人教版初一数学下册第八章
人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
人教版七年级下册数学第八章二元一次方程组应用题——方案问题
人教版七年级下册数学第八章二元一次方程组应用题——方案问题1.为预防新冠肺炎病毒,市面上95KN等防护型口罩出现热销.已知3个A型口罩和2个B型口罩共需31元;6个A型口罩和5个B型口罩共需70元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.2.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品,两种奖品的单价.共需120元,购买5个A奖品和4个B奖品共需210元.求A B3.某文具店销售甲、乙两种钢笔,甲钢笔每支进价6元,乙钢笔每支进价14元,该文具店同时进购甲、乙两种钢笔共50支,恰好用去540元.求该文具店购进了甲、乙两种钢笔各多少支?4.某商店订购了A,B两种商品,A商品18元/千克,B商品20元/千克,若B商品的数量比A商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.5.甲类票480元/张,乙类票280元/张,某球迷协会组织50名球迷去现场为辽宁男篮加油助威,买门票共花20000元,请问该协会甲、乙两类门票各买了多少张?6.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A种饮料每瓶需加该添加剂2克,B种饮料每瓶需加该添加剂3克,已知生产共100瓶的A,B两种饮料恰好添加了270克该添加剂,则生产A、B两种饮料各多少瓶?7.小亮家装修,需购进甲、乙两种地砖共100块,共花费5600元,已知甲种地砖单价是80元/块,乙种地砖的单价是40元/块,问甲、乙两种地砖各购进了多少块?8.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?9.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?10.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?11.已知用3辆A型车和2辆B型车一次可运货19吨;用2辆A型车和3辆B型车一次可运货21吨.(每辆车每次都满载货物)(1)求1辆A型车和1辆B型车载满货物一次分别可以运多少吨?(2)某货物中心现有49吨货物,计划同时租用A型车和B型车若干辆,一次运完,且恰好每辆车都载满货物,请问有哪几种不同的租车方法.12.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A 型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.13.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.14.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?15.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.16.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?17.疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B 两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?18.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.19.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A B、两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?、两种型号的货车各几辆?请(2)按计划完成本次货物运送,储运公司要同时租用A B求出所有的租车方案.20.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.。
(精练)人教版七年级下册数学第八章 二元一次方程组含答案
人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
人教版七年级数学下册第八章列二元一次方程组解数字、工程、计费问题课件
解:
(1)依题意得
x-y=100 5x=6y
(2)解(1)中所列方程组,得
x=600 y=500
答:甲队每天铺设600 m,乙队每天铺设500 m.
题型 3 计费问题
应用1 阶梯电(水)价问题
6.(中考·朝阳)为响应国家节能减排的号召,鼓励居民 节约用电,各省先后出台了居民用电“阶梯价格”制 度,如表中是某省的电价标准(每月).
_1_0__0_c_+___1_0__b_+_;a
(2)用数位上的数字表示数的方法:个位上的数字×1,十位上的数字×10,百位上 的数字×100,以此类推,然后把它们加起来就可以表示一个多位数.
2.有一个两位数,若把个位数字扩大为原来的 2 倍,十位数字 减去 4,所得的数是原两位数的13;而把个位数字与十位数字 互换,所得的两位数比原两位数小 9.求原两位数.
(2)甲的套餐费用为199元,其中含600 MB的月流量;丙的 套餐费用为244.2元,其中包含1 GB的月流量,二人均 定制了超过1 000 min的每月语音通话时间,并且丙的 语音通话时间比甲多300 min.求m的值.
解:
(1)依题意得:
100a+(500-100)×0.07(600-500)b=48 100a+(500-100)×0.07(1024×2-500)b=120.4
设这个三位数的百位数字为x ,去掉百位数字后剩下的两位数为y.
”5乙01说M:B“~我2乘0(出G2B租)车用走了数8 km位,付上了16的元. 数字表示数的方法:个位上的数字×1,
15+(1000-500)×0.
1x+01(8M-B3~)y5=0016MB十位上的数字×10,百位上的数字×100,以此类推,
例如:方女士家5月份用电500 kW·h,电费=180×0.6+ 220×二档电价+100×三档电价=352(元); 李先生家5月份用电460 kW·h,交费316元.
人教版七年级数学下册知识点总结(第八章-二元一次方程组)
第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
人教版七年级数学下册第八章:二元一次方程组的实际应用(各题类 针对练习)(pdf版)
二元一次方程组的实际应用(各类型题+针对练习)思维导图行程问题知识点1:二元一次方程组行程问题行程问题基本数量关系:路程=时间速度,时间=路程÷速度,速度=路程÷时间船在顺水中的速度船在静水中的速度水流的速度船在逆水中的速度船在静水中的速度水流的速度学生/课程年级学科授课教师日期时段核心内容二元一次方程组的实际应用教学目标 1.进一步熟练掌握二元一次方程组的解法;2.学会运用方程组来解决实际问题;重、难点灵活运用方程组来解决实际问题例1.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为千米/时,水流速度为千米/时,则下列方程组中正确的是()A.B.C.D.例2.甲、乙两地相距100km,一艘轮船往返两地,顺流用4h,逆流用5h,那么这艘轮船在静水中的航速与水速分别是()A.24km/h,8km/hB.22.5km/h,2.5km/hC.18km/h,24km/hD.12.5km/h,1.5km/h例3:从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?例4.:李强要在规定的时间内由甲地赶往乙地,如果他以60km/h的速度行驶,就会迟到24min;如果他以80km/h的速度行驶,就可以提前24min到达乙地,求甲、乙两地间的距离。
【学有所获】(1)回顾二元一次方程组的实际应用的解题步骤;(2)抓住题目中的关键字眼,转化为数学等量关系式。
例5:一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.【学有所获】1、回忆相遇问题的基本特征:时间、人物、地点、方向,时间是同时;人物是两方;地点:不同地点;方向:相向而行;2、回忆追及问题的基本特征:时间:同时;人物:两方;地点:有路程差;方向:同向。
人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第
第15讲三元一次方程组解法(1)代入消元法(2)加减消元法三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元方程应用题:考点1、三元一次方程的解法例1、在解三元一次方程组中,比较简单的方法是消去()A.未知数B.未知数y C.未知数z D.常数例2、将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.例3、写一个三元一次方程,使它的解有一组为x=1,y=1,z=1,这个三元一次方程为.例4例5、解下列三元一次方程组:(1)(2)(3)(4).1、已知,则x+y+z的值是()A.80 B.40 C.30 D.不能确定2、下列方程组:①;②;③;④,是三元一次方程组的是(填序号)3、已知三元一次方程2a+3b-4c=6,用含b、c的式子表示a为.4、当x=0、1、-1时,二次三项式ax2+bx+c的值分别为5、6、10,则a= ,5、解方程组:考点2、三元一次方程应用求解例1、已知|x-z+4|+|z-2y+1|+|x+y-z+1|=0,则x+y+z=()A.9 B.10 C.5 D.3例2、已知方程组,x与y的值之和等于2,则k的值为.例3、如果方程组的解使代数式kx+2y-z的值为10,那么k= .例4、已知x、y、z都不为零,且.求x:y:z.例5、对于有理数x,y定义新运算x*y=ax+by+c.其中a,b,c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求(-2)*5的值.1、若方程组的解x与y的和为O,则m等于()A.-2 B.-1 C.1 D.22、已知,则x:y:z=______.34、如果方程组,的解也是方程3x+my+2z=0的解,求m的值.5、已知3x-4y-z=0,2x+y-8z=0,求的值.考点3、三元一次方程应用题例1、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.200例2、一件工作,甲乙合做8小时完成,甲丙合做6小时完成,乙丙合做4.8小时完成,若甲乙丙三人合做,小时完成.例3、已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.例4、某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?例5、在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?1、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21 B.23 C.25 D.272、甲乙丙三数之和为36,而甲乙二数之和与乙丙二数之和与甲丙二数的和之比为2:3:4,则甲乙丙三数分别为.3、已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a= .4、王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?5、某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树植树多少株?6、已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.1、解方程组时,第一次消去未知数的最佳方法是()A.加减法消去x,将①-③×3与②-③×2B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个2、若2x+3y-z=0且x-2y+z=0,则x:z=()A.1:3 B.-1:1 C.1:2 D.-1:7 3、若2x+5y-3z=2,3x+8z=3,则x+y+z的值等于()A.0 B.1 C.2 D.无法求出4、关于关于x、y的方程组的解也是二元一次方程x+3y+7m=20的解,则m的值是()A.0 B.1 C.2 D.0.55、某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,则后来乙与丙的人数比为()A.3:4 B.4:5 C.5:6 D.6:76、买20枝铅笔、3块橡皮擦、2本日记本需32元;买39枝铅笔,5块橡皮擦、3本日记本需58元;则买5枝铅笔、5块橡皮擦、5本日记本需()A.20元B.25元C.30元D.35元7、若方程组中x和y值相等,则k= .8、已知单项式-8a3x+y-z b12c x+y+z与2a4b2x-y•3z c69、解下列方程组:(1)(2)10、已知方程组的解x、y的和为12,求n的值.11、若,求x,y,z的值.12、已知:△ABC的周长为18cm,且a+b=2c,,求三边a、b、c的长.13、一个三位数的三个数字的和是17,百位数字与十位数字的和比个位数字大3,如果把个位数字与百位数字的位置对调,那么所得的三位数比原数大495,求原来的三位数.1、已知3a-c=a+b+c=4a+2b-c,那么3a:2b:c等于()A.4:(-2):5 B.12:4:5C.12:(-4):5 D.不能确定2、若,且3x+2y+z=32,则(y-z)x= .3、已知=k,则k= .4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?5、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.1、解方程组,若要使运算简便,消元的方法应选取()A.先消去B.先消去yC.先消去z D.以上说法都不对2、已知是方程组的解,则a+b+c的值是()A.1 B.2 C.3 D.以上答案都不对3、甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50 B.45 C.40 D.304、三元一次方程组的解是()A.B.C.D.5、小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作业本1个,笔芯1支共需()元.A.3元B.2.5元C.2元D.无法求出6、若方程组的解是3a+nb=8的一个解,则n的值是()A.1 B.2 C.3 D.47、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支8、如果x-y=-5,z-y=11,则z-x= .9、当K= 时,关于x、y的方程的解的和为200.10、有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.11、解方程组(1)(2)(3)12、在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?13、解方程组:.14、琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.15、a为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.第15讲三元一次方程组解法考点1、三元一次方程的解法例1、C例2、A例3、例4、例5、1、B2、3、4、5、考点2、三元一次方程应用求解例1、A例2、例3、例4、例5、1、D2、3、4、5、考点3、三元一次方程应用题例1、C例2、例3、例4、例5、1、A2、3、4、5、6、1、C2、D3、B4、C5、A6、C7、8、9、10、11、12、13、1、2、3、4、5、1、B2、C3、D4、C6、B7、D 8、9、10、11、13、.14、15、人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第15讲(有答案)21 / 21。
第八章 二元一次方程组知识点总结 2023-2024 学年人教版数学七年级下册
第8章二元一次方程组8.1二元一次方程组【知识点】1.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.判断一个方程是二元一次方程必须同时满足3个条件:(1)必须含有两个未知数;(2)含未知数的项的次数都是1;(3)方程中的分母不含未知数,即方程必须是整式方程.3.一个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程租.4.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.6.二元一次方程有无数个解,但对于一些特殊解(如正整数解),它的解的个数往往是有限的. 确定二元一次方程的整数解一般用列举法求. 方法是:先用含一个未知数x(或y)的代数式表示另一个未知数y(或x),然后给x(或y)一个符合要求的值,求出y(或x)的值,就得到二元一次方程的一个解.8.2消元——解二元一次方程组【知识点】1.解二元一次方程组的基本思路是消元,这种思想初步体现了数学研究中的化未知为已知的化归思想.(一)代入法1.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)变:选定一个系数比较简单的方程进行变形,用x表示y,即y=ax+b(或用y表示x,即x=ay+b)的形式;(2)代:将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程(或代入x=ay+b,消去x);(3)解:解这个一元一次方程,求出x(或y)的值;(4)再代:把x的值代入y=ax+b,求出y的值(或将y的值代入x=ay+b);(5)联:把求得的x,y的值用“{”联立,即是方程组的解.(二)加减法1.当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.2.用加减法解二元一次方程组的步骤:(1)用一个适当的数去乘方程两边每一项,使两个方程中准备消去的未知数的系数相等或相反数;(2)把变形后的两个方程对应相加或相减,消去一个未知数,转化成一元一次方程;(3)求出一个未知数的解,再用代入法或加减法求另一个解.(三)解二元一次方程组总结1.当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为0时,用代入法较方便;到两个方程中同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.2.当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单.3.任何一个二元一次方程组经过变形以后,都可以化为以下标准形式:当a2,b2,c2全不为0时,它的解的情况是:(1)当a1a2≠b1b2时,方程组有唯一的一个解;(2)当a1a2=b1b2=c1c2时,方程组有无数多个解;(3)当a1a2=b1b2≠c1c2时,方程组无解.8.3实际问题与二元一次方程组【知识点】1.列方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的数量关系;(等量关系)(2)设元:用字母表示题目中的未知数,通常有直接设和间接设两种; (3)列方程组; (4)解方程组; (5)检验作答.2.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: (1)方程两边表示的是同类量; (2)同类量的单位要统一; (3)方程两边的数值要相符.3.列方程组解应用题要注意检验和作答,检验不仅要求所求的的解是否符合方程组中的每一个方程,更重要的是要检验所求得的结果是否符合客观实际要求.4.在行程问题中,若速度为v ,时间为t ,路程为s ,则有s=vt ,v= st,t= sv.5.在商品经济中,利润=售价-成本价,利润率=利润÷成本价;一件商品原价是a ,打x 折后价格是110ax.6.列方程组解应用题和列一元一次方程解应用题类似.要想正确列出方程组,必须正确掌握以下几种类型的问题:①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程问题,即路程=速度×时间;③工程问题,即工作量=工作效率 × 工作时间; ④浓度问题,即溶质质量=溶液质量× 浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系; ⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即若个位上数字为 a ,十位上的数字为b ,百位上的数字 c ,则这个三位数可表示为100c+10b+ a ;8.4三元一次方程组的解法【知识点】1.方程组含有3个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.(三元一次方程组——二元一次方程组——一元一次方程)具体步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出这两个未知数的值;(3)再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程中,求出第三个未知数的值;(4)最后将求得的三个未知数的值用“{”写在一起.3.在三元一次方程组中,适合每一个方程的一组未知数的值,叫做这个方程组的一个解.4.在三元一次方程组中,每一个方程可以是一元一次方程,也可以是二元一次方程,但三个方程中总的未知数的个数是3.练习题一、填空题1. 已知x|a |-1+(a -2)y=2是关于x ,y 的二元一次方程,则a 的值为_________.2. 若关于x ,y 的方程x m+2-y n -1=5是二元一次方程,则m=______,n=________.3. 写出一个以{x =1,y =−3为解的二元一次方程_________. 4. 若x 2m+1+5y 3n -2=7是二元一次方程,则m=______,n=________. 5. 写出满足方程x+2y=9的两个整数解为_______. 6. 已知{x =2y =1是方程2x+ay=5的解,则a=________. 7. 已知{x =3y =−1是方程组{3x +ky =0mx +y =8的解,则k+m=_______.8.写出一个以{x =3y =−5为解的二元一次方程组________.二、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )2. 关于x ,y 的方程组{3x −y =m,x +my =n 的解是{x =1,y =1,则|m -n |的值是( ) A.5 B.3 C.2 D.13. 下列选项中,是二元一次方程的是 ( )A.xy=7B.x+π=6C.x -y=1D.3x -34=5y+3x4. 方程(1)3x -z=2;(2)y+x 2=0;(3)2x+3y=z ;(4)xy=1;(5)5x - 13y =4; ( ) (6)x=-y 中是二元一次方程的有A.1个B.2个C.3个D.4个5. 下列各组数值中,是二元一次方程组{x +y =52x −y =4的解的是( )A.{x =3y =2B.{x =3 y =−2C.{x =−3y =2D.{x =−3y =−26. 下列四个方程组中,是二元一次方程组的是 ( )A.{3x −y =6xy =10B.{x3−y 2=343x +2y =10C.{x +y =10y +z =20D.{5x −7y =6x +4y =5【答案解析】 一、填空题1. 答案:-22. 答案:-1 23. 答案:不唯一,如x+2y=-54. 答案:0 15. 答案:答案不唯一,如:{x =1y =4 ,{x =3y =36. 答案:17. 答案:128.答案:答案不唯一,如{x +y =−2x −y =8二、选择题1. 答案:B2. 答案:D3. 答案:C4. 答案:B5. 答案:A6. 答案:B。
七年级数学下册 第八章《二元一次方程组》教学课件 人教版
负场数应分别是多少?
上述问题中包含哪些等量关系?
胜的场数+负的场数=总场数
胜场积分+负场积分=总积分
根据等量关系你能列出方程吗?
新课探究
设这个队设胜x场,根据题意得:
2x+(10-x)=16
设这个队胜x场,负y场;你能根据题意列出方程吗?
二元一次方程组
新课探究
1、什么是一元一次方程?“元”指什么?“次”指什么?
含有一个未知数,并且未知数的次数是1的方程
叫做一元一次方程。
“元”指的是未知数,“次”指的未知数的指数。
2、什么是方程的解?
使方程左右两边相等的未知数的值,叫做方程的解。
新课探究
在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2
+ =
根据题意得:ቊ
+ =
牛刀小试
昨天,我们8个
人去北陵公园
玩,买门票花
了34元。
每张成人票5元,
每张儿童票3元。
他们到底去了几个
成人、几个儿童呢?
列出方程组来看看!
牛刀小试
解:设去了x个成人,y个儿童,得:
x+y=8
5x+3y=34
牛刀小试
D
1.下列方程中,是二元一次方程的是(
做二元一次方程.
新课探究
上面两个二元一次方程合在一起,写成
x+y=10
________
________
2x-y=16
就组成了ቤተ መጻሕፍቲ ባይዱ个
方程组.
对比两个方程,你能发现它们之间的关系吗?
人教版数学七年级下册第八章二元一次方程组教学课件
这个方程组有两个未知数,含有每个未知数的 项的次数都是1,并且一共有两个方程,像这样的 方程组叫作二元一次方程组.
注意:方程组各方程中同一字母必须代表同一个量.
典例精析
例1 已知|m-1|x|m|+y2n-1=3是二元一次方程, 则m+n=____0____.
解析:根据题意得|m|=1且|m-1|≠0,2n-1=1, 解得m=-1,n=1,所以m+n=0.故填0
例2 下列方程组是二元一次方程组的是( B )
A.
xy 1, x y
1
x y 1,
B.
2 x
2 y
1
C.
x x
z y
1, 1
D.
x 1 x
y y
1, 1
紧扣相关概念
二 二元一次方程组的解 合作与交流: (1)x=6 , y=2适合方程 x+y=8吗 ? x=5 , y=3呢? x=4 , y=4呢? 你还能找到其他x , y的值适合方程x+y=8吗 ? (2) x=5 , y=3适合方程5x+3y=34吗? x=2 , y=8呢?
二元一次方程组中各个方程的公共 解,叫做这个二元一次方程组的解.
{ { 例如,
x=5,就是二元一次方程组 y=3
x+y=8, 5x+3y=34
的解.
典例精析
例3 根据以下对话,可以求得小红所买的笔和笔
记本的价格分别是(
小红,你上周买的笔和笔
记本的价格是多少啊?
A.0.8元/支,2.6元/本 B.0.8元/支,3.6元/本 C.1.2元/支,2.6元/本 D.1.2元/支,3.6元/本
解:设去了x个成人,去了
(8-x)个儿童,根据题意,得: y个儿童,根据题意,得:
初中七年级数学人教版下册第八章二元一次方程组三元一次方程组的解法课件
典型例题
知识点2:三元一次方程组与二元一次方程组的联系
x-y=5, 【例2】已知方程组 4x-3y+k=0 的解也是方程3x-2y=0的解,则k的值是( A )
A. k=-5
B. k=5
C. k=-10
D. k=10
思路点拨:先解关于x,y的二元一次方程组,得到x,y的值后,代入
得到k的值.
2. 关于x,y的二元一次方程组 xx+-yy==59kk,的解也是二元一次方程 2x+3y=6的解,则k的值是( B )
A. 3
4
C. 4
3
B. 3
4
D. 4
3
典型例题
知识点3:解三元一次方程组 x-y+z=0,①
【例3】解三元一次方程组 4x+2y+z=3,② 25x+5y+z=60.③
第25课时 三元一次方程组的解法
汽车运载量/(吨·辆-1)
1 ①+②,得5x+z=2.
1
C.
④与⑤组成二元一次方程组
+y+z=7, 消去z,得5x+2y=40,即x=8- y.
x x+y=5, ④与⑤组成二元一次方程组
C. D. 已知
=
=
=2,求x,y,z的值.
2x+y+3z=5, 3x+2y=9 (1)若全部水果都用甲、乙两种车型来运送,需运费8 200元,求需甲、乙两种车型各几辆;
x=3,
∴原方程组的解为 y=-2,
z=-5.
举一反三
x+y+z=26,
3. 解三元一次方程组 x-y=1,
七年级数学人教版下册第八章列二元一次方程组解行程与配套问题课件
【点拨】设 103 路公交车行驶速度为 x 米/分钟,爸爸行走速度 为 y 米/分钟,相邻两辆 103 路公交车间的间距为 s 米. 根据题意,得75xx- +75yy= =ss, ,解得 x=6y.
【答案】6
3.(2019·百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙 地顺流航行用了6小时,逆流航行比顺流航行多用了4小时.
(1)用8辆汽车装运乙、丙两种水果共22 t到A地销售,问 装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共 72 t到B地销售(每种水果不少于一车),假设装运甲 种水果的汽车为m辆,则装运乙、丙两种水果的汽车 各多少辆(结果用m表示)?
(1)设装运乙、丙两种水果的汽车分别为x辆、y辆.
应用2 生产配套问题
8.某教育服装厂要生产一批某种型号的学生服装,已 知3 m长的布料可做上衣2件或裤子3条,一件上衣 和一条裤子为一套,计划用600 m长的这种布料生 产,应分别用多少布料生产上衣和裤子才能恰好配 套?共能生产多少套?
解:设用x m布料做上衣,ym布料做裤子,
列方程组得
x+y=600
题型 1 行程问题 (1)求笔记本的单价和单独购买一支笔芯的价格;
根据题意,得W=5m+7(50-m)=-2m+350.
设乙的速度为x m/min,环形场地的周长为y m,则
答:用360 m布料生产上衣、240 m布料生产裤子才能恰好配套,共能生产240套.
1.基本关系式: 设张明前进的速度是x m/min,公共汽车的速度是y m/min.
(3)航行问题:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度.
应用1 相遇(追及)问题
人教版七年级数学下册全册教案-第八章-二元一次方程组
第八章《二元一次方程组》全章教材分析一、教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。
教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。
接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。
然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。
最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。
二、教学目标(一)知识与技能目标1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。
(二)过程与方法目标1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。
(三)情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。
三、重点、难点重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题;难点:以方程组为工具分析问题、解决含有多个未知数的问题。
四、课时划分建议本章共12课时:二元一次方程(组)1课时,消元思想3课时,应用方程组解决实际问题2课时,三元一次方程组2课时,复习1课时,单元检测2课时,讲评1课时。
人教版数学七年级下册第八章《二元一次方程组》知识点
人教版数学七年级下册第八章《二元一次方程组》知识点一、二元一次方程1、二元一次方程定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程,叫做二元一次方程.满足条件:(1)整式方程;(2)只含含有两个未知数.注意:(1)方程化简后两个未知数的系数都不能为0;(2)含有未知数的项的次数都是1.关于x,y的二元一次方程的一般形式:ax+by=c(a≠0,b≠0)2、二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.满足条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)一共有两个方程,每个方程都是一次方程.注意:(1)二元一次方程组不一定都是由两个二元一次方程组成的,其中有的方程可以是一元一次方程;(2)二元一次方程组必须一共含有两个未知数.3、二元一次方程的解二元一次方程的解:一般地,使二元一次方程两边值相等的两个未知数的值,叫做二元一次方程的解。
判断一对数值是不是二元一次方程的解的方法:只需要将数值分别代入到方程的左右两边。
(1)若左边=右边,则这对数值是这个方程的解;(2)若左边≠右边,则这对数值不是这个方程的解.4、二元一次方程组的解二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解;判断一对数值是不是二元一次方程组的解的方法:将这对数值代入到每个方程中进行检验,若满足每个方程,这对数值就是这个方程组的解,只要其中一个不满足,就不是这个方程组的解.二、解二元一次方程1、消元思想二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化为一元一次方程。
先求出一个未知数,然后再求出另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.2、代入消元法定义:把二元一次方程组中一个方程的一个未知数用另一个未知数的式子表示出来,再代入到另一个方程,实现消元,进而求出这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.步骤:(1)变形:选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数;(2)代入:把y=ax+b(或x=ay+b)代入到另一个没有变形的方程中;(3)求解:解消元后的一元一次方程;(4)回代:把求得的未知数的值代入步骤一中变形后的方程中去;(5)写解:把两个未知数的值用大括号联立起来。
人教版数学七年级下册第八章二元一次方程组与实际问题解决小结
解:设每件文化衫x元,每本相册y元.
由题意,得 x-y=9, 2x+5y=200.
x=35, 解得 y=26. 答:每件文化衫35元,每本相册26元.
7. 为响应建设“美丽乡村”,大桥村在河岸上种植了 柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多 22棵,种植香樟树的棵树比总数的三分之一少2棵. 问 这两种树各种了多少棵?
解:(1)由题意,得5 000-92×40=1 320(元).即 两所学校联合起来购买服装比各自购买服装共可以节省 1 320元.
(2)设甲、乙两所学校各有x名,y名学生准备参加演出.
由题意,得 x+y=92,
解得 x=52,
50x+60y=5 000.
y=40.
答:甲、乙两校各有52名、40名学生准备参加演出.
基础训练
第1关 2. 某校为住校生分宿舍,若每间7人,则余下3人;若 每间8人,则有5个空床位,设该校有住校生x人,宿舍y
x=7y+3, 间,则可列出方程组为___x_=_8_y_-_5__.
3. 现有几个学生合买一本书,每人出9元,会多出11 元;每人出6元,又差16元. 问:有几个学生,买这本 书需要多少元?设有x个学生,买这本书需要y元,那么
变式训练
1. 某商场计划拨款9万元从厂家购进50台电视机,已 知厂家生产三种不同型号的电视机,出厂价分别为: 甲种每台1 500元,乙种每台2 100元,丙种每台2 500 元. (1)若商场同时购进其中两种不同型号的电视机50台 , 用去9万元,请你研究一下商场的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利 150元、200元、250元,在以上的方案中,为使获利最
③设购乙种电视机y台,丙种电视机z台.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章检测题
时间:100分钟 满分:120分
一、选择题(每小题3分,共30分)
1.下列方程中,不是二元一次方程组的是( B )
A .⎩⎪⎨⎪⎧4x +3y =74x -3y =5
B .⎩⎪
⎨⎪⎧x +2008
y =7x -y =2007
C .⎩⎪⎨⎪⎧x +y =4x -y =4
D .⎩⎪⎨⎪
⎧3x +5y =25x +10y =25 2.二元一次方程组⎩⎪⎨⎪⎧x -y =4x +y =2的解是( D )
A .⎩⎪⎨⎪⎧x =3y =-7
B .⎩⎪⎨⎪⎧x =1y =1
C .⎩⎪⎨⎪⎧x =7y =3
D .⎩⎪⎨⎪⎧x =3
y =-1
3.用代入法解方程组⎩
⎪⎨⎪⎧y =1-x ,x -2y =4时,代入正确的是( C )
A .x -2-x =4
B .x -2-2x =4
C .x -2+2x =4
D .x -2+x =4
4.关于x ,y 的方程组⎩⎪⎨⎪⎧3x -y =m x +my =n 的解是⎩⎪⎨⎪
⎧x =1y =1
,则|m -n|的值是( D )
A .5
B .3
C .2
D .1
5.如果方程组⎩
⎪⎨⎪⎧3x +4y =2
2x -y =5的解也是方程3x -my =8的一个解,则m 的值是( D )
A .-2
B .-1
C .1
D .2
6.解方程组⎩⎪⎨⎪
⎧3x -y +z =4①2x +3y -z =12②x +y +z =6③
时,第一次消去未知数的最佳方法是( C )
A .加减法消去x ,将①-③×3与②-③×2
B .加减法消去y ,将①+③与①×3+②
C .加减法消去z ,将①+②与③+②
D .代入法消去x ,y ,z 中的任何一个
7.由方程组⎩
⎪⎨⎪⎧2x +m =1,
y -3=m 可得出x 与y 的关系是( A )
A .2x +y =4
B .2x -y =4
C .2x +y =-4
D .2x -y =-4
8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( D )
A .⎩⎪⎨⎪⎧x +y =702.5x +2.5y =420
B .⎩
⎪⎨⎪⎧x -y =702.5x +2.5y =420
C .⎩⎪⎨⎪⎧x +y =702.5x -2.5y =420
D .⎩
⎪⎨⎪⎧2.5x +2.5y =4202.5x -2.5y =70
9.如图,宽为50 cm 的长方形图案由10个形状相同的小长方形拼成,则一个小长方形的面积为( A )
A .400 cm 2
B .500 cm 2
C .600 cm 2
D .4000 cm 2
10.小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是( D )
A .15号
B .16号
C .17号
D .18号 二、填空题(每小题3分,共30分)
11.已知二元一次方程3x +12y -1=0,用含y 的代数式表示x ,则x =__13-1
6y __;当y
=2时,x =__0__.
12.若x +2y =3+t ,x -y =3-t ,则x ,y 的关系是__y =-2x +6__.
13.若⎩⎪⎨⎪⎧x =1y =-1及⎩⎪⎨⎪⎧x =2y =3都是方程ax +by +2=0的解,试判断⎩
⎪⎨⎪⎧x =3y =5是否为方程ax +by +2=0的又一个解__不是__(填“是”或“不是”). 14.已知∠α与∠β互补,且∠α与∠β的差是80°,则∠α=__130°__,∠β=__50°__. 15.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出了9件衬衫和6条裤子共660元,则每件衬衫售价为__20元__,每条裤子售价为__80元__.
16.为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书,已知《智力大挑战》每本18元,《数学趣题》每本8元,则《数学趣题》买了__7__本.
17.“●”、“■”表示两种不同的物体,现用天平称了两次,如图所示,那么这两种物体的质量分别为:__30_g __、__40_g __.
18.小明解方程组⎩⎪⎨⎪⎧3x +y =●3x -y =15的解为⎩
⎪⎨⎪
⎧x =4y =★,由于不小心,滴上了两滴墨水,刚好遮住
了两数●和★,请你帮他找回这两个数,●=__9__,★=__-3__.
19.有人问某男孩有几个兄弟,几个姐妹,他回答说:“有几个兄弟就有几个姐妹.”
再问他妹妹有几个兄弟,几个姐妹,她回答说:“我的兄弟是姐妹的2倍.”若设兄弟x
人,姐妹y 人,则可列出方程组:__⎩⎨⎧x -1=y
x =2(y -1)
__.
20.为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”
用了x 千瓦时,“谷电”用了y 千瓦时,根据题意,列方程组得:__⎩
⎨⎧0.56x +0.28y =43.4x +y =95__.
三、解答题(共60分)
21.(16分)解下列方程组:
(1)⎩⎪⎨⎪⎧x -y =43x +y =16 (2)⎩⎪⎨⎪⎧3x +4y =165x -6y =33
解:⎩⎨⎧x =5y =1 解:⎩⎪⎨⎪⎧x =6y =-12
(3)⎩⎪⎨⎪⎧x +y 2+x -y 3=6
4(x +y )-5(x -y )=2 (4)⎩⎪⎨⎪⎧x +2y +z =13x +y +2z =143x -y +3z =18
解:⎩
⎨⎧x =7y =1 解:⎩
⎨⎧x =3y =3z =4
22.(6分)已知方程组⎩
⎪⎨⎪⎧4x +y =53x -2y =1和⎩⎪⎨⎪⎧ax +by =3ax -by =1有相同的解,求a 2-2ab +b 2的值. 解:解得⎩⎨⎧x =1y =1代入⎩⎨⎧ax +by =3ax -by =1得⎩⎨⎧a =2
b =1
,∴a 2-2ab +b 2=1
23.(8分)根据图中的对话解答问题:
解:设一本笔记本x 元,一支钢笔y 元,列方程组得⎩
⎨⎧x +4y =18,x +y =6,解得⎩⎨⎧x =2,
y =4∴1本
笔记本2元,一支钢笔4元
24.(8分),如图,在3×3的方格内,填写了一些式子和数.
2x 3 2 y -3
4y
3 2 1
图① 图②
(1)使图①中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足图①的其他6个数填入图②中的方格内.
解:(1)依题意,得⎩⎨⎧2x +3=4y -3,2x +y +4y =2x +3+2解得⎩
⎨⎧x =-1,
y =1
(2)图略
25.(10分)甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km ,那么甲用1 h 就能追上乙;如果乙先走1 h ,那么甲只用15 min 就能追上乙,求甲、乙二人的速度.
解:设甲、乙两人的速度分别为x 千米/时,y 千米/时,列方程组得⎩⎪⎨⎪
⎧x -y =20,14
(x -y )=y ,解
得⎩⎨⎧x =25,
y =5
26.(12分)某商场准备购进两种摩托车共25辆,预计投资10万元,现有甲、乙、丙三种摩托车供选购,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利200元.10万元资金全部用完.
(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案? 解:(1)有三种方案:第一种购甲、乙两种摩托,设甲为x 辆,乙为y 辆,则
⎩⎨⎧x +y =25,4200x +3700y =100000,解得⎩⎨⎧x =15,y =10, 第二种购甲、丙两种摩托,设甲为x 辆,丙为y 辆,则⎩⎨⎧x +y =25,4200x +3200y =100000,解得⎩⎨⎧x =20y =5,第三种购乙、丙两种摩托,设乙为x 辆,
丙为y 辆,则⎩
⎨⎧x +y =25
3700x +3200y =100000,解得y 为负值,所以这种方案不成立,所以只有两
种方案
(2)第一种方案赢利:400×15+350×10=9500元,第二种方案赢利:400×20+200×5
=9000元,∴选择第一种方案。