临近重要建筑物的地下结构抗震时程分析
地下室的抗震与结构安全分析
![地下室的抗震与结构安全分析](https://img.taocdn.com/s3/m/bf4337dcdc88d0d233d4b14e852458fb770b38a1.png)
地下室的抗震与结构安全分析一、背景介绍地下室作为现代建筑的重要组成部分,在城市建设中扮演着重要的角色。
然而,由于地下室处于地下,容易受到地震和其他自然灾害的影响,因此地下室的抗震与结构安全问题备受关注。
本文将对地下室的抗震与结构安全进行分析,并提出一些相应的解决方案。
二、地下室结构的特点1. 深埋地下:地下室位于地下,深埋的特点使其受到地震力和土壤侧压力的影响,增加了其抗震与结构安全的挑战。
2. 多层承重:地下室一般由多层组成,每层都需要承受自身的重力和上方楼层的荷载,因此地下室结构必须具备足够的承载能力和稳定性。
三、地下室的抗震设计原则1. 抗震设计:应根据地下室的使用功能、地震区域等因素进行合理的抗震设计,包括选择适当的地基类型、增强结构的抗震能力等。
2. 结构选择:地下室的结构选择对其抗震性能具有重要影响,常见的结构形式包括框架结构、剪力墙结构和桩基等,需要根据实际情况进行合理选择。
3. 加固措施:对于存在结构缺陷或老化的地下室,应加强加固措施,提高其整体抗震性能。
4. 安全疏散:地下室的安全疏散通道和紧急出口设计也是确保结构安全的重要环节,应保证人员疏散的畅通性和安全性。
四、地下室的结构安全评估1. 定期检查:对地下室进行定期的结构安全检查,特别是对患有裂缝、漏水等问题的地区,加强监控和维护。
2. 结构监测:可以利用传感器等技术手段对地下室的结构运行情况进行监测,实时掌握其变化情况,及时发现潜在问题。
3. 模拟分析:利用现代结构分析方法,如有限元分析等,对地下室的结构进行模拟分析,评估其抗震性能和结构安全性。
五、地下室的抗震与结构安全加固方案1. 加固地基:对于地下室所在地基的巩固和加固,可以采用注浆、加固桩等技术手段,提高地基的稳定性和抗震能力。
2. 加固墙体:对于地下室的墙体结构,可以采用加固筋、钢板绑定等方法,提高其抗震能力和稳定性。
3. 增加剪力墙:对于地下室的结构设计,可以增加剪力墙结构,提高整体的抗震性能。
对地下建筑结构实用抗震分析方法研究
![对地下建筑结构实用抗震分析方法研究](https://img.taocdn.com/s3/m/c4c988c876c66137ef061904.png)
对地下建筑结构实用抗震分析方法研究摘要:在建筑科技迅速发展的当代,地上建筑结构的抗震理论日益成熟,相比之下地下建筑结构抗震的研究相对滞后,也逐渐有人关注和深入研究地下建筑结构的地震效应,对此领域也出现了仁者见仁智者见智的百家争鸣之态,每种理论都有各自的立足点,当然也不乏不足之处待以完善。
本文就当下几种地下建筑结构抗震的分析办法进行阐述和总结,希望可以带动更多的人对地下建筑结构的抗震分析引发更深的思考。
关键词:抗震;地下建筑;周围土体随着我国经济的迅速发展,地下结构工程也逐渐步入正轨,形成一套严密的体系。
一般来说,地下建筑结构能避开地面结构的一些缺陷,例如外界环境影响减弱,建筑的刚度也较大,这并不意味着地下结构工程可以永远避免地震等意外的发生,并且由于目前国内对于地下建筑结构实用抗震策略研究的层次较浅或者说研究成果较少,一旦发生地震,那么地下建筑将会受到巨大破坏,并且在灾后也不能给出及时的补救办法,造成更大的财力人力损失。
因此,我们需要加强对这方面的研究,使地下建筑结构抗震的研究速度能够跟上地下建筑工程的发展速度。
本文首先分析了近年来国内外抗震分析办法的发展并对具体的方法做出阐释,同时研究了地下结构工程抗震反应的特点,结合这两方面的内容,笔者提出了一些自己的想法,以期推进我国地下建筑结构实用抗震研究进程献。
1.地下建筑结构工程地震特性地震发生时,地下结构显示出来的特性主要有以下几点:首先,地下建筑结构的振动应变和地震的加速度联系较小;其二,周围地基的约束会对结构的振动产生很大影响,反之,地下建筑的振动对周围地基的影响较小;其三,地震发生时,地面建筑结构的各点相位差别不大,但是地下建筑结构的各点相位差别就会比较明显;其四,虽然地下建筑结构和地面建筑结构和周围地基的相互作用都会严重影响其动力反应,但是具体程度和方式都是不尽相同的;最后,地震波的入射方向也会影响结构的变化,即使入射方向只改变一点,但对于地下建筑结构来说,其应力会有很大改变,变形严重。
地下结构震害及抗震分析方法综述
![地下结构震害及抗震分析方法综述](https://img.taocdn.com/s3/m/5e7af1711fd9ad51f01dc281e53a580216fc5032.png)
地下结构震害及抗震分析方法综述安腾【摘要】At present, China has begun to develop underground space, especially the subway projects. Usually, the underground structure has good seismic performance, and relatively few earthquake disasters. But if the underground structure is damaged by the earthquake, it will cause serious damage and cannot be repaired. This paper mainly introduces the seismic hazard characteristics of underground structures and compared the methods of seismic analysis of underground structures, such as the reaction displacement method, free field deformation method and so on.%目前,我国开始大力发展地下空间,尤其是地铁工程.通常情况下,地下结构具有良好的抗震性能,地震灾害相对较少.但是地下结构一旦遭受地震破坏,将会带来严重损失并且难以修复.本文主要介绍了地下结构的地震灾害特征以及常用的地下结构抗震分析方法.并且对比分析了反应位移法、自由场变形法和地震系数法等的特点以及不足.【期刊名称】《价值工程》【年(卷),期】2018(037)011【总页数】2页(P244-245)【关键词】地下结构;地震灾害;抗震性能;反应位移法【作者】安腾【作者单位】榆林学院,榆林719000【正文语种】中文【中图分类】TU930 引言随着现代城市的不断发展与人口的迅速增长,人类对生活空间的需求也不断扩大,地下结构的不断发展便是其真实写照。
地下室结构的抗震设计分析
![地下室结构的抗震设计分析](https://img.taocdn.com/s3/m/8ad9c92eb9f3f90f77c61bd1.png)
地下室结构的抗震设计分析一、几种主要的地下结构抗震设计方法1、静力法。
把地震作用当作等效的静力荷载进行抗震计算。
它通常应用于地下管线、洞道的横截面抗震设计,它把地震时的土压力和结构物以及结构物以上覆土层作为外力考虑。
这种方法的缺陷在于没有考虑土层与结构各自的振动特性及其相互间的关系。
2、反应位移法。
70年代,日本学者从地震观测入手,提出了地下线状结构抗震设计的反应位移法。
其基本原理就是用弹性地基上的梁来模拟地下现状结构,把地震时地基的位移当作已知条件作用在弹性地基上,以求解在梁上产生的应力和变形,从而计算地下结构(隧洞、管道、竖井等)地震反应,公式可以简化为拟静力计算公式,K{U}=Ks{Ug}。
式中的矩阵K包括地下结构的刚度Kt和地基抗力Ks。
本方法的关键是确定地基变位{Ug}和抗力系数Ks,通常将Ks取为对角阵,则Ks相当于文科尔弹簧常数或地基土介质的弹簧常数。
这种方法的理论基础是基于地震时支配地下结构地震反应的地基变形而不是结构物的惯性力。
近年来,大多数地下结构,尤其是地下管线都把这种方法作为其抗震设计方法。
但是,这种方法把不规则地震波的传播看作为同一周期和同一方向的地震波,从而与实际相去甚远;另外该法只适用于线形地下结构的抗震研究,用于大断面地下结构的抗震分析时需要进一步探讨、完善和修改。
3、动力反应分析法。
主要适用于结构物形状和地质条件比较复杂时的地下结构抗震反应分析。
它是采用有限元理论,将地震记录直接输入结构模型求得结构的动力反应。
这种方法不仅可以求得结构受地震作用时反应的最大值,而且也可以观察到结构反应的全过程,同时也使结构的弹塑性反应分析成为可能。
动力反应分析法又可细分为两种:一种是考虑土和结构的相互作用;另一种是不考虑土和结构的相互作用。
前者将土与结构当作由一定的边界条件联系起来的整体系统来考虑,后者即不考虑结构的存在,把自由场的地震位移反应当作相应的结构地震位移反应。
这种方法适用于任意的地下结构类型,同时考虑地基土的具体性质和结构的非线性,缺点是应用不便,难以得到规律性的结论,且其结果需要得到实验或理论解析的验证。
建筑地下结构工程的抗震分析方法
![建筑地下结构工程的抗震分析方法](https://img.taocdn.com/s3/m/40e4e3e1866fb84ae55c8d82.png)
不仅具有一定的承载力,而且抗震能力十分优越,加之施
工简易、生产方便,被较大范围地应用于我国的建筑行
业。比如,在我国地震多发地区的建筑工程中,应该优先
选择钢筋混凝土结构作为其建筑结构,以提高建筑自身
的抗震等级(表 1)。
表 1 钢筋混凝土结构建筑的抗震等级
结构类型
烈度
6
7
8
9
高度(m) ≤30 >30 ≤30 >30 ≤30 >30 ≤25
境深度的差异而产生明显变化。 第七,无论是地面结构工程还是地下结构工程,其与
地基部分之间形成的作用力均会对其本身的动力响应产 生较大影响。
3 建筑地下结构工程的抗震分析方法
3.1 地下结构工程地震原型观测分析法 对于此方法的使用,首先应该根据地下结构本身动力
响应的构建特点进行检测,通过这种形式了解和掌握结构 的振动响应情况,并且要进行较长周期的观测,利用机构 的各项动力响应参数划分结构中各部分的地震烈度,再对 其进行反复核对和校正,以确保结果的准确性,同时,以此 为基础构建与结构配套的数据库。通过应用该分析方法, 能够以相关数据信息为基础进行机构主体动力响应规律 的分析,从而展开更加深入的研究。在进行结构减震设计 工作的过程中,可以通过分析震动场地、震动参数以及具 体震级等相关因素,实现减震的目标。但是,由于目前的观 测技术水平还有待提升,大多数的观测信息都源自地面观 测,此外,在地下深埋区域的观测中,可以获得的资料非常 少,再加上目前对于地震预测的准确度不足,尤其是对于 强震的预测,需要较长时间的等待以及观测周期,这就进 一步增加了采集信息的难度。 3.2 地下结构工程模拟实验分析法
中图分类号院TU352
文献标志码院A
文章编号院1671-9344(2019)04-0069-02
地下结构工程抗震的研究现状及其分析方法
![地下结构工程抗震的研究现状及其分析方法](https://img.taocdn.com/s3/m/54287a02cc175527072208db.png)
地下结构工程抗震的研究现状及其分析方法摘要随着地下工程的大量兴建和地震自然灾害的频发,地下结构工程的震害问题越来越受到人们的重视。
文章根据地下结构工程抗震的研究背景,对国内外在隧道及地下工程抗震减震研究分析方面的成果进行了归纳总结,指出了各自存在的优势及局限性。
最后简单阐述了地下结构抗震反应的特点,结构破坏的主要特征及提高结构抗震的措施,并提出了自身对今后该领域研究发展方向的看法与思考。
关键字:地下结构,抗震,现状研究,分析方法1 研究背景地震是自然界一种常见的自然灾害。
过去,由于地下结构数量和规模的限制,其震害事例较少,加之地下结构受到周围地层的约束,即使发生地震其震害程度也相对较轻。
因此人们普遍认为地下结构有较好的抗震能力,在地震作用下不易遭受破坏,故地下结构的抗震研究长期未得到重视。
然而,随着地下空间的开发和地下结构建设规模的不断扩大,地下结构也相继出现了各种震害。
1923 年日本关东7. 9 级大地震,震区内116 座铁路隧道,有82 座受到破坏;1952 年美国加州克恩郡7.6 级的地震造成南太平洋铁路的四座隧道损坏严重,1978 年日本伊豆尾岛发生7.0 级地震,震后出现了横贯隧道的断裂,隧道衬砌出现了一系列破坏。
特别是1995 年,日本阪神大地震对神户市的地铁线路造成严重破坏,它也是世界范围内大型地下结构遭受最严重破坏的首例。
阪神地震给地铁结构造成的严重破坏及由此带来巨大的生命和财产损失,引起了世界各国对地下结构抗震设计和研究的重视。
我国地处地震带之间,地震活动频繁。
1999 年9 月21 日,我国台湾省台中地区发生了里氏7 . 3 级地震,台中地区57 座山岭隧道有49 座受到不同程度的损坏;200 8 年汶川特大地震中,根据四川省交通厅公路规划勘察设计研究院的调查统计,四川地区共有56 条隧道受到不同程度的损坏,损坏程度如图所示:[1]图1 地震中公路隧道受损评估统计结果根据国内外学者大量的研究结果,地下结构震害类型及原因可归纳为以下四类[2-3]: 第一类是由断层所引起,造成地层的错动和位移,致使地下结构遭到严重破坏。
浅谈地下建筑结构的抗震问题
![浅谈地下建筑结构的抗震问题](https://img.taocdn.com/s3/m/4bcb73fc0242a8956bece4e9.png)
浅谈地下建筑结构的抗震问题摘要:地下结构一直被认为具有良好的抗震性能。
然而,近年来的地震震害表明,在地震作用下,地下结构同样会出现较为严重的破坏。
分析了地下结构不同于地上结构的动态反应特性;归纳分析了地下结构抗震性能的研究手段以及主要的抗震设计方法;总结了提高地下结构抗震性能的措施;并对地下结构抗震性能的研究进行了展望。
关键词:地下结构L;抗震;土—结构共同作用1.引言随着全世界人口的增长以及社会经济的发展,地上建筑物、交通设施等已经不能满足人类的使用要求,大力发展地下结构已是大势所趋。
近年来,地下结构在能源交通、通讯、城市建设和国防工程等方面得到广泛的应用,它对提高城市综合抗灾能力和缓解城市诸多矛盾方面起到了积极作用。
[1]地震对地面结构所造成的破坏是人所共知的,地面结构的抗震研究也达到实用阶段,各国已制订了各种地面结构物的抗震设计规范。
但对地下结构的地震破坏却知之不多,地下结构的抗震研究才刚刚开始,现在还没有地下结构抗震设计的规范。
由于长期以来,人们普遍认为地下结构的数量较少,地下结构的抗震性能又优于地面建筑。
因此,对地下结构的抗震设计没有充分重视。
但是在1995年日本阪神大地震中,各种地下结构和地下设施均遭受到严重的破坏,其中大开站(DAIKAI)和上尺站(KAMISAA)遭到彻底的破坏,造成地铁上方的国道路基大量塌陷,有的塌陷深度达15m,致使日本南部交通瘫痪。
[2]历史上其它国家也曾多次发生过地下结构在地震中被破坏的事故,这里不再详述。
面对越来越多的地下结构,有必要对其进行系统全面的研究,以充分认识其抗震性能,并在结构设计中重视抗震设计。
2.地震作用下地下结构动态反应特性地下结构在地震作用下,由于周围岩土介质的存在,会发生不同于地面结构的响应。
地震以地震波的形式传播能量,当地震波从基岩传入场地时,土壤介质在地震波的作用下,会产生运动(通常是放大作用),同时将运动传递给地下结构。
对于小断面地下结构,在动力荷载作用下,土—结构相互作用可以忽略,此时地下结构随自由场土介质一起运动,因而动应力较小。
地下建筑结构抗震性能分析
![地下建筑结构抗震性能分析](https://img.taocdn.com/s3/m/6ba36fee647d27284b7351f5.png)
地下建筑结构抗震性能分析【摘要】随着经济的不断发展和城市化的不断推进,我国对于地下建筑结构抗震性的要求越来越高。
虽然与地上建筑建筑的结构相对比,地下建筑结构的抗震性能比较优越而且震害比较少,但是我国的地下建筑结构的抗震设计理念与西方的一些发达国家相比较还处在比较落后的阶段,还有很多不完善的地方。
本文将对地下建筑结构的抗震性能进行深入的研究和分析,以期能够引起更多的科技人员关注地下建筑建构的抗震性能【关键词】地下建筑;抗震性能;分析改革开放以来,国家更加重视对地下建筑的扩大。
这样一来,虽然地下建筑得到了有效的发展,但同时也出现了不同程度的设计问题,特别是地下建筑结构抗震性能的问题。
大多数的科技设计人员往往忽视了地层在变形和位移的过程中会导致地下建筑结构发生改变,这一重要实际问题[1]。
因此对地下建筑结构的抗震性能进行仔细的分析非常有必要,我们在地下建筑结构的设计中要充分重视对抗震设计的问题,以此来减少地震带来的灾害。
一、地下建筑结构的概述以及抗震的现状(一)类型分析目前我国的地下建筑根据功能可以分为以下几类:仓储建筑、防护建筑、建筑综合体、地下工业建筑、居住建筑、交通建筑和公共建筑等。
如果根据空间的形状可以分为长线性地下建筑和空间性地下建筑。
如果根据结构的类型可以分为连续性、地道式、沉井式、浅埋式和附建式。
(二)特点分析地下建筑结构是地下结构的一个分支,大体上可以描述为在土层间或者岩层间建造的建筑物和构筑物。
与地面的结构相比较,地下建筑结构有一定的特点,具有不易受外界干扰、自然保护能力较强、地质状况影响较大、施工的条件独特并且需进行通风、防潮、防排水和照明等处理。
(三)抗震现状我们一直以为地下建筑拥有比较优越的抗震性能,但是依据这些年的地震灾害,我们发现,由于受到地震的强烈干扰,地下建筑也会受到严重的损坏。
我们知道地面结构和地下结构振动的特点有着很大的不同,通过对地下结构的抗震分析,可以有效保证地下建筑的质量。
地下工程防震抗震方案
![地下工程防震抗震方案](https://img.taocdn.com/s3/m/3c1e2a9c29ea81c758f5f61fb7360b4c2e3f2ab5.png)
地下工程防震抗震方案地下工程的规划、设计和施工需要考虑到地震对工程的影响。
地震是自然界中普遍存在的地质灾害,地下工程的抗震设计是确保工程安全性和稳定性的关键,也是保障人员和设备安全的重要手段。
本文将从地下工程的抗震设计原则、抗震设计内容和抗震施工措施等方面展开论述。
一、地下工程的抗震设计原则1. 安全性原则:地下工程的抗震设计首先要确保工程的安全性,即在地震作用下,工程结构不应发生倒塌、变形过大等现象。
2. 经济性原则:在保证安全性的前提下,地下工程的抗震设计应尽可能降低成本,提高工程的经济性和可行性。
3. 合理性原则:地下工程的抗震设计应根据地质条件、工程用途和工程结构等因素,综合分析,合理确定抗震设计参数和措施。
4. 可行性原则:地下工程的抗震设计应该是可行的,即设计参数、措施和施工工艺都要符合实际情况,并能够顺利实施。
二、地下工程的抗震设计内容1. 地质条件分析:在地下工程抗震设计中,首先要对地质条件进行分析,包括地质构造、地震烈度、地下水位等因素,以确定地下工程设计的基本参数。
2. 结构抗震设计:地下工程的结构抗震设计是抗震设计的核心内容,包括结构类型、结构参数、结构计算和分析等内容,需要根据地质条件和工程用途综合确定。
3. 设备抗震设计:地下工程中的设备和管道系统也需要进行抗震设计,在设计中要考虑设备的结构强度、连接方式、支座设计等内容。
4. 地下室防水、防潮设计:地下工程中的地下室常常存在水蒸气、地下水涌入等问题,需要进行防水、防潮设计,以保证地下室的使用安全。
5. 地下室通风、照明设计:地下工程中的地下室需要合理的通风和照明设计,以保证地下室的空气质量和使用舒适度。
6. 地下工程的排水设计:地下工程的排水设计是确保地下工程稳定性的重要内容,需要合理设计排水系统,避免地下水渗透导致地下工程灾害。
7. 地下工程的抗震防灾设施设计:地下工程需要设置抗震防灾设施,如应急疏散通道、地震感应报警器等,以应对地震发生时产生的应急情况。
地下建筑结构实用抗震分析方法研究
![地下建筑结构实用抗震分析方法研究](https://img.taocdn.com/s3/m/5796b344ba68a98271fe910ef12d2af90242a8e8.png)
地下建筑结构实用抗震分析方法研究1. 本文概述随着城市化进程的加速,地下空间开发和利用成为解决城市土地资源紧张、缓解交通拥堵、提高城市综合防灾能力的重要途径。
地下建筑结构由于其特殊的地理位置和复杂的受力环境,在地震作用下往往表现出与地面结构截然不同的动力响应特征。
如何确保地下建筑结构在地震中的安全性和可靠性,成为工程界和学术界关注的热点问题。
本文旨在系统研究地下建筑结构的实用抗震分析方法。
通过文献综述,对现有地下结构抗震分析的理论和方法进行梳理,明确当前研究的主要进展和存在的问题。
接着,基于地震工程和地下结构工程的基本原理,提出一种适用于地下建筑结构的抗震分析新方法。
该方法将综合考虑地下结构的几何特性、材料性质、地层条件以及地震动特性,通过数值模拟和模型试验相结合的方式,对地下结构的地震响应进行深入分析。
本文还将探讨地下建筑结构抗震设计的关键参数,包括结构刚度、阻尼比、土结构相互作用等,并分析这些参数对地下结构抗震性能的影响。
结合具体工程案例,验证所提出抗震分析方法的实用性和有效性,为我国地下建筑结构的抗震设计提供理论依据和技术支持。
总体而言,本文的研究成果将有助于提高地下建筑结构在地震作用下的安全性和可靠性,为地下空间的合理开发和利用提供科学指导,具有重要的理论意义和实际应用价值。
2. 地下建筑结构的特点及抗震分析难点地下建筑结构通常位于地面以下,其设计和建造需要考虑到地质条件、水文条件、地下空间利用等多种因素。
这些特点使得地下建筑结构的抗震分析面临着一系列独特的挑战。
复杂的地质条件:地下建筑结构需要适应不同的地质环境,包括土层的类型、地下水位、土壤的承载能力等。
这些因素直接影响结构的稳定性和抗震性能。
空间限制:地下空间的利用受到地面建筑和周围环境的限制,设计时需要充分考虑空间的有效利用和安全性。
施工难度:地下建筑结构的施工通常比地面建筑更为复杂和困难,需要特殊的施工技术和设备。
与地面建筑的相互影响:地下建筑结构与地面建筑之间存在相互影响,需要考虑地面建筑对地下结构的荷载传递和地下结构对地面建筑的影响。
结构工程抗震分析
![结构工程抗震分析](https://img.taocdn.com/s3/m/f7ff7cbe951ea76e58fafab069dc5022aaea461d.png)
结构工程抗震分析地震是地球上常见的自然现象之一,对人类社会造成了严重的威胁。
为了确保建筑物在地震中能够保持稳固并保护人们的生命财产安全,结构工程抗震分析成为了建筑设计中的重要环节。
本文将就结构工程抗震分析的背景、方法和案例进行详细探讨。
一、背景地震是由于地壳内部的构造运动产生的,它可以导致地表的振动,进而对建筑物和人员造成破坏。
地震的破坏性与建筑物本身的结构特点密切相关。
因此,在设计过程中进行抗震分析是至关重要的。
二、方法1. 地震波分析法地震波分析法是应用广泛的一种抗震分析方法。
它通过将地震波作为输入信号,对结构进行动力响应分析,以评估结构在地震荷载下的性能。
该方法需要考虑结构的动力特性、地震波参数以及结构的非线性行为等因素。
通过对结构的动力响应进行模拟和分析,可以估计结构在地震中的受力情况,为结构的设计和改进提供依据。
2. 弹性静力分析法弹性静力分析法是一种常用的简化方法,适用于对刚性或半刚性结构的抗震性能进行初步评估。
该方法假设结构在地震荷载下的响应仅受弹性力的控制,可以通过应力和变形的平衡方程来计算结构的响应。
虽然该方法不考虑结构的非线性性质,但在一些简单结构的抗震设计中仍然具有一定的实用性。
三、案例分析1. 高层建筑抗震设计高层建筑由于其特殊的形态和结构,对于地震的抗力要求更高。
在高层建筑的抗震设计中,常采用地震波分析法进行性能评估。
通过对结构钢筋混凝土核心筒的布置和加固等措施,提升建筑物的整体抗震能力。
此外,还需要在建筑物的设计与施工过程中考虑抗震措施,如采用抗震连接件、提高结构的顶部和底部刚度等。
2. 桥梁抗震设计桥梁是交通运输的重要枢纽,其抗震能力直接关系到公共安全。
在桥梁抗震设计中,需要综合考虑结构的刚度、强度和动力性能等因素。
通过采用合适的横向和纵向连接形式,选择适宜的结构材料和构造方式,以及进行合理的减震设计,可以提高桥梁的抗震能力,减少地震造成的损害。
四、总结结构工程抗震分析是建筑设计中的重要环节,能够提供对结构在地震作用下的响应评估。
高层建筑地下室结构的抗震设计
![高层建筑地下室结构的抗震设计](https://img.taocdn.com/s3/m/aa3bd00d5b8102d276a20029bd64783e09127dca.png)
高层建筑地下室结构的抗震设计随着城市化进程的加快,高层建筑在城市景观中占据了重要的地位。
然而,高层建筑面临的地震威胁不容忽视。
为了确保高层建筑的整体安全性,地下室结构的抗震设计成为了一个关键问题。
本文将详细阐述高层建筑地下室结构的抗震设计,包括基本概念、设计规范、注意事项以及案例分析。
地震是由于地球内部的地壳运动引起的自然现象。
当地壳中的应力超过地质层的强度时,地震能量会瞬间释放,导致地面震动和地裂缝。
地震的破坏力主要表现在震动引起的惯性力对建筑物的破坏上。
因此,高层建筑地下室结构的抗震设计应充分考虑地震的影响。
地下室结构设计规范是进行高层建筑地下室结构抗震设计的基础。
在设计过程中,应遵循以下基本原则:坚固性:地下室结构应具有足够的坚固性,以抵抗地震的破坏力。
均匀性:地下室结构的荷载应均匀分布,避免出现集中荷载。
连通性:地下室结构应具有较好的连通性,以确保地震时各部分结构的协调性。
常用的计算方法包括有限元法、动力时程分析法等,设计师应根据实际情况选择合适的计算方法。
充分了解地质条件:设计师应充分了解建筑所在地的地质条件,以便对地下室结构进行合理设计。
确定地震烈度指标:根据地震烈度指标,可以评估地震对地下室结构的影响程度。
地震时的位移计算:在地震烈度指标的基础上,计算出地下室结构在地震时的位移,以便进行结构优化。
设置抗震墙:根据计算结果,合理设置抗震墙,以提高地下室结构的抗震性能。
柱的稳定性计算:对地下室结构中的柱进行稳定性计算,确保其在地震时具有足够的稳定性。
合理设计地下室结构的埋深,以增加结构的稳定性。
在结构设计中充分考虑地下室的排水系统,防止地震时排水系统失效。
利用弹性支撑、耗能支撑等措施来减小地震对地下室结构的影响。
以某实际高层建筑地下室结构的抗震设计为例,该地下室为框架结构,其抗震设计具有以下特点:采用了有限元法进行计算,以获得更精确的结构位移和应力分布。
根据地震烈度指标,将地震影响较大的区域进行特别加强,以提高其抗震性能。
地下结构工程抗震分析方法综述
![地下结构工程抗震分析方法综述](https://img.taocdn.com/s3/m/80afeb447f21af45b307e87101f69e314232fa44.png)
地下结构工程抗震分析方法综述地下结构工程抗震分析方法综述摘要:随着社会经济的快速发展,地下结构工程也得到了快速的发展,其建设规模也越来越大。
但受传统建设观念及抗震材料的不完善,造成地下结构工程的抗震力不足够。
目前,我国在对地下工程的抗震设计过程中,一般应用的是地震系数法,当前已经无法满足地下结构深度持续增加的现状。
为提升低下结构工程抗震能力,就要对抗震分析方法进行研究。
关键词:地下结构工程;抗震分析方法;综述当前,随着各大城市对于地下结构工程的需求量的增加,社会也更加关注地下工程的抗震性能。
传统观念认为,地下结构不会受到外界环境的较大影响,且其个方向有着较大的约束,因此地震不会对其造成严重影响。
但随着人们认识的不断加深,也逐渐开始对于低下结构工程抗震分析方法进行研究。
1 地下结构工程的抗震分析方法的研究与发展这一分析方法的基础是地面建筑结构所应用的抗震理论,在上世纪50年代之前,国内外地下结构所应用的抗震设计主要是日本的大森房吉的静理论,计算分析地下结构的地震作用力的。
而到60年代初期,前苏联的学者开始将抗震研究中的弹性理论在地下结构设计中进行应用,从而对均匀介质中有关单连通及多连通域里的应力状态进行计算分析,得到了地下结构中的地震作用所具有的精确解以及近似解,也就是常用的拟静力法。
在60年代后期,美国开始深入的研究地下结构的抗震问题,其认为地下结构是无法对惯性力进行抵御的,一般都是对其进行吸收与变形的,并开发了多种比较新型的设计思想,还对制定了一定的抗震设计的标准。
在上世纪70年代,日本学者通过对于地震观测资料的研究,以及对于现场进行观测和模型进行试验等方式,对数学模型进行了建立,在与波的多重反射理论进行结合以后,一系列的反应位移法、地基抗力法等多种计算方法应运而出,有效的促进了地下结构工程抗震研究的发展。
2 地下结构工程的地震反应特征一旦发生地震,则地面建筑就会产生一定的地震反应,最明显的表现就是建筑物本身就会出现一些动力反应。
建筑结构设计中的抗震分析
![建筑结构设计中的抗震分析](https://img.taocdn.com/s3/m/7901feed51e2524de518964bcf84b9d528ea2c07.png)
建筑结构设计中的抗震分析随着现代社会的不断发展和经济的快速增长,城市的建筑都不断向高层、大型、复杂化方向发展。
然而,地震这种自然灾害的发生,常常给城市的建筑安全带来巨大的威胁。
为了保证建筑的安全性,抗震分析,逐渐成为了建筑结构设计中不可或缺的重要环节。
一、抗震分析的基本概念抗震分析,就是通过数学模型、工程力学以及地震学等知识,分析建筑结构抵抗地震力的能力,从而得出结构在地震作用下的破坏程度、变形、应力等。
进行抗震分析,可以帮助工程师评估建筑的抗震能力,通过提升结构的抗震能力,确保建筑在地震作用下的安全性。
二、抗震分析的内容和方法抗震分析的基本内容包括建筑的地震反应、动力特性、动态变形、应力、破坏、损伤等,而对于不同的建筑结构类型,分析方法也各有不同。
通常情况下,抗震分析的方法可以分为以下几种:1.总体分析法:在总体分析法中,工程师将建筑视为一个整体系统,通过建筑整体响应的参数,如位移、应力、加速度等,得出建筑结构对地震力的响应情况。
2.分层分析法:分层分析法根据建筑的分层结构性质,对每一层独立进行抗震分析,得出每一层的特征参数。
3.局部分析法:局部分析法就是将建筑结构拆分成若干个局部结构单元,对每个单元分别进行抗震分析,再根据结果整体判断建筑的抗震能力。
4.粘滞阻尼法:粘滞阻尼法是一种动态分析方法,他在动力分析中添加粘滞阻尼器来模拟结构的能量消散机制,从而达到保护建筑的目的。
三、抗震分析设计中的注意事项在进行抗震分析时,不同类型的建筑在地震作用下的行为、变形和损伤模式均有所不同,据此进行抗震设计时也需考虑多方面因素。
一般而言,以下几种因素需要特别注意:1.建筑荷载的计算建筑荷载的计算是抗震分析设计的首要任务之一。
需要分析建筑的质量、形状、刚度、弹性特性等多个方面,确定建筑受力的稳定性,再进行有效的抗震设计。
2.地震特性的采集地震特性是影响建筑受震响应的核心要素,建筑工程师需要在考虑到地震力因素的同时,采集准确的地震特性参数,如地震波速度、地震波频谱等。
浅谈地下建筑结构抗震性能
![浅谈地下建筑结构抗震性能](https://img.taocdn.com/s3/m/81fbed36d5bbfd0a78567337.png)
浅谈地下建筑结构抗震性能关于地下建筑的抗震性能的分析和抗震简化计算方法的探讨起步较迟,在日本神户1995年地震发生之前,人们对地下建筑结构向来缺乏抗震设计。
这是由于地下建筑结构不同于普通地面建筑结构,地下建筑结构受到围岩的的约束作用,在地震时并没有明显的自震特性表现出来。
这是因为地下建筑结构的动力响应主要受到围岩介质的相对变形的影响,而与此同时地下建筑结构对围岩介质也会产生相对的作用,从而形成土——结构相互作用的现象。
人们对地下建筑结构的抗震性能缺乏了解和认识,对地下建筑的抗震性能也不够关注。
直到近些年,关于地下建筑结构关于抗震方面的研究才逐渐兴起,慢慢形成规模。
下面本文就将简单的对地下建筑结构的抗震性能分析与抗震简化计算方法进行一些探讨。
一、地下建筑结构抗震性能分析对于地下建筑结构,建筑结构土层的厚度和建筑所处地理位置的岩层种类等都对地下建筑结构的抗震性能产生影响。
具体说来以下几个的方面因素都会影响到地下建筑的抗震性能。
本文通过假设土体与结构在地震作用下变形协调为基础,通过建立三维地下建筑结构有限元单元整体分析模型,利用ABAQUS这一软件分析地下建筑结构在地震单种工况作用下的抗震性能。
与此同时,对地面结构也同样的建立三维整体有限元模型,比较得出地下建筑结构与之存在的差异,从而研究出土层厚度、围岩性质等因素对地下建筑结构地震响应的影响。
通过模型分析,我们可以得出这样的一些结论。
1、地下建筑结构的埋深对其抗震性能有显著的影响。
这是因为,在一定的范围内,如果地下建筑结构的埋深越深,地下建筑结构的结构内力就会越大,同时地下建筑结构的侧移也会变大。
但当地下建筑结构的埋深突破了这个范围,地下建筑结构的结构内力和侧移受到建筑结构埋深的影响会逐渐变小,甚至埋深的深度对地下建筑结构的结构内力和侧移的影响呈反向的。
2、地下建筑结构所处的围岩性质对地下建筑结构的抗震性能有着直接的影响。
地下建筑结构受到围岩的约束力因围岩的软硬而有所不同,如果围岩比较软那么其对地下建筑结构的约束力就相应的较弱,这就会导致地下建筑结构更易产生较大的变形,从而影响到地下建筑结构的抗震性能。
浅析地下结构抗震的设计与对策
![浅析地下结构抗震的设计与对策](https://img.taocdn.com/s3/m/99c8b7663a3567ec102de2bd960590c69ec3d8ed.png)
浅析地下结构抗震的设计与对策地下结构作为建筑物内部重要的一部分,其抗震设计和对策非常重要。
本文将从地下结构的基础概念入手,分析地下结构抗震设计与对策的原理、方法和实践。
一、地下结构的概念地下结构是指建筑物内部,位于地下的部分,包括地下室、地下车库、地下通道、地下水泵房等。
地下结构的存在不仅方便了人们的生活和工作,也对建筑物的整体结构起到了支撑和加固作用。
但是,在地震等自然灾害的情况下,地下结构往往成为建筑物的薄弱部分,遭受破坏的概率较大。
二、地下结构抗震设计原则地下结构抗震设计的原则一般包括以下几点:1、足够的强度和刚度:地下结构应具有足够的强度和刚度,能够承受地震引起的惯性力和位移反应。
2、优良的建筑材料:建筑材料应具有良好的抗震性能,如减震、抗变形、抗疲劳等。
3、合理的结构形式:地下结构的结构形式应合理,避免出现悬挑现象,减小死重,避免因惯性力和重力作用对基础和地面的影响。
4、合理的布局:地下结构的布局应合理,避免出现太大的开间和不均匀的负荷分配,减小荷载集中作用。
5、有效的支撑系统:地下结构的支撑系统应充分考虑地震作用下的位移和荷载要求,选择合适的支撑形式和支撑材料。
三、地下结构抗震设计方法地下结构抗震设计的方法主要包括以下几种:1、静力分析法:按照地震荷载作用下地下结构的静力响应,计算结构的受力状态、位移和应力等参数。
2、动力分析法:根据地震荷载引起的地面振动,对地下结构进行动力响应分析,计算结构的加速度、位移、应力和变形等参数。
3、试验法:通过试验方法,模拟地震荷载下地下结构的受力和变形状态,验证地下结构的抗震性能。
4、经验法:基于历史地震和类似地下结构的经验数据,推导出一些基本规律和参数,作为地下结构抗震设计的依据。
四、地下结构抗震对策为了提高地下结构的抗震性能,应采取以下措施:1、加固和改造:对于旧的地下结构,应加固和改造其结构和材料,以提高其抗震性能。
2、加强通风和排水:通风和排水系统的效率能够减少地下结构的潮湿度和湿度变化,同时减少腐蚀和损坏的风险。
地下建筑结构抗震性能分析与抗震简化计算
![地下建筑结构抗震性能分析与抗震简化计算](https://img.taocdn.com/s3/m/a24dea628e9951e79b892756.png)
具 有 代 表 分 析 的 意 义 。 在 山 东青 岛 2号 线 一期 工 程 的 实 际施
工情 况 中 , 比较 常 见 的 围岩 是 中硬 土 , 并且 山 东青 岛 2号 线 一 地震 还 是 会 对 地 下建 筑 期 工程 的 沿线 土 壤 大 多为 软 土和 岩 石 ,很 少 出现 埋 深 叫 声 的 造 成严 重 的危 害 , 在 建设 地 下 建 筑 的 时候 , 必 须 提 高地 下建 筑 情 况 . 山 东青 岛 2号 线 一 期 工程 的 围 岩 参 数 弹 性 模 量 , 泊松 比, 密度 , 阻尼 比 等 等 , 在 该 工程 中 , 泊松 比为 0 . 4 5 , 密 度 设 定 的 抗震 性 能 . 保 证 人 们 的 生命 安 全 。
【 摘 要 】 随着城市化的发展 , 建筑工程 的建设越来越 多, 城市土地资源十分 匮乏, 地 下空间被广泛应用 , 地 下建筑不断增 多 , 为保 证地 下建筑
的 安 全和 质 量 , 不 得 不 重 视 地 下 建 筑 结 构 的抗 震 性 能 。 本 文 通过 对地 下 建 筑 结 构 抗 震 性 能 进 行 分析 , 简要介绍地下建筑抗震简化计算 , 希 望 为
地铁里的空气新鲜。 地铁 下 面无 法接 受 阳光 的 照耀 . 必须 安 装 照 明装 置 , 提 高地 铁 工 程 建设 的环 境 。 地铁 施 工还 需要 保 证 工 程 能 够 实现 防 噪 音 、 防排 水 、 防 潮 湿 的 效 果 。 青 岛 2号 线 一 期
工程 要 使 用 的 地 下 空 间主 要 是 通 过 “ 挖” 的方式进 行 . 施 工 过
【 关键 词 】 地下建筑 结构 ; 抗 震性能 ; 抗震简化计 算
【 中图分类号 】 T U 3 5 2 . 1 1
地下建筑结构实用抗震分析方法研究
![地下建筑结构实用抗震分析方法研究](https://img.taocdn.com/s3/m/21ad4aec32d4b14e852458fb770bf78a65293a35.png)
地下建筑结构实用抗震分析方法研究随着城市化进程的加快,地下建筑结构在城市基础设施中的地位日益重要。
由于地下建筑结构在地震作用下的破坏机制和影响因素比地上结构更为复杂,因此开展地下建筑结构的实用抗震分析方法研究具有重要意义。
本文将围绕地下建筑结构的实用抗震分析方法展开研究,旨在为提高地下建筑结构的抗震性能提供理论支持和实践指导。
在过去的几十年中,国内外学者对地下建筑结构的抗震分析进行了大量研究。
这些研究主要集中在地震动反应分析、随机振动分析、屈曲分析及稳定性分析等方面。
虽然这些方法在不同程度上取得了成功,但仍存在一些问题和不足之处,如计算精度不高、实用性不强等。
针对现有研究的不足,本文提出了一种基于地震动反应谱和随机振动分析的实用抗震分析方法。
该方法首先利用地震动反应谱对地震动作用下的结构进行静力分析,得到结构的地震反应,然后利用随机振动分析方法对结构进行动力分析,得到结构在地震作用下的动态响应。
为了验证该方法的正确性和可行性,本文设计了一系列地下建筑结构抗震实验。
实验过程中,通过加速度传感器、位移传感器等仪器对结构的地震响应进行采集和处理,得到结构在不同地震动作用下的反应数据。
结合实验数据,对本文提出的方法进行验证和修正。
实验结果表明,本文提出的基于地震动反应谱和随机振动分析的实用抗震分析方法能够较为准确地预测地下建筑结构在地震作用下的动态响应和稳定性。
同时,该方法具有较好的实用性和可操作性,可为地下建筑结构的抗震设计和评估提供有力支持。
本文的研究成果虽然在一定程度上解决了地下建筑结构抗震分析中的一些问题,但仍存在一些局限性。
例如,本文提出的抗震分析方法在应用中需要输入地震动作用参数,而这些参数的准确获取和处理仍存在一定难度。
本文的方法主要针对常见的地下建筑结构形式,对于一些特殊结构和复杂地形条件下的地下建筑结构的抗震分析仍需进一步探讨。
未来研究方向方面,我们提出以下几点:需要深入研究地震动作用参数的获取和处理方法,提高抗震分析的精度和可靠性;针对不同类型和规模的地下建筑结构,需要研发更为高效和精确的抗震分析方法和计算模型;结合先进的数值模拟技术和人工智能算法,建立基于大数据和云计算的地下建筑结构抗震分析平台,实现地震灾害的有效预测和评估。
地下结构抗震分析综述
![地下结构抗震分析综述](https://img.taocdn.com/s3/m/f142d4b1a1116c175f0e7cd184254b35eefd1a85.png)
地下结构抗震分析综述摘要:随着我国地下空间的大力发展,地震对地下结构产生的不利影响。
查阅文献总结了大开地铁车站震害表现及原因分析,结合相关规范和文献总结地下结构抗震分析方式及地下结构抗震构造措施。
关键词:地下结构;地震灾害;抗震性能;构造措施1 引言地下结构因受周围地基土约束,地震时结构与土层保持同步运动,使得地下结构相较地上结构所受到的惯性力及振动幅度较小。
在阪神地震前,人们普遍认为地下结构有较强抗震能力,但大开车站遭受严重的破坏,使得人们对地下结构抗震性能有了新的认识,引发人们的关注。
本文以大开车站震害表现为例,总结各学者对大开车站遭受破坏的机理。
结合《地铁设计规范》和《建筑抗震设计规范》总结了地下结构的抗震构造措施。
依据各学者对地下结构抗震的研究,总结了地下结构抗震构造措施。
2 大开车站震害及破坏机理阪神大地震于1995年1月17日发生在日本兵库县的7.3级特大都市地震。
震中位于兵库县淡路岛北部的明石海峡,震源深度16千米。
包括兵库县、大阪府和京都府在内的日本京畿地区受灾严重,而这其中又以靠近震源中心的神户市受灾情况最为惨烈。
大开地铁车站采用明挖法,修建于1962~1964年间。
该车站在设计时未考虑抗震要求,仅按静力法设计。
大开站是地下2层构造车站,地下一层是站厅层,地下二层是站台层。
站台层是2面2线侧式结构,中间是35根起主要支撑作用的中柱,两侧分别是列车轨道与站台。
阪神大地震对大开站靠近高速长田一侧造成了毁灭性的打击,负2层25根中柱有不同程度的受损,部分中柱受损最为严重,几乎被压垮到只有原高度的3分之1。
该结构中柱破坏形式包括柱顶剪切破坏,单向压弯破坏,呈灯笼状压弯破坏。
由于中柱丧失承载能力,致使上部结构顶板塌落,呈M形破坏形式。
顶板出现的横向裂缝大致沿纵向相等距离分布,大多出现在中柱的边缘。
侧墙上部腋下部的混凝土发生脱落,内侧的主筋发生失稳,外侧产生了最大宽度200mm的裂缝,左右两侧侧墙上部均向内部发生了一定倾斜。
地下室结构在地震中的振动响应分析
![地下室结构在地震中的振动响应分析](https://img.taocdn.com/s3/m/ea1ba11b4a35eefdc8d376eeaeaad1f347931159.png)
地下室结构在地震中的振动响应分析地震是一种破坏性极大的自然灾害,常常造成建筑物的倒塌和人员伤亡。
在地震发生时,建筑物会受到地震波的作用,产生振动。
为了确保建筑物能够承受住地震的振动,地下室结构的振动响应分析变得至关重要。
地下室结构是现代建筑中常见的一种形式。
它可以用于多种用途,如车库、商店、办公室等。
然而,地下室结构通常处于地面以下,地震发生时它们的振动响应可能更加复杂。
因此,我们需要进行地震响应分析,以更好地了解地下室结构在地震中的行为。
地震响应分析通常包括两个方面:结构的弹性响应和结构的塑性行为。
弹性响应是指结构在地震波作用下的弹性变形和振动。
而塑性行为是指结构在强烈地震波作用下发生的不可逆的变形和破坏。
这两个方面都对地下室结构的安全性和稳定性产生重要影响。
首先,我们需要对地下室结构进行弹性分析。
弹性响应分析是通过数学模型和计算方法来模拟地震波对结构的作用。
在这个过程中,我们需要考虑结构的质量、刚度和阻尼等因素。
通过对这些参数的计算和分析,我们可以得到结构在地震波作用下的弹性响应,例如结构的最大位移、最大加速度等。
接下来,塑性行为对地下室结构的研究非常重要。
塑性行为是指结构在地震作用下发生的塑性变形和破坏。
地震波的强烈振动可能导致结构的塑性屈服和破坏。
这将对结构的可靠性和安全性造成极大威胁。
因此,我们需要进行塑性行为的分析,以确定结构的塑性强度和承载能力。
在地下室结构的塑性行为分析中,我们通常会考虑结构的屈服和破坏机制。
这些机制可能包括钢筋的屈服、混凝土的压碎和破裂等。
通过对这些机制的分析,我们可以确定结构在地震波作用下的塑性变形和破坏形式。
这有助于我们评估结构的安全性,并采取相应的措施来提高结构的抗震能力。
地下室结构的振动响应分析还需要考虑地震波的特性和结构的动力特性。
地震波是地震时产生的能量在地面上传播时所引起的地动波。
地震波的特性决定了结构受到的振动激励的特点。
而结构的动力特性则描述了结构的响应频率和振型等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Open Journal of Transportation Technologies 交通技术, 2019, 8(4), 248-254Published Online July 2019 in Hans. /journal/ojtthttps:///10.12677/ojtt.2019.84030Finite Element Seismic Analysis byTime-History Method betweenMetro Tunnel and Existing BuildingsGuangchao ZhangNortheast Architectural Design & Research Institute Co., Ltd., Shenyang LiaoningReceived: Jul. 1st, 2019; accepted: Jul. 18th, 2019; published: Jul. 25th, 2019AbstractConsidering the effect on one of the metro tunnel close to some important buildings in Shenyang Line 4, in this paper, the elastic time-history method was used to analyze the effect on the metro tunnel structure during the aseismatic design in running period. The time history curve in the seismic fortification intensity case of the maximum principal stress, the minimum principal stress, as well as the relative horizontal displacement of the open-cut and bored structures were obtained. On this basis, this paper analyzed the seismic action affect between the metro tunnel in running period and important buildings nearby. It showed that the maximum principal stress and the minimum principal stress were far less than the the design strength of the metro structures and the whole structural deformation had a linear change during the defending earthquake. The structures presented a terse and clear bearing behavior without any weak portion. Hence, the metro tunnel structures met the requirements of Aseismatic Design Code of China.KeywordsMetro Tunnel, Aseismatic Design, Time-History Method, Midas GTS临近重要建筑物的地下结构抗震时程分析张广超中国建筑东北设计研究院有限公司,辽宁沈阳收稿日期:2019年7月1日;录用日期:2019年7月18日;发布日期:2019年7月25日张广超摘要针对沈阳地铁四号线某临近重要建筑物区间,本文采用弹性有限元时程分析的方法对地铁结构进行抗震分析,得到设防烈度情况下地铁暗挖结构、明挖结构最大主应力、最小主应力及水平相对位移的时程曲线,分析地震作用对临近建筑物的地铁区间安全运营的影响。
分析结果表明:结构的最大主应力及最小主应力均小于隧道结构混凝土的设计强度;结构整体变形近似线性变化,结构传力途径简捷、明确,无结构薄弱部分,区间结构满足抗震设计要求。
关键词地铁区间,抗震设计,时程分析,Midas GTSCopyright © 2019 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/1. 引言随着我国各大、中城市地下轨道交通的迅猛建设,尤其是在中心城区地铁建设中,经常会遇到周边民(商)用建筑、城市市政管线等建(构)筑物与地铁结构距离过近的问题,这一问题在我国快速、大规模城市建设中屡见不鲜[1]。
而在地铁施工与运营期间如何保证建(构)筑物安全稳定及地铁施工期间自身的安全也成为地铁建设工作中不可避免的重难点问题[2] [3]。
地震,这一足以毁灭人类文明的大灾害,亦是地铁建设者们不可避免需要面对的难题。
经过几十年的发展,现如今对地下结构的抗震分析大体可分为拟静力法及动力分析法[4]。
拟静力法将地震作用看作单一方向的动力加速度作用于结构中,其物理意义明确且计算简洁而受到追捧,但此法基于弹性理论,并未考虑时间因素对结构的影响,也未对进入塑性变形阶段的结构做过多考虑[5]。
而动力时程分析方法全面考虑了地震动的振幅、频谱和持时的影响,能够详细分析结构弹塑性地震反应的全过程[6] [7]。
地铁结构周边存有建筑物时,常会因自重及如风荷载、地震作用等偶然荷载通过土体传递至地铁结构中,危及地铁运营安全。
但现有常规地铁结构设计过程中,这一问题并未真正得到充分的重视也未对此类风险工程制定相应的控制标准[8]。
基于此,针对沈阳地铁四号线某临近重要建筑物区间,本文采用弹塑性有限元时程分析的方法对地铁结构进行抗震分析,并获得地震作用对临近建筑物的地铁区间安全运营的影响,为今后类似工程的风险评价及控制结构安全提供一定的参考。
2. 工程概况2.1. 地铁区间概况沈阳地铁四号线某区间单洞单线隧道结构,邻近重要建筑物(7层砖混结构,条形基础),采用矿山法+盖挖法施工,线间距为15 m ,双线结构净距仅6 m ,其结构外侧与邻近建筑最小距离为8.1 m 。
区间覆土约7 m ,矿山法断面为马蹄形,净宽5.08 m ,净高5.28 m ;盖挖法断面为矩形,净宽8.0 m ,净高10.5 m 。
矿山法结构及盖挖结构衬砌厚度分别为0.4 m 、0.6 m (图1)。
区间场地沉积相地层从上至下依次为第四系全新统和更新统黏性土、砂类土及碎石类土组成,其下张广超基岩为前震旦系混合花岗岩体。
场地为非液化场地,属抗震一般地段。
2.2. 场地地震效应“沈阳地铁四号线”工程场地处在活动性较强的郯庐断裂带所涉及的范围内,地质构造复杂,所在区域的地震活动比较频繁,最大地震为2013年1月23日在辽阳灯塔市柳条寨镇发生的5.1级地震。
Figure 1. The location of important buildings near metro tunnel 图1. 区间及邻近重要建筑物区位图场地设计地震分组为第一组,抗震设防烈度为7度,设计基本地震加速度值为0.10 g ;场地特征周期值为0.45 s ,属Ⅲ类场地,在VII 度(0.10 g)、VIII 度(0.20 g)情况下均不会液化,可不考虑地震地表断错的影响。
3. 有限元模型建立3.1. 分析原则及计算动参数本文应用Midas GTS 程序,对区间结构抗震性能进行有限元时程分析。
由于邻近建筑物结构区间隧道横断面符合平面应变原则,因此采用二维模型进行简化分析,将横断面等效为宽度为单位长度的梁体系进行平面计算,将组成结构的各段梁柱分成梁单元,各单元之间以节点相连,纵向长度按1米计。
出于安全考虑,本文采用设防地震(50年超越概率10%)的基岩加速度应谱作为地震反应分析所需的基岩地震动时程,其基岩水平峰值加速度为123 gal ,如图2所示。
Figure 2. The earthquake motion acceleration time-history curve of bedrock图2. 基岩地震动加速度时程曲线张广超3.2. 模型参数计算采用地层结构整体时程分析,该分析是把地震运动视为一个随时间变化的过程,并将地下结构物和周围土体介质视为共同受力变形的整体,通过直接输入地震加速度记录,在满足变形协调的前提下分别计算结构物和土体介质在各个时刻的位移,速度,加速度以及应变和内力,据以验算场地的稳定性。
模型中土体的本构关系采用Mohr-Coulomb 模型,邻近建筑物及区间结构采用常规混凝土弹塑性本构模型。
参考相关规范的分析经验,竖向地震加速度确定为水平向的0.75倍。
各土层参数如表1所示:Table 1. Parameters of soils 表1. 土层参数表土 层 层厚(m) 重度 (kN/m 3) 水平基床系数 K s(MPa/m)垂直基床系数 K c(MPa/m)静止侧压力系数K 0杂填土① 3.5 17 / / / 粉质黏土⑤-1-0 18.6 20.2 35 30 0.33 粉细砂⑤-2-0 1.4 18.8 15 15 0.42 中粗砂⑤-3-03.920.027250.39综合考虑地震波、覆盖层厚度及边界效应的影响,设置计算模型宽度为300 m ,高度为55 m ,模型上表面取至实际地表。
对于范围有限的计算区域,波动能量将在人工截取的边界上发生反射,使波发生震荡,导致模拟失真。
因此,模型边界条件采用弹性吸收边界[9]。
粘弹性边界不仅可以较好地模拟地基的辐射阻尼,而且也能模拟远场地球介质的弹性恢复性能,定义粘性边界需计算土体x 、y 、z 方向上的阻尼比。
阻尼计算采用如下公式:P P C A c A ρ=⋅=⋅(1) S S C A c A ρ=⋅=⋅ (2)()()112Eυλυυ=+− (3)()21EG υ=+ (4)其中,λ:体积弹性系数(kN/m 2);G :剪切弹性系数(kN/m 2);E :弹性模量(kN/m 2);ν:泊松比;A :截面积(m 2)。
本文建立的有限元模型如图3所示:Figure 3. The FEM model using viscous-spring boundary 图3. 粘弹性边界有限元计算模型张广超4. 计算结果分析4.1. 最大/最小主应力时程分析明挖及暗挖区间结构最大/最小主应力时程曲线列于图4和图5。