯,个人感觉做成7厘米见方左右就差不多了。
根据个人喜好调节吧~大小具体怎样确定呢,二少在这里简单说明一下,每一边是4个灯,也就是三个灯距,灯距的三倍加两个灯宽就是边长了。
灯距的确定,不是随便确定的,必须是2.54毫米的整数倍,为什么呢,因为洞洞板的孔距就是2.54,最后的灯是插在洞洞板上的。
本教程所定的灯距是4倍的孔距,也就是10毫米挂点,小误差这里就可以忽略了。
OK~根据灯的情况,确定洞洞板的大小,最少得是20孔,因为单片机用的是DIP40的,所以至少要保证单片机可以安装,当然高手还可以立式安装单片机,二少在这里就不多介绍了。
确定以上参数后,好了,开始制作吧~我这边手头有的洞洞板是19*23孔的,所以嘛~单片机就有俩引脚是悬空的,不过不影响。
焊接电路,(绘制软件,layout)然后,确定单片机和LED灯体的安装位置。
并做简单标注。
用尖嘴钳把插针掰成一个一个的,直接焊接于绿色的焊盘位置,4*4+4个。
如下图效果单片机最好安装在座子上,直接焊接死亡率较高。
3D光立方制作详解
3D cube 光立方制作详解原理部分LED立方体是一个非常受欢迎的项目,而大小可以从3x3x3上升到10x10x10采用RGB LED。
很早以前,就有相关的视频资料,在国内各大视频网站出现,样式绚丽,也一直有很多玩家想做,对于这个东西来说,本身技术不是很复杂,也不是很简单,更多的是需要耐心。
本资料详细介绍了3D CUBE8 (LED立方体)的制作过程,通过本资料可轻松打造一个属于自己的光立方。
下面我就来详解一下如何打造一个属于自己的光立方。
拿8*8*8的光立方来说:我们可以拆分为8个面每个面64个灯;我只要控制这64个灯使其能够自由变换,然后再通过控制每个层依次点亮即可,由于我们眼睛的视觉暂留,使我们感觉看到的东西是一起再亮的。
这样我们就看到了一个完整的个体。
理解了原理;我们来设计电路;大家都知道,如果要控制8*8点阵,需要16个引脚,那么有8个8*8点阵,我再用8个引脚来当充当各个8*8点阵的“开关”即可。
那么我们的电路设计的基本原理知道了。
如何让一个引脚来当64个灯的“总开关”呢?只要将64个灯阳极或阴极连在一起,在连到这个引脚上即可。
那么如何用16个引脚来控制这64个灯的另外64个引脚呢?我采用了hc573暂存的方法,来分别把64个灯的亮灭信息存到这个上面,然后再一起输出到灯上,这样我们通过查询相应芯片的型号可以确定基本电路。
电路部分立方体的控制器是基于一个单片机ATMega32,573的64个输出引脚控制前面所述每一个面的64个灯;而场效应管控制每一个层,一般的都是用uln2803.焊接部分这里需要说的是,一定注意每个灯的焊接时间,和焊接整齐度,焊接整齐度直接影响整个制作效果。
每一层的二极管是共阴的。
我的方法是用一个木头板按照规则,扎64个孔然后把灯放到上面,一个一个焊接起来这样可以保障每一层的灯位置都是一样的而且各个灯之间排列是规则的。
最后通过架设支撑架的方式把各个层架起来,然后用电烙铁焊接起来。
光立方的工作原理
光立方的工作原理
光立方是一种基于投影技术的交互式显示设备,其工作原理如下:
1. 投影技术:光立方采用了先进的投影技术,通过使用特定的光源和光学元件将图像投射到立方体的一个或多个面上。
2. 立方体形状:光立方通常由透明的材料制成,例如玻璃或塑料。
它的形状通常为正方体或长方体,每个面上都可以投射图像。
3. 图像处理:在将图像投射到立方体上之前,输入信号需要经过图像处理器进行处理。
图像处理器可以对输入信号进行解码、图像优化和格式转换等操作。
4. 显示图像:经过图像处理后,图像信号会被传输到立方体上的一个或多个投影面。
投影面可以根据输入信号的内容投射出相应的图像,从而显示在立方体的表面上。
5. 交互功能:光立方通常配备有触摸屏或其他的交互设备,可以与用户进行交互。
用户可以通过触摸屏或其他交互设备来操作光立方,例如切换图像、调整图像大小或旋转图像等。
6. 光学特效:光立方还可以通过在投影面上使用特殊光学元件,例如透镜、反射镜或滤光器等,来实现特殊的光学效果。
这些特效可以增强立方体显示的效果,使图像更加生动和逼真。
总体来说,光立方通过投影技术将图像投射到立方体表面上,并利用交互设备与用户进行交互,从而实现交互式的显示效果。
光立方设计原理
黎明途电子一.光立方原理你的思维有多宽,光立方的动画就有多多。
我猜想大家做光立方都是为了能随性所欲的控制每一个灯珠,来实现自己想的一些精美动画。
那么,让我们从光立方的原理开始入手。
一讲到原理,估计很多同学就头痛了。
这里借鉴在网上找的一些资料来帮助大家理解光立方的原理。
先从点阵的点亮原理说吧,如图所示这是一张led的点阵图,如果我们想要点亮任意位置的led,我们只要在该位置led所使用的列线接地,行线接上+V即可。
学过单片机的朋友,都知道数码管是怎么点亮的,其中有位选和段选之分,通过扫描来实现所有数码管能正常工作以实现我们想要的数字。
点阵也一样,尽管是8*8的点阵,如果我们让整体能随意显示图案,那也需要用动态扫描的方式来实现否则,无法实现对其精准的控制。
所谓动态扫描,就是说,我们一次只能让一行排或者一竖排的灯亮。
每次只能这么点,8次为一个周期,从左至右依次点一次,那么循环起来,我们看到的就是完整的图像了。
在这里,一共有8层。
想必大家对光立方的连接已经有了一定的了解,纵向一束的正极性引脚是要连在一起,而横向一层的负极性角连在一起。
从扫描的角度去说,那一次也只能够点亮一层。
这里光立方的一层有64个灯,我们想成之前那个8*8的平面点阵。
光立方的每一层虽然有64个灯,但是我们会有64跟线分别连接到这些灯上,从而实现一次性的对64个灯进行控制。
我们将一个立体画面从下往上分为8层,每次扫面一层这样一副画面就完成了。
通常单片机引脚较少,我们采用74hc595芯片进行拓展(74hc595原理请参考595用户手册)。
下面来一张电路图,此图是用595进行拓展的。
(这张图是模块原理图的截图,接线不是很清晰,可以参考原理图)在图中,数据通过串行的方式,分别传输到每一个74hc595中,再内部控制器储存这些数据,从而实现一层64个灯同时的点亮。
我来描述一下一个固定画面的显示,所需要硬件执行的过程。
1.将第一层64个点的数据传入8个74hc595中,控制uln2803层控制芯片打开第一层开关,使第一层点亮,这个时候,其他层是灭的。
光立方制作步骤详解
Cube光立方完全制作手册晴天电子工作室Cube 光立方完全制作手册套餐阅读版欢迎大家走进光立方的世界。
....................................................................................................... 硬件电路的焊接 ............................................................................................................................... 灯的选择........................................................................................................................................... 对灯的建议....................................................................................................................................... 制作模具........................................................................................................................................... 图形欣赏:..................................................................................................................................... 附录: ............................................................................................................................................http://80mcu.taobao.comÿÿÿÿ 欢迎大家走进光立方的世界。
光立方工作原理
光立方工作原理
光立方是一种通过使用激光束和透明材料来展示3D图像的设备。
它利用了强大的激光光源和高速旋转的透明材料来创建立体效果。
光立方的工作原理是这样的:首先,一个强大的激光光源会发出一束单色激光束,通常是红、绿、蓝三种基本颜色的激光束。
这个激光束会经过一系列的光学元件,如镜片和反射器,来对激光进行调整和控制。
接着,激光束会被聚焦到透明的旋转材料上。
这个旋转材料通常是一个透明的棱镜或圆柱体,在设备的顶部被高速旋转。
旋转材料的旋转速度非常快,通常在几千到几万转每分钟之间。
当激光束照射到旋转材料上时,由于材料的旋转,光线会以一种特殊的方式通过材料,形成由无数个点组成的图像。
这是因为旋转材料的折射率会导致光线在旋转材料内部发生折射和反射,从而产生三维效果。
最后,这些点通过快速扫描技术被不断地投影到空间中的不同位置,形成一个连续的立体图像。
观察者只需站在适当的位置,就能看到一个栩栩如生的3D图像,就好像它们悬浮在空中一样。
总之,光立方利用激光束和旋转的透明材料来创建立体图像。
通过激光的调整和控制,以及旋转材料的折射和反射特性,光
立方能够产生逼真的3D效果,为观察者带来沉浸式的视觉体验。
光立方的工作原理
光立方的工作原理光立方是一种能够通过控制光的传播方向来创建多种视觉效果的装置。
它的工作原理基于光的反射和折射原理,以及利用透明的棱镜和镜面的相互补充作用来实现。
光立方最基本的构造是由六个平面镜组成的一个正六棱体。
每个镜面都是光反射材料制成的,如玻璃、金属或者光学级高纯度透明材料。
这些镜面可以将光线反射或折射到不同的方向,从而改变光线的传播路径和角度。
当光线进入光立方时,首先会遇到光立方的一个镜面,根据角度的不同,光线可以被反射或折射。
反射发生在镜面内部,在光线与平坦的镜面交接处发生。
当光线遇到镜面时,反射定律适用:入射角度等于反射角度。
这意味着光线将按照相同的角度反射回去,与入射角度相等的角度。
而折射发生在光线从一种介质射向另一种介质时,在介质的交界面上发生。
根据折射定律,光线在从一种介质到另一种介质时会改变传播的方向。
折射定律的基本原理是:入射光线、折射光线以及交界面的法线三者在一个平面上。
法线是垂直于介质表面的直线。
光立方利用这些反射和折射的特性来改变光线的传播路径,并创造出各种视觉效果。
例如,当光线以特定的角度和位置进入光立方时,它会被反射到与入射角度相等的方向上,形成一个镜面反射效果。
另一方面,如果光线遇到一个倾斜的镜面,则可能会发生折射,光线会改变传播方向并穿过棱镜,形成折射效果。
通过将多个光立方组合在一起,可以创造出更复杂的效果。
例如,可以使用透明的棱镜和多个镜面来实现光线的多次反射和折射,从而将光线引导到不同的角度和方向上。
光立方的工作原理不仅限于光的传播路径的改变,也可以在光的颜色和亮度上产生多种变化。
通过在光立方的内部添加色彩滤镜或者调整光源的颜色和亮度,可以改变光线的特性,产生不同的颜色和亮度效果。
此外,通过控制光线的反射和折射,还可以实现一些辅助视觉效果,例如光线的扩散、聚焦和色散等。
总结来说,光立方的工作原理是基于光的反射和折射原理,在光线与镜面或棱镜交互作用的过程中,改变光线的传播路径和角度,从而创造出各种视觉效果。
444光立方制作过程
梦想电子DIY444光立方制作说明一、硬方面1.LED:CUBE4光立方需要64个LED,LED的颜色可以自己随意挑选红黄蓝绿白,个人推荐雾状蓝色LED,夜晚效果超屌。
2.单片机:单片机上采用程序空间大的,运行速度快的STC15W1K24S单片机。
如4.上拉电阻:p0口为了提高LED亮度,选用10k的。
(可加可不加)5.电源:5V电源。
电脑USB口电源或手机适配器输出的即可,不需要太苛刻的要求!6.有驱动的套餐:74HC573作为驱动,你也可以用其他的,把753的1脚何10脚接一起接地。
把573的20脚何11脚接一起接vcc就可以。
IO口对应着就可以了,2-9脚为输入,12-19脚输出,别接反了。
二、电路连接很多人会在这里纠结,到底该怎么连接电路。
不用纠结了,接下来我给大家详细说说怎么连接LED。
本光立方采用的电路与LED点阵屏一样的。
接下来看图。
从正面看:红色是LED的正极,正极接下去,中间两列相连,外面两列相连接后面依次如此连接。
蓝色是LED负极相连,已经标出连接到的IO口号上了。
本光立方负极接到P2口上,所以按照上面的图,左边上面第一个连接到的应该是P2.0口。
从上面看:IO口号已标出,要注意的是中间两列相连的,如5和5是相连的。
外面两列相连,如0和0相连的。
本光立方在这里连的是P1口,0就连接到P1.0上 5就接到P1.5上说说上拉电阻:在IO口连接到LED正极的基础上再把电阻连接到VCC和IO口间。
好了,硬件就说到这里。
有什么不懂的可以加我QQ483301522.验证信息填光立方三、软方面本光立方有专用取模软件,如果你按上面电路连接,只需要在C语言程序中做一些小修改就可以使用了!C语言程序下面我会打包你可以不用上面的P1,P3口但是 0.1.2.3.4.5.6.7的顺序必须同上如果你改了,那就请看下面,怎么在程序中改。
首先你需要头文件#include <STC15W1K24S>,如果没有不用担心我已经打包了,下载再放到keil头文件的文件夹里就OK,如果不会自己百~度。
制作CUBE8光立方
制作CUBE8光立方(3D立方体LED显示器)作者杜洋来源《无线电》杂志浏览2270发布时间2012-04-12何为CUBE8光立方没错,CUBE8光立方,与北京奥运会无关。
如本文题图所示,CUBE8是一个长、宽、高由8×8×8个LED灯组成的真实3D立方体显示器。
其最大的特点,就是带给你未来3D技术的科技体验。
光立方并非我的首创,在网上早有光立方的视频。
许多电子爱好者,看过这些视频之后,都会被其超酷的3D显示效果所震撼,我就是其中之一,于是我也想仿制一个玩玩。
在网上搜索了大量相关资料后,我却发现,网上各种版本的光立方的制作方法都很复杂,不仅需要很强的动手能力来组装512个排列整齐的LED和金属支架,还需要有足够的耐心设计一大堆单片机和驱动芯片,最后还要为硬件成品设计显示程序,好让光立方动起来。
这样看来,不是高级焊接技师兼资深单片机工程师的“小菜”们,想制作出一个拿得出手的光立方,还不如直接购买我精简设计的光立方套件。
对,我要为电子制作爱好者设计一款只许极少元器件、制作简单、能让初学者也可以制作出来的规范、美观的光立方套件。
当我这么想的时候,我那天马行空的大脑开始运转,在想像力的世界里设计着前所未有的光立方。
首先这个光立方必须制作简单,简单到整机只有一个芯片。
然后要保证制作美观,将动手能力导致的美观差异降到最低。
在保证以上两点的情况下,如果还可以让它的功能强大,且有爱好者自由发挥的空间,那么我的光立方将会是一个完美的设计——至少我自己这样认为。
功能方面,它除了要能显示3D图形,还需要有多级亮度和速度调整,最好可以有音频显示功能,像DIS.MUSIC21音乐显示器一样。
当然,还要为单片机爱好者设计一个用户自定义图形功能,连接普通的单片机就可以显示出爱好者自己编写的图形。
这样,不仅让光立方的显示更丰富,而且从中又锻炼了爱好者的3D编程能力。
最后,还要用高质量的设计、材料和生产工艺,让品质对得起硬件的精简设计。
光立方制作教程
五一长假漫漫,时间很充分,正好有时间去干那些因为时间不足而搁置已久的一些想法,首先想到的是做一个光立方,器件年前就买了,因为时间问题被长久搁置了。
之前论坛已经有人晒过,不过有的只是作品展示,在此我将详细的向大家解析一下光立方的制作流程,望大家喜欢。
先上资料:首先是前期准备工作,器件的选取,我的器件清单如下:LED选取:如果有条件的话可以使用7色彩灯,视觉效果将会更好。
或者是长方形发光二极管,方便焊接。
制作前先按照下图对小灯进行弯折处理(如果看不懂的话,请努力发挥自己的空间想象能力,之后就会豁然开朗的),这是一个漫长而痛苦的过程,建议每天睡前折一些,我断断续续干了近十天吧!(五一前虽然大块时间没有,但是每晚折小灯的时间绝对是有的)实际焊接时,请注意变通,每一层都会有一行需要多弯一下的,以实现共阴处理。
主要器件如下:先在万用板上规划一下光立方小灯之间的间隔,建议2CM为宜,用铅笔或者彩笔在板子上确定64个点,以方便下一步操作。
找一块木板,最小是20*20CM,我找的时候费了点劲,采用爆破拆出来的,然后把万用板放在木板上,四角用大头钉固定(以确保扎点时位置不变),用圆规进行采点,记住是64个点,是7*7的方格。
不要因为计算错误,以适用万用板而导致光立方间隔过密。
采用手钻打孔,不直接用大钻,是防止打孔过程中,孔洞打偏。
取不出来,我采用的是2.8/2.9的钻头。
游标卡车是为了测钻头大小的。
焊接时,建议一列一列的焊接,(层共阴,列共阳)这样操作起来比较容易,防止全部插上在焊接时,过多的小灯产生阻碍,由于我是左撇子,所以我是从右向左焊接。
这是焊接好的第一层。
焊完之后,现将小灯阳极管教理顺,与共阴平面呈垂直关系,以方便之后焊接。
将LED点阵层起下的时候,为美观起见,请注意不要破坏小灯的相对位置及高低层次,(为了增强光立方坚固度,建议,每层上跨接一些硬些的细铜丝)。
要牢记:焊完一层后切记要记得检测是否有小灯在焊接过程中损坏。
光立方制作教程范文
光立方制作教程范文光立方是一种比较复杂的装置,可以通过灯光和反射制造出立体的光影效果。
在这个教程中,我将为你详细讲解如何制作一个光立方,并提供一些材料和建议。
材料清单:1.透明的亚克力(至少6个相同大小的面板)2.密封胶3.刻刀4.钳子5.磨砂纸6.LED灯带(选择适合你的立方体尺寸的长度)7.电线8.电池盒和开关9.螺丝钉和螺丝刀10.热熔胶枪(可选)步骤1:准备工作首先,你需要确定光立方的尺寸。
一个标准的尺寸是30×30×30厘米,但你可以根据个人喜好调整尺寸。
然后,购买足够数量的亚克力板,确保它们大小相同。
步骤2:制作立方体框架使用刻刀将亚克力板切割成6个相等大小的面板。
将这些面板用成正方形或长方形的形式排列,然后使用密封胶将它们黏合在一起。
在黏合之前,确保所有边缘都是光滑的,如果有需要,使用磨砂纸进行打磨。
黏合好后,用夹子固定它们,让它们干燥。
如果需要,你也可以使用热熔胶枪来黏合亚克力板。
步骤3:安装灯光在立方体的内部沿边缘黏贴一圈LED灯带。
你可以使用热熔胶枪将灯带固定在立方体内部。
确保灯带均匀分布,并注意不要让任何电线暴露在外。
步骤4:连接电线使用电池盒和开关连接LED灯带。
将电池盒固定在立方体的底部,并通过亚克力板上的小孔将电线引出。
在电线的末端安装开关,并将开关连接到电池盒上。
这样,你就可以随时控制光立方的开关。
步骤5:封闭光立方使用刻刀在立方体的一个面板上切割一个小孔,以便将电线引出。
然后使用密封胶将该面板黏上,确保所有边缘都是严密封闭的。
这样,你的光立方就完成了。
步骤6:测试和调整将电池装入盒子中并打开开关,测试LED灯带是否正常工作。
如果有任何问题,你可以检查电线连接以及开关是否正常工作。
步骤7:定制光立方一旦光立方制作完成,你可以根据个人喜好进行定制。
例如,你可以在立方体的底部安装小脚架,这样可以使立方体稳定地放置在桌面上。
你还可以在立方体的面板上刻字、画图案或进行其他装饰。
LED光立方制作
组装部分一,灯珠焊接最开始的金字塔,我给大家的方案是泡沫板,现在我把焊接灯珠的方式改进了,焊接速度更快、质量更好,方法如图:就是这个,用一张18X30CM的万能板,上面焊接上间距2.54的排针,用法如下图:横向的孔数是7个,纵向孔数是8个,这样焊接出来的灯珠间距就都是8个了一目了然,这样就把灯珠固定好了,如果管脚的弯折方法和我图片一样的话(朝下的是正极),那么最优的方法是从右到左,从上到下排放。
焊接我就不多说了,这个是最讲究的,虽然有这个模板焊接起来很方便,但焊锡一定要上好,否则开焊后还是很难搞的。
温度要适当,免得烧毁灯珠,一般情况下,能把焊锡刚好溶化时的温度即可。
用这种方法焊接出的点阵,要比用泡沫做模板的点阵质量更好,很少有开焊点,取下的点阵横平竖直,效率上也有了极大的提高。
焊接好的平面如图:二,灯珠组装在组装之前,先准备2张18X30cm的万能板,喷上黑色的喷漆,比较常用的那种,价格不贵,如图:再拿出个8×8的点阵,比划一下,量好裁剪的尺寸,用斜口钳剪切还是很方便的。
然后就需要给底板和侧板焊接弯排针,间距都是8个孔,朝向请自己把握,下面是我做的图:我想看了图后,大家都应该明白了,除了弯排针,还要给每个面的管脚都焊接上2.54的冷压端子,很容易的,东西也很便宜。
这样做的好处就是非常容易拆装,第一次的时候我用的是直排针,结果就很难组装,弯排针不会影响美观。
在组装之前,先要焊接底板和侧板焊接上连接线,如图:每个面都是有64根线,我用的是以前零散、没了头子的杜邦线,长度刚刚好够的,读者可以自己做线或者买成品,买成品我觉得也不贵,成品线的好处是,一端是8P的插座,另一端是裸线,直接焊接就好。
这个过程还是相当漫长的,我焊接512个灯珠用了三个下午,底板的焊接和接线同样是三个下午,可以说,老老实实的焊接的话,还是需要一周的时间的,我希望喜欢DIY的朋友们要有耐心,过程肯定是枯燥乏味的,但成功的喜悦也是难以言喻的。
光立方制作教程
光立方制作第一步:
材料数量参考价格
白发蓝LED 600 54
74HC573 8套20
ULN2803 1套 3
8P排线15个20
20*30万能板1个20
单片机开发板1个48
STC12C5A60S2 1个9
174
单片机开发板可以不用,按原理图焊接就行,我有开发板所以就利用上了,成本在140左右,2、折LED每个灯折三次,本产品采用层共阴,束共阳的原理制作。
每个灯阴极折一次,阳极折两次,参考图如下:
注:折灯要有耐心哦、
3、折好513个LED后,开始使用自制
模具焊接阴极,本人只用了8个孔,没
有打8*8是我孔,我感觉把那个没啥必
要。
注:模具就是自己的鞋盒子、、、嘿嘿
光立方制作第二步焊接没条的阳极,将阳极摞起来,共8层。
这个我认为我的制作方法也不怎么好,但是我感觉我用着这种方法焊接的速度和用的时间都是相当可观的。
下面就是我的制作图,上图
看看:
注:焊
接阳极用了半天就OK了、、
1、竖起来插到板子上给大家看看:
2、半天的成果:
光立方第三步:
把每层的阴极连接起来,很简单的,忘记照照片了,不会的可以咨询Q:3
可以互相交流。
1、成功后后面的布线情况:
2、正面线路情况:
光立方成品演示:
由于时间问题,我只拍了两个效果,其他的我会发到优酷视频,大家可以查找、、、
2013年3月3日星期日
河北师范大学职业技术学院。
光立方制作全过程
光立方制作全过程前言:在大家奋笔疾书做英语四级时,我却在这里写日志,所以不必赞叹,每个人都有自己的长处的!制作摇摇棒时我认为耐心是成功的关键!但做完光立方,才发现原来是小巫见大巫,所以想制作不想要清楚自己的工作量哟!1、工欲善其事必先利其器工具:优质电烙铁(对焊接速度有很大影响)、尖嘴钳(512个灯1024个脚都需要认真处理)、镊子、剥线钳;2、材料512个灯,但是你不能保证自己的焊接技术时应该多买点,买一包1000个一包也挺便宜的,以后还能留着用。
优质锡优质锡丝我用来两卷导线一卷大洞洞板一个(看想要制作成多大的,太大要两个)开始制先将512个灯的脚弯好,成下图的形状,负极是横着,正极折个弯竖着,因为我们要把一列的正极连着,一层的负极连着,所以只能这样弯引脚。
还需要64个排孔用来插最后和洞洞板相连的灯脚了还有排座(用来插面包板线的)形状估计你看不清,没办法只好来个三视图,画的不好见谅!这个弯灯脚我要说一说,我当时是每天晚上回寝室后就开始弯,每天弯到灯熄,然后拿台灯照着,继续弯,直到打瞌睡才停,所以又部分弯的不好,造成最终不是非常美观,大家吸取教训吧!一个花了三四天晚上,所以前期工作已经很折磨人耐心了,但想想做出来的效果,相信你又有坚持的信心了!然后就是把点排成线,线排成面,面排成体了!如果想制作快有美观,必须使用8*8的模板这样可以使点成功的摆成线,线摆成面线是8个灯的负极连的,还有每连完一条线,就用电池测一测也没有连错或灯烧坏的,等连成面就不好拆了,我就要一个灯的正负极连反了,还好检查及时,没有花多大功夫解决。
用正极把线连成面就成了8*8的面了把每一面的正极引脚都插在排孔中,如下图,每一面然后用每一面灯脚的负极引脚把面连起来,没有点亮效果已经很震撼了!主体弄好之后就是连线了!最好是先用面包板线连起来,看达到预期的效果没有,因为线是在是太多了,如果直接连有问题都不好找,看看下面用面包板做的吧!这还是没有和主体相连呢!其中用来一个好单片机STC12C5A60S2(用来整体控制)和八个74HC573(每一个控制八个灯的正极)还有1个ULN2803(用来控制每一层,最后有八层,每一层都引出来一条细线和2803相连),电路图如下洞洞板背面焊接这就是为什么需要两卷锡丝的原因连接好后程序代码太长,需要直接问我要吧!。
4X4X4光立方完整制作过程
第一步第一步、、根据原理原根据原理原、、元件清单和实物图片购买元器件元件清单和实物图片购买元器件,,单片机要安装管座单片机要安装管座。
名称参数名称参数 流水号流水号数量玻纤双面万能板5X7 WBS1 1 6X6X7轻触按键 S1, S22 红色F5二极管短脚 LED1~LED64 64 22.1184M 晶振 Y1 1 DC005电源座J16 1 CON4弯插单排插针 J15 1 IC 插座-DIP-40 IC11CON1直插单排圆孔排母J1, J2, J3, J4, J5, J7, J8, J9, J10, J11, J12, J13, J14, J17,J18, J19, J20, J21, J22, J23, J24 21STC12C5A60S-35I U1 1 3.5mm 立体声带开关耳机座J61 雾状蓝色F5二极管LED41, LED42, LED51, LED604第二步、根据图片焊接LED 矩阵2-折弯好灯3-直接按照距离插在万能板上面焊接3-全部焊接完在上下焊接正极5-然后把一排按照距离焊接好左右的负极每一层的负极连接在一起6-焊接出来的效果就是16个正极引到下面每一行的负极连接在一起然后负极引线到下面的四个接线柱第三步、根据正面装配图安装元器件1-先把背面的灯插好按照弧形线折弯引脚折弯在顶层插到弧形的另外一个孔2-插好并焊接固定好顶层的元器件第四步、根据反面焊接图进行走线。
将程序编译并下载到单片机中。
第五步、将程序编译并下载到单片机中#include "STC12C5A.H"#include <INTRINS.H> //包含延时头文件#define uint unsigned int#define uchar unsigned char#define nop() _nop_();_nop_();sbit AD=P1^0; //定义音频输入接口sbit K1=P1^2; //定义功能按键接口sbit K2=P1^4; //定义功能按键接口sbit K3=P3^5; //定义功能按键接口sbit K4=P3^6; //定义功能按键接口sbit VCC1=P1^5; //定义电源功能接口必须为高电平sbit VCC2=P1^7; //定义电源功能接口必须为高电平sbit VCC3=P3^2; //定义电源功能接口必须为高电平sbit VCC4=P3^4; //定义电源功能接口必须为高电平sbit L1=P0^3; sbit L2=P4^5; sbit L3=P2^4; sbit L4=P2^2; sbit H1=P0^5; sbit L5=P0^1; sbit L6=P4^6; sbit L7=P2^7; sbit L8=P2^0; sbit H2=P0^6; sbit L9=P0^0; sbit L10=P0^7; sbit L11=P2^6; sbit L12=P1^6; sbit H3=P4^4; sbit L13=P1^3; sbit L14=P0^4; sbit L15=P2^5; sbit L16=P3^3; sbit H4=P2^3;sbit LED3=P3^7; sbit LED4=P1^1;//定义脚底下4个受控制的LED灯-右下角高电平有效其余低电平有效unsigned char bdata dzzc0;sbit dzzc07=dzzc0^7;sbit dzzc06=dzzc0^6;sbit dzzc05=dzzc0^5;sbit dzzc04=dzzc0^4;sbit dzzc03=dzzc0^3;sbit dzzc02=dzzc0^2;sbit dzzc01=dzzc0^1;sbit dzzc00=dzzc0^0;unsigned char bdata dzzc1;sbit dzzc17=dzzc1^7;sbit dzzc16=dzzc1^6;sbit dzzc15=dzzc1^5;sbit dzzc14=dzzc1^4;sbit dzzc13=dzzc1^3;sbit dzzc12=dzzc1^2;sbit dzzc11=dzzc1^1;sbit dzzc10=dzzc1^0;unsigned char bdata dzzc2;sbit dzzc27=dzzc2^7;sbit dzzc26=dzzc2^6;sbit dzzc25=dzzc2^5;sbit dzzc24=dzzc2^4;sbit dzzc23=dzzc2^3;sbit dzzc22=dzzc2^2;sbit dzzc21=dzzc2^1;sbit dzzc20=dzzc2^0;unsigned char bdata dzzc3;sbit dzzc37=dzzc3^7;sbit dzzc36=dzzc3^6;sbit dzzc35=dzzc3^5;sbit dzzc34=dzzc3^4;sbit dzzc33=dzzc3^3;sbit dzzc32=dzzc3^2;sbit dzzc31=dzzc3^1;sbit dzzc30=dzzc3^0;//调整数字显示的数据用分别为变的1234// 4 dzzc6//3 2 dzzc7 dzzc5// 1 dzzc4unsigned char bdata dzzc4;sbit dzzc47=dzzc4^7;sbit dzzc46=dzzc4^6;sbit dzzc45=dzzc4^5;sbit dzzc44=dzzc4^4;sbit dzzc40=dzzc4^0;unsigned char bdata dzzc5;sbit dzzc57=dzzc5^7;sbit dzzc56=dzzc5^6;sbit dzzc55=dzzc5^5;sbit dzzc54=dzzc5^4;sbit dzzc53=dzzc5^3;sbit dzzc52=dzzc5^2;sbit dzzc51=dzzc5^1;sbit dzzc50=dzzc5^0;unsigned char bdata dzzc6;sbit dzzc67=dzzc6^7;sbit dzzc66=dzzc6^6;sbit dzzc65=dzzc6^5;sbit dzzc64=dzzc6^4;sbit dzzc63=dzzc6^3;sbit dzzc62=dzzc6^2;sbit dzzc61=dzzc6^1;sbit dzzc60=dzzc6^0;unsigned char bdata dzzc7;sbit dzzc77=dzzc7^7;sbit dzzc76=dzzc7^6;sbit dzzc75=dzzc7^5;sbit dzzc74=dzzc7^4;sbit dzzc73=dzzc7^3;sbit dzzc72=dzzc7^2;sbit dzzc71=dzzc7^1;sbit dzzc70=dzzc7^0;unsigned int CYCLE=100,PWM_LOW=1110,shan=0,saom=0,shuzi1=0,shuzi2=0,shuzi3=0,shuzi4=0;//定义周期并赋值unsigned char YL1=0,YL2=0,YL3=0,YL4=0,YL5=0,YL6=0,YL7=0,YL8=0,YL9=0,YL10=0,YL11=0,YL12=0,YL13=0,YL1 4=0,YL15=0,YL16=0;//高度值unsigned char lie=0,hang=0,ceng=0;unsigned char yinyue4X4[]= //定义4X4X4整个屏幕的显示数据,高电平有效,没有音乐的时候默认不亮{0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,0x0F,};unsigned char code shuzu4X4[]= //定义4X4X4整个屏幕的显示数据,根据取字模软件进行提取高电平有效{0X00,0X00,//0帧0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//1帧0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//2帧0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00,0X00,0X00,0X00,0XFF,0X00, 0X00,0X00,//3帧0X00,0XFF,0XFF,0X00,0X00,0X00,0XFF,0XFF,0X00,0X00,0X00,0XFF,0XFF,0X00,0X00,0X00,0XFF,0XFF, 0X00,0X00,//4帧0X00,0XFF,0XFF,0XFF,0X00,0X00,0XFF,0XFF,0XFF,0X00,0X00,0XFF,0XFF,0XFF,0X00,0X00,0XFF,0XFF, 0XFF,0X00,//5帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0XFF ,0XFF,0XFF,//6帧0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//7帧0X00,0X00,0X00,0X4F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//8帧0X00,0X00,0X00,0X2F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//9帧0X00,0X00,0X2F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//10帧0X00,0X00,0X4F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//11帧0X00,0X00,0X8F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//12帧0X00,0X00,0X0F,0X8F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//13帧0X00,0X00,0X0F,0X0F,0X8F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//14帧0X00,0X00,0X0F,0X0F,0X4F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//15帧0X00,0X00,0X0F,0X0F,0X2F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//16帧0X00,0X00,0X0F,0X0F,0X1F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//17帧0X00,0X00,0X0F,0X1F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//18帧0X00,0X00,0X1F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//19帧0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//20帧0X00,0X2F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//21帧0X00,0X4F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//22帧0X00,0X8F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X8F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//25帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X8F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//26帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X8F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//27帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X4F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//28帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X2F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//29帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X1F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//30帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X1F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//31帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X1F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//32帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//33帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X2F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//34帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X4F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//35帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X4F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//36帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X4F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//37帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X2F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//38帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X2F,0X0F,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//39帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X2F,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//40帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X4F,0X00,0X00,0X00,0X00,0X00,0 X00,0X00,//41帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X0F,0X4F,0X00,0X00,0X00,0X00,0 X00,0X00,//42帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X0F,0X2F,0X00,0X00,0X00,0X00,0 X00,0X00,//43帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X0F,0X1F,0X00,0X00,0X00,0X00,0 X00,0X00,//44帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X1F,0X0F,0X00,0X00,0X00,0X00,0 X00,0X00,//45帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X00,0X00,0X00,0X00,0 X00,0X00,//46帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X2F,0X0F,0X0F,0X00,0X00,0X00,0X00,0 X00,0X00,//47帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X4F,0X0F,0X0F,0X00,0X00,0X00,0X00,00X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X8F,0X00,0X00,0X00,0 X00,0X00,//52帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X4F,0X00,0X00,0X00,0 X00,0X00,//53帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X2F,0X00,0X00,0X00,0 X00,0X00,//54帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X1F,0X00,0X00,0X00,0 X00,0X00,//55帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X1F,0X0F,0X00,0X00,0X00,0 X00,0X00,//56帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X00,0 X1F,0X00,//57帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X00,0X1F,0 X0F,0X00,//58帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0 X0F,0X00,//59帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X2F,0X0F,0 X0F,0X00,//60帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X4F,0X0F,0 X0F,0X00,//61帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X8F,0X0F,0 X0F,0X00,//62帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X8F,0 X0F,0X00,//63帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X8F,0X00,//64帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X8F,0X00,//65帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X8F,//66帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X4F,//67帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X2F,//68帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X1F,//69帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X1F,0X0F,//70帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X1F,0 X0F,0X0F,//71帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X2F,0 X0F,0X0F,//72帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X6F,00X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//77帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0XEF,0XEF,0X0F,0X00,0X0F,0XEF,0XEF,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//78帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//79帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//80帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0XFF,0XFF,0X0F,0X00,0X0F,0X6F, 0X6F,0X0F,//81帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0XFF,0XFF,0X6F,0X00,0X0F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//82帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//83帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//84帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//85帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//86帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//87帧0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X6F,0XFF,0XFF,0X6F,0X00,0X0F,0X6F, 0X6F,0X0F,//88帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0X6F,0X6F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//89帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0XCF,0XCF,0X0F,0X00,0X0F,0XCF,0XCF,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//90帧0X00,0X0F,0XCF,0XCF,0X0F,0X00,0X0F,0XCF,0XCF,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//91帧0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//92帧0X00,0X0F,0X0F,0X6F,0X6F,0X00,0X0F,0X0F,0X6F,0X6F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//93帧0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//94帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0 X0F,0X0F,//95帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0 X3F,0X3F,//96帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X3F,0X3F,0X0F,0X00,0X0F,0X3F,0 X3F,0X0F,//97帧0X0F,0X0F,//101帧0X00,0XCF,0XCF,0X0F,0X0F,0X00,0XCF,0XCF,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//102帧0X00,0X6F,0X6F,0X0F,0X0F,0X00,0X6F,0X6F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//103帧0X00,0X3F,0X3F,0X0F,0X0F,0X00,0X3F,0X3F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//104帧0X00,0X0F,0X3F,0X3F,0X0F,0X00,0X0F,0X3F,0X3F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//105帧0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0X3F,0X3F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//106帧0X00,0X0F,0X0F,0X6F,0X6F,0X00,0X0F,0X0F,0X6F,0X6F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//107帧0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//108帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F, 0X0F,0X0F,//109帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0XCF,0XCF,0X00,0X0F,0X0F, 0XCF,0XCF,//110帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0XEF,0XEF,0XEF,0X00,0X0F,0XEF, 0XEF,0XEF,//111帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0XEF,0XEF,0XEF,0X00,0X0F,0XEF,0XEF,0XEF,0X00,0X0F,0XEF ,0XEF,0XEF,//112帧0X00,0XFF,0X1F,0X1F,0X1F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0 X0F,0X0F,//113帧0X00,0X7F,0X1F,0X1F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//114帧0X00,0X3F,0X1F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//115帧0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//116帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//117帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0XFF,0XFF,0 XFF,0XFF,//118帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X0F,0X0F, 0X0F,0X0F,//119帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//120帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//121帧0X1F,0X1F,//125帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X1F,0X1F,0X1F,0XFF,0X00,0X1F,0X1F,0X1F,0XFF,0X00,0X1F,0X1F, 0X1F,0XFF,//126帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X1F,0X1F,0XFF,0X1F,0X00,0X1F,0X1F,0XFF,0X1F,0X00,0X1F,0X1F, 0XFF,0X1F,//127帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0X1F,0XFF,0X1F,0X1F,0X00,0X1F,0XFF,0X1F,0X1F,0X00,0X1F,0XFF, 0X1F,0X1F,//128帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//129帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//130帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//131帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//132帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//133帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0XFF,0X5F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//134帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X5F,0X1F,0X1F,0X00,0XFF,0X5F,0X5F,0X1F,0X00,0XFF,0X5F, 0X1F,0X1F,//135帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0XFF,0X5F,0X1F,0X00,0XFF,0X1F, 0X1F,0X1F,//136帧0X00,0XFF,0XFF,0XFF,0X7F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0X7F,0X1F, 0X1F,0X0F,//137帧0X00,0XFF,0XFF,0X7F,0X3F,0X00,0XFF,0X1F,0X1F,0X1F,0X00,0X7F,0X1F,0X1F,0X0F,0X00,0X3F,0X1F,0 X0F,0X0F,//138帧0X00,0XFF,0X7F,0X3F,0X1F,0X00,0XFF,0X1F,0X1F,0X0F,0X00,0X7F,0X1F,0X0F,0X0F,0X00,0X3F,0X0F,0 X0F,0X0F,//139帧0X00,0XFF,0X7F,0X3F,0X1F,0X00,0X7F,0X1F,0X1F,0X0F,0X00,0X3F,0X1F,0X0F,0X0F,0X00,0X1F,0X0F,0 X0F,0X0F,//140帧0X00,0X3F,0X3F,0X1F,0X0F,0X00,0X3F,0X1F,0X0F,0X0F,0X00,0X1F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//141帧0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F,0 X0F,0X0F,//142帧0X00,0XFF,0X0F,0X0F,0X0F,0X00,0XFF,0X0F,0X0F,0X0F,0X00,0XFF,0X0F,0X0F,0X0F,0X00,0XFF,0X0F, 0X0F,0X0F,//143帧0X00,0XFF,0XFF,0X0F,0X0F,0X00,0XFF,0XFF,0X0F,0X0F,0X00,0XFF,0XFF,0X0F,0X0F,0X00,0XFF,0X0F, 0X0F,0X0F,//144帧0X00,0XFF,0XFF,0XFF,0X0F,0X00,0XFF,0XFF,0XFF,0X0F,0X00,0XFF,0XFF,0X0F,0X0F,0X00,0XFF,0X0F, 0X0F,0X0F,//145帧0X0F,0X0F,//149帧0X00,0XFF,0XFF,0XFF,0XFF,0X00,0XFF,0XFF,0XFF,0X0F,0X00,0XFF,0XFF,0X0F,0X0F,0X00,0XFF,0X0F, 0X0F,0X0F,//150帧0X00,0XCF,0XCF,0X0F,0X0F,0X00,0XCF,0XCF,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//151帧0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0X0F,0X0 F,0X0F,0X0F,//152帧0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F, 0X9F,0XFF,//153帧0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0X0F,0X0 F,0X0F,0X0F,//154帧0X00,0XCF,0XCF,0X0F,0X0F,0X00,0XCF,0XCF,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//155帧0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0X0F,0X0 F,0X0F,0X0F,//156帧0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F,0X9F,0XFF,0X00,0XFF,0X9F, 0X9F,0XFF,//157帧0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0XEF,0XAF,0XEF,0X0F,0X00,0X0F,0X0 F,0X0F,0X0F,//158帧0X00,0XCF,0XCF,0X0F,0X0F,0X00,0XCF,0XCF,0X0F,0X0F,0X00,0X0F,0X0F,0X0F,0X0F,0X00,0X0F,0X0F, 0X0F,0X0F,//159帧0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, 0X00,0X00,//160帧};void Delay(unsigned int t){while(--t);}void init(){P4SW=0xff; //定义P4口为I/O口P0M1=0x00; //I/O口0模式控制器0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0P0M0=0xff; //定义P0为强上拉输出.P1M1=0x01;P1M0=0xfe; //定义P1为强上拉输出. P.14作为AD此时不能作为强上蜡P2M1=0x00;P2M0=0xff; //定义P2为强上拉输出.P4M0=0xff; //定义P4为强上拉输出.}void hansao(unsigned char hs,unsigned char shangxia){if(shangxia==0){if(hs<5) //判断hs的值是否在行扫描的值范围内,不在范围内不执行任何操作{if(hs==0) //选通第1行//作为控制显示高度的时候调用{H1=1;H2=1;H3=1;H4=1;H5=0; return;}if(hs==1) //选通第2行{H1=1;H2=1;H3=1;H4=0;H5=1; return;}if(hs==2) //选通第3行{H1=1;H2=1;H3=0;H4=1;H5=1; return;}if(hs==3) //选通第4行{H1=1;H2=0;H3=1;H4=1;H5=1; return;}if(hs==4) //选通第5行{H1=0;H2=1;H3=1;H4=1;H5=1; return;}}}else if(shangxia==1){if(hs<5) //判断hs的值是否在行扫描的值范围内,不在范围内不执行任何操作{if(hs==0) //选通第1行//平时的时候调用这个显示其他图形和变化{H1=0;H2=1;H3=1;H4=1;H5=1; return;}if(hs==1) //选通第2行{H1=1;H2=0;H3=1;H4=1;H5=1; return;}if(hs==2) //选通第3行{H1=1;H2=1;H3=0;H4=1;H5=1; return;}}if(hs==4) //选通第5行{H1=1;H2=1;H3=1;H4=1;H5=0; return;}}}}void main(){unsigned int donghua=0;init(); //初始化IO口为强上蜡输出状态VCC1=1;VCC2=1;VCC3=1;VCC4=1;LED4=1; //关闭开机时候的状态使单片机没有任何反应LED4通电不初始化会亮可以作为电源指示灯while (1){//26//////////////////////////////////上位机生成动画数据控制光立方LED灯显示////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////数据直接利用上位机去摸取好之后赋值到定义的数组里面shuzu4X4//8421的数据分别为L1L2L3L4,然后第一行的数据分别为数组的第一个数据从上面到下面数0-5//H1-H2-H2-H4-H5//H6-H7-H8-H9-H10//H11-H12-H13-H14-H15//H16-H17-H18-H19-H20for(CYCLE=0;CYCLE<3000;CYCLE++){for(saom=0;saom<5;saom++){dzzc0=shuzu4X4[saom+donghua*20]; //将第一个需要分配的数据赋值个为变量进行分配给L1-L4 L1=dzzc07;L2=dzzc06;L3=dzzc05;L4=dzzc04;dzzc1=shuzu4X4[saom+donghua*20+5]; //将第一个需要分配的数据赋值个为变量进行分配给L5-L8 L5=dzzc17;L6=dzzc16;L7=dzzc15;L8=dzzc14;dzzc2=shuzu4X4[saom+donghua*20+10]; //将第一个需要分配的数据赋值个为变量进行分配给L9-L12 L9=dzzc27;L10=dzzc26;L11=dzzc25;L12=dzzc24;dzzc3=shuzu4X4[saom+donghua*20+15]; //将第一个需要分配的数据赋值个为变量进行分配给L13-L16L13=dzzc37;L14=dzzc36;L15=dzzc35;L16=dzzc34;hansao(saom,0);Delay(2);H1=1;H2=1;H3=1;H4=1;H5=1;}}{donghua=0;}////////////////////////////////////////////////////////////////////////////////////////////////////////////// }}。
8阶光立方的制作
8阶光立方的制作摘要光立方是一个电子工程方面DIY的绝好实例,不管国内国外都有非常多的爱好者。
它同时要求制作者具有软硬件设计及手工制作等多方面的能力,目前youtube上最大的DIY光立方是32阶全彩光立光,引脚数多达131,072个,这对于个人来说绝对算是个大型的工程了。
要制作出一个漂亮的光立方,除了电路设计与程序设计,辅助工具设计也很重要,缺少它甚至是无法完成整个制作的。
另一方面,很多验证性工作也属于辅助设计,理论往往与实际会有很大的出入,这时就需要一步步去验证原始设计。
网络上大多参考资料都只是一个制作记录,并没有详细分析为什么要这么做,是否还有其它的实现方法等等。
因此,在遇到不同的实际环境的时候,出了问题却往往找不到原因在哪里,这就造成很多的困惑。
本文试着从设计原理的角度来分析如何做一个8阶单色光立方,以及记录在制作过程当中遇到的各种问题与解决办法。
控制芯片采用STC MCU,输出为串口转并口,驱动芯片选用东芝16位移位寄存器,3个级联达48位并口输出,512个LED使用16*32矩阵接法。
目录1 准备篇1.1设计框架1.2 主芯片选型1.3 所需工具材料2设计篇2.1 电路设计2.2 程序设计2.3辅助工具设计3 完善篇3.1 迭代3.2 功能扩展1 准备篇光立方,由若干个LED以立方体的形式搭建而成。
最常见的为8*8*8(512个LED),8阶光立方,也叫cube8。
当灯按照一定的规则依次变换点亮的时候,可以产生十分唯美的灯光效果图,现在大多随着动感的音乐节奏一起变化,声色交错,让人赏心悦目。
1-1光立方(蓝光)——cube8效果图1.1 设计框架第一个需要思考的问题是:如何连接这512个灯?有个前提条件需要满足:每个灯都必须可以单独点亮。
那么,任何两个灯都不可以串联。
最直接的办法是并联这512个灯,共阳或者共阴,然后提供512个输出。
但这样做至少有两个非常大的缺点:首先,一般情况下无论是MCU、ARM、FPGA都无法提供这么多输出位,即使是使用多个16位移位寄存器,那么也需要32个,这无论在成本还是在实际焊接都十分不划算;其次,就算512个输出位不是问题,因为是立方体形式,线路之间会存在互相遮挡,所以,必须要求连接线路最少,显然,直接并联是最傻的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接下来介绍一下焊接制作方法:
本光立方采用束共阳层共阴的接法。
先介绍一下,层的接法:
P2.0-P2.7为层控制线,我们先帮光立方分为左右2侧,每测2列LED负极接在一起为1个层。
左侧最顶层(也就是第4层)的共阴极层控制线为P2.0,左侧第2层的共阴极层控制线为P2.1,左侧第3层的共阴极层控制线为P2.2,左侧第4层(也就是最底层)的
共阴极层控制线为P2.3,右侧最顶层(也就是第4层)的共阴极层控制线为P2.4,右侧第3层的共阴极层控制线为P2.5,右侧第2层的共阴极层控制线为P2.6,右侧第1层(也就是最底层)的共阴极层控制线为P2.7。
束的接法:
束的接线方法比较经典,如上图,板子上每个排母左侧写B+的焊接的是双色LED种蓝色正极,R+焊接的是双色LED种红色的正极(如果买的是单色光立方,LED的正极)
看明白焊接方法后接下来就可以动手焊接了。
1.接线下灯座的制作方法:
把40P圆排母用水口钳或者斜口钳剪成单针:
接下来再用水口钳或者斜口钳把针座旁边的塑料剪去,这个用水口钳是比较好剪的,当然不剪也是可以,只是比较不美观:
2整形LED ,每个LED都整形如下图:
2整形好后焊接一个固定LED的万用板,方便焊接LED支架。
用这样的方法焊接出来的LED阵列就比较整齐美观:
看清楚排针的焊接距离!
用一个9*15或者更大的万用板焊接16个排针,然后把整形好的LED夹在排针上面,纵向焊接正极,横向焊接负极:
这样焊接下来正好是16个LED ,也就是1面,等4面都制作好后,便可以组装1个4*4*4的光立方了。