2018年初三数学中考模型之费马点问题含答案 学习文档

合集下载

中考数学常见几何模型专题12 最值模型-费马点问题(解析版)

中考数学常见几何模型专题12 最值模型-费马点问题(解析版)

专题12 最值模型-费马点问题最值问题在中考数学常以压轴题的形式考查,费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。

【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。

【模型解读】结论1:如图,点M 为△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA +MB +MC 的值最小。

注意:上述结论成立的条件是△ABC 的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A 。

(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN . △△ABE 为等边三角形,△AB =BE ,△ABE =60°.而△MBN =60°,△△ABM =△EBN .在△AMB 与△ENB 中,△AB BEABM EBN BM BN =⎧⎪∠=∠⎨⎪=⎩,△△AMB △△ENB (SAS ). 连接MN .由△AMB △△ENB 知,AM =EN .△△MBN =60°,BM =BN ,△△BMN 为等边三角形. △BM =MN .△AM +BM +CM =EN +MN +CM .△当E 、N 、M 、C 四点共线时,AM +BM +CM 的值最小. 此时,△BMC =180°﹣△NMB =120°;△AMB =△ENB =180°﹣△BNM =120°;△AMC =360°﹣△BMC ﹣△AMB =120°.费马点的作法:如图3,分别以△ABC 的AB 、AC 为一边向外作等边△ABE 和等边△ACF ,连接CE 、BF ,设交点为M ,则点M 即为△ABC 的费马点。

中考数学压轴题费马点

中考数学压轴题费马点

《费马点》解题思路费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离.若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点.一、若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点如图在4ABC中,N BAC N120。

,求证:点A为4ABC 的费马点证明:如图,在△ABC内有一点P延长BA至C,使得AC=AC,作N CAP =N CAP,并且使得AP=AP,连结PP贝IJ4APC四△APC, PC=PC 因为N BAC N120。

所以N PAP=/CAC W60所以在等腰4PAP中,AP N PP所以PA+PB+PC N PP+PB+PC〉BC=AB+AC所以点A为4ABC的费马点二、若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.如图,在4ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在4ABC内的交点为O,求证: 点。

为4ABC的费马点证明:在4ABC内部任意取一点O,;连接OA、OB、OC将4AOC绕着点A逆时针旋转60°,得到A AO, 口连接。

,则O' D=OC所以△AO。

,为等边三角形,OO'=AO所以0A+0C+0B=00,+0B+0/ D则当点B、。

、。

/、D四点共线时,OA+OB+OC最小此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O如图,在4ABC中,若N BAC、N ABC、N ACB均小于120°, O为费马点,则有N AOB=N BOC=N COA=120°,所以三角形的费马点也叫三角形的等角中心例1 如图,在平面直角坐标系中,点A的坐标为(一6, 0), 点B的坐标为(6, 0),点C的坐标为(6, 4内),延长AC至点D 使得CD=AC,过点DE作DE//AB,交BC的延长线于点E,设G为y 轴上的一点,点P从直线y=无x+6城3与y轴的交点M出发,先沿y轴到达点G,再沿GA到达点A,若点P在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定点G的位置,使点P按照上述要求到达A所用的时间最短解解・.・t= GM GA 2GA + GM 2 v v 2 v・•・当2GA+GM最小时,时间最短如图,假设在OM上存在一点G,则BG=AG・・.MG+2AG=MG+AG+BG把4MGB绕点B顺时针旋转60°,得到A M,G/ B,连结GG', MM, ・・・A GG' B、A MM,B都为等边三角形则GG'=G,B=GB又・・・M, G,=MG・・.MG+AG+BG=M/ G’+GG’+AG二•点A、M/为定点・・・AM,与OM的交点为G,此时MG+AG+BG最小・••点G的坐标为(0, 2S)例2 A、B、C、D四个城市恰好为一个正方形的四个顶点,要建立一个公路系统使得每两个城市之间都有公路相通,并是整个公路系统的总长度为最小,则应当如何修建?解:如图,将4ABP绕点N逆时针旋转60°,得到A EBM;同样,将△DCQ绕点C顺时针旋转60°,得到△FCN,连结AE、DF,则A ABE、△DCF均为等边三角形,连结PM、QN,则△BPM,^CQN均为等边三角形所以当点E,M,P,Q,N,F共线时,整个公路系统的总长取到最小值,为线段EF的长,如图,此时点P, Q在EF上,1= 2 = 3= 4 = 30 .进阶训练1.如图,在ABC中,ABC=60 , AB=5, BC=3, P是ABC 内一点,求PA+PB+PC的最小值,并确定当PA+PB+PC取得最小值时,APC的度数.答案:PA+PB+PC的最小值为7,此时APC=120【提示】如图,将APB绕点B逆时针旋转60 ,得到A'BP', 连结PP',A'C.过点A'作A'E BC,交CB的延长线于点E.解Rt A' EC求A'C的长,所得即为PA+PB+PC的最小值.2.如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD上任意一点,将BM绕点B逆时针旋转60得到BN,连结AM, CM, EN(1)当M在何处时,AM+CM的值最小?(2)当M在何处时,AM+BM+CM的值最小?请说明理由;(3)当AM+BM+CM的最小值为,:3 i时,求正方形的边长.答案:(1)当点M落在BD的中点时,AM+CM的值最小,最小值为AC的长;(2)连结CE,当点M位于BD与CE的交点处时.AM+BM+CM的值最小,最小值为CE的长.(3)正方形的边长为我.【提示】(3)过点E作EF BC,交CB的延长线于点F,解Rt EFC 即可.。

中考最值专题--费马点模型

中考最值专题--费马点模型

中考最值专题--费马点模型【模型建立】在三角形中,有一点P到三个顶点距离之和最小,点p在三角形哪里?【问题分析】费马尔问题的思考:如何找到一点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?【问题解决】费马点的确切定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1、如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2、如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

费马点的性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

【模型总结】费马点最小值快速求解:费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换. 秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值。

费马点最值模型典例讲解例1. 如图,矩形ABCD是一个长为1000米,宽为600米的货场,A、D是入口,现拟在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路AP、DP以及PH之长度和为l,求l的最小值.变式练习>>>1.如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A,D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B,C两点)开一个货物入口M,并修建三条专用车道PA,PD,PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)【注】本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转!变式练习>>>2.若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 求PB的值.例题3. 已知:△ABC是锐角三角形,G是三角形内一点。

费马点模型及其例题

费马点模型及其例题

费马点模型及其例题
费马点模型指的是在平面几何中,满足任意三个点中的两个点与第三点之间的距离之和等于第三点到费马点的距离之和的点。

费马点具有以下性质:
1.任意三角形中的费马点是其三边的中垂线的交点,也就是三条中垂线的交点。

2.对于任意三角形ABC,若P是费马点,则PA + PB + PC = AB + BC + CA。

以下是一个费马点模型的例题:
例题:在一个等边三角形ABC中,求费马点的位置。

解答:由于等边三角形的三个角都是60度,因此费马点位于三个顶点的正中间,即三条边的交点。

费马点是等边三角形的重心和垂心的重合点。

除了等边三角形,费马点在其他类型的三角形中也可能出现,但需要满足一定的条件。

例如,在直角三角形中,费马点是斜边的中点;在等腰三角形中,费马点在其底边的垂直平分线上。

总之,费马点模型是一个有趣的数学概念,在平面几何中有着广泛的应用。

通过掌握费马点的性质和特点,可以解决一系列与三角形、四边形等图形有关的几何问题。

中考中的费马点详解加练习

中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

中考专题费马点讲义与练习

中考专题费马点讲义与练习

中考专题费马点讲义与练习从“费马点”说起前言在解题的过程中,我们常常会遇到一些有趣并且有意义的性质。

而其中一个被广泛应用的概念就是费马点。

在本文中,我们将从探究费马点的历史背景开始,逐步深入了解费马点的性质和应用。

一、走近费马点1.设计题费马点是一个有趣的概念。

如图4—11所示,P为△ABC 所在平面上的一点。

当∠APB=∠XXX∠CPA=12°时,点P就被称为费马点。

费马点有许多有趣并且有意义的性质,例如,平面内一点P到△ABC三顶点的距离之和为PA+PB+PC,当点P为费马点时,距离之和最小。

假设A、B、C分别表示三个村庄,我们要选一处建车站,使车站到三个村庄的公路路程的和最短。

如果不考虑其他因素,那么车站应该建在费马点上。

A。

探究费马点1) 历史背景在探究费马点之前,我们需要了解费马点被发现的历史背景。

2) 特殊三角形中的费马点我们可以在特殊三角形中寻找并验证费马点的性质。

例如,当△ABC是等边三角形、等腰三角形或直角三角形时,费马点有哪些性质?3) 小论文我们可以把探究结果写成一篇小论文,并通过与同学交流来修改完善。

2.实例分析如图4—112所示,若P为△ABC所在平面上的一点,且∠APB=∠BPC=∠CPA=120°,则点P被称为△XXX的费马点。

1) 锐角△XXX的费马点如果点P为锐角△XXX的费马点,且∠ABC=60°,那么PB的值为什么?已知PA=3,PC=4.2) 求证如图所示,在锐角△ABC外侧作等边△ACB′,连结BB′。

证明:BB′过△ABC的费马点P,且BB′=PA+PB+PC。

3.探究问题1) 阅读理解如图(1),在已知△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△XXX的费马距离。

如图(2),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD,此为托勒密定理。

部编数学九年级上册专题18旋转模型之费马点型(解析版)含答案

部编数学九年级上册专题18旋转模型之费马点型(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题18 旋转模型之费马点型1.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC 三个内角均小于120°时,费马点P 在△ABC 内部,此时120APB BPC CPA Ð=Ð=Ð=°,PA PB PC ++的值最小.(1)如图2,等边三角形ABC 内有一点P ,若点P 到顶点A ,B ,C 的距离分别为3,4,5,求APB Ð的度数.为了解决本题,小林利用“转化”思想,将△ABP 绕顶点A 旋转到ACP ¢△处,连接PP ¢,此时ACP ABP ¢V V ≌,这样就可以通过旋转变换,将三条线段PA ,PB ,PC 转化到一个三角形中,从而求出APB Ð=______.(2)如图3,在图1的基础上延长BP ,在射线BP 上取点D ,E ,连接AE ,AD .使AD AP =,DAE PAC Ð=Ð,求证:BE PA PB PC =++.(3)如图4,在直角三角形ABC 中 ,90ABC Ð=°,30ACB Ð=°,1AB =,点P 为直角三角形ABC 的费马点,连接AP ,BP ,CP ,请直接写出PA PB PC ++的值.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.2.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )A.B.C.D.3.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.易证△AMD≌△AGF,∴MD∴ME+MA+MD=ME+EG过F作FH⊥BC交BC于4.问题背景:如图,将ABC D 绕点A 逆时针旋转60°得到ADE D ,DE 与BC 交于点P ,可推出结论:PA PC PE+=问题解决:如图,在MNG D 中,6MN =,75M Ð=°,MG =O 是MNG D 内一点,则点O 到MNG D 三个顶点的距离和的最小值是___________5.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为BC=_____.6.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.7.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点P 是ABC V 内的一点,将APC △绕点A 逆时针旋转60°到AP C ¢¢V ,则可以构造出等边APP ¢V ,得AP PP ¢=,CP CP ¢=,所以PA PB PC ++的值转化为PP PB P C +¢+¢¢的值,当B ,P ,P ¢,C 四点共线时,线段BC 的长为所求的最小值,即点P 为ABC V 的“费马点”.(1)【拓展应用】如图1,点P 是等边ABC V 内的一点,连接PA ,PB ,PC ,将PAC △绕点A 逆时针旋转60°得到AP C ¢¢V .①若3PA =,则点P 与点P ¢之间的距离是______;②当3PA =,5PB =,4PC =时,求AP C Т的大小;(2)如图2,点P 是ABC V 内的一点,且90BAC Ð=°,6AB =,AC =PA PB PC ++的最小值.②∵△ABC 为等边三角形,∴AB =AC ,∠BAP +∠PAC =60°,又∵APP ¢V 是等边三角形,则,60ACP A CP ACP ACP Ð=ÐÐ+Ð=°′′′,在Rt ABC V 中,(22262BC AB AC =+=+8.背景资料:在已知ABC V 所在平面上求一点P ,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当ABC V 三个内角均小于120°时,费马点P 在ABC V 内部,当120APB APC CPB Ð=Ð=Ð=°时,则PA PB PC ++取得最小值.(1)如图2,等边ABC V 内有一点P ,若点P 到顶点A 、B 、C 的距离分别为3,4,5,求APB Ð的度数,为了解决本题,我们可以将ABP △绕顶点A 旋转到ACP ¢△处,此时ACP ABP ¢V V ≌这样就可以利用旋转变换,将三条线段PA 、PB 、PC 转化到一个三角形中,从而求出APB Ð=_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与ABC V 的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,ABC V 三个内角均小于120°,在ABC V 外侧作等边三角形ABB ¢V ,连接CB ¢,求证:CB ¢过ABC V 的费马点.(3)如图4,在RT ABC V 中,90C Ð=°,1AC =,30ABC Ð=°,点P 为ABC V 的费马点,连接AP 、BP 、CP ,求PA PB PC ++的值.(4)如图5,在正方形ABCD 中,点E 为内部任意一点,连接AE 、BE 、CE ,且边长2AB =;求AE BE CE ++的最小值.(2)证明:将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,∵△APB ≌△AB′P′,∴AP =AP′,PB =PB′,AB =AB′,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP ,∵PA PB PC PP P B PC ¢¢¢++=++,∴点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∴点P 在CB′上,∴CB ¢过ABC V 的费马点.(3)解:将△APB 逆时针旋转60°,得到△AP′B′,连结BB′,PP′,∴△APB ≌△AP′B′,∴AP′=AP ,AB′=AB ,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP ,BB′=AB ,∠ABB′=60°,∵PA PB PC PP P B PC¢¢¢++=++∴点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,(4)解:将△BCE 逆时针旋转60°得到△CE′B′,连结∴△BCE ≌△CE′B′,∴BE =B′E′,CE =CE ′,CB =CB′,∵∠ECE′=∠BCB′=60°,∴△ECE′与△BCB′均为等边三角形,∴EE ′=EC ,BB′=BC ,∠B′BC =60°,∵AE BE CE AE EE E B ¢¢¢++=++,∴点C ,点E ,点E′,点B′四点共线时,AE【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,直角三角形性质是解题关键.9.如图,在△ABC中,∠BAC=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.10.【问题提出】(1)如图1,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM ,CM .若连接MN ,则BMN △的形状是________.(2)如图2,在Rt ABC V 中,90BAC Ð=°,10AB AC +=,求BC 的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD ,6AB BC +=千米,60ABC Ð=°,公园内有一个儿童游乐场E ,分别从A 、B 、C 向游乐场E 修三条,,AE BE CE ,求三条路的长度和(即AE BE CE ++)最小时,平行四边形公园ABCD 的面积.(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;①把图形补充完整(无需写画法);②求2EF的取值范围;(2)如图2,求BE+AE+DE的最小值.②∵四边形ABCD是正方形,∴BC=AB=22,∠B=∴AC=22+=AB BC∵△ADE绕点D逆时针旋转由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 在Rt △AFH 中,∠FAH =30°,AB =12.如图1,点M 为锐角三角形ABC 内任意一点,连接,,AM BM CM .以AB 为一边向外作等边三角形ABE △,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .(1)求证:AMB ENB △≌△;(2)若AM BM CM ++的值最小,则称点M 为ABC V 的费马点.若点M 为ABC V 的费马点,求此时,,AMB BMC CMA ÐÐÐ的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.【答案】(1)见解析;(2)120BMC Ð=°:120AMB Ð=°;120AMC Ð=°;(3)见解析【分析】(1)结合等边三角形的性质,根据SAS 可证△AMB ≌△ENB(2)连接MN ,由(1)的结论证明ΔBMN 为等边三角形,所以BM =MN ,即AM+BM+CM =EN+MN+CM ,所以当E 、N 、M 、C 四点共线时,AM+BM+CM 的值最小,从而可求此时∠AMB 、∠BMC 、ΔCMA 的度数;(3)根据(2)中费马点的定义,又△ABC 的费马点在线段EC 上,同理也在线段BF 上,因此线段EC 和BF 的交点即为△ABC 的费马点.【详解】解:(1)证明:∵ABE △为等边三角形,∴,60AB BE ABE =Ð=°.而60MBN Ð=°,∴ABM EBN Ð=Ð.在AMB V 与ENB △中,AB BE ABM EBNBM BN =ìïÐ=Ðíï=î∴(SAS)AMB ENB V V ≌.(2)连接MN .由(1)知,AM EN =.∵60,MBN BM BN Ð=°=,∴BMN △为等边三角形.∴BM MN =.∴AM BM CM EN MN CM ++=++.∴当E 、N 、M 、C 四点共线时,AM BM CM ++的值最小.此时,180120BMC NMB Ð=°-Ð=°:180120AMB ENB BNM Ð=Ð=°-Ð=°;360120AMC BMC AMB Ð=-Ð-Ð=°°.(3)如图2,分别以ABC V 的AB ,AC 为一边向外作等边ABE △和等边ACF V ,连接,CE BF ,相交于M ,则点M 即为ABC V 的费马点,由(2)知,ABC V 的费马点在线段EC 上,同理也在线段BF 上.因此线段EC 与BF 的交点即为ABC V 的费马点.(方法不唯一,正确即可)【点睛】本题考查了等边三角形的性质,三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.13.若点P 为△ABC 所在平面上一点,且∠APB =∠BPC =∠CPA =120°,则点P 叫做△ABC 的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即PA +PB +PC 最小.(1)如图1,向△ABC 外作等边三角形△ABD ,△AEC .连接BE ,DC 相交于点P ,连接AP .①证明:点P 就是△ABC 费马点;②证明:PA +PB +PC =BE =DC ;(2)如图2,在△MNG 中,MN =,∠M =75°,MG =3.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是 .∵∠APT =60°,PT =PA,∴△APT 是等边三角形,∴∠PAT =60°,AT =AP ,∵∠DAB =∠TAP =60°,∴∠DAT =∠BAP ,∵AD =AB ,∴△DAT ≌△BAP (SAS ),∴PB =DT ,∴PD =DT+PT =PA+PB ,∴PA+PB+PC =PD+PC =CD =BE .(2)如图2:以MG 为边作等边三角形△MGD ,以OM 为边作等边△OME .连接ND ,作DF ⊥NM ,交NM 的延长线于F .∵△MGD 和△OME 是等边三角形∴OE =OM =ME ,∠DMG =∠OME =60°,MG =MD ,∴∠GMO =∠DME在△GMO 和△DME 中,OM ME GMO DME MG MD =ìïÐ=Ðíï=î,∴△GMO ≌△DME (SAS ),∴OG =DE∴NO+GO+MO =DE+OE+NO14.如图,在ABC V 中,30,6,5ACB BC AC Ð=°==,在ABC V 内部有一点P ,连接PA 、PB 、PC .(加权费马点)求:(1)PA PB PC ++的最小值;(2)PA PB ++的最小值(3)PA PB ++的最小值;(4)2PA PB +的最小值(5)12PA PB +的最小值;(6)24PA PB ++的最小值(7)42PA PB ++的最小值;(8)345PA PB PC ++的最小值。

中考复习之线段和差最值之费马点问题-附练习题含参考答案

中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。

费马点初中几何模型经典例题

费马点初中几何模型经典例题

费马点,又称为费马-托里拆利点,是三角形内的一个特殊点,具有以下性质:从该点向三角形的三个顶点连线,与三角形的三边形成的三个小三角形中,每个小三角形的角都是120度。

此外,从费马点到三角形三个顶点的距离之和最短。

下面是一个关于费马点的初中几何模型经典例题:
例题:在三角形ABC中,求作一点P,使得PA + PB + PC的和最小。

解题步骤:
1.作三角形的外接圆:首先,作出三角形ABC的外接圆。

2.找出外接圆上的两交点:然后,在三角形ABC的一边上(例如边BC)作一个等边三角形BCD(其
中D点位于BC的延长线上)。

同样地,在三角形ABC的另一边上(例如边AC)也作一个等边三角形ACE。

这样,等边三角形BCD和等边三角形ACE会与三角形ABC的外接圆相交于两点F和G。

3.连接FG并找出交点:连接点F和G,它们会相交于一点P。

4.验证结果:通过计算或几何证明,可以验证点P就是使得PA + PB + PC和最小的点。

这个例题展示了费马点的性质和应用,通过构造等边三角形和利用外接圆,我们可以找到满足条件的点P。

在实际解题过程中,还需要结合三角形的具体形状和条件进行具体分析。

中考数学复习专题:几何最值模型—费马点专题

中考数学复习专题:几何最值模型—费马点专题

【费马点】平面内,到三角形的三个顶点的距离之和最小的点称为费马点【结论】如图所示,△ABC 的三个内角均不大于120°,P 为三角形内一点,当点P 与△ABC 三个顶点的连线夹角均为120°时,PA +PB +PC 的值最小.(PA +PB +PC=AD=BE=CF ) 【费马点作法】如图,以△ABC 的三边向外分别作等边三角形,然后把外面的三个顶点与原三角形的相对顶点相连,交于点P ,点P 就是原三角形的费马点.【证明】如图,将△ABP 绕点B 逆时针旋转60°,得到△A 'BP ',连接P P ',则△BPP 是等边三角形,所以PB =PP '. 由旋转的性质可得P A +PB +PC =P 'A '+PP '+PC >A 'C 因此,当A '、P '、P 、C 四点共线时,P A 十PB 十PC 的值最小.因为△BPP '是等边三角形,即∠BPP '=60°, 所以∠BPC =120°.因为∠APB =∠A 'P 'B ,∠BP 'P =60°, 所以∠APB =180°-60°=120°,则∠CP A =360°-120°-120°=120°, 故∠BPC =∠APB =∠CP A =120°.CBAPPDFECBAA'P'ABCP费马点结论:1) 对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点; 2) 对于有一个角超过120°的三角形,费马点就是这个内角的顶点. 费马问题解决问题的方法是运用旋转变换.1) 利用旋转把三条共点线段转化成折线段, 2) 利用两点之间线段最短 构造直角三角形,利用勾股定理 模型巧记求到三角形三个顶点距离和的最小值,只需要以三角形的一条边为边作等边三角形,那么原三角形的第三个顶点和等边三角形的第三个顶点的距离就是最小值 例1、P 是边长是2的等边△ABC 内的一点, 求PA+PB+PC 的最小值【分析】把△APC 绕A 逆时针旋转60°,得到△AP'C',连接PP' 易知△APP'是等边三角形∴PC=P'C∴∠CAC'=60°∴P A+PB+PC=PB+PP'+PC’当且仅当BPP'C '共线时取得最小值∵AB =2;∴AD =1;BD =3∴.C'D =3∴BC =23 点评:①用旋转把三条共点线段转化成折线段 ②利用两点之间线段最短③构造直角三角形,利用勾股定理例2、P 是边长是1的正方形ABCD 内的一点, 求PA+PB+PC 的最小值【分析】把△APB 绕B 逆时针旋转,得到△BP'A',连接PP' ∴△BPP '是等边三角形 ∴BP=BP ' ∴∠PBP '=60°∴P A+PB+PC=P'A'+PP'+PC ,当且仅当CPP'A'共线时取得最小值∵AB =AB '=1;A'P'PCBA∴A'M =12;BM =32;∴CM =232;CA '=622例3、P 是△ABC 内的一点,BC=6,AC=5,∠ACB =30°, 求P A+PB+PC 的最小值 【分析】把△APC 绕C 顺时针旋转60°,得到△CP'A',连接PP' ∴△CPP '是等边三角形 ∴CP=PP'∴∠PCP '=60°∴P A+PB+PC=P 'A'+PB+PP '当且仅当BPP ’A ’共线时取得最小值 ∵CA=CA '=5;CB=6,∠ACB =30° ∴∠A 'CB =60° ∴A 'B =61什么是加权费马点问题?标准的费马点问题式中的三条线段的系数全为1。

第8讲费马点最值模型(解析版)

第8讲费马点最值模型(解析版)

第8讲费马点最值模型(解析版)中考数学几何模型8:费马点最值模型XXX问题思考:如何找一点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?解法:费马点的定义是指到三角形三个顶点距离之和最小的点。

费马点有如下主要性质:到三角形三个顶点距离之和最小,连接三顶点所成的三夹角皆为120°。

费马点最小值快速求解方法是运用旋转变换,以△XXX任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值。

典题探究:已知:△ABC是锐角三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°.求证:GA+GB+GC的值最小.证明:将△BGC逆时针旋转60°,连GP,DB.则△CGB≌△CPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD。

BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP 和△BCD都是等边三角形。

∵∠AGC=120°,∠CGP=60°.∴A、G、P三点一线。

∵∠CPD=120°,∠CPG=60°.∴G、P、D三点一线。

∴AG、GP、PD三条线段同在一条直线上。

∵GA+GC+GB=GA+GP+PD=AD.∴G点是等腰三角形内到三个顶点的距离之和最小的那一点。

变式练:如图,P是边长为1的等边△ABC内的任意一点,求t=PA+PB+PC的取值范围。

解法:将△BPC绕点B顺时针旋转60°得到△BP'C',易知△BPP'为等边三角形。

从而PA+PB+PC=PA+PP'+P'C'≥AC'(两点之间线段最短),从而t≥3.过P作BC的平行线分别交AB、AC于点M、N,易知MN=AN=AM。

因为在△BMP和△PNC中,PB∠ANM=∠AMN,所以XXX<AM。

PB+PC≥MN,从而t=PA+PB+PC≥AM+MN=3.所以t的取值范围为[3,∞)。

费马点问题

费马点问题

费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC 中,∠ACB =90°,∠ABC =60°,BCP 是△ABC 内一动点,将△ACP 绕点A 逆时针旋转60°得到△ADE ,连接PE 、BD ,则PA +PB +PC 的最小值为___________.【例题2】如图,等边△ABC 中,AB =2,若点P 是△ABC 内部一个动点,则P A +PB +PC 的最小值为__________.【例题3】如图,Rt △ABC 中,∠ABC =90°,AB =2,BC =P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题4】如图,正方形ABCD 内一动点E ,到顶点A 、B 、C 的距离之和AE +BE +CE,则这个正方形边长为____________.PEDCBAABCPAB CPE DCBA【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCAGNABCD P类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【例题12】如图,在△ABC中,AB=AC=4,∠BAC=90°,点P为△ABC内一点,则12P A+PBPC的最小值为___________.AB CDEMAB CDEFPC BAAB CP【例题13】如图,点P是边长为2的等边△ABCP A+PB+12PC的最小值为_________.AB CP费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC中,∠ACB=90°,∠ABC=60°,BCP是△ABC内一动点,将△ACP绕点A逆时针旋转60°得到△ADE,连接PE、BD,则PA+PB+PC的最小值为___________.【答案】7.【例题2】如图,等边△ABC中,AB=2,若点P是△ABC内部一个动点,则P A+PB+PC的最小值为__________.【答案】(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题3】如图,Rt△ABC中,∠ABC=90°,AB=2,BC=P是△ABC内一个动点,则P A+PB+PC的最小值为__________.【答案】.(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题4】如图,正方形ABCD内一动点E,到顶点A、B、C的距离之和AE+BE+CE,则这个正方形边长为____________.【答案】2.(提示:将△ABE绕点A顺时针旋转60°得到△AB′E′,∠B′BP=90°-60°=30°,设B′P=x,则PB,B′B=BC=2x,在Rt△B′PC中,x2++2x)2=2,解得x=1,∴BC=PEDCBAABCP P′A′MPCBAAB CPP′B′NMPCBAEDCBAABCDEPB′E′2)【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【答案】7.(提示:将△ABP 绕点A 顺时针旋转60°得到△AB ′P ′)【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【答案】.(提示:费马点)【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【答案】(提示:将△MOG 绕点M 顺时针旋转60°得到△MO ′G ′)【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCB AABCPP′B′E FP′B′PD CBAGNG′O′HNMOGABCD PC′P′PFE D CBA1.(提示:将△APC绕点A逆时针旋转60°得到△AP′C′)类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【答案】4+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.【答案】15+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【答案】(提示:将△ABP绕点B逆时针旋转90°得到△A′BP′)AB CDEMAB CDEFE′B′C′F′NMFEDCBAPCBA ABCEPP′A′【例题12】如图,在△ABC 中,AB =AC =4,∠BAC =90°,点P 为△ABC 内一点,则12P A +PBPC 的最小值为___________.【答案】(提示:方法1,将△APC 缩小到原来的12,并绕点C 顺时针旋转90°得到△AP ′C ′;方法2,原式=12(P A +2PBPC ),将△APC 扩大到原来的2倍,并绕点C 顺时针旋转90°得到△A ′P ′C )【例题13】如图,点P 是边长为2的等边△ABCP A +PB +12PC 的最小值为___________..(提示:方法1,将△APC 缩小到原来的12,并绕点A 逆时针旋转60°得到△AP ′C ′;方法2,将△APC,并绕点C 逆时针旋转30°得到△A ′P ′C ;方法3,原式=12A +2PB+PC ),将△APCC 顺时针旋转90°得到△A ′P ′C )A BCPP′A′PEC B AABCPABCE PC′P′ABCPA′P′。

初中数学几何模型与最值问题04专题-费马点中三线段模型与最值问题(含答案)

初中数学几何模型与最值问题04专题-费马点中三线段模型与最值问题(含答案)

初中数学最值问题专题4 费马点中三线段模型与最值问题【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。

主要分为两种情况:(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。

(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题【模型展示】问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠P AB=∠BPC=∠CP A=120°.在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.有这两个结论便足以说明∠P AB=∠BPC=∠CP A=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!【例题】1、如图,四边形ABCD 是菱形,AB =4,且∠ABC =∠ABE =60°,G 为对角线BD (不含B 点)上任意一点,将∠ABG 绕点B 逆时针旋转60°得到∠EBF ,当AG +BG +CG 取最小值时EF 的长( )A .B .C .D .2、如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,MG =O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________3、如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.4、如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.5、如图,四边形ABCD 是正方形,∠ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .∠ 求证:∠AMB ∠∠ENB ;∠ ∠当M 点在何处时,AM +CM 的值最小;∠当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ∠ 当AM +BM +CM 的最小值为13 时,求正方形的边长.EA DB CNMF EA DB CNM6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=(1)如图1,将∠ADE绕点D逆时针旋转90°得到∠DCF,连接EF;∠把图形补充完整(无需写画法);∠求2EF的取值范围;(2)如图2,求BE+AE+DE的最小值.专题4 费马点中三线段模型与最值问题答案【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

°,所以费马点是三力平衡的点。

三力平衡时三力夹角皆为1204.ABH是等边三角形。

例1:已知:△GA+GB+GH最小求证:G是其重心。

△ABH是等边三角形。

证明:∵BGH=120°。

∠AGB=∠∴∠AGH=DBH. HB为边向右上方作等边三角形△以GHP. 为边向右上方作等边三角形△以HGAH=BH=AB=12.∵. °, ∠HGP=60 ∠AGH=120°∴三点一线。

G、P A、∴两点。

再连PD. °∠GHB=30GHP和△BDH都是等边三角形, ∵△ABH、△,.°∠PHD=30∴中和△HPD 在△HGBHG=HP∵PHD;∠GHB=∠HB=HD;(SAS)∴△HGB≌△HPD;°;HPD=∠HGB=120 ∴∠.°∠HPG=60 ∵三点一线。

、D G、P ∴且同在一条直线上。

AG=GP=PD, ∴GA+GH+GB=GA+GP+PD=AD.∵G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

∴°。

BGC=120∠AGB=∠2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=例最小求证:GA+GB+GC ;HGBBGC证明:将△逆时针旋转60°,连GP,DB.则△≌△HPDPCD. GCB=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠∠∴CPD=∠, GCP=60°∠∵,∠BCD=60°∴都是等边三角形。

和△△GCPBCD ∴. CGP=60°∠∠∵AGC=120°,三点一线。

PGA ∴、、页 1 第∵∠CPD=120°, ∠CPG=60°.∴G、P、D三点一线。

∴AG、GP、PD三条线段同在一条直线上。

∵GA+GC+GB=GA+GP+PD=AD.∴G点是等腰三角形内到三个顶点的距离之和最小的哪一点,费马点。

但它不同于等边三角形的费马点是重心。

例3:已知:△ABC是锐角三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△CGB≌△CPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

∵∠AGC=120°, ∠CGP=60°.三点一线。

、P A、G∴. °∠CPG=60 ∠CPD=120°, ∵三点一线。

、D G、P∴三条线段同在一条直线上。

、PD AG、GP∴GA+GC+GB=GA+GP+PD=AD.∵一哪小的G点是等腰三角形内到三个顶点的距离之和最∴点,费马点。

但它不同于等边三角形的费马点是重心。

PCPB?t?PA??ABC P. 的取值范围是边长为1的等边(费马点问题)如图,内的任意一点,求''C?BPC?BP'?BBPP从而为等边三角形60解:Part1:将°得到.绕点,易知顺时针旋转3?t'ACC'??PP'?P'PA?PB?PC?PA(两点之间线段最短). ,从而AM?MN?ANAB、ACM、NBC P.于点作的平行线分别交Part2:过,易知CNN?P?PNCC?P BM?PBMP??BMP①,中,因为在和②。

AMN?ANM??APM??AM?PA +③可得①+又②③. ,所以2t?3?PC2PB?t?PA?t?.即综上,的取值范围为.“费马点”与中考试题——费马点费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.的三角形,费120°就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过的三角形,费马点就是这个内角的顶点.120°的点,对于有一个角超过120°马点是对各边的张角都是ABC△最小?这就是所谓的费尔PCPB+三个顶点的距离之和PA下面简单说明如何找点P使它到+ 马问题.1图.′′,连接PPC°A1:如图,把△APC绕点逆时针旋转60得到△AP′解析PC,=CP′=为等边三角形,APP则△′AP PP,′′页 2 第所以PA+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,PA+PB+PC最小.这时∠BPA=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BPA-∠APC=360°-120°-120°=120°△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°因此,当,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2019年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值2?6,求此正方形的边长.为图2图3△ABC三个顶点的距离之和,这实际C三点的距离之和就是到到A、B、,发现点分析:连接AC E是费尔马问题的变形,只是背景不同.解如图2,连接AC,把△AEC绕点C顺时针旋转60°,得到△GFC,连接EF、BG、A G,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,∴AE+BE+CE = BE+EF+FG(图4).∵点B、点G为定点(G为点A绕C点顺时针旋转60°所得).∴线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG上(图3).a,那么设正方形的边长为62aaa2===BOCO=, GO.GC,2262aa =+BG=BOGO∴.+22页3 第三点的距离之和的最小值为点E到A、B、C∵6262?aaa+,解得=∴=2.22注本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.xOy中,△ABC三个顶点的坐标分别为如图4,在平面直角坐标系例2 (2009年北京中考题)1??????6,0?6,0AB34C0,AC的延长线于AB交BC∥,过点D作DE,延长AC到点,D, 使CD=,2点E.(1)求D点的坐标;y?kx?b将四边形,若过BCDFE点的直线C点关于直线DE的对称点F,分别连结DF、EF2()作分成周长相等的两个四边形,确定此直线的解析式;y?kx?b与y轴的交点出发,先沿y为y轴上一点,点P从直线轴到达G点,再沿GA(3)设G 到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.63)(过程略),.分析和解:(1)D点的坐标(3y??3x?63(过程略).的解析式为BM (2)直线图4(3)如何确定点G的位置是本题的难点也是关健所在.设Q点为y轴上一点,P在y轴上运动的速MQAQ1?AQ+就是点到达PA运动的时间为P沿M→Q→A点所用的时间最短,MQ使,度为v,则2vv2最小,或MQ+2AQ最小.使MOBQ最小,就是在直线上找点GAQ∴MQ+2最小就是MQ+AQ+AQ∵解法1 BQ=,三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三、BM 他到A、角形的信息,考虑作旋转变换.B′△QQ5MM连接Q°,绕点把△MQBB顺时针旋转60得到△M′′B,QQ′、′(图),可知△′B、MM都是等边三角形,则QQ′=.BQ,=M又′Q′MQ′Q+AQ.QQ′+′= ++∴MQAQBQM点Q′、∵点AM为定点,所以当、BQ++MQ上时,MA 两点在线段Q′′AQQ′最小.由条件可证明页 4 第1MG.).可证OG=A M′与OM的交点就是所要的G点(图6总在AM′上,所以2图5 图6 图7163,可得∠=BMO,由OB=6,OM考虑MQ+AQ最小,过Q作BM的垂线交BM于K 解法2 21MQ=.,所以=30°QK21MQ+AQ最小,只需使AQ+要使QK最小,根据“垂线段最短”,可推出当点A、Q、K在一条2直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.63,可得=OM由OB=6,∠OBM=60°,∴∠BAH=30°23 =AO·tan∠BAH在RtOAG中,OG=△23)(G点为线段OC的中点)∴G点的坐标为(0.,例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.图823.)利用相似三角形可求PB的值为:解(1 (2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CPA=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC = ∠APC =120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即B、P、E 三点在同一直线上页 5 第∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.又PE=PC,B′E= PA,∴BB′=E B′+PB+PE=PA+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决页 6 第。

相关文档
最新文档