材料力学中的内力的符号规定

材料力学中的内力的符号规定
材料力学中的内力的符号规定

剪力是微段有左高右低错动(顺时针错动)为正。弯矩是下凸(下部手拉)为正。

向左转|向右转

向左转|向右转

向左转|向右转

向左转|向右转

有个关系图表希望牢记。题目做多了其意自现。向左转|向右转

举个例子吧!集中荷载和均布荷载的弯矩。

向左转|向右转

向左转|向右转

向左转|向右转

向左转|向右转

提问者评价

太感谢了,真心有用

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

材料力学内力图绘制详细讲解

一、由外力直接绘制轴力图 例 5.4 力图。 解 根据外力直接绘制轴力图(见图5.18(b)),绘图分析过程及步骤如下。 从左向右绘制,始终取右边部分为研究体。在截面A 有集中力F 1,使研究体拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 1大小,此时 F N =(0+500)N=500 N ;在AB 段没有外力,故轴力不变;在截面B 有集中力F 2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 2大小,此时F N =(500+420)N=920 N ;在BC 段没有外力,故轴力不变;在截面C 有集中力F 3,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F 3大小,此时F N =(920-280)N=640 N ;在CD 段没有外力,故轴力不变;在截面D 有集中力F 4,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F 4大小,此时 F N =(640-800)N =-160 N ;在DE 段没有外力,故轴力不变;在截面E 有集中力,由于轴力曲线与轴线围成封闭图形,故轴力 (b ) (a)

突变为0。 例5.5有一根阶梯轴受力如图5.19(a)所示,试绘制阶梯轴的轴力图。 图5.19 解从右向左绘制,始终取左变部分为研究体。根据外力直接绘制轴力图(见图5.19(b)),绘图分析过程及步骤如下: 在截面A有集中力F1,使研究体压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F1大小,此时F N=(0-10)kN=-10 kN;在AB段有均匀分布载荷,使研究体受拉伸变形,故轴力以斜直线规律向正方向渐变,轴力渐变大小为均匀分布载荷大小,此时F N=(-10+10×2)kN=10 kN;在截面B没有力,故此截面轴力没有变化;在BC段没有外力,故轴力不变;在截面C有集中力F2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F2大小,此时F N=(10+10)kN=20 kN;在CD段没有外力,故轴力不变;在截面D有集中力,由于轴力曲线与轴线围成封闭图形,故轴力突变为0.

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

2015年材料力学性能思考题大连理工大学.

一、填空: 1.提供材料弹性比功的途径有二,提高材料的,或降低。 2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是 具有的普遍现象。 3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。 5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。消除包申格效应的方法有和。 6.单向静拉伸时实验方法的特征是、、必须确定的。 7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。 8. 依据磨粒受的应力大小,磨粒磨损可分为、 、三类。 9.解理断口的基本微观特征为、和。10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。 11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用 、标记。 16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。 17. 机件的失效形式主要有、、三种。 18.低碳钢的力伸长曲线包括、、、 、断裂等五个阶段。 19.内耗又称为,可用面积度量。 20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等于测量形成拉伸颈缩时的。应变硬化指数与金属材料的层错能有关,层错能低

(完整word版)金属材料力学性能练习题

第二章第一节金属材料的力学性能 一、选择题 1.表示金属材料屈服强度的符号是()。 A.σ e B.σ s C.σ b D.σ -1 2.表示金属材料弹性极限的符号是()。 A.σ e B.σ s C.σ b D.σ -1 3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是()。 A.HB B.HR C.HV D.HS 4.金属材料在载荷作用下抵抗变形和破坏的能力叫()。 A.强度 B.硬度 C.塑性 D.弹性 二、填空 1.金属材料的机械性能是指在载荷作用下其抵抗()或()的能力。 2.金属塑性的指标主要有()和()两种。 3.低碳钢拉伸试验的过程可以分为弹性变形、()和()三个阶段。 4.常用测定硬度的方法有()、()和维氏硬度测试法。 5.疲劳强度是表示材料经()作用而()的最大应力值。 三、是非题 1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。() 2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。() 四、改正题 1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。 2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。 3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。 4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。

5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。 五、简答题 1.说明下列机械性能指标符合所表示的意思:σ S 、σ 0.2 、HRC、σ -1 。 2.说明下列机械性能指标符合所表示的意思:σ b 、δ 5 、HBS、a kv 。 2.2金属材料的物理性能、化学性能和工艺性能 一、判断题 1.金属材料的密度越大其质量也越大。() 2.金属材料的热导率越大,导热性越好。() 3.金属的电阻率越小,其导电性越好。() 二、简答题: 1.什么是金属材料的工艺性能?它包括哪些? 2.什么是金属材料的物理性能?它包括哪些? 3.什么是金属材料的化学性能?它包括哪些?

衡量金属材料力学性能的指标名称 符 基本单位及其含义说明

指标 法定计量单位 计算公式 试验仪器 含义说明 名称 符号 名称 单位 弹性 弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性 弹性指标 正弹性模量 E 兆帕〔斯卡〕 MPa 式中 σ──应力 ε──应变 P ──垂直应力(N ) l 0──试样原长(mm ) F 0──试样原来的横截面积(mm 2) Δl ──绝对伸长量(mm ) 拉伸试验机或万能材料试验机 金属在弹性范围内,外力和变形成比例地增长,即应力与应变成正比例关系时(符合虎克定律),这个比例系数就称为弹性模数或弹性模量。根据应力,应变的性质通常又分为:正弹性模数(E )和剪切弹性模数(G ),弹性模数的大小,相当于引起物体单位变形时所需应力之大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模数愈大,刚度也愈大,亦即在一定应力作用下,发生的弹性变形愈小 切变弹性模量 G 兆帕〔斯卡〕 MPa 式中 ──切应力 ──相应的扭转滑移 M ──扭转力矩 l 0──试样计算长度(mm ) ──计算长度l 0两端的扭 转角度(经度) ──扭转时试样截面相对于轴线的极惯性矩(对圆截面 )(mm 4) 扭转试验机或万能材 料试 验机 比例极限 σp 兆帕 〔斯卡〕 MPa 式中 ──比例极限载荷(N ) F ──试样横截面积 (mm 2) 拉伸试验机 或万 能材 料试验机 指伸长与负荷成正比地增加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限 弹性极限 σe 兆帕〔斯卡〕 MPa 式中 ──弹性极限载荷(N ) F ──试样横截面积(mm 2) 拉伸试验机或万 能材 料试 验机 这是表示金属最大弹性的指标,即在弹性变形阶段,试样不产生塑性变形时所能承受的最大应力,它和σp 一样也很难精确测定,一般多不进行测定,而以规定的σp 数值代替之 强度 强度指金属在外力作用下,抵抗塑性变形和断裂的能力 强度极限 σ 兆帕〔斯卡〕 MPa 式中 ──最大载荷(N ) F ──试样横截面积(mm 2) 指金属受外力作用,在断裂前,单位面积上所能承受的最大载荷 抗拉强度 σb 兆帕〔斯卡〕 MPa 式中 ──最大拉力(N ) F ──试样横截面积(mm 2) 拉伸试验机 或万 能材 料试验机 指外力是拉力时的强度极限,它时 衡量金属材料强度的主要性能指标

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版) 1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。 2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。 3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。构 4.件应当满足以下要求:强度要求、刚度要求、稳定性要求 5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。 第二章:内力、截面法和应力概念 1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。按照外力作用方式的不同,外力又可分为分布力和集中力。 2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。 已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。 首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。因为整个杆件是平衡的,

所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。由平衡条件就可以确定内力。例如在左段杆上由平衡方程 N-F=0 可得N=F 3.综上所述,截面法可归纳为以下三个步骤: 1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。 2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。 3、平衡求力对留下部分建立平衡方程,求解内力。 4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。这是因为截面面积小,其上内力分布的密集程度大的缘故。 如图所示,在杆件横截面m-m上围绕一点K取微小面积,并设上分布内力的合力为。的大小和方向与所取K点的位置和面积有关。 将与的比值称为微小面积上的平均应力,用表示,即: 称为截面m-m上一点K处的应力。应力的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。将应力分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。在国际单位制中,应力单位是帕斯卡,简称帕(Pa)。工程上常用兆帕(MPa),有时也用吉帕(GPa)。 5.杆件变形的基本形式:在机器或结构物中,构件的形状是多种多样的。如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。

材料力学内力图绘制详解

一、由外力直接绘制轴力图 例 5.4 如图 5.18(a)所示为一绳子受力图,右端固定,试绘制该绳的轴力图。 解 根据外力直接绘制轴力图(见图5.18(b)),绘图分析过程及步骤如下。 从左向右绘制,始终取右边部分为研究体。在截面A 有集中力F 1,使研究体拉伸变形, 故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 1大小,此时 F N =(0+500)N =500 N ;在AB 段没有外力,故轴力不变;在截面B 有集中力F 2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 2大小,此时F N =(500+420)N =920 N ;在BC 段没有外力,故轴力不变;在截面C 有集中力F 3,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F 3大小,此时F N =(920-280)N =640 N ;在CD 段没有外力,故轴力不变;在截面D 有集中力F 4,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F 4大小,此时 F N =(640-800)N =-160 N ;在DE 段没有外力,故轴力不变;在截面E 有集中力,由于轴力曲 (b ) (a)

线与轴线围成封闭图形,故轴力突变为0。 例5.5有一根阶梯轴受力如图5.19(a)所示,试绘制阶梯轴的轴力图。 图5.19 解从右向左绘制,始终取左变部分为研究体。根据外力直接绘制轴力图(见图5.19(b)),绘图分析过程及步骤如下: 在截面A有集中力F1,使研究体压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F1大小,此时F N=(0-10)kN=-10 kN;在AB段有均匀分布载荷,使研究体受拉伸变形,故轴力以斜直线规律向正方向渐变,轴力渐变大小为均匀分布载荷大小,此时F N=(-10+10×2)kN=10 kN;在截面B没有力,故此截面轴力没有变化;在BC段没有外力,故轴力不变;在截面C有集中力F2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F2大小,此时F N=(10+10)kN=20 kN;在CD段没有外力,故轴力不变;在截面D有集中力,由于轴力曲线与轴线围成封闭图形,故轴力突变为0.

金属材料力学性能代 含义

金属材料力学性能代号含义 名称代号单位含义 抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力. 抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力 屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 屈服时的最小应力称为屈服点和屈服极限. 屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度. 弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示. 比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限. σp与σc两数值很接近,一般常互相通用. 弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. E=σ/ε ε——试样纵向线应变. 切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. G=τ/γ γ——试样切应变. 泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值. μ=|ε/ε'| ε'= -με, ε'——试样横向线应变.

材料力学性能

第一章 一.静载拉伸实验 拉伸试样一般为光滑圆柱试样或板状试样。 若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。 二.工程应力:载荷除以试件的原始截面积。σ=F/A0 工程应变:伸长量除以原始标距长度。ε=ΔL/L0 低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。 三.低碳钢拉伸力学性能 1.弹性阶段(Ob) (1)直线段(Oa): 线弹性阶段,E=σ/ε(弹性模量,比例常数) σp—比例极限 (2)非直线段(ab): 非线弹性阶段 σe—弹性极限 2. 屈服阶段(bc) 屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。 σs—屈服强度(下屈服点),屈服强度为重要的强度指标。 3.强化阶段(ce) 材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。 σb—抗拉强度,材料断裂前能承受的最大应力 4.局部变形阶段(颈缩)(ef) 试件局部范围横向尺寸急剧缩小,称为颈缩。 四.主要力学性能指标 弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力 屈服强度(σs):抵抗微量塑性变形的应力 五.铸铁拉伸力学性能 特点: (1)较低应力下被拉断 (2)无屈服,无颈缩 (3)延伸率低 (4)σb—强度极限 (5)抗压不抗拉 讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。实际使用时怎么办? 塑性材料:σs 、σr0.2 脆性材料:σb 屈强比:σs /σb 讨论2:屈强比σs /σb有何意义? 屈强比s / b值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。 六.弹性变形及其实质 定义:当外力去除后,能恢复到原来形状和尺寸的变形。 特点:单调、可逆、变形量很小(<0.5~1.0%)

材料力学性能

填空 1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。 1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。 1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。 1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。 1-5、滑移面和滑移方向的组合称为“滑移系”。 1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。 1-7、应变硬化是“位错增殖”、“运动受阻”所致。 1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。 1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。 1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。 1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。 1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。 1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。 1-15、决定材料强度的最基本因素是“原子间结合力” 2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。 2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点ηs”、“抗扭强度ηb”。2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。 2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。 2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。 3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。 3-2、金属材料的韧性指标是“韧脆转变温度tk 4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。 4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。 4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。 4-7、断裂J判据:JI≥JIC 5-1、变动应力可分为“规则周期变动应力”和“无规则随机变动应力”两种。 5-2、规则周期变动应力也称循环应力,循环应力的波形有“正弦波”、“矩形波”和“三角形波”。 5-4、典型疲劳断口具有三个形貌不同的区域,分别为“疲劳源”、“疲劳区”和“瞬断区”。5-6、疲劳断裂应力判据:对称应力循环下:ζ≥ζ-1 。非对称应力循环下:ζ≥ζr 5-7、疲劳过程是由“裂纹萌生”、“亚稳扩展”及最后“失稳扩展”所组成的。 5-8、宏观疲劳裂纹是由微观裂纹的“形成”、“长大”及“连接”而成的。 5-10、疲劳微观裂纹都是由不均匀的“局部滑移”和“显微开裂”引起的。 5-11、疲劳断裂一般是从机件表面“应力集中处”或“材料缺陷处”开始的,或是从二者结合处发生的。”。 6-1、产生应力腐蚀的三个条件为“应力”、“化学介质”和“金属材料”。 6-2、应力腐蚀断裂最基本的机理是“滑移溶解理论”和“氢脆理论”。 6-5、防止氢脆的三个方面为“环境因素”、“力学因素”及“材质因素”。 7-4、脆性材料冲蚀磨损是“裂纹形成”与“快速扩展”的过程。

材料力学内力图绘制详解

一、由外力直接绘制轴力图 例 如图(a)所示为一绳子受力图,右端固定,试绘制该绳的轴力图。 解 根据外力直接绘制轴力图(见图(b)),绘图分析过程及步骤如下。 从左向右绘制,始终取右边部分为研究体。在截面A 有集中力F 1,使研究体拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 1大小,此时 F N =(0+500)N=500 N ;在AB 段没有外力,故轴力不变;在截面B 有集中力F 2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F 2大小,此时F N =(500+420) (b ) (a)

N=920 N;在BC段没有外力,故轴力不变;在截面C有集中力F3,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F3大小,此时F N=(920-280)N=640 N;在CD段没有外力,故轴力不变;在截面D有集中力F4,使研究体受压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F4大小,此时F N=(640-800)N=-160 N;在DE 段没有外力,故轴力不变;在截面E有集中力,由于轴力曲线与轴线围成封闭图形,故轴力突变为0。 例有一根阶梯轴受力如图(a)所示,试绘制阶梯轴的轴力图。 图 解从右向左绘制,始终取左变部分为研究体。根据外力直接绘制轴力图(见图(b)),绘图分析过程及步骤如下: 在截面A有集中力F1,使研究体压缩变形,故轴力在此截面向负方向发生突变,轴力突变大小为集中力F1大小,此时F N=(0-10)kN=-10 kN;在AB段有均匀分布载荷,使研究体受拉伸变形,故轴力以斜直线规律向正方向渐变,轴力渐变大小为均匀分布载荷大小,此时F N=(-10+10×2)kN=10 kN;在截面B没有力,故此截面轴力没有变化;在BC段没有外力,故轴力不变;在截面C有集中力F2,使研究体受拉伸变形,故轴力在此截面向正方向发生突变,轴力突变大小为集中力F2大小,此时F N=(10+10)kN=20 kN;在CD段没有外力,故轴力不变;在截面D有集中力,由于轴力曲线与轴线围成封闭图形,故轴力突变为0.

材料力学性能的术语解读--屈服强度

材料力学性能的术语解读--屈服强度 更多不锈钢管知识,请登录西安不锈钢管网站:https://www.360docs.net/doc/2e12962407.html, 屈服强度yield strength,又称为屈服极限,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短) 建筑钢材以屈服强度作为设计应力的依据。 所谓屈服,是指达到一定的变形应力之后,金属开始从弹性状态非均匀的向弹-塑性状态过度,它标志着宏观塑性变形的开始。 屈服强度标准: 工程上常用的屈服标准有三种: 1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel 表示。应力超过σel时即认为材料开始屈服。 3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。影响屈服强度的因素: 影响屈服强度的内在因素有: ---结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。

材料力学性能知识要点

1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。 2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。 3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。 4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。 1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。 2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。 3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、 (2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。 4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。 5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。 6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。 请说明下面公式各符号的名称以及其物理意义 7、c IC c a Y K /=σ σc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大, σc 表示引力的最大值; K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力; Y :几何形状因子 a c : 裂纹长度 8、对公式m K c dN da )(?=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。 dN da :裂纹扩展速率(随周次); c 与m :与材料有关的常数; K ?:裂纹尖端的应力强度因子幅度

材料力学专一梁的内力和内力图

专题一 梁的内力和内力图 例1求图1(a)所示梁截面 A 、C 的剪力和弯矩。 解:1)求反力 kN 5=A F ,kN 4=B F 2)求A 左截面的内力,如图(a)所示。 0=∑i Y , 0=+左SA p F F ,kN 3-=左SA F 0=∑O M ,02=+?左A p M F , m kN 6?-=左A M 3)求A 右截面的内力,如图(b)所示。 0=∑i Y ,0=+--A SA p F F F 左,kN 2=左SA F 0=∑O M ,02=+?右A p M F , m kN 6?-=右A M 4)求C 左截面的内力,如图(c)所示。 0=∑i Y ,02=-?--左SC P A F q F F ,0=左SC F 0=∑O M ,01224=+??+?-?左C A p M q F F ,=左C M m kN 4?-= 5)求C 右截面的内力,如图(d)所示。 0=∑i Y ,02=-?--右SC P A F q F F ,0235=--=右SC F 0=∑O M ,012241=++??+?-?右C A p M M q F F ,=右C M m kN 6?-= 【小结】①求指定截面上的内力时,既可取梁的左段为脱离体,也可取右段为脱离体, 两者计算结果一致。一般取外力比较简单的一段进行分析。②在解题时,通常假设截面上把内力为正,若最后计算结果是正,则表示假设的内力方向(转向)与实际是相同的,否则是相反的。③该题也可以不画受力图,不写平衡方程而由前面的结论直接求得结果。 图 1 (a) (b) (c) (d) (e)

例2试计算图2所示各梁指定截面(标有细线者)的剪力与弯矩。 解:(a)取A +截面左段研究,, 0SA A F F M ++ == 取C 截面左段研究,, 2 SC C Fl F F M == 取B -截面左段研究, , SB B F F M Fl == (b) 求A 、B 处约束反力 如图(d)所示,l M F F e B A /== 取A +截面左段研究,, e SA A A e M F F M M l ++=-=-= 取C 截面左段研究, , 22e e SC A A e A M M l F F M M F l +=-=-=-?= 取B 截面右段研究,, 0e SB B B M F F M l =-=-= (c) 求A 、B 处约束反力 取A +截面右段研究,2 33, 22248 SA A l ql l l ql F q M q ++=?==-??=- 取 C -截面右段研究, 2 , 22248 SC C l ql l l ql F q M q - -=?==-??=- 取C +截面右段研究,2 , 22248 SC C l ql l l ql F q M q + +=?==-??=- 取B -截面右段研究,0, 0SB B F M --== 图2 (b) (a) q B (c) B 图(d)

材料力学专题一梁的内力和内力图

材料力学专题一梁的内力和内力图

专题一 梁的内力和内力图 例1求图1(a)所示梁截面 A 、C 的剪力和弯矩。 解:1)求反力 kN 5=A F ,kN 4=B F 2)求A 左截面的内力,如图(a)所示。 0=∑i Y , 0=+左SA p F F ,kN 3-=左 SA F 0=∑O M ,02=+?左A p M F , m kN 6?-=左 A M 3)求A 右截面的内力,如图(b)所示。 0=∑i Y ,0=+--A SA p F F F 左,kN 2=左 SA F 0=∑O M ,02=+?右A p M F , m kN 6?-=右 A M 4)求C 左截面的内力,如图(c)所示。 0=∑i Y ,02=-?--左SC P A F q F F ,0=左 SC F 0=∑O M ,01224=+??+?-?左C A p M q F F ,=左 C M m kN 4?-= 5)求C 右截面的内力,如图(d)所示。 0=∑i Y ,02=-?--右SC P A F q F F ,0235=--=右 SC F 0=∑O M ,012241=++??+?-?右C A p M M q F F ,=右 C M m kN 6?-= (((((

【小结】①求指定截面上的内力时,既可取梁的左段为脱离体,也可取右段为脱离体,两者计算结果一致。一般取外力比较简单的一段进行分析。②在解题时,通常假设截面上把内力为正,若最后计算结果是正,则表示假设的内力方向(转向)与实际是相同的,否则是相反的。③该题也可以不画受力图,不写平衡方程而由前面的结论直接求得结果。

材料的力学性能测试

材料力学实验指导书 (第一部分) 材料的力学性能测试 浙江工业大学机电学院 2006年9月

第一部分 材料的力学性能测试 任何一种材料受力后都有变形产生,变形到一定程度材料就会降低或失去承载能力,即发生破坏,各种材料的受力——变形——破坏是有一定规律的。材料的力学性能(也称机械性能),是指材料在外力作用下表现出的变形和破坏等方面的性能,如强度、塑性、弹性和韧性等。为保证工程构件在各种负荷条件下正常工作,必须通过试验测定材料在不同负荷下的力学性能,并规定具体的力学性能指标,以便为构件的强度设计提供可靠的依据。材料的主要力学性能指标有屈服强度、抗拉强度、材料刚度、延伸率、截面收缩率、冲击韧性、疲劳极限、断裂韧性和裂纹扩展特性等。金属材料的力学性能取决于材料的化学成分、金相结构、表面和内部缺陷等,此外,测试的方法、环境温度、周围介质及试样形状、尺寸、加工精度等因素对测试结果也有一定的影响。 材料的力学性能测试必修实验为5学时,包括:轴向拉伸实验、轴向压缩实验、低碳钢拉伸弹性模量E 的测定、扭转实验、低碳钢剪切弹性模量G 的测定。 §1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断 面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。

材料力学性能试题集..

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√) 16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×)

材料力学中内力图的直接画法

材料力学中内力图的直接画法 摘要:介绍一种关于材料力学中轴力、扭矩、剪力和弯矩等内力图的直接画法,建立内力的增减与外力方向之间的关系。 关键词:内力图;直接画法;内力;外力。 画内力图是材料力学学习过程中的一个重点,而不少学生在学习这部分内容时感到不好理解,总是不清楚题目要求的截面上的内力应该怎么求。尤其是弯曲内力中的剪力与弯矩。为了使同学更好地理解构件的内力、画好内力图,经过摸索与思考,我总结出了关于内力图的一种简单的画法。本文中约定在各内力图中向上的方向为正向,画图时从左向右画。希望老师和同学予以指正。 1.轴力、扭矩图 轴力图完全可直接根据外力的大小与方向直接画出来。以水平杆为例,如杆左端有约束,首先求出约束力(外力),向左的外力会引起轴力增加,而向右的外力会引起轴力减小。例如:图1中所示的杆的A、B、C、D点分别作用有大小为5P、8P、4P、P的力,方向如图1,试画出杆的轴力图。 解:用截面法求OA段内力N1设置截面如图1. X=OV1-P A+P B-P C-P D=0 N 1-5P+8P-4P-P=0N 1 =2P 同理,求得AB、BC、CD段内力分别为:N 2=-3P,N 3 =5P,N 4 =P。轴力图如图1所示。

如果用直接法,只需要求出O截面的约束力R。由平衡方程R=2P,方向向左, 故O截面的轴力从0增加到2P。OA段无外力,轴力均为2P。A截面作用有外力P A =5P,方向向右,轴力在该截面将减小5P,即从2P降为-3P。AB段无外力,轴力均为-3P。B截面作用有外力8P,方向向左,该截面轴力将增加8P,即从-3P升到5P。BC段轴力为5P,C截面有外力4P,方向向右,轴力在该截面下降4P。CD段轴力为P,D截面有外力P,方向向右,该截面轴力下降P,最终为O轴力图终点与x轴重合。 关于扭矩图中扭矩正负的规定,用直接法,将外力偶用右手螺旋法则进行矢量化,矢量沿轴线方向,一水平轴为例,向左的外力偶矩将引起扭矩的增加,向右的外力偶矩将引起扭矩下降,因此在直接法中,扭矩图的画法与轴力图的画法 完全一样。例如:已知图2中m 1=159kN.m,m 2 =m 3 =4.78kN.m,m 4 =6.37kN.m,画该 轴的扭矩图。 直接法:将各外力偶矩矢量化。A截面外力偶矩方向向右,大小为4.78kN.m,故扭矩在改截面下降4.78kN.m,即从0变为-4.78kN.m变为-9.56kN.m。BC段的

相关文档
最新文档