第七章 线段与角的画法(能力提升)(原卷版)
第七章 线段与角的画法(本章复习课件)
3、互补的两个角能否都是锐角?能否都是 直角?能否都是钝角?为什么?
1、如图,∠BAC=90°,∠DAE=90° 问:图中有哪几对互余的角? 问:∠1和∠2有什么关系?
B D
1 A2
同角的余角相等在同一直线上,点M、 A、D在同一直线上
什么叫两点之间的距离?
联结两点的线段的长度叫两点之 间的距离。
线段的基本性质:
两点之间,线段最短。(在所有 联结两点的线中,线段最短)
如图,三角形ABC,比较大小:
AB+AC__>__BC,
理由是两__点__之_间__,__线_段__最_短__.
已知A,B,C三点在一条直线上, AB=5CM,BC=3CM,那么AC=多少厘米?
第七章 线段与角的画法(本章复习课 件)
填空
①30o角的余角是_6_0_o_、补角是_1_5_0_o _; ②45o角的余角是_4_5_o_、补角是_1_3_5_o_;
③如果∠α=xo,∠α的余角是_(_9_0_-_x_)o、 补角是(_1_8_0_-_x_)o.
1、一个角与它的余角相等,这个角是怎样 的角?
问:图中有哪几对互补的角?
问:∠1和∠2有什么关系?
D
2 N
A 1
同角的补角相等
C
M
如图,已知点O是直线AB上的点,
∠BOC=∠AOD=35°,则图中互补的角 有____4__对.
方向角的表示方法:
北
东
偏
x0
南
西
规定:顺序不能倒! 注意:东北方向就是指北偏东 450,没有北东方向;还有西北方 向、西南方向、东南方向。
5海里用1厘米表示
【单元卷】沪教版六年级数学下册:第七章 线段与角的画法 单元质量检测卷(二)含答案与解析
沪教版六年级数学下册单元质量检测卷(二)第七章线段与角的画法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A.63.5°=63°50′B.18°18′18″=18.33°C.36.15°=36.15′D.28°39′+17°31'=46°10′2.如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定3.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm4.下列说法正确的是()A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1+∠2+∠3互补D.如果∠a、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互为余角5.如图,佳佳从A处沿正南方向骑行到B处,再右转60°骑行到C处,然后左转80°继续骑行,此时佳佳骑行的方向为()A.南偏西20°B.南偏西80°C.南偏东20°D.南偏东80°6.如图所示,点O在直线AB上,OE平分∠AOC,∠EOF=90°,则∠COF与∠AOE的关系是()A.相等B.互余C.互补D.无法确定二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.将钝角,直角,平角,锐角由小到大依次排列,顺序是.8.如果点C是线段AB的中点,且AC=2.5cm,则AB=cm.9.若∠1=35°21,则∠1的补角是.10.若∠A=37°12′,则∠A的余角度数是.11.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是cm.12.如图,已知线段AC=7cm,AD=2cm,C为线段DB的中点,则线段AB=cm.13.已知:∠AOB=90°,∠BOC=30°,OM,ON分别平分∠AOB,∠BOC,则∠MON=.14.如图,已知∠AOD是平角,OC是∠BOD的平分线,若∠AOB=40°,则∠COD=.15.如图,将长方形纸片的一角作折叠,使顶点A落在A'处,DE为折痕,将∠BEA'对折,使得B'落在直线EA'上,得折痕EG,若EA'恰好平分∠DEB,则∠DEA'=°.16.如图,OA的方向是北偏东15度,OB的方向是西偏北50度,若∠AOC=∠AOB,则OC的方向是.17.在同一平面内,若∠AOB=50°,∠AOC=40°,∠BOD=30°,则∠DOC的度数是°.18.如图,点A,O,B在同一条直线上,射线OD平分∠BOC,射线OE在∠AOC的内部,且∠DOE=90°,写出图中所有互为余角的角:.三、解答题(本大题共7小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算题(1)131°28'﹣32'15''(2)58°38'27''+47°42'40''(3)25°38'45''×3(4)109°15'24''÷420.已知线段AB=14cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求AM的长.21.一个角的余角比它补角的还少12°,求这个角的度数.22.比较图中以A为一个端点的线段的大小,并把它们用“<”号连接起来.在图中,AC=AB+BC,AB=AD﹣DB,类似地,还能写出哪些有关线段的和与差的关系式?23.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:∵∠BOC=3∠,∠AOB=40°,∴∠BOC=°∴∠AOC=+∴∠AOC=160°∵OD平分∠AOC∴∠COD==°.24.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=36°,求∠EOC的度数.25.如图1,点O在直线AB上,过点O在直线同侧作两条射线OC,OD,OM,ON分别是∠AOC,∠BOD的角平分线.(1)若∠COD=110°,那么∠MON是多少度?(2)若∠COD=α,请你猜想∠MON是多少度(结果用含α的代数式表示)?并说明理由.(3)其实线段的计算和角的计算存在着紧密的联系.如图2,已知线段AB=m,点C,D是线段AB上两点,线段CD=n,点M,N分别是AC,BD的中点,求MN的长.(结果用含m,n的代数式表示)参考答案与解析一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A.63.5°=63°50′B.18°18′18″=18.33°C.36.15°=36.15′D.28°39′+17°31'=46°10′【答案】D【解答】解:A、63.5°=63°30′,计算错误;B、18°18′18″=18.305°,计算错误;C、36.15°=36.9′,计算错误;D、28°39′+17°31'=46°10',计算正确;故选:D.【知识点】度分秒的换算2.如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定【答案】A【解答】解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:A.【知识点】比较线段的长短3.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm【答案】B【解答】解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.【知识点】两点间的距离4.下列说法正确的是()A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1+∠2+∠3互补D.如果∠a、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互为余角【答案】B【解答】解:A、90°的补角为90°,所以B选项不符合题意;B、一锐角的余角比这个角的补角小90°,所以A选项符合题意;C、当两个角的和为180°,则这两个角互补,所以C选项不符合题意;D、∠a、∠β互余,∠β、∠γ互余,那么∠α与∠γ的差为90°,所以D选项不符合题意.故选:B.【知识点】余角和补角5.如图,佳佳从A处沿正南方向骑行到B处,再右转60°骑行到C处,然后左转80°继续骑行,此时佳佳骑行的方向为()A.南偏西20°B.南偏西80°C.南偏东20°D.南偏东80°【答案】C【解答】解:过点C作DC∥AB,如图:∵DC∥AB,∠GBH=60°,∴∠HCF=∠GBH=60°.∵∠HCE=80°,∴∠ECF=∠HCE﹣∠HCF=80°﹣60°=20°,此时佳佳骑行的方向为南偏东20°,故选:C.【知识点】方向角6.如图所示,点O在直线AB上,OE平分∠AOC,∠EOF=90°,则∠COF与∠AOE的关系是()A.相等B.互余C.互补D.无法确定【答案】B【解答】解:∵∠EOF=90°,∴∠COE+∠COF=90°,∠AOE+∠BOF=180°﹣∠EOF=90°,∴∠AOE和∠BOF互余,∵OE平分∠AOC,∴∠AOE=∠COE,∴∠COF=∠BOF,∠COF和∠AOE互余,故选:B.【知识点】余角和补角、角平分线的定义二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.将钝角,直角,平角,锐角由小到大依次排列,顺序是.【答案】锐角<直角<钝角<平角【解答】解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.【知识点】角的大小比较8.如果点C是线段AB的中点,且AC=2.5cm,则AB=cm.【答案】5【解答】解:根据题意:点C是线段AB的中点,且AC=2.5cm,则AB=5.故答案为5.【知识点】比较线段的长短9.若∠1=35°21,则∠1的补角是.【答案】144°39′【解答】解:根据定义,∠1的补角度数是90°﹣35°21′=144°39′.故答案为144°39′.【知识点】余角和补角10.若∠A=37°12′,则∠A的余角度数是.【答案】52°48′【解答】解:∠A的余角=90°﹣37°12′=52°48′.故答案为:52°48′.【知识点】度分秒的换算、余角和补角11.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是cm.【答案】4【解答】解:∵BC=AB,D为AC的中点,DC=3cm,∴DC=AC=(AB+BC)=(AB+AB)=3,解得AB=4cm.故答案为:4.【知识点】两点间的距离12.如图,已知线段AC=7cm,AD=2cm,C为线段DB的中点,则线段AB=cm.【答案】12【解答】解:∵AC=7cm,AD=2cm,∴CD=AC﹣AD=5cm,∵C为线段DB的中点,∴BC=CD=5cm,∴AB=AC+BC=7+5=12(cm),答:线段AB=12cm,故答案为:12.【知识点】线段的和差13.已知:∠AOB=90°,∠BOC=30°,OM,ON分别平分∠AOB,∠BOC,则∠MON=.【答案】60°或30°【解答】解:此题有两种情况,(1)如图,∵∠AOB=90°,∠BOC=30°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×90°=45°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM+∠BON=45°+15°=60°.(2)如图,∵∠AOB=90°,∠BOC=30°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×90°=45°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM﹣∠BON=45°﹣15°=30°.答:∠MON的度数是60°或30°.故答案为:60°或30°.【知识点】角平分线的定义、角的计算14.如图,已知∠AOD是平角,OC是∠BOD的平分线,若∠AOB=40°,则∠COD=.【答案】70°【解答】解:∵∠AOD是平角,∠AOB=40°,∴∠BOD=180°﹣∠AOB=180°﹣40°=140°,∵OC是∠BOD的平分线,∴∠COD=∠COB=∠BOD=70°.故答案是:70°.【知识点】角平分线的定义、角的概念15.如图,将长方形纸片的一角作折叠,使顶点A落在A'处,DE为折痕,将∠BEA'对折,使得B'落在直线EA'上,得折痕EG,若EA'恰好平分∠DEB,则∠DEA'=°.【答案】60【解答】解:由折叠可得,∠AED=∠A'ED,∵EA'恰好平分∠DEB,∴∠A'ED=∠A'EB,∴∠DEA'=∠AEB=×180°=60°,故答案为:60.【知识点】角平分线的定义、角的计算16.如图,OA的方向是北偏东15度,OB的方向是西偏北50度,若∠AOC=∠AOB,则OC的方向是.【答案】北偏东70°【解答】解:∠AOC=∠AOB=90°﹣50°+15°=55°,OC的方向是北偏东15°+55°=70°;故答案为:北偏东70°.【知识点】方向角17.在同一平面内,若∠AOB=50°,∠AOC=40°,∠BOD=30°,则∠DOC的度数是°.【答案】40或20或120或60【解答】解:如图所示:如图1,∠DOC=∠AOB﹣∠AOC+∠BOD=40°,如图2,∠DOC=∠BOD﹣(∠AOB﹣∠AOC)=20°,如图3,∠DOC=∠AOB+∠AOC+∠BOD=120°,如图4,∠DOC=∠AOB+∠AOC﹣∠BOD=60°.故∠DOC的度数是40或20或120或60°.故答案为:40或20或120或60.【知识点】角的计算18.如图,点A,O,B在同一条直线上,射线OD平分∠BOC,射线OE在∠AOC的内部,且∠DOE=90°,写出图中所有互为余角的角:.【答案】∠1与∠3,∠1与∠4,∠,2与∠3,∠2与∠4【解答】解:图中所有互为余角的角:∠1与∠3,∠1与∠4,∠,2与∠3,∠2与∠4.故答案为:∠1与∠3,∠1与∠4,∠,2与∠3,∠2与∠4.【知识点】余角和补角三、解答题(本大题共7小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算题(1)131°28'﹣32'15''(2)58°38'27''+47°42'40''(3)25°38'45''×3(4)109°15'24''÷4【解答】解:(1)131°28'﹣32'15''=130°55'45″(2)58°38'27''+47°42'40''=106°21'7″(3)25°38'45''×3=76°56'15″(4)109°15'24''÷4=27°18'51″【知识点】度分秒的换算20.已知线段AB=14cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求AM的长.【解答】解:①C点在线段AB上,由线段的和差,得AC=AB﹣BC=14﹣6=8cm,由M是线段AC的中点,得AM=AC=×8=4cm;②C点在线段AB的延长线上,由线段的和差,得AC=AB+BC=14+6=20cm,由M是线段AC的中点,得AM=AC=×20=10cm.综上所述:AM的长为4cm或10cm.【知识点】两点间的距离21.一个角的余角比它补角的还少12°,求这个角的度数.【解答】解:设这个角度数是x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,90°﹣x=(180°﹣x)﹣12°,解得x=76°.答:这个角的度数76°.【知识点】余角和补角22.比较图中以A为一个端点的线段的大小,并把它们用“<”号连接起来.在图中,AC=AB+BC,AB=AD﹣DB,类似地,还能写出哪些有关线段的和与差的关系式?【解答】解:如图所示,AB<AC<AD,有关线段的和与差的关系式可以为:BD=CB+CD.【知识点】比较线段的长短23.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:∵∠BOC=3∠,∠AOB=40°,∴∠BOC=°∴∠AOC=+∴∠AOC=160°∵OD平分∠AOC∴∠COD==°.【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,∴∠BOC=120°,∴∠AOC=∠AOB+∠BOC∴∠AOC=160°∵OD平分∠AOC∴∠COD=∠AOC=80°.故答案为AOB;120;∠AOB,∠BOC;∠AOC,80°.【知识点】角平分线的定义、角的计算24.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=36°,求∠EOC的度数.【解答】解:(1)∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,即∠AOB=90°,∵∠AOD=75°,∴∠BOD=15°,又∵OD平分∠BOC,∠∴∠BOC=30°,∴∠AOC=60°,又∵∠AOE=2∠EOC,∴;(2)∠EOC=x,则∠DOC=∠DOE﹣∠EOC=36°﹣x,∵OD平分∠BOC,∴∠BOC=2∠DOC=2(36°﹣x),又∵∠AOE=2∠EOC,∴∠AOE=2x,∴2x+x+2(36°﹣x)=90°,∴x=18°.即∠EOC=18°.【知识点】角平分线的定义、余角和补角25.如图1,点O在直线AB上,过点O在直线同侧作两条射线OC,OD,OM,ON分别是∠AOC,∠BOD的角平分线.(1)若∠COD=110°,那么∠MON是多少度?(2)若∠COD=α,请你猜想∠MON是多少度(结果用含α的代数式表示)?并说明理由.(3)其实线段的计算和角的计算存在着紧密的联系.如图2,已知线段AB=m,点C,D是线段AB上两点,线段CD=n,点M,N分别是AC,BD的中点,求MN的长.(结果用含m,n的代数式表示)【解答】解:(1)解法一:∵OM,ON分别是∠AOC,∠BOD的角平分线,∴,,∵∠COD=110°,∴∠AOC+∠BOD=180°﹣110°=70°,∴=;解法二:∵OM,ON分别是∠AOC,∠BOD的角平分线.∴,,∵∠COD=110°,∴∠AOC+∠BOD=180°﹣110°=70°,∴==;(2)解法一:猜想:,∵OM,ON分别是∠AOC,∠BOD的角平分线.∴,,∵∠COD=α,∴∠AOC+∠BOD=180°﹣α,∴==;解法二:猜想:,∵OM,ON分别是∠AOC,∠BOD的角平分线.∴,,∵∠COD=α,∴∠AOC+∠BOD=180°﹣α,∴=;(3)解法一:∵点M,N分别是AC,BD的中点,∴,,∵CD=n,∴AC+BD=m﹣n,∴=;解法二:点M,N分别是AC,BD的中点,∴,,∵CD=n,∴AC+BD=m﹣n,∴=.【知识点】角平分线的定义。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析试题(含详细解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠2、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'3、如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE =90°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个4、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线5、下列说法正确的是()A.画一条长2cm的直线B.若OA=OB,则O是线段AB的中点C.角的大小与边的长短无关D.延长射线OA6、如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为()A.2 B.3 C.4 D.57、下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A.B.C .D .8、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°9、木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是( ).A .两点之间,线段最短B .线动成面C .经过一点,可以作无数条直线D .两点确定一条直线10、如图,货轮在O 处观测到岛屿B 在北偏东45°的方向,岛屿C 在南偏东60°的方向,则∠BOC 的大小是( )A .75°B .80°C .100°D .105°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 比较大小:3815︒'___38.15︒(填写“>”、“ =”、“ <”).2、3830'=___°.3、怀柔北部山区的分水岭隧道全长3333米,是我区最长的隧道.建成后有效缩短了我区北部乡镇居民往返怀柔城区的路程.如图,你能用学过的数学知识来解释走分水岭隧道与原盘山路相比缩短路程的原因吗?_________________________________.4、若5318α'∠=︒,则α∠的余角为______度.5、计算:18⎛⎫︒= ⎪⎝⎭_____'. 三、解答题(5小题,每小题10分,共计50分)1、作图题:已知:如图,是由三条线段a ,b ,c 首尾顺次相连而成的封闭图形(三角形),求作:线段DE ,使DE =b +c -a2、如图,点C 是线段AB 上的一点,延长线段AB ,使BD CB =.(1)请依题意补全图形(用尺规作图,保留作图痕迹);(2)若7AD =,3AC =,求线段DB 的长.3、已知A ,B ,C ,O ,M 五点在同一条直线上,且AO =BO ,BC =2AB .(1)若AB =a ,求线段AO 和AC 的长;(2)若点M 在线段AB 上,且AM =m ,BM =n ,试说明等式MO =12|m ﹣n |成立;(3)若点M 不在线段AB 上,且AM =m ,BM =n ,求MO 的长.4、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.5、 如图,已知线段AC =12cm ,点B 在线段AC 上 ,满足BC =12AB .(1)求AB 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.-参考答案-一、单选题1、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.2、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.3、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F 在线段CD 上时点F 到点B 、C 、D 、E 的距离之和最小,当点F 和E 重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.4、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.5、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A、直线是无限长的,直线是不可测量长度的,所以画一条2cm长的直线是错误的,故本选项不符合题意;B、若OA=OB,则O不一定是线段AB的中点,故本选项不符合题意;C、角的大小与边的长短无关,故本选项符合题意;D、延长射线OA说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C.【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行6、A【分析】根据线段中点的定义,可得AC=CD=DB=4,代入数据进行计算即可得解求出AB的长;再求出AE的长,最后CE=AE-AC.【详解】解:∵AC=CD=DB,点E是线段AB的中点,∴AD=AC+CD=8.AC=CD=DB=4,AB=6,∴AB=3AC=12,AE=12则CE=AE-AC=6-4=2.故选:A.【点睛】本题考查了线段的和差,两点间的距离,主要利用线段中点的定义,比较简单,准确识图是解题的关键.7、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.8、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、D【分析】找准题中所给情境的关键词“画两个点”、“过这两点弹出一条墨线”即可得出结论.【详解】根据题意可知,木匠师傅先在木板上画两个点,然后过这两点弹出一条墨线.利用的是经过两点有且只有一条直线,简称:两点确定一条直线.故选:D .【点睛】本题是通过生活情境说出数学原理.关键在于抓住关键词.10、A在正北和正南方向上分别确定一点A 、D ,根据方位角定义,求出AOB ∠、COD ∠的度数,再利用角的关系,求出∠BOC 的大小即可.【详解】解:在正北和正南方向上分别确定一点A 、D ,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.二、填空题1、>【分析】根据角度制的换算关系即可得.【详解】解:381538(1560)︒'=︒+÷︒38.2538.15=︒>︒,故答案为:>.【点睛】本题考查了角的度数大小比较,熟练掌握角度制是解题关键.2、38.5【分析】根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.【详解】解:∵30'3060=()°=0.5°,∴38°30'=38°+0.5°=38.5°.故答案为:38.5.【点睛】本题考查了角度制的换算,相对比较简单,注意以60为进制即可.3、两点之间,线段最短【分析】依据线段的性质,即可得出结论.【详解】解:走分水岭隧道与原盘山路相比缩短路程,其道理用数学知识解释的是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质.熟记两点之间线段最短是解决本题的关键.4、36.7【分析】根据余角的定义计算即可.【详解】解:∵5318α'∠=︒=53.3°,∴α∠的余角=90°-53.3°=36.7°,5、7.5【分析】根据角度制的进率进行计算即可.【详解】 解:10.1257.58⎛⎫'︒=︒= ⎪⎝⎭, 故答案为:7.5.【点睛】本题主要考查了角度制的换算,熟知角度制的进率是解题的关键.三、解答题1、见解析【分析】利用尺规作图解答,作射线DM ,在射线上分别截取DQ=b ,QF=c ,FE=a ,则DE = b +c -a .【详解】解:线段 DE 即为所求.【点睛】此题考查了尺规作图,正确掌握截取线段的方法及线段的和差关系是解题的关键.2、(1)作图见解析;(2)2【分析】(1)根据题干的语句作图即可;(2)先求解线段4,CD = 再结合,BC BD = 从而可得答案.【详解】解:(1)如图,线段BD 即为所求作的线段,(2) 7AD =,3AC =,734,CD AD AC,BC BD = 1 2.2BD CD 【点睛】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键. 3、(1)12a ;3a 或a ;(2)见解析;(3)()1+2MO m n = 【分析】(1)分情况讨论当点C 在点B 右侧和左侧时,根据已知等量关系即可求解;(2)由题意知点M 在线段AB 上,分别将M 点在O 点左右两侧时MO 的长度用m 、n 表示出来,再讨论m n <和m n >时,MO 的值即可;(3)当点M 不在线段AB 上,则M 在A 左边或B 右边,根据题干数量关系分别求出两种情况时MO 的值即可.【详解】解:∵AO =BO ,AB =a , ∴11=22AO BO AB a == , 当点C 在点B 右侧时,如下图所示:∵BC =2AB ,AB =a ,∴233AC AB BC AB AB AB a =+=+== ,当点C 在点B 左侧时,如下图所示:∵BC =2AB ,AB =a ,∴2AC BC AB AB AB AB a =-=-==,∴线段AO 的长为12a ,线段AC 的长为3a 或a ; (2)当M 点在O 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = ,∴MO AO AM =-()111111222222AB AM AM BM AM AM BM AM BM AM =-=+-=+-=- , ∵AM m BM n ==, , ∴()111222MO n m n m =-=- , 当M 点在O 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴MO BO BM =- ,()111111222222AB BM AM BM BM AM BM BM AM BM =-=+-=+-=- , ∵,AM m BM n == , ∴()111222MO m n m n =-=- , 综上,当AM BM < 即m n < 时,()12MO n m =-, 当AM BM > 即m n > 时,()12MO m n =-, ∴12MO m n =-; (3)当点M 在A 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = , ∴+MO AO AM =()111111+++222222AB AM BM AM AM BM AM AM BM AM ==-+=-=, ∵,AM m BM n ==, ∴()111++222MO n m m n ==, 当点M 在B 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴+MO BO BM = ,()111111222222AB BM AM BM BM AM BM BM AM BM =+=-+=-+=+ , ∵,AM m BM n ==, ∴()111++222MO m n m n ==, 综上,()1+2MO m n =. 【点睛】 本题考查两点间距离,利用线段中点的性质、线段的和差分情况讨论是解题关键.4、(1)78°;(2)80°.【分析】(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得BOD BOC DOC ∠=∠+∠,然后将角度代入计算即可;(2)由互补可得180AOD BOD ∠+∠=︒,结合图形可得:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得12BOC AOC ∠=∠,利用等量代换得出321802AOC DOE ∠+∠=︒,将已知角度代入求解即可. 【详解】解:(1)OB 是AOC ∠的平分线,且42AOB ∠=︒,OD 是COE ∠的平分线,且36DOE ∠=︒,∴42AOB BOC ∠=∠=︒,36COD DOE ∠=∠=︒,∴423678BOD BOC DOC ∠=∠+∠=︒+︒=︒,∴78BOD ∠=︒;(2)∵AOD ∠与BOD ∠互补,∴180AOD BOD ∠+∠=︒,由图知:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠, 由角平分线定义知:12BOC AOC ∠=∠, ∴11802AOC DOE AOC DOE ∠+∠+∠+∠=︒, 即321802AOC DOE ∠+∠=︒,∵30DOE ∠=︒,∴32301802AOC ∠+⨯︒=︒,即80AOC ∠=︒.【点睛】题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键. 5、(1)8cm(2)2cm【分析】(1)根据BC =12AB 可得23AB AC =,代入计算即可; (2)根据中点分别求出AD 和AE 的长,即可得到DE 的长.(1) 1 2BC AB = 2212833AB AC cm ∴==⨯= (2)∵D 是AB 的中点142AD AB cm ∴== ∵E 是AC 的中点162AE AC cm ∴== 2DE AE AD cm ∴=-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
2022年精品解析沪教版(上海)六年级数学第二学期第七章线段与角的画法专题训练试卷(精选含答案)
沪教版(上海)六年级数学第二学期第七章线段与角的画法专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若1∠的余角为4835︒',则1∠的补角为( )A .4125︒'B .13125'︒C .13835'︒D .14125'︒2、下列图形中能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是( )A .B .C .D .3、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A .用两个钉子就可以把木条固定在墙上B .把弯曲的公路改直,就能缩短路程C .锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线4、金水河是郑州最古老的河流.2500年来,金水河像一条飘带,由西向东,流淌在郑州市民身边,和郑州这座城市结下了不解之缘.近年来,我区政府在金水河治理过程中,有时会将弯曲的河道改直,这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短5、如图,OA是北偏东40°方向的一条射线,若∠AOB=90°,OB的方向是()A.西偏北50°B.东偏北50°C.北偏东50°D.北偏西50°6、有两根木条,一根AB长为80cm,另一根CD长为130cm,在它们的中点处各有一个小圆孔M、N (圆孔直径忽略不计,M、N抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是()A.25cm B.25cm或105cm C.105cm D.50cm或210cm7、如图,剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是()A .两点确定一条直线B .手线段最短C .同角的余角相等D .两点之间线段最短8、下列说法正确的是( )A .若10x +=,则1x =B .若1a >,则1a >C .若点A ,B ,C 不在同一条直线上,则AC BC AB +>D .若AM BM =,则点M 为线段AB 的中点9、下列说法正确的是( )A .画一条长2cm 的直线B .若OA =OB ,则O 是线段AB 的中点C .角的大小与边的长短无关D .延长射线OA10、周末小华从家出发,骑车去位于家南偏东35°方位的公园游玩,那么他准备回家时,他家位于公园的哪个方位( )A .北偏西55°B .北偏西35°C .南偏东55°D .南偏西35°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当时钟指向上午10点20分时,时针与分针的夹角是_____度.2、比较大小:1625'︒________16.25︒(填“>”“<”或“=”).3、已知∠A =20°24′,∠B =20.4°.比较大小:∠A ________∠B (填“>或<或=”).4、若∠A=20°18',则∠A 的补角的大小为__________.5、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知数轴上点A ,O ,B 对应的数分别为2-,0,6,点P 是数轴上的一个动点.(1)设点P 对应的数为x .①若点P 到点A 和点B 的距离相等,则x 的值是________;②若点P 在点A 的左侧,则PA =________,PB =__________(用含x 的式子表示);(2)若点P 以每秒1个单位长度的速度从点O 向右运动,同时点A 以每秒3个单位长度的速度向左运动,点B 以每秒6个单位长度的速度向右运动,在运动过程中,点M 和点N 分别是AP 和OB 的中点,设运动时间为t .①移动后,点P 在数轴上所表示的数为________,点A 在数轴上所表示的数为_________,点B 在数轴上所表示的数为__________,(用含t 的式子表示);②求MN 的长(用含的式子表示);③当t =_______时,MN AB =.参考公式:若数轴上A 、B 两点对应的数分别为a ,b ,则线段AB 的中点对应的数为2a b +. 2、如图1,BOC ∠和AOB ∠都是锐角,射线OB 在AOC ∠内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180︒的角)(1)如图2,OM 平分BOC ∠,ON 平分AOC ∠,当40α=︒,70β=︒时,求∠MON 的大小; 解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1_______=________2CON ∠=,所以°____35=_____MON CON COM ︒︒∠=∠-∠=-.(2)如图3,P 为AOB ∠内任意一点,直线PQ 过点O ,点Q 在AOB ∠外部,类比(1)的做法,完成下列两题:①当OM 平分POB ∠,ON 平分POA ∠,MON ∠的度数为_______;(用含有α或β的代数式表示); ②当OM 平分QOB ∠,ON 平分QOA ∠,MON ∠的度数为_________.(用含有α或β的代数式表示)3、 如图,40AOB ∠=︒,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若10DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,求COE ∠的度数.4、根据题意,补全解题过程.如图,点C 为线段AB 上一点,D 为线段AC 的中点,若AD =3,BC =2,求BD 的长.解:∵D 为线段AC 的中点,AD =3,∴CD = = .( )∵BD = + ,BC =2,∴BD = .5、在数轴上有A ,B ,C ,M 四点,点A 表示的数是-1,点B 表示的数是6,点M 位于点B 的左侧并与点B 的距离是5,M 为线段AC 的中点.(1)画出点M ,点C ,并直接写出点M ,点C 表示的数;(2)画出在数轴上与点B 的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q 满足14QA QC =,求点Q 表示的数.-参考答案-一、单选题1、C【分析】根据余角和补角的定义,先求出1∠,再求出它的补角即可.【详解】解:∵1∠的余角为4835︒',∴19048354125''∠=-=︒︒︒,1∠的补角为180412513835-︒=︒''︒,故选:C .【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.2、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.3、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.【详解】解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.4、D【分析】根据线段的基本事实——两点之间,线段最短,即可求解.【详解】解:根据题意得:这一做法的主要依据是两点之间,线段最短.故选:D【点睛】本题主要考查了线段的基本事实,熟练掌握两点之间,线段最短是解题的关键.5、D【分析】根据方位角的概念,写出射线OB表示的方向即可.【详解】解:如图:∵OA 是北偏东40°方向上的一条射线,∠AOB =90°,∴∠1=90°-40°=50°,∴射线OB 的方向角是北偏西50°,故选:D .【点睛】本题考查了方向角,解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.6、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.7、D【分析】利用两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些线中,线段最短,据此解题.【详解】解:剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是:两点之间线段最短,故选:D .【点睛】本题考查线段的性质,正确掌握相关知识是解题关键.8、C【分析】根据解方程、绝对值、线段的中点等知识,逐项判断即可.【详解】解:A. 若10x +=,则1x =-,原选项错误,不符合题意;B. 若1a >,则1a >或1a <-,原选项错误,不符合题意;C. 若点A ,B ,C 不在同一条直线上,则AC BC AB +>,符合题意;D. 若AM BM =,则点M 为线段AB 的中点,当A 、B 、M 不在同一直线上时,点M 不是线段AB 的中点,原选项错误,不符合题意;故选:C .【点睛】本题考查了解方程、绝对值、线段的中点等知识,解题关键是熟记相关知识,准确进行判断.9、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A 、直线是无限长的,直线是不可测量长度的,所以画一条2cm 长的直线是错误的,故本选项不符合题意;B 、若OA =OB ,则O 不一定是线段AB 的中点,故本选项不符合题意;C 、角的大小与边的长短无关,故本选项符合题意;D 、延长射线OA 说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C .【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.10、B【分析】根据描述作出草图,进而根据两直线平行,内错角相等以及方位角的表示方法即可求得答案【详解】解:如图所示,周末小华从家出发,骑车去位于家南偏东35°方位的公园游玩,那么他准备回家时,他家位于公园北偏西35°故选B【点睛】本题考查了方位角,掌握方位角的表示方法是解题的关键.二、填空题1、170【分析】由钟面角的意义可得:时针每分钟转0.5,分针每分钟转6,同时每一大格为30, 从而可得答案.【详解】解:如图,由钟面角的意义可得,∠BOC =∠COD =∠DOE =∠EOF =∠FOG =360°×112=30°, ∠AOB =30200.520, ∴∠AOG =30°×5+20°=170°,故答案为:170.【点睛】本题考查钟面角,解题的关键是“理解钟面上时针每分钟转0.5, 分针每分钟转6, 同时每一大格为30.”2、>【分析】先把单位化统一,再比较即可.【详解】解:因为16.251615'︒=︒,所以162516.25'︒>︒,故答案为:>.【点睛】本题考查了角的大小比较,注意单位要化统一,依据1°=60′,1′=60′′是解题的关键.3、=【分析】根据度分秒的换算:1°=60′解答即可.【详解】解:∵0.4×60′=24′,∴∠B =20.4°=20°24′=∠A,【点睛】本题考查度分秒的换算、角的度数大小比较,熟练掌握度分秒的换算进率是解答的关键. 4、159°42'(或159.7°)【分析】根据补角的定义可直接进行求解.【详解】解:由∠A=20°18',则∠A 的补角为180201815942''︒-︒=︒;故答案为159°42'.【点睛】本题主要考查补角,熟练掌握求一个角的补角是解题的关键.5、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x +3x =90°,解得x =18°,所以∠α=36°,∠β=54°, 所以25253654693636αβ∠+∠=⨯︒+⨯︒=︒;【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、(1)①2;②2x --,6x -;(2)①t ,23t --,66t +;②44MN t =+;③1.【分析】(1)①根据数轴上两点中点计算公式计算即可;②利用数轴上两点之间距离的计算方法列代数式即可;(2)①根据数轴上的点左右移动,相应点的变化求解即可;②用时间t 表示各个点在数轴上所表示的数,再求出MN 即可;③由MN =AB 得到关于t 的等式,解出t 值即可.【详解】(1)①由中点公式得:2622x -+==, 故答案为:2;②由数轴上两点间的距离公式可得:PA =-2-x ,PB =6-x ,故答案为:2x --,6x -;(2)①移动t 秒后,点P 在数轴上所表示的数为t ,点A 在数轴上所表示的数为-2-3t ,点B 在数轴上所表示的数为6+6t ,故答案为:t ,23t --,66t +;②∵点M 是AP 的中点,∴点M 在数轴上所表示的数为2312t t t --+=--; ∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+6t 2=3+3t ;∴33(1)44MN t t t =+---=+;③由题意得:4+4t =6-(-2),解得:t =1.故答案为:1.【点睛】考查数轴表示数的意义,掌握数轴上两点之间距离的计算方法和两点距离公式是解决问题的关键. 2、(1)AOC ∠,55°,55︒,20︒(2)①2α;②1802α︒- 【分析】(1)由题意直接根据角的度数和角平分线定义进行分析即可得出答案;(2)①由题意直接根据角的度数和角平分线定义得出∠MON =∠POM +∠PON =12∠AOB ,进而进行计算即可;②根据题意利用角平分线定义得出∠MON =1212QOB QOA ∠+∠,进而进行计算即可. (1)解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1=552CON AOC ∠=∠,所以°5535=20MON CON COM ︒︒∠=∠-∠=-.故答案为:AOC ∠,55°,55︒,20︒.(2)解:①如图,∵OM 平分∠POB ,ON 平分∠POA ,∴∠POM =12∠POB ,∠PON =12∠POA ,∴∠MON =∠POM +∠PON =12∠AOB =2α, 故答案为:2α; ②如图,∵OM 平分∠QOB ,ON 平分∠QOA ,∴∠MON =1212QOB QOA ∠+∠=1(360)2AOB ︒-∠=1802α︒-. 【点睛】本题考查角的计算以及角平分线的定义,熟练掌握并明确角平分线的定义是解答此题的关键. 3、(1)50°(2)60°【分析】(1)根据OB 是AOC ∠的平分线,OD 是COE ∠的平分线,可得40,10BOC AOB COD DOE ∠=∠=︒∠=∠=︒,即可求解;(2)设COD DOE x ∠=∠=︒ ,可得()40BOD BOC COD x ∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,再由AOD ∠与BOD ∠互补,从而得到()()4080180x x +︒++︒=︒ ,解得30x = ,即可求解.(1)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40,10BOC AOB COD DOE ∴∠=∠=︒∠=∠=︒,401050BOD BOC COD ∴∠=∠+∠=︒+︒=︒ ;(2)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40BOC AOB ∴∠=∠=︒,设COD DOE x ∠=∠=︒ ,()40BOD BOC COD x ∴∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,∵AOD ∠与BOD ∠互补,()()4080180AOD BOD x x ∴∠+∠=+︒++︒=︒ ,30x ∴= ,30COD DOE ∴∠=∠=︒ ,260COE COD ∴∠=∠=︒ .【点睛】本题主要考查了角平分线的定义,补角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;互补两个角和等于180°是解题的关键.4、AD ,3,线段中点定义,CD ,BC ,5【分析】根据线段中点定义求出CD ,代入BD=CD+BC 求出即可.【详解】解:∵D 为线段AC 的中点,AD =3,∴CD=AD=3.(线段中点定义)∵BD=CD+BC ,BC =2,5、(1)M 为1,C 为3;图见解析;(2)图见解析,是长为10的线段CD ;(3)Q 表示1753--或【分析】(1)点M 在点B 左侧距离为5,故用6-5=1;M 为AC 中点,因此C 为3;(2)与点B 的距离小于或等于5的点组成的图形是一条长度为10的线段;(3)设x ,通过QA=14QC 建立等式,再解x ,从而求出Q 点表示的数,注意分Q 点位于AC 之间和Q 点在A 点左边两种情况建立方程求解.【详解】(1)M 为1,C 为3,如图:(2)如图:图形特征是一条长度为10的线段CD .(3)当Q 在AC 之间时:设Q 点表示的数为x ,则有x -(-1)=()134x -,解得x =15- 当Q 在A 点左边时:设Q 点表示的数为x ,则有-1-x =()134x ⨯-,解得x =73-【点睛】本题考查数轴上的点的标注,掌握各点 之间数量关系是本题解题关键.。
难点详解沪教版(上海)六年级数学第二学期第七章线段与角的画法专项攻克练习题(精选含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A .画一条长2cm 的直线B .若OA =OB ,则O 是线段AB 的中点C .角的大小与边的长短无关D .延长射线OA2、如果9AB =,4AC =,5BC =,则( )A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外3、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )A .∠1B .122∠-∠C .∠2D .122∠+∠ 4、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°5、点A 、B 、C 在同一条数轴上,点A 、B 表示的数分别是1、﹣3,若AB =2AC ,则点C 表示的数是( )A .3或﹣1B .9或﹣7C .0或﹣2D .3或﹣76、如果一个角的补角是这个角的4倍,那么这个角为( )A .36°B .30°C .144°D .150°7、已知100AOB ∠=︒,过点O 作射线OC 、OM ,使20AOC ∠=︒、OM 是BOC ∠的平分线,则BOM ∠的度数为( )A .60︒B .60︒或40︒C .120︒或80︒D .40︒8、下列图形中能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是( )A .B .C .D .9、如图,线段AB =12,点C 是它的中点.则AC 的长为( )A .2B .4C .6D .810、若∠A 与∠B 互为补角,且∠A =28°,则∠B 的度数是( )A .152°B .28°C .52°D .90°第Ⅱ卷(非选择题 70分)1、如图,12BC AB=,D为AC的中点,DC=6,则AB的长为_________.2、2点30分时,时钟与分钟所成的角为__________度.3、从2020年3月开始,一群野生亚洲象从云南西双版纳傣族自治州走出丛林,一路北上,历经17个月迁徙逾500公里安全返回栖息地,引发国内外一波“观象热潮”.象群北移途经峨山县时,一头亚洲象曾脱离象群.如图,A,B,C分别表示峨山县、象群位置、独象位置.经测量,象群在峨山县的西北方向,独象在峨山县的北偏西1648'︒方向,则∠BAC=_______度_______分.4、如图,点C、D在线段AB 上.AC=8cm,CD=5cm,AB=16cm,则图中所有线段的和是___cm.5、若3815A'∠=︒,5145B'∠=︒,则A∠与B的关系是______.(填“互余”或“互补”)1、 如图,40AOB ∠=︒,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若10DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,求COE ∠的度数.2、已知线段a b 、(如图),画出线段AM ,使AM =2+a b ,(用尺规作图,不写作法,保留作图痕迹)3、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.4、将三角板COD 的直角顶点O 放置在直线AB 上.(1)若按照图1的方式摆放,且∠AOC=52°,射线OE平分∠BOC,则∠DOE的大小为______;(2)若按照图2的方式摆放,射线OE平分∠BOC.请写出∠AOC与∠DOE度数的等量关系,并说明理由.5、如图,已知M是线段AB的中点,点N在线段MB上,35MN AM=,若3MN=cm,求线段AB的长.-参考答案-一、单选题1、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A、直线是无限长的,直线是不可测量长度的,所以画一条2cm长的直线是错误的,故本选项不符合题意;B、若OA=OB,则O不一定是线段AB的中点,故本选项不符合题意;C、角的大小与边的长短无关,故本选项符合题意;D、延长射线OA说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C.【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.2、A【分析】根据线段的数量得到AC+BC=AB ,由此确定点C 与AB 的关系.【详解】解:∵9AB =,4AC =,5BC =,∴AC+BC=AB ,∴点C 在线段AB 上,故选:A .【点睛】此题考查了点与直线的位置关系,正确理解各线段的数量关系是解题的关键.3、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=122∠-∠,∠3即为所求. 【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3, ∴∠3=122∠-∠, ∴∠2的余角为122∠-∠, 故选B .【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.4、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.5、A【分析】由已知可得AB=4,分点C在A左边和点C在A右边两种情况来解答.【详解】解:AB=1﹣(﹣3)=4,当C在A左边时,∵AB=2AC,∴AC=2,此时点C表示的数为1﹣2=﹣1;当点C在A右边时,此时点C表示的数为1+2=3,故选:A.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.6、A【分析】︒-,根据“一个角的补角是这个角的4倍”,列出方程,即可设这个角为x,则它的补角为180x求解.【详解】︒-,根据题意得:解:设这个角为x,则它的补角为180xx x︒-=,1804x=︒.解得:36故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.7、B【分析】考虑线段OC在角的内部和外部两种情况,每一种情况都用角的定义和角平分的定义求解,经计算结果为20°或40°.【详解】解:当OC在∠AOB的内部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°﹣20°=80°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC=40°;当OC在∠AOB的外部时,如图所示:∵∠AOC=20°,∠AOB=100°,∴∠BOC=100°+20°=120°,又∵OM是∠BOC的平分线,∴∠BOM=12BOC=60°;综合所述∠BOM的度数有两个,为60°或40°;故选:B.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是分类计算角的大小.8、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.9、C【分析】根据中点的性质,可知AC的长是线段AB的一半,直接求解即可.解:∵线段AB=12,点C是它的中点.∴1112622AC AB==⨯=,故选:C.【点睛】本题考查了线段的中点,解题关键是明确线段的中点把线段分成相等的两部分.10、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.二、填空题1、8【分析】先根据D为AC的中点,DC=6求出AC的长,再根据BC=12AB得出AB=23AC,由此可得出结论.解:∵D为AC的中点,DC=6,∴AC=2CD=12.∵12 BC AB=∴2212833AB AC==⨯=.故答案为:8.【点睛】本题考查线段中点的有关计算,能根据图形得出各线段之间的和、差及倍数关系是解答此题的关键.2、105【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上下午2点30分时,时针与分针的夹角可以看成时针转过2时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴下午2点30分时分针与时针的夹角4×30°-15°=105°.故答案为:105.【点睛】题主要考查了钟面角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,关键是正确画出图形.3、28 12【分析】先根据方向角的定义以及利用数形结合即可解答.【详解】解:∠BAC =45°-16°48′=28°12′.4、53【分析】先求出BD 的长,再求出AD 及CB 的长,再将所有线段相加即可.【详解】解:∵AC =8cm ,CD =5cm ,AB =16cm ,∴BD=AB-AC-CD =3cm ,∴AD=AC+CD =13cm ,CB=CD+BD =8c m ,∴图中所有线段的和是AC+CD+BD+AD+CB+A B=8+5+3+13+8+16=53cm ,故答案为:53.【点睛】此题考查了线段的加减关系,正确掌握各线段的位置及数量关系及图中线段的数量是解题的关键.5、互余【分析】计算两个角的和,90°互余,180°互补.【详解】∵A ∠+B =3815'︒+5145'︒=90°,∴A ∠与B 的关系是互余,故答案为:互余.【点睛】本题考查了互余即两个角的和为90°,熟练掌握互余的定义是解题的关键.三、解答题1、(1)50°(2)60°【分析】(1)根据OB 是AOC ∠的平分线,OD 是COE ∠的平分线,可得40,10BOC AOB COD DOE ∠=∠=︒∠=∠=︒,即可求解;(2)设COD DOE x ∠=∠=︒ ,可得()40BOD BOC COD x ∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,再由AOD ∠与BOD ∠互补,从而得到()()4080180x x +︒++︒=︒ ,解得30x = ,即可求解.(1)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40,10BOC AOB COD DOE ∴∠=∠=︒∠=∠=︒,401050BOD BOC COD ∴∠=∠+∠=︒+︒=︒ ;(2)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40BOC AOB ∴∠=∠=︒,设COD DOE x ∠=∠=︒ ,()40BOD BOC COD x ∴∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,∵AOD ∠与BOD ∠互补,()()4080180AOD BOD x x ∴∠+∠=+︒++︒=︒ ,30x ∴= ,30COD DOE ∴∠=∠=︒ ,260COE COD ∴∠=∠=︒ .【点睛】本题主要考查了角平分线的定义,补角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;互补两个角和等于180°是解题的关键.2、图见解析【分析】在射线AN 上依次截取AB =a ,BC =b ,CM =b ,则线段AM 满足条件.【详解】解:如图.AM 为所作.【点睛】本题考查了基本作图,掌握基本作图的方法是解本题的关键.3、(1)75︒(2)22αβαβ+-,【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键.4、(1)26°,(2)∠DOE =12∠AOC ,理由见解析【分析】(1)先根据邻补角定义求出∠BOC ,根据角平分线定义求出∠COE ,代入∠DOE =∠COD ﹣∠COE 求出即可;(2)由(1)的过程可得解.【详解】解:(1)∵O 是直线AB 上一点,∴∠AOC +∠BOC =180°.∵∠AOC =52°,∴∠BOC =128°.∵OE 平分∠BOC ,∴∠COE =12∠BOC ,∴∠COE =64°.∵∠COD =90°,∴∠DOE =∠COD ﹣∠COE =26°,故答案为:26°.(2)∠DOE=12∠AOC,∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC=180°﹣∠AOC.∵OE平分∠BOC,∴∠COE=12∠BOC=90°﹣12∠AOC,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣12∠AOC)=12∠AOC.【点睛】本题考查了角平分线定义,角的有关计算等知识点,能正确求出∠COE的度数是解此题的关键,求解过程类似.5、线段AB的长为10cm【分析】先根据MN=35AM,且MN=3cm求出AM的长,再由点M为线段AB的中点得出AB的长,即可得出结论.【详解】解:∵MN=35AM,且MN=3cm,∴AM=5cm.又∵点M为线段AB的中点∴AM=BM=12AB,∴AB=10cm.【点睛】本题考查的是线段的加减和线段中点的定义,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
上海市(沪教版)六年级下学期数学 第7章 线段与角的画法 单元测试卷 (解析版)
AD 1 AB ,则下列判断正确的是 (
)
4
A. BC 1 AD 2
B. BD 3BC
C. BD 4AD
D. AC 6 AD
-6-
【分析】根据 AB 8 ,由线段的倍分关系求出 BC , AD 的长,进一步得到 AC , BD 的长, 依此即可求解. 【解答】解:如图所示:
AB 8 , BC 1 AB , 2
BE 1 AB 2cm , BF 1 BC 3cm ,
2
2
①点 B 在 A 、 C 之间时, EF BE BF 2 3 5cm ;
②点 A 在 B 、 C 之间时, EF BF BE 3 2 1cm .
EF 的长等于 5cm 或1cm .
故答案为: 5cm 或1cm .
B 、不能表示 BD 是 ABC 的平分线,故本选项正确;
C 、能表示 BD 是 ABC 的平分线,故本选项错误;
D 、能表示 BD 是 ABC 的平分线,故本选项错误;
故选: B .
5.如图, AOB 20 , AOC 90 ,点 B 、 O 、 D 在同一直线上,则 COD 的度数为 ( )
点, EF 5cm 或1cm .
【分析】因为 A 、 B 、 C 三点位置不明确,分点 B 在 A 、 C 之间和点 A 在 B 、 C 之间两种
情况讨论,
①根据中点定义先求出 BE 、 BF 的长, BE BF EF ;
②根据中点定义先求出 BE 、 BF 的长, BF BE EF .
【解答】解:如图, AB 4cm , BC 6cm ,点 E 是 AB 中点,点 F 是 BC 的中点,
(结 果用度、 分、 秒表示) .
10.一个锐角的补角与它的余角的差是 度.
第七章 线段和角的画法精讲
第七章 线段与角的画法7.1线段的大小比较重要概念:1. 联结两点的线段的长度叫做两点之间的距离。
运用巩固:1:如图,在教学楼到活动室之间有三条小路,小杰想尽快从教学楼赶到活动室,请你帮他判断该选择走哪条路,说说你的理由.思考2:由此你可以得到怎样的结论?7.2画线段的和、差、倍重点概述:1.两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的长度的和(或差)。
2.将一条线段分成两条相等线段的店叫做这条线段的中点。
运用巩固:例1、已知:线段a 、b ,求作线段:(1)AB=a+b ;(2)CD=a -b ;(3)EF=2a -b 。
(保留作图痕迹)。
解:(1)作法:①画出射线AD ;②截取线段AC=a ;③截取线段CB=b ; 线段AB=a+b 。
(2)作法:①画出射线CF ; ②截取线段CA=a ; ③在AC 上截取线段AD=b ;a∴线段CD= a-b。
(3)作法:①画出射线ED;②截取线段EM=2a;③截取线段MF=b;∴线段EF=2a-b。
7.3角概念与比较重点概述:1.角是具有公共端点的两条射线组成的图形。
公共端点叫做角的顶点,两条射线叫做角的边。
运用巩固:1.用数字1、2、3、4分别标注∠DAC、∠CAB、∠ABC、∠ACB。
2.分别用α、β、γ标注∠BOC、∠BOE、∠COD。
7.4角的大小比较、画相等的角重点概念:1.角是由一条射线绕着它的端点旋转到另一个位置所成的图形。
处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。
运用巩固:7.5画角的和、差、倍1.两个角可以相加(或相减),它们的和(或差)也是一个角,它的度数等于这两个角的角度的和(或差)。
2.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
7.6余角、补角1.如果两个角的度数的和是90°,那么这两个角叫做互为余角,简称互余。
其中一个角成为另一个角的余角。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析试题(含解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A .75°B .120°C .135°D .150°2、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠3、若∠α=73°30',则∠α的补角的度数是( )A .16°30'B .17°30'C .106°30'D .107°30'4、如图,货轮O 航行过程中,同时发现灯塔A 和轮船B ,灯塔A 在货轮O 北偏东40°的方向,∠AOE =∠BOW ,则轮船B 在货轮( )A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°5、如图,从A 到B 有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短6、如图,一副三角板(直角顶点重合)摆放在桌面上,若150BOC ︒∠=,则AOD ∠等于()A .30︒B .45︒C .50︒D .60︒7、如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°8、建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是( )A .两点之间,线段最短B .过一点有且只有一条直线和已知直线平行C .垂线段最短D .两点确定一条直线9、已知线段AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,将线段BC 绕点B 旋转一周,则点M 与N 的距离不可能是( )A .1B .6C .7D .810、如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠相等的是( ).A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知M 是线段AB 的中点,N 是线段MB 的中点,若NB =2cm ,则AB =______.2、点CD 都在线段AB 上,且AB =30,CD =12,E ,F 分别为AC 和BD 的中点,则线段EF 的长为 _____ .3、如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,那么AOB ∠的大小为________°.4、如图,C 为线段AB 上一点,18AB =,10AC =,D ,E 分别是AB ,AC 的中点,则DE 的长为______.5、如图,AO BO ⊥,CO DO ⊥.则图中与BOC ∠互补的角是______.三、解答题(5小题,每小题10分,共计50分)1、已知,(0180)AOB αα︒︒∠=<<,(0180)COD ββ︒︒∠=<<.(1)如图1,当αβ=时,作OE 平分BOC ∠,与AOE ∠相等的角是________;(2)如图2,当180αβ︒+=时,作OE 平分AOC ∠,OF 平分BOD ∠.求EOF ∠的度数;(3)如图3,作OE 平分AOC ∠,OF 平分BOD ∠.若45EOF ︒∠=,直接写出α与β满足的数量关系.2、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.3、(1)如图1,将一副直角三角尺的直角顶点C 叠放在一起,经探究发现∠ACB 与∠DCE 的和不变.证明过程如下:由题可知∠BCE =∠ACD =90°∴∠ACB = +∠BCD .∴∠ACB =90°+∠BCD .∴∠ACB +∠DCE=90°+∠BCD +∠DCE=90°+∠BCE∵∠BCE =90°,∴∠ACB +∠DCE = .(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A 重合,则∠DAB 与∠CAE 有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB =α,∠COD =β(α,β都是锐角),若把它们的顶点O 重合在一起,请直接写出∠AOD 与∠BOC 的数量关系.4、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.5、已知A ,M ,N ,B 为同一条直线上顺次4个点,若:5:2AM MN =,12NB AM -=,24AB =,求BM 的长.-参考答案-一、单选题1、C【分析】根据题意得:∠ADB =45°,∠BDC =90°,从而得到∠ADC =∠ADB +∠BDC =135°,即可求解.【详解】解:根据题意得:∠ADB =45°,∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.2、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.3、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.4、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.5、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A 到B 有4条路径,最短的路径是③,故选D .【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.6、A【分析】由三角板中直角三角尺的特征计算即可.【详解】∵COD △和AOB 为直角三角尺∴90COD ︒∠=,90AOB ︒∠=∴BOC COD BOC AOB ∠-∠=∠-∠∴1509060AOC BOD ∠=∠=︒-︒=︒∴906030AOD BOA BOD ∠=∠-∠=︒-︒=︒故选:A .【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.7、B【分析】首先根据题意求出52AOD ∠=︒,然后根据AOB AOD BOD ∠=∠+∠求解即可.【详解】解:∵∠AOC 和∠BOD 都是直角,∠DOC =38°,∴903852AOD AOC DOC ∠=∠-∠=︒-︒=︒,∴5290142AOB AOD BOD ∠=∠+∠=︒+︒=︒.故选:B .【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出AOD ∠的度数.8、D【分析】根据两点确定一条直线解答即可;【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是两点确定一条直线;故选:D【点睛】本题考查了两点确定一条直线的应用,正确理解题意、掌握解释的方法是关键.9、D【分析】正确画出的图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系的多种可能,求出线段MN 的长度的最大和最小值即可.【详解】解:∵AB =8cm ,BC =6cm ,点M 是AB 中点,点N 是BC 中点,第一种情况:B 在AC 上,线段MN 的长度最大,最大值为:MN =12AB +12BC =7;第二种情况:B 在AC 延长线上,线段MN 的长度最小,最小值为:则MN =12AB ﹣12BC =1.故选:D【点睛】本题考查了两点间的距离,解题关键是求出线段MN 的长度的最大和最小值.10、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A 、α∠+β∠=180°−90°=90°,互余; B 、α∠+β∠=60°+30°+45°=135°;C 、根据同角的余角相等,可得α∠=β∠;D 、α∠+β∠=180°,互补;故选:C .【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.二、填空题1、8cm【分析】根据线段中点的性质求解即可.【详解】解:∵N是线段MB的中点,∴24cm==MB NB∵M是线段AB的中点,∴28cm==AB MB故答案为:8cm.【点睛】本题主要考查了线段中点的有关计算,准确分析利用数形结合的思想计算是解题的关键.2、21【分析】根据线段的和差,可得(AC+DB),根据线段中点的性质,可得(AE+BF),再根据线段的和差,可得答案.【详解】解:如图,AC+DB=AB﹣CD=30﹣12=18.由点E是AC的中点,点F是BD的中点,得(AC+DB)=9.∴AE+BF=12EF=AB﹣(AE+BF)=30﹣9=21.如图,AC+DB=AB+CD=30+12=42.由点E 是AC 的中点,点F 是BD 的中点,得∴AE +BF =12 (AC +DB )=21. EF =AB ﹣(AE +BF )=30﹣21=9.故答案为:21或9.【点睛】本题考查了求线段长,利用线段的和差得出(AE +BF )是解题关键.3、145【分析】如图(见解析),先根据方位角的定义可得160∠=︒,325∠=︒,再根据角的和差即可得.【详解】如图,由题意得:160∠=︒,325∠=︒,a b ⊥,290130∴∠=︒-∠=︒,490∠=︒243309025145AOB ∴∠=∠+∠+∠=︒+︒+︒=︒,故答案为:145..【点睛】本题考查了方位角的定义、角的和差,熟练掌握方位角的定义是解题关键.4、故答案为:28,【点睛】本题考查的是方向角的概念,根据方向角的表示方法画出图形,利用数形结合进行求解是解答此题的关键.12.4【分析】由D ,E 分别是AB ,AC 的中点,先求解,,AD AE 再利用,DEAD AE 从而可得答案.【详解】 解: 18AB =,10AC =,D ,E 分别是AB ,AC 的中点,119,5,22AD BD AB AE CE AC 95 4.DE AD AE故答案为:4【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的中点与和差关系求解未知线段的长度”是解本题的关键.5、AOD ∠【分析】利用互补的定义得出与BOC ∠互补的角.【详解】解:∵AO BO ⊥,CO DO ⊥,∴90AOC BOC ∠+∠=,90BOD BOC ∠+∠=,∴()180AOC BOC BOD BOC ∠+∠+∠+∠=,即180AOD BOC ∠+∠=∴与BOC ∠互补的角是: AOD ∠故答案为: AOD ∠【点睛】本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.三、解答题1、(1)DOE ∠;(2)90°;(3)90αβ︒+=.【分析】(1)当αβ=时,可得=AOC BOD ∠∠,再由OE 平分BOC ∠得到角度相等,最后表示出AOE ∠,即可找到相等角;(2)根据=EOF AOD EOA DOF ∠∠-∠-∠计算即可;(3)根据=45EO O OF C F E C ︒∠+∠=∠计算即可;【详解】解:(1)∵当αβ=时,∴AOB COD ∠=∠∴AOB BOC COD BOC ∠-∠=∠-∠即=AOC BOD ∠∠∵OE 平分BOC ∠∴EOB COE ∠=∠∵AOE AOC COE ∠=∠+∠∴AOE AOC COE BOD BOE DOE ∠=∠+∠=∠+∠=∠故答案为:DOE ∠.(2)OE 平分AOC ∠,OF 平分BOD ∠,2AOC EOC ∴∠=∠,2BOD BOF ∠=∠.180αβ︒+=,180AOB COD ︒∴∠+∠=.AOB AOC BOC ∠=∠+∠,COD BOC BOD ∠=∠+∠,180AOC BOC BOC BOD ︒∴∠+∠+∠+∠=.2180AOC BOC BOD ︒∴∠+∠+∠=.222180EOC BOC BOF ︒∴∠+∠+∠=.90EOC BOC BOF ︒∴∠+∠+∠=.90EOF ︒∴∠=.(3)OE 平分AOC ∠,OF 平分BOD ∠,12EOC AOC ∴∠=∠,12DOF BOD ∠=∠.. ∵45EOF ︒∠=∴45EOC COF ︒∠+∠= ∵12COF BOF BOC DOB BOC ∠=∠-∠=∠-∠ ∴114522AOC DOB BOC ︒∠+∠-∠= AOC AOB BOC ∠=∠-∠,BOD COD BOC ∠=∠-∠, ∴()()114522AOB BOC COD BOC BOC ︒∠+∠+∠+∠-∠= ∴11()45()22AOB COD αβ︒∠+∠==+ ∴90αβ︒+=.【点睛】本题考查角度计算,解题的关键是根据图形表示出要求得角度再根据已知条件进行推导.2、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD为所作;(2)∵∠CAD﹣∠CAB=100°,∠CAD+∠CAB=180°,∴100°+∠CAB+∠CAB=180°,2∠CAB=80°,∴∠CAB=40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.3、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】解:(1)由题可知∠BCE=∠ACD=90°,∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE =90°,∴∠ACB +∠DCE =180°,故答案为:∠ACD ,180°;(2)∠DAB +∠CAE =120°,理由:由题可知∠DAC =∠EAB =60°,∴∠DAB =∠DAC +∠CAB ,∴∠DAB =60°+∠CAB ,∴∠DAB +∠CAE=60°+∠CAB +∠CAE=60°+∠EAB ,∵∠EAB =60°,∴∠DAB +∠CAE =120°;(3)∵∠AOB =α,∠COD =β,∴∠AOD =∠COD +∠AOC =β+∠AOC ,∴∠AOD +∠BOC=β+∠AOC +∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.4、(1)75︒(2)22αβαβ+-,【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键.5、19【分析】设AM =5x ,MN =2x ,则NB =12+5x ,根据AB =24,可得关于x 的方程,解方程求出x 的值,再根据BM =AB −AM 即可求解.【详解】解:设5AM x =,则2MN x =.∵12NB AM -=,∴125NB x =+.∵24AB =,∴24AM MN NB ++=,即5212524x x x +++=,解得1x =.∴212519BM MN BN x x =+=++=.【点睛】本题考查了两点间的距离,一元一次方程的应用,解答本题关键是熟练掌握方程思想,属于基础题.。
第七章 线段与角的画法(能力提升)(解析版)
第七章线段与角的画法(能力提升)考试时间:90分钟注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单选题(共6小题)1.下列运算正确的是()A.63.5°=63°50′B.18°18′18″=18.33°C.36.15°=36.15′D.28°39′+17°31'=46°10′【答案】D【分析】根据度分秒的进率,可得答案.【解答】解:A、63.5°=63°30′,计算错误;B、18°18′18″=18.305°,计算错误;C、36.15°=36.9′,计算错误;D、28°39′+17°31'=46°10',计算正确;故选:D.【知识点】度分秒的换算2.将一副直角三角尺如图放置,若∠BOC=165°,则∠AOD的大小为()A.15°B.20°C.25D.30°【答案】A【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.【解答】解:∵∠COB=∠COD+∠AOB﹣∠AOD,∴90°+90°﹣∠AOD=165°,∴∠AOD=15°.故选:A.【知识点】余角和补角3.如图所示,点O在直线AB上,OE平分∠AOC,∠EOF=90°,则∠COF与∠AOE的关系是()A.相等B.互余C.互补D.无法确定【答案】B【分析】根据:∠EOF=90°求出∠COE+∠COF=90°,∠AOE+∠BOF=90°,根据余角定义得出∠AOE和∠BOF互余,根据角平分线的定义得出∠AOE=∠COE,求出∠COF=∠BOF,即可得出答案.【解答】解:∵∠EOF=90°,∴∠COE+∠COF=90°,∠AOE+∠BOF=180°﹣∠EOF=90°,∴∠AOE和∠BOF互余,∵OE平分∠AOC,∴∠AOE=∠COE,∴∠COF=∠BOF,∠COF和∠AOE互余,故选:B.【知识点】余角和补角、角平分线的定义4.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C=73°,则∠DAE的度数是()A.14°B.24°C.19°D.9°【答案】A【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可求出∠CAE的度数,由AD是BC边上的高,可求出∠CAD的度数,再结合∠DAE=∠CAE﹣∠CAD即可求出结论.【解答】解:在△ABC中,∠B=45°,∠C=73°,∴∠BAC=180°﹣∠B﹣∠C=62°.∵AE平分∠BAC,∴∠CAE=∠BAC=31°.∵AD是BC边上的高,∴AD⊥BC,∴∠CAD=90°﹣∠C=17°,∴∠DAE=∠CAE﹣∠CAD=31°﹣17°=14°.故选:A.【知识点】角平分线的定义、三角形内角和定理5.如图,点D是线段AB的中点,点C是线段AD的中点.若AB=16cm,则线段BC=()A.4cm B.10cm C.12cm D.14cm【答案】C【分析】根据线段中点的性质,可得答案.【解答】解:∵点D是线段AB的中点,∴AD=BD=AB=×16=8(cm),∵C是线段AD的中点,∴CD=AD=×8=4(cm).∴BC=CD+BD=4+8=12(cm).故选:C.【知识点】两点间的距离6.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是()A.16B.19C.20D.21【答案】B【分析】作点A关于CM的对称点A′,作点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.【知识点】轴对称的性质、线段的性质:两点之间线段最短二、填空题(共12小题)7.比较大小:38°15′38.15°(选填“>”“<”“=”).【答案】>【分析】将38.15°化为38°9′,再进行比较即可得出答案.【解答】解:∵0.15°=0.15×60′=9′,∴38.15°=38°9′,∴38°15′>38°9′,即38°15′>38.15°,故答案为:>.【知识点】度分秒的换算8.一个角的补角比这个角的余角的4倍少60°,这个角的度数是(度).【答案】40【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.【解答】解:设这个角为x,由题意得,180°﹣x=4(90°﹣x)﹣60°,解得x=40°.故答案为:40.【知识点】余角和补角9.计算:70°﹣32°26′=,35°30′=度.【答案】【第1空】37°34′【第2空】35.5°【分析】将度的数相减和分化为度即可求解.【解答】解:70°﹣32°26′=69°60'﹣32°26'=37°34',35°30′=35°+30÷60°=35.5°,故答案为:37°34′;35.5.【知识点】度分秒的换算10.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.【答案】11【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD 长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【知识点】比较线段的长短11.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则∠BON的度数为.【答案】55°【分析】根据角平分线的定义求出∠MOA的度数,根据邻补角的性质计算即可.【解答】解:∵射线OM平分∠AOC,∠MOC=35°,∴∠MOA=∠MOC=35°,∵∠MON=90°,∴∠BON=180°﹣∠MON﹣∠MOA=180°﹣90°﹣35°=55°.故选:55°.【知识点】余角和补角、对顶角、邻补角、角平分线的定义12.已知∠AOB=80°,OC是过点O的一条射线,∠AOC:∠AOB=1:2,则∠BOC的度数是.【答案】40°或120°【分析】根据题意画出图形,利用角的加减解答即可.【解答】解:分两种情况讨论,情况一:如图1,∵∠AOB=80°,∠AOC:∠AOB=1:2,∴∠AOC=40°,∴∠BOC=∠AOB+∠AOC=80°+40°=120°;情况二:如图2,∵∠AOB=80°,∠AOC:∠AOB=1:2,∴∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=80°﹣40°=40°;综上所述,∠BOC的度数是120°或40°,故答案为:120°或40°.【知识点】角的计算13.如图,∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,下列结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.所有正确结论的序号是.【答案】①②④【分析】由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;由∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.【解答】解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠COE=∠BOE,∴∠AOE=∠DOE,所以①正确;∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,而∠AOC≠∠AOD,所以③不正确;∵OF平分∠AOD,∴∠AOF=∠DOF,而∠AOE=∠DOE,∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.故答案为:①②④.【知识点】角平分线的定义、余角和补角14.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD的大小为.【答案】22°【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【解答】解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.【知识点】角平分线的定义、对顶角、邻补角15.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°),用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在.【答案】O1点【分析】直接利用BC点方向角相同,且到观测点距离不同,进而得出观测点位置.【解答】解:如图所示:观测点的位置应在O1点.故答案为:O1点.【知识点】坐标确定位置、方向角16.如图,直线AB、CD、EF相交于点O,且AB⊥EF,OG平分∠AOD,若∠BOC=70°,则∠GOF=°.【答案】55【分析】利用对顶角的性质和角平分线的性质可得∠AOG的度数,然后再利用垂线定义可得∠GOF 的度数.【解答】解:∵∠BOC=70°,∴∠AOD=70°,∵OG平分∠AOD,∴∠AOG=35°,∵AB⊥EF,∴∠AOF=90°,∴∠GOF=90°﹣35°=55°,故答案为:55°.【知识点】垂线、角平分线的定义、对顶角、邻补角17.如图,将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若∠NEC=32°,∠FMN=°.【答案】119【分析】根据正方形的性质得到∠A=∠C=∠D=90°,根据折叠的性质得到∠F=∠A=90°,∠FEN=∠C=90°,∠DNM=∠ENM,根据平角的定义得到∠ENM=(180°﹣∠ENC)=(180°﹣58°)=61°,根据四边形的内角和即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°,∵将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,∴∠F=∠A=90°,∠FEN=∠C=90°,∠DNM=∠ENM,∵∠NEC=32°,∴∠ENC=58°,∴∠ENM=(180°﹣∠ENC)=(180°﹣58°)=61°,∴∠FMN=360°﹣90°﹣90°﹣61°=119°,故答案为:119.【知识点】角的计算18.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE=120°,则DE的最大值是.【答案】12【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E共线时,DE的值最大.【解答】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【知识点】轴对称的性质、线段的性质:两点之间线段最短三、解答题(共7小题)19.如图,∠AOB=120°,OD平分∠AOC,OE平分∠BOC,∠AOD=40°,求∠DOE的度数.【分析】根据角平分线的定义,计算各个角的度数进而得出答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOD=∠COD=∠AOC=40°,∠BOE=∠COE=∠BOC,∴∠AOC=2∠AOD=2×40°=80°,∴∠BOC=∠AOB﹣∠AOC=120°﹣80°=40°,∵∠COE=∠BOC=×40°=20°,∴∠DOE=∠COE+∠COD=20°+40°=60°.【知识点】角平分线的定义、角的计算20.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.【分析】(1)根据题意可得∠COD=∠AOB,根据角平分线的定义以及角的和差关系可得∠POB=∠POC,进而得出射线OP是∠COB的平分线;(2)根据互余的两角之和为90°求解即可.【解答】解:(1)∵∠AOC=∠BOD=90°,∴∠AOD﹣∠AOC=∠AOD﹣90°=∠AOD﹣∠BOD,∴∠COD=∠AOB,∵射线OP是∠AOD的平分线;∴∠POA=∠POD,∴∠POA﹣∠AOB=∠POD﹣∠COD,∴∠POB=∠POC,∴射线OP是∠COB的平分线;(2)∵∠COD=∠AOB,∠AOC=∠BOD=90°,∴∠AOE=∠BOC,∵∠COD+∠BOC=90°,∴图中与∠COD互为余角的角有∠BOC和∠AOE.【知识点】余角和补角、角平分线的定义21.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠AOE=140°,求∠BOD的度数;(2)若∠AOB=α,∠AOE=β,求∠BOD的度数.【分析】(1)由角平分线的定义可求解∠BOC=40°,即可求得∠COE=60°,∠COD的度数,进而可求解;(2)由(1)的解题方法可计算求解.【解答】解:(1)∵OB是∠AOC的平分线,∴∠BOC=∠AOB=40°,∴∠COE=140°﹣∠AOB﹣∠BOC=60°,∵OD是∠COE的平分线,∴∠COD=30°,∴∠BOD=∠BOC+∠CDO=40°+30°=70°;(2)∵OB是∠AOC的平分线,∴∠BOC=∠AOB=α,∴∠COE=β﹣∠AOB﹣∠BOC=β﹣2α,∵OD是∠COE的平分线,∴∠COD=∠COE=(β﹣2α),∴∠BOD=∠BOC+∠COD=.【知识点】角平分线的定义、角的计算22.如图,A,O,B三点在同一条直线上,∠DOE=90°.(1)写出图中∠AOD的补角是,∠DOC的余角是;(2)如果OE平分∠BOC,∠DOC=36°,求∠AOE的度数.【答案】【第1空】∠BOD【第2空】∠COE【分析】(1)根据补角和余角的定义解答即可;(2)根据角的和差关系可得∠COE=54°,再根据角平分线的定义可得∠BOE=∠COE=54°,再根据平角的定义计算即可.【解答】解:(1)∵A,O,B三点在同一条直线上,∠DOE=90°,∴∠AOD+∠BOD=180°,∠DOC+∠COE=90°,∴∠AOD的补角是∠BOD,∠DOC的余角是∠COE,故答案为:∠BOD;∠COE;(2)∵∠DOE=90°,∠DOC=36°,∴∠COE=∠DOE﹣∠DOC=54°,∵OE平分∠BOC,∴∠BOE=∠COE=54°,∵A,O,B三点在同一条直线上,∴∠AOE=∠AOB﹣∠BOE=180°﹣54°=126°.【知识点】余角和补角、角平分线的定义23.如图①,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE是∠AOD的平分线.(1)当∠AOE=50°时,求∠BOD的度数;(2)当∠COE=30°时,求∠BOD的度数;(3)当∠COE=α时,则∠BOD=(用含α的式子表示);(4)当三角板绕点O逆时针旋转到图②位置时,∠COE=α,其它条件不变,则∠BOD=(用含α的式子表示).【答案】【第1空】2α【第2空】360°-2α【分析】(1)根据角平分线的定义先求出∠AOD,再根据互补求出∠BOD即可;(2)根据互余求出∠DOE,再根据角平分线的定义求出∠AOD,最后根据互补求出的答案;(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.【解答】解:(1)∵射线OE平分∠AOD,∴∠AOD=2∠AOE=2∠DOE=2×50°=100°,∴∠BOD=180°﹣∠AOD=180°﹣100°=80°;(2)∵∠COD=90°,∠COE=30°,∴∠DOE=90°﹣30°=60°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2×60°=120°,∴∠BOD=180°﹣∠AOD=180°﹣120°=60°;(3)∵∠COD=90°,∠COE=α,∴∠DOE=90°﹣α,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2×(90°﹣α)=180°﹣2α,∴∠BOD=180°﹣∠AOD=180°﹣180°+2α=2α,故答案为:2α;(4)由图②得,∠DOE=α﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2α﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2α+180°=360°﹣2α,故答案为:360°﹣2α.【知识点】角平分线的定义、角的计算24.如图,点O为直线AB上一点,将一个等腰直角三角尺(三个内角分别是90°、45°、45°)的直角顶点和另一个含30°角的直角三角尺的60°角顶点都放在O处.(1)如图①,∠AOM=°;(2)如图②,将等腰直角三角尺绕点O旋转一定角度到图②的位置,OM恰好平分∠EOB时,求出∠AOE和∠MOF的度数;(3)如图③,将等腰直角三角尺绕点O旋转一定角度到图③的位置,若∠AOE是∠MOF的3倍,则等腰直角三角尺所旋转的角∠BOF=°.【答案】【第1空】120【第2空】45【分析】(1)根据邻补角的概念即可求得;(2)根据角平分线的定义即可求得∠EOM=60°,∠BOE=120°,进而即可求得∠AOE=180°﹣∠BOE=60°,∠MOF=90°﹣∠EOM=30°;(3)设等腰直角三角尺所旋转的角∠BOF=α,则∠AOE=90°﹣α,∠MOF=60°﹣α,根据题意90°﹣α=3(60°﹣α),解得即可.【解答】解:(1)∵∠MON=60°,∴∠AOM=180°﹣60°=120°,故答案为120;(2)由题意得∠BOM=∠EOM=∠BOE,∵∠BOM=60°,∴∠EOM=60°,∠BOE=120°∴∠AOE=180°﹣∠BOE=60°,∠MOF=90°﹣∠EOM=30°;(3)设等腰直角三角尺所旋转的角∠BOF=α,∴∠AOE=90°﹣α,∠MOF=60°﹣α,∵∠AOE是∠MOF的3倍,∴90°﹣α=3(60°﹣α),解得α=45°,∴∠BOF=45°,故答案为45.【知识点】角的计算、等腰直角三角形25.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;(3)∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;如图:【知识点】作图—基本作图、余角和补角、角平分线的定义。
【单元卷】沪教版六年级数学下册:第七章 线段与角的画法 单元质量检测卷(一)含答案与解析
沪教版六年级数学下册单元质量检测卷(一)第七章线段与角的画法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠α与∠COB是同一个角C.图中共有三个角:∠AOB,∠BOC,∠AOCD.∠AOC可以用∠O来表示2.将一副三角板按如图所示的方式放置,则∠AOB的大小为()A.75°B.45°C.30°D.15°3.有如下说法:①射线AB与射线BA表示同一射线;②用一个扩大3倍的放大镜去看一个角,这个角扩大3倍;③两点之间,线段最短;④两点确定一条直线.其中正确的有()A.5个B.4个C.3个D.2个4.如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°5.如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关;④车站的位置设在BC段公路的最中间处要好于设在点B及点C处.A.①③B.③④C.②③D.②6.如图,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β均为锐角且相等的是()A.B.C.D.二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.计算:42°11′37″+51°49′23″=.8.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.9.如图,点C,D在线段AB上,AC=BD,若AD=8cm,则BC=cm.10.若∠A=37°12′,则∠A的余角度数是.11.如图,点C、D在线段AB上.AC=8cm,CD=5cm,AB=16cm,则图中所有线段的和是cm.12.如图,小明同学用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下树叶的周长比原树叶的周长要小,用已学的数学知识解释这一现象:.13.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为°.14.已知∠AOB=80°,OC是过点O的一条射线,∠AOC:∠AOB=1:2,则∠BOC的度数是.15.如图,OC平分∠AOB,若∠BOC=29°,则∠AOB=°.16.如图,把一张长方形的纸片ABCD分别沿EM、FM折叠,折叠后的MB'与MC'在同一条直线上,则∠EMF的值是.17.如图所示,其中最大的角是,∠DOC,∠DOB,∠DOA的大小关系是.18.如图,∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,下列结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.所有正确结论的序号是.三、解答题(本大题共7小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:56°17′+12°45′﹣16°21′.20.比较图中以A为一个端点的线段的大小,并把它们用“<”号连接起来.21.如图所示,已知线段AB=4cm,BC=3cm,M,N分别是AB和BC上两点.(1)求线段AC的长.(2)若M为AC中点,BN=BC,求线段MN的长.22.如图,O为直线AB上的一点,∠AOC=48°24′,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?23.如图,点O为直线AB上一点,过点O作射线OC,使∠AOC=3∠BOC,将含30°角的直角三角板的直角顶点放在点O处.(1)将直角三角板按图①的位置放置,使ON在射线OA上,OM在直线AB的下方,则∠AOC=度,∠MOC=度.(2)将直角三角板按图②的位置放置,使OM在射线OA上,ON在直线AB的上方,试判断∠CON与∠BOC 的大小关系,并说明理由.24.如图,A,O,B三点在同一条直线上,∠DOE=90°.(1)写出图中∠AOD的补角是,∠DOC的余角是;(2)如果OE平分∠BOC,∠DOC=36°,求∠AOE的度数.25.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.参考答案与解析一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知等式a=b,则下列式子中不成立的是()A.a﹣1=b﹣1 B.=C.3a=3b D.a﹣1=b+1【答案】D【解答】解:A、由等式a=b的两边同时减去1,等式仍成立,即a﹣1=b﹣1,故本选项不符合题意.B、由等式a=b的两边同时除以3,等式仍成立,即=,故本选项不符合题意.C、由等式a=b的两边同时乘以3,等式仍成立,即3a=3b,故本选项不符合题意.D、由等式a=b的两边同时减去1或同时加上1,等式才成立,故本选项符合题意.故选:D.【知识点】等式的性质2.方程kx=3的解为自然数,则整数k等于()A.0,1 B.1,3 C.﹣1,﹣3 D.±1,±3【答案】B【解答】解:系数化为得,x=.∵关于x的方程kx=3的解为自然数,∴k的值可以为:1、3.故选:B.【知识点】方程的解3.若不等式组恰好有两个整数解,则a的取值范围是()A.0≤a<1 B.0<a≤1 C.a>0 D.a<1 【答案】B【解答】解:不等式组整理得:,解得:﹣<x≤2﹣a,由不等式组恰好有两个整数解,得到整数解为0,1,∴1≤2﹣a<2,解得:0<a≤1.故选:B.【知识点】一元一次不等式组的整数解4.若方程(a﹣5)x|a|﹣4+5y=1是关于x,y的二元一次方程,则a的值为()A.﹣5 B.±5 C.±4 D.5【答案】A【解答】解:依题意得:|a|﹣4=1,且a﹣5≠0,解得a=﹣5.故选:A.【知识点】二元一次方程的定义5.已知三元一次方程组,则x+y+z=()A.20 B.30 C.35 D.70【答案】C【解答】解:,①+②+③得:2(x+y+z)=70,则x+y+z=35.故选:C.【知识点】解三元一次方程组6.某车间有44名工人,每人每天可以生产600个螺钉或800个螺母,1个螺钉需要配2个螺母,要求每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.800(44﹣x)=600x B.2×800(44﹣x)=600xC.800(44﹣x)=2×600x D.800(22﹣x)=600x【答案】C【解答】解:设安排x名工人生产螺钉,则安排(44﹣x)名工人生产螺母,依题意得:800(44﹣x)=2×600x.故选:C.【知识点】由实际问题抽象出一元一次方程二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在横线上)7.若x=3是方程2x﹣10=4a的解,则a=﹣.【答案】-1【解答】解:把x=3代入方程得到:6﹣10=4a解得:a=﹣1.故填:﹣1.【知识点】方程的解8.下列各式中是方程的有.(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.【答案】(5)【解答】解:(1)不含未知数,故不是方程;(2)(3)(4)不是等式,故不是方程;(5)是方程.故答案是:(5)【知识点】方程的定义9.若x=4是关于x的方程的解,则a的值为.【答案】-2【解答】解:根据题意,知﹣a=4,解得a=﹣2.故答案是:﹣2.【知识点】一元一次方程的解10.不等式组的解集是.【答案】1<x≤2【解答】解:解不等式2x﹣1>1,得:x>1,解不等式3x≤2x+2,得:x≤2,则不等式组的解集为1<x≤2,故答案为:1<x≤2.【知识点】解一元一次不等式组11.根据数量关系列不等式:x的2倍与3的差大于7 .【答案】2x-3>7【解答】解:根据题意可得:2x﹣3>7.故答案为:2x﹣3>7.【知识点】由实际问题抽象出一元一次不等式12.当x﹣时,代数式的值为负数.【解答】解:由题意得<05x﹣1+2<0解得x<﹣,故答案为<﹣.【知识点】解一元一次不等式13.如果是方程2x﹣3ay=16的一组解,则a=.【解答】解:把代入方程得:6﹣6a=16,解得:a=﹣.故答案为:﹣.【知识点】二元一次方程的解14.已知:6a=3b+12=2c,且b≥0,c≤9,则a﹣3b+c的最小值为.【答案】6【解答】解:∵6a=3b+12=2c,∴a=0.5b+2,c=1.5b+6,∴a﹣3b+c=(0.5b+2)﹣3b+(1.5b+6)=﹣b+8∵b≥0,c≤9,∴3b+12≤18,∴b≤2,∴﹣b+8≥﹣2+8=6,∴a﹣3b+c的最小值是6.故答案为:6.【知识点】不等式的性质15.已知,x、y、z为非负数,且N=5x+4y+z,则N的取值范围是.【答案】55≤N≤65【解答】解:方程组整理得:,①+②得:2y=40﹣4x,解得:y=20﹣2x,①﹣②得:2z=2x﹣10,解得:z=x﹣5,代入得:N=5x+80﹣8x+x﹣5=﹣2x+75,由x,y,z为非负数,得到20﹣2x≥0,x﹣5≥0,解得:5≤x≤10,即55≤﹣2x+75≤65,则N的范围是55≤N≤65.故答案为:55≤N≤65【知识点】解三元一次方程组16.若关于x的不等式组共有6个整数解,则m的取值范围是.【答案】1<m≤2【解答】解:解不等式得:x≥﹣4,解不等式得:x<m,∴不等式组的解集为﹣4≤x<m,又∵关于x的不等式组共有6个整数解,∴其整数解为﹣4,﹣3,﹣2,﹣1,0,1,∴1<m≤2,故答案为1<m≤2.【知识点】一元一次不等式组的整数解17.把1﹣9这9个数填入3×3方格中,使每一横行,每一竖列以及两条斜对角线上的数之和都相等,这样便构成了一个“九宫格”.如图是仅可以看到部分数值的“九宫格”,则其中x的值是.【答案】1【解答】解:由题意得:8+x=2+7,解得:x=1,故答案为:1.【知识点】一元一次方程的应用、有理数的混合运算18.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名醨厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多醨酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有瓶.【答案】10【解答】解:设好酒有x瓶,则薄酒有y瓶,依题意得:,解得:.故答案为:10.【知识点】二元一次方程组的应用三、解答题(本大题共7小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解方程:﹣1=【解答】解:方程左右两边同时乘以15,得3(2x+1)﹣15=5(x﹣2),去括号得:x﹣2+8=4﹣4﹣2x,移项合并同类项得:x=2.【知识点】解一元一次方程20.已知4x﹣y=6,x﹣y<2,求x的取值范围.【解答】解:∵4x﹣y=6,∴y=4x﹣6,∵x﹣y<2,∴x﹣(4x﹣6)<2,解得:x>1,即x的取值范围是x>1.【知识点】不等式的性质21.x=2是下列方程的解的吗?(1)3x+(10﹣x)=20(2)2x2+6=7x.【解答】解;将x=2代入3x+(10﹣x)=20,得方程左边=3×2+(10﹣2)=6+8=14,方程右边=20,∵左边≠右边,∴x=2不是3x+(10﹣x)=20的解;将x=2代入2x2+6=7x,得方左边程=2×22+6=8+6=14,方程右边=7×2=14,∵左边=右边,∴x=2是2x2+6=7x的解.由上可得,x=2不是(1)3x+(10﹣x)=20的解,x=2是(2)2x2+6=7x的解.【知识点】方程的解22.(1)求方程13x+30y=4的整数解;(2)求方程5x+3y=22的所有正整数解.【解答】解:(1)方程13x+30y=4,解得:x==﹣2y,设=k,则y=﹣13k+1,所以x=30k﹣2,所以(k为整数)是方程组的解;(2)方程5x+3y=22,解得y==7﹣x+,所方程5x+3y=22的正整数解为x=2,y=4.【知识点】二元一次方程的解23.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?【解答】解:(1)设购买一个甲种笔记本需x元,一个乙种笔记本需y元,由题意可得:,解得:,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元;(2)设需要购买a个甲种笔记本,由题意可得:10a+5(35﹣a)≤300,解得:a≤25,答:至多需要购买25个甲种笔记本.【知识点】二元一次方程组的应用、一元一次不等式的应用24.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?【解答】解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.【知识点】一元一次方程的应用25.某水果店5月份购进甲、乙两种水果共花费1720元,其中甲种水果13元/千克,乙种水果16元千克;6月份,这两种水果的进价上调为:甲种水果15元/千克,乙种水果20元/千克,该店6月份购进这两种水果的数量与5月份都相同,却多支付货款280元.(1)求该店6月份购进甲、乙两种水果分别是多少千克?(2)该店6月份甲种水果售价为20元/千克,乙种水果售价为26元/千克,在甲种水果出售55千克、乙种水果全部售完后,商店决定对甲种水果打折处理,在售完全部水果后,获得的总利润为400元,问甲种水果打几折?【解答】解:(1)设该店6月份购进甲、乙两种水果分别是x千克,y千克,由题意可得,解得:,答:该店6月份购进甲、乙两种水果分别是120千克,10千克;(2)设甲种水果打m折,由题意可得:400=(26﹣20)×10+(20﹣15)×55+(20×﹣15)×(120﹣55),∴m=8,答:甲种水果打8折.【知识点】二元一次方程组的应用。
基础强化沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测试试题(含详解)
沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠AOC =90°,OC 平分∠DOB ,且∠DOC =25°25′.∠BOA 度数是( )A .64°75′B .54°75′C .64°35′D .54°35′2、如图,::2:3:4AOB BOC COD ∠∠∠=,射线OM 、ON 分别平分AOB ∠与COD ∠,MON ∠是直角,则COD ∠的度数为( )A .70°B .62°C .60°D .58°3、下午14时整,钟表的时针与分针构成的角度是( )A .30°B .60°C .90°D .120°4、如图,剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是( )A .两点确定一条直线B .手线段最短C .同角的余角相等D .两点之间线段最短5、下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线B .若AB BC =,则点B 为线段AC 的中点C .点,,A B C 在一条直线上,则AB BC AC +=D .点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =6、如图,O 是直线AB 上一点,OE 平分∠AOB ,∠COD =90°,则图中互余的角有()对.A .5B .4C .3D .27、如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是( )A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直8、如图,点B 在点O 的北偏东60°方向上,∠BOC =110°,则点C 在点O 的( )A .西偏北60°方向上B .北偏西40°方向上C .北偏西50°方向上D .西偏北50°方向上9、将一副直角三角板如图所示摆放,则图中ADC ∠的大小为( )A .75°B .120°C .135°D .150°10、已知60AOB ∠=︒,自AOB ∠的顶点O 引射线OC ,若:1:4AOC AOB ∠∠=,那么BOC ∠的度数是( )A .48°B .45°C .48°或75°D .45°或75°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:1625'︒________16.25︒(填“>”“<”或“=”).2、已知8056α'∠=︒,则α∠的余角是________.3、如图,已知线段AB =16 cm ,M 是AB 的中点,P 是线段MB 上一点,N 为PB 的中点,NB =3 cm ,则线段MP =________cm .4、王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是 _____度(这里指小于平角的角).5、如图,90AOC BOD ∠=∠=︒,且:3:8AOB AOD ∠∠=,则AOB ∠=______.三、解答题(5小题,每小题10分,共计50分)1、如图,OC 是∠AOB 的平分线,且∠AOD =90°,∠COD =27°.求∠BOD 的度数.2、已知:OC ,OD 是∠AOB 内部的射线,OE 平分∠AOC ,OF 平分∠BOD .(1)若∠AOB =120°,∠COD =30°,如图①,求∠EOF 的度数;(2)若∠AOB =α,∠COD =β,如图②、图③,请直接用含α、β的式子表示∠EOF 的大小.3、如图:A 、B 、C 、D 四点在同一直线上.若AC BD =.(1)比较线段的大小:AB CD (填“>”、“=”或“<”);(2)若34BC AC =,且8AC =cm ,求AD 的长.4、已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE ,使60BOC EOD ∠-∠=︒.(1)如图①,若OD 平分BOC ∠,则AOE ∠的度数是_______;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置,且OD 在BOC ∠内部时,①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接..用含n 的代数式表示AOE ∠. 5、如图,B ,C 两点把线段AD 分成2:3:4的三部分,点M 为AD 的中点,若8cm CD =,求线段MC 的长.-参考答案-一、单选题1、C【分析】由射线OC 平分DOB ∠,2525'BOC DOC ∠=∠=︒,从而求得AOB ∠.【详解】解:∵OC 平分DOB ∠,∴2525'BOC DOC ∠=∠=︒,∵90AOC ∠︒=,∴902525'6435'∠=∠-∠=︒-︒=︒AOB AOC BOC .故选:C .【点睛】题目主要考查角平分线的定义以及角的计算,关键是由已知先求出BOC ∠.2、C【分析】设∠AOB 的度数为2x °,则∠BOC 的度数为3x °,∠COD 的度数为4x °,根据射线OM ,ON 分别平分∠AOB 与∠COD 即可得出∠BOM =x °,∠CON =2x °,再根据∠MON =∠CON +∠BOC +∠BOM =90°即可得出关于x 的一元一次方程,解方程求出x 的值,即可得【详解】解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD∠AOB=x°∴∠BOM=12∠COD=2x°∠CON=12∵∠MON=90°∴∠CON+∠BOC+∠BOM=90°∴2x+3x+x=90解得:x=15∴∠COD=4x=15°×4=60°.故选C【点睛】本题主要考查了角平分线的性质和角的和差关系,能根据图形准确找出等量关系列出方程是解题的关键.3、B【分析】钟表的一周360°,分成12个大格,求出每个大格的度数是30°,根据时针与分诊的格数解答即可.【详解】解:∵每个大格的度数是30°,∴2×30°=60°,故选B.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°是解决问题的关键.4、D【分析】利用两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些线中,线段最短,据此解题.【详解】解:剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是:两点之间线段最短,故选:D .【点睛】本题考查线段的性质,正确掌握相关知识是解题关键.5、D【分析】根据射线的定义,线段中点定义,线段的数量关系分别判断即可.【详解】解:A 、射线AB 和射线BA 不是同一条射线,故该项不符合题意;B 、若AB BC =,则点B 不一定为线段AC 的中点,故该项不符合题意;C 、点,,A B C 在一条直线上,则AB BC AC +=不一定成立,故该项不符合题意;D 、点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =,故该项符合题意; 故选:D .【点睛】此题考查了射线的定义,线段中点定义,线段的数量关系,正确理解题意并分析进行判断是解题的关键.6、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE 平分∠AOB ,∴∠AOE =∠BOE =90°,∴互余的角有∠AOC 和∠COE ,∠AOC 和∠BOD ,∠COE 和∠DOE ,∠DOE 和∠BOD 共4对,故选:B .【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.7、C【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.8、C【分析】根据题意即可知AOB ∠的大小,再由AOC BOC AOB ∠=∠-∠,可求出AOC ∠的大小,最后即可用方位角表示出点C 和点O 的位置关系.【详解】如图,由题意可知60AOB ∠=︒,∵=110BOC ∠︒,∴1106050AOC BOC AOB ∠=∠-∠=︒-︒=︒.∴点C 在点O 的北偏西50︒方向上.故选:C .【点睛】本题考查与方位角有关的计算.掌握方位角的表示方法是解答本题的关键.9、C【分析】根据题意得:∠ADB =45°,∠BDC =90°,从而得到∠ADC =∠ADB +∠BDC =135°,即可求解.【详解】解:根据题意得:∠ADB =45°,∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.故选:C【点睛】本题主要考查了直角三角板中角的计算,熟练掌握一副直角三角板中每个角的度数是解题的关键.10、D【分析】:1:4AOC AOB ∠∠=可知AOC ∠的值;所引射线OC 有两种情况①在AOB ∠内,此时BOC AOB AOC ∠=∠-∠;②在AOB ∠外,此时BOC AOB AOC ∠=∠+∠.【详解】解::1:4AOC AOB ∠∠=,60AOB ∠=︒15AOC ∴∠=︒①在AOB ∠外BOC AOB AOC ∠=∠+∠601575BOC ∴∠=︒+︒=︒②在AOB ∠内BOC AOB AOC ∠=∠-∠601545BOC ∴∠=︒-︒=︒BOC ∴∠为45︒或75︒故选D .【点睛】本题考查了角的和与差.解题的关键在于确定射线的位置.二、填空题1、>【分析】先把单位化统一,再比较即可.【详解】解:因为16.251615'︒=︒,所以162516.25'︒>︒,故答案为:>.【点睛】本题考查了角的大小比较,注意单位要化统一,依据1°=60′,1′=60′′是解题的关键. 2、94'︒【分析】根据互余两角的和等于90°,即可求解.【详解】解:∵8056α'∠=︒,∴α∠的余角是90805694''︒-︒=︒ .故答案为:94'︒【点睛】本题主要考查了余角的性质,熟练掌握互余两角的和等于90°是解题的关键.3、2【分析】根据中点的定义可求解BM ,及PB 的长,进而可求解.【详解】解:∵M 是AB 的中点,AB =16cm ,∴AM =BM =8cm ,∵N 为PB 的中点,NB =3cm ,∴PB =2NB =6cm ,∴MP =BM ﹣PB =8﹣6=2(cm ).故答案为:2.【点睛】本题主要考查了线段的计算,掌握中点的定义是解题的关键.4、150【分析】19:00,时针指向7和分针指向12,时针和分针中间相差5大格,再利用每一大格为30,从而可得答案.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°,故答案为:150.【点睛】本题考查的知识点是钟面角,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.5、54°度【分析】AOB x ∠=,通过:3:8AOB AOD ∠∠=,利用x 表示出AOD ∠,再根据角与角之间的关系,得到关于x 的方程,求解方程,即可得出答案.【详解】解:设AOB x ∠=,:3:8AOB AOD ∠∠=,83AOD x ∴∠=, AOB BOD AOD ∠+∠=∠,8903x x ∴+︒=,解得:54x =︒, 故答案为:54︒.【点睛】本题主要是考查了角的求解,熟练利用角与角之间的关系,求出未知角读书,这是解决本题的关键.三、解答题1、36°【分析】利用余角的性质,角的平分线的定义,角的和差计算法则计算即可.【详解】∵∠AOD =90°,∠COD =27°,∴∠AOC =∠AOD -∠COD =90°-27°=63°;∵OC 是∠AOB 的平分线,∴∠AOC =∠BOC =63°;∴∠BOD =∠BOC -∠COD =63°-27°=36°.【点睛】本题考查了几何图形中的角的计算,角的平分线即把一个角分成两个相等的角的射线,余角的性质,正确理解图形和图形中的角的关系是解题的关键.2、(1)75︒(2)22αβαβ+-, 【分析】(1)根据角平分线的定义可得,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,根据120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒建立方程求得45x y +=︒,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠(2)方法同(1)根据题意可得图②:22x y βα++=,进而根据EOF EOC COD DOF ∠=∠+∠+∠即可求得EOF ∠,图③:22x y βα++=进而根据EOF EOC COD DOF ∠=∠-∠+∠即可求得EOF ∠,【详解】解:(1) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,120AOB DOF FOB COD AOE COE ∠=∠+∠+∠+∠+∠=︒,∠COD =30°,即2230120x y ++︒=︒45x y ∴+=︒∴EOF EOC COD DOF ∠=∠+∠+∠30453075x y =++︒=︒+︒=︒(2) OE 平分∠AOC ,OF 平分∠BOD .∴,DOF FOB AOE COE ∠=∠∠=∠,设,DOF FOB x AOE COE y ∠=∠=∠=∠=,AOB COD αβ∠∠=,=,如图②即AOB DOF FOB COD AOE COE α∠=∠+∠+∠+∠+∠=22x y βα∴++=2x y αβ-∴+=∴EOF EOC COD DOF ∠=∠+∠+∠22x y αβαβββ-+=++=+=∴EOF ∠=2αβ+如图③AOB DOF FOB COD AOE COE α∠=∠+∠-∠+∠+∠=22x y βα∴+-=2x y αβ+∴+=∴EOF EOC COD DOF ∠=∠-∠+∠22x y αβαβββ+-=+-=-=∴EOF ∠=2αβ-【点睛】本题考查了几何图形中角度计算,角平分线的意义,掌握角度的计算是解题的关键.3、(1)=;(2)10cm【分析】(1)利用等式的性质解答;(2)根据34BC AC =,且8AC =cm ,求出BC 及CD 的长度,由此得到AD 的长. 【详解】解:(1)∵AC BD =,∴AC-BC=BD-BC ,∴AB=CD ,故答案为:=;(2)∵34BC AC =,8AC =, ∴6BC =,∴AB AC BC =-86=-2=,∵AB CD =,∴2CD =,∴AD=AB+BC+CD =2+6+2=10(cm ).【点睛】此题考查了线段的加减计算,正确理解图形中各线段的位置关系是解题的关键.4、(1)90︒;(2)①80°;②601201n AOE n ︒⋅∠=︒-+. 【分析】 (1)由题意根据角平分线可得∠BOD =30°,∠BOE =90°,进而可得∠AOE 的度数;(2)①由题意根据∠BOC =60°和∠COD :∠BOD =1:2可得∠BOD =40°,∠BOE =100°,进而可得∠AOE 的度数;②由题意根据∠BOC =60°和∠COD :∠BOD =1:n 可得60601n BOE n ︒⋅∠=︒++,再由①的思路可得答案. 【详解】解:(1)因为OD 平分BOC ∠,60BOC EOD ∠=∠=︒,所以30BOD ∠=︒,603090BOE ∠=︒+︒=︒,所以1809090AOE ∠=︒-︒=︒.故答案为:90︒;(2)①因为60BOC ∠=︒,:1:2COD BOD ∠∠=,所以40BOD ∠=︒,所以6040100BOE ∠=︒+︒=︒,所以18010080AOE ∠=︒-︒=︒. ②601201n AOE n ︒⋅∠=︒-+. 因为60BOC ∠=︒,:1:COD BOD n ∠∠=, 所以601n BOD n ︒⋅∠=+, 所以60601n BOE n ︒⋅∠=︒++, 所以60601806012011n n AOE n n ︒⋅︒⋅⎛⎫∠=︒-︒+=︒- ⎪++⎝⎭.【点睛】本题主要考查角的运算,注意掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.5、线段MC 的长为1cm .【分析】根据已知条件“B 、C 两点把线段AD 分成2:3:4三部分”和“CD =8”易求线段AD =18.然后根据中点的性质知MD =12AD ,则由图中可以得到MC =MD −CD =1.【详解】解:设2AB xcm =,则3BC xcm =,4CD xcm =,AD AB BC CD =++, 2349AD x x x x ∴=++=48CD x ==,2x ∴=,918AD x ∴==. M 是AD 中点,192MD AD ∴==. 981MC MD CD cm ∴=-=-=.答:线段MC 的长为1cm .【点睛】本题考查了两点间的距离.利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
2022年沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测试试卷
沪教版(上海)六年级数学第二学期第七章线段与角的画法定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一副三角板的直角顶点重合在一起,且∠AOC =110°,则∠BOD =( )度.A .50B .60C .70D .80 2、如图,12BC AB =,D 为AC 的中点,3cm DC =,则AB 的长是( )A .11cm 2B .5cmC .9cm 2D .4cm3、如图,点O 在直线AB 上,90,125COD AOC ∠=︒∠=︒,则BOD ∠的大小为( )A.25︒B.30C.35︒D.40︒4、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°25′.∠BOA度数是()A.64°75′B.54°75′C.64°35′D.54°35′5、有两根木条,一根AB长为80cm,另一根CD长为130cm,在它们的中点处各有一个小圆孔M、N (圆孔直径忽略不计,M、N抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是()A.25cm B.25cm或105cm C.105cm D.50cm或210cm6、下列说法:①经过一点有无数条直线;②两点之间线段最短;③若线段AB等于线段BC,则点B 是线段AC的中点;④连接两点的线段叫做这两点之间的距离.其中叙述正确的为()A.1个B.2个C.3个D.4个7、下列语句,正确的是()A.两点之间直线最短B.两点间的线段叫两点之间的距离C.射线AB与射线BA是同一条射线D.线段AB与线段BA是同一条线段8、如图,点D为线段AC的中点,12BC AB=,1BD=cm,则AB的长为()A.3cm B.4cm C.5cm D.6cm9、如图,线段AB=12,点C是它的中点.则AC的长为()A.2 B.4 C.6 D.810、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,C为线段AB上一点,18AB=,10AC=,D,E分别是AB,AC的中点,则DE的长为______.2、如图,已知线段AB=16 cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=3 cm,则线段MP=________cm.3、计算:18⎛⎫︒=⎪⎝⎭_____'.4、如果一个角的补角是120°,那么这个角的余角为______.5、计算:15374211=''︒+︒___. 三、解答题(5小题,每小题10分,共计50分)1、已知,O 是直线AB 上的一点,90COD ∠=︒,OE 是BOC ∠的平分线.(1)①如图1,若30AOC ∠=︒,则DOE ∠= ;②如图1,若AOC α∠=,则DOE ∠= (用含α的代数式表示).(2)若将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置.在AOC ∠的内部有一条射线OF ,满足:42AOC AOF BOE AOF ∠-∠=∠+∠,请直接写出AOF ∠与DOE ∠的度数之间的关系.2、如图,点C 线段AB 上,线段8cm AC ,10cm BC =,点M 、N 分别是线段AC 、BC 的中点.(1)求线段MN 的长度;(2)根据(1)中计算的结果,设AC m =,BC n =,其他条件不变,你能猜想线段MN 的长度吗?3、如图,已知直线l 和直线外三点A 、B 、C ,按下列要求画图:(1)画射线AB ;(2)画线段BC ;(3)点E 在直线l 上移动,要使AE +CE 最小,请先确定点E 的位置,并说明你的依据是 .4、如图,已知线段AB,延长线段BA至C,使CB=43 AB.(1)请根据题意将图形补充完整.直接写出ACAB= _______;(2)设AB= 9cm,点D从点B出发,点E从点A出发,分别以3cm/s,1cm/s的速度沿直线AB向左运动.①当点D在线段AB上运动,求ADCE的值;②在点D,E沿直线AB向左运动的过程中,M,N分别是线段DE、AB的中点.当点C恰好为线段BD 的三等分点时,求MN的长.5、画图.如图在平面内有四个点A,B,C,D按下面的娶求作图(要求,利用尺规,不写画法,保留作图痕迹.不写结论)①作直线AB;②作线段AC;③作射线AD、DC、CB;-参考答案-一、单选题1、C【分析】求DOB ∠的度数,只需求AOC ∠,AOD ∠和BOC ∠的度数,由图上可知AOD ∠与BOD ∠,BOD ∠与BOC ∠两角互余,两个直角三角板直角顶点重合隐含90AOB BOC ∠=∠=︒数量关系,根据已知条件110AOC ∠=︒,AOC ∠与AOD ∠、BOD ∠、BOC ∠几个角的和差等量关系求解此题.【详解】解:由题可知:90AOD BOD ∠+∠=︒,90BOD BOC ∠+∠=︒,180AOD BOD BOD BOC ∴∠+∠+∠+∠=︒,又AOD BOD BOC AOC ∠+∠+∠=∠,180AOC BOD ∴∠+∠=︒,又110AOC ∠=︒,180BOD AOC ∴∠=︒-∠,180110=︒-︒,70=︒,故选:C .【点睛】本题考查了学生需从学习工具中抽象出直角、余角简单几何图形初步建模能力,解题的关键是掌握角互余的关系,同时也提升了学生从数的加减运算过渡到形的角的和差计算能力.2、D【分析】根据题意先求得AC ,进而根据AB BC AC +=,12BC AB =就可求得AB 【详解】解:如图,D 为AC 的中点,3cm DC =,26cm AC DC ∴==AB BC AC +=,12BC AB = 即162AB AB +=4cm AB ∴= 故选:D【点睛】本题考查了线段的中点相关的计算,线段的和差,数形结合是解题的关键.3、C【分析】先求出∠BOC =180°-∠AOC =55°,再根据∠COD =90°,利用∠BOD=∠COD -∠BOC 求出答案.【详解】解:∵∠AOC =125°,∴∠BOC =180°-∠AOC =55°,∵∠COD =90°,∴∠BOD =∠COD -∠BOC =35°,故选:C .【点睛】此题考查了几何图形中角度的计算,正确掌握图形找中各角度的关系是解题的关键.4、C【分析】由射线OC 平分DOB ∠,2525'BOC DOC ∠=∠=︒,从而求得AOB ∠.【详解】解:∵OC 平分DOB ∠,∴2525'BOC DOC ∠=∠=︒,∵90AOC ∠︒=,∴902525'6435'∠=∠-∠=︒-︒=︒AOB AOC BOC .故选:C .【点睛】题目主要考查角平分线的定义以及角的计算,关键是由已知先求出BOC ∠.5、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.6、B【分析】根据过一点有无数条直线,两点之间线段最短,线段中点的定义,两点之间的距离的定义进行逐一判断即可.【详解】解:①经过一点有无数条直线,这个说法正确;②两点之间线段最短,这个说法正确;③若线段AB 等于线段BC ,则点C 不一定是线段AB 的中点,因为A 、C 、B 三点不一定在一条直线上,所以这个说法错误;④连接两点的线段的长叫做这两点之间的距离,所以这个说法错误;∴正确的说法有两个.故选B .【点睛】本题主要考查了过一点有无数条直线,两点之间线段最短,线段中点的定义,两点之间的距离的定义,熟知相关知识是解题的关键.7、D【分析】根据线段、射线与两点之间的距离等性质依次判断即可.【详解】解:A 、两点之间线段最短,选项错误;B 、两点间的线段长度叫两点之间的距离,选项错误;C 、射线AB 与射线BA 不是同一条射线,方向相反,选项错误;D 、线段AB 与线段BA 是同一条线段,选项正确,故选:D .【点睛】题目主要考查线段、射线、两点间的距离的性质,熟练掌握各个性质是解题关键.8、B【分析】设,BC x =再表示32,3,,2AB x AC x CDx 再利用,1,DC DB BC DB 列方程解方程即可. 【详解】解:设,BC x = 而12BC AB =, 22,3,AB BC x AC AB BC x点D 为线段AC 的中点,3,2AD CD x 而,1,DC DB BC DB31,2x x 解得:2,x =2 4.AB x故答案为:B【点睛】本题考查的是线段的和差关系,线段的中点的含义,一元一次方程的应用,熟练的利用方程解决线段问题是解本题的关键.9、C【分析】根据中点的性质,可知AC的长是线段AB的一半,直接求解即可.【详解】解:∵线段AB=12,点C是它的中点.∴1112622AC AB==⨯=,故选:C.【点睛】本题考查了线段的中点,解题关键是明确线段的中点把线段分成相等的两部分.10、D【分析】由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.【详解】解:A.∵∠1+∠2度数不确定,∴∠1与∠2不互为余角,故错误;B.∵∠1+45°+∠2+45°=180°+180°=360°,∴∠1+∠2=270°,即∠1与∠2不互为余角,故错误;C .∵∠1+∠2=180°,∴∠1与∠2不互为余角,故错误;D .∵∠1+∠2+90°=180°,∴∠1+∠2=90°,即∠1与∠2互为余角,故正确.故选:D .【点睛】本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.二、填空题1、故答案为:28,【点睛】本题考查的是方向角的概念,根据方向角的表示方法画出图形,利用数形结合进行求解是解答此题的关键.12.4【分析】由D ,E 分别是AB ,AC 的中点,先求解,,AD AE 再利用,DEAD AE 从而可得答案.【详解】 解: 18AB =,10AC =,D ,E 分别是AB ,AC 的中点, 119,5,22AD BD AB AE CE AC 95 4.DE AD AE故答案为:4【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的中点与和差关系求解未知线段的长度”是解本题的关键.2、2【分析】根据中点的定义可求解BM,及PB的长,进而可求解.【详解】解:∵M是AB的中点,AB=16cm,∴AM=BM=8cm,∵N为PB的中点,NB=3cm,∴PB=2NB=6cm,∴MP=BM﹣PB=8﹣6=2(cm).故答案为:2.【点睛】本题主要考查了线段的计算,掌握中点的定义是解题的关键.3、7.5【分析】根据角度制的进率进行计算即可.【详解】解:10.1257.58⎛⎫'︒=︒=⎪⎝⎭,故答案为:7.5.【点睛】本题主要考查了角度制的换算,熟知角度制的进率是解题的关键.4、故答案为39;【点睛】本题主要考查余角及角的单位与角度制,熟练掌握余角及角的运算是解题的关键.30.30°度【分析】根据余角、补角的定义可直接进行求解.【详解】解:由一个角的补角是120°可知这个角的度数为18012600︒-︒=︒,∴这个角的余角为906030︒-︒=︒;故答案为30°.【点睛】本题主要考查余角、补角,熟练掌握余角、补角的性质是解题的关键.5、5748︒'【分析】将度与度,分与分分别计算即可.【详解】解:15374211=''︒+︒5748︒', 故答案为:5748︒'.【点睛】此题考查了角度的计算,正确掌握计算方法是解题的关键.三、解答题1、(1)①15°;②12α(2)成立,理由见解析(3)4∠DOE-5∠AOF=180°【分析】(1)①由已知可求出∠BOC=180°-∠AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度数;②由①可得出结论∠DOE=12∠AOC,从而用含a的代数式表示出∠DOE的度数;(2)由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°-∠DOE,则得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),从而得出∠AOC和∠DOE的度数之间的关系;(3)设∠DOE=x,∠AOF=y,根据已知和:∠AOC-4∠AOF=2∠BOE+∠AOF,得出4x-5y=180,从而得出结论.(1)解:①由已知得∠BOC=180°-∠AOC=150°,又∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD-12∠BOC=90°-12×150°=15°;②由①得:∠DOE=∠COD-12∠BOC,∴∠DOE=90°-12(180°-∠AOC),∴∠DOE=12∠AOC=12a;(2)成立,理由是:∵∠COD是直角,OE平分∠BOC,∴∠COE =∠BOE =90°-∠DOE ,则得∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),所以得:∠AOC =2∠DOE ;(3)4∠DOE -5∠AOF =180°,理由是:设∠DOE =x ,∠AOF =y ,左边=∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,右边=2∠BOE +∠AOF =2(90-x )+y =180-2 x +y ,∴2x -4y =180-2 x +y 即4x -5y =180,∴4∠DOE -5∠AOF =180°.【点睛】此题考查的知识点是角平分线的性质、旋转性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.2、(1)MN =9cm ;(2)MN =2m n 【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出MC 、CN 的长度,再利用MN =CM +CN 即可求出MN 的长度;(2)根据点M 、N 分别是AC 、BC 的中点,可知CM =12AC ,CN =12BC ,再利用MN =CM +CN 即可求出MN 的长度.【详解】解:(1)∵点M 、N 分别是线段AC 、BC 的中点∴MC =12AC =12×8=4(cm),CN =12BC =12×10=5(cm)∴MN =MC +CN =4cm +5cm =9cm ;(2)∵AC =m ,BC =n∴MC =12m ,CN =12n∴MN =MC +CN =12m +12n即MN =2m n . 【点睛】本题主要考查线段中点的有关计算,理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系是关键.3、(1)见解析;(2)见解析;(3)见解析,两点之间线段最短【分析】(1)(2)根据几何语言画出对应的几何图形;(3)连接AC 交直线l 于E ,利用两点之间线段最短可判断E 点满足条件.【详解】解:(1)如图,射线AB 即为所作;(2)如图,线段BC 即为所作;(3)如图,连接AC 交直线l 于E ,点E 即为所作;根据两点之间线段最短可判断此时AE +CE=AC 最小.故答案为:两点之间线段最短.【点睛】本题考查画射线、画线段、两点之间线段最短,会利用两点之间线段最短解决最短距离问题是解答的关键.4、(1)13,(2)3,(3)12cm 或24cm .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)①设运动的时间为t 秒,表示出线段长即可得到结论;②分3BD CD =和3BD CB =两种情况,根据三等分点求出BD 的长,进而求出运动时间,求出MD 、NB 的长即可.【详解】解:(1)图形补充完整如图,∵CB =43AB , ∴CA =13BC AB AB -=, 13AC AB =, 故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒, (93)DA t =-cm ,(3)CE t =-cm ,93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【点睛】本题考查了线段的计算,解题关键是准确识图,熟练表示出线段长.5、①画图见解析;②画图见解析;③画图见解析【分析】根据直线,射线,线段的定义进行作图即可.【详解】解:①如图所示,直线AB 即为所求;②如图所示,线段AC即为所求;③如图所示,射线AD、DC、CB即为所求;【点睛】本题主要考查了,画直线,射线和线段,解题的关键在于能够熟练掌握三者的定义:直线没有端点,两端可以无限延伸,长度不可度量;射线有一个端点,可以向没有端点的方向无限延伸,长度不可度量;线段有两个端点,两端不可延伸,长度可以度量.。
第七章线段与角的画法
角度的大小与线段 的长度无关,但与 线段的位置有关。
角度可以用来描述两 条射线之间的夹角, 而线段可以用来描述 两点之间的距离。
在几何学中,角度 和线段是两个基本 概念,它们在许多 问题中都有应用。
垂直线性质:垂直线将角分 为两个相等的部分
平行线性质:平行线之间的 线段长度相等
角平分线性质:角平分线上 的点到角的两边距离相等
验证角的正确性:最后检查所画的角是否符合题目要求,是否符合几何定理
定角的顶点
确定角的第一条边
确定角的度数
确定角的第二条边
确定中心点 放置量角器 确定角度 绘制角度
平行线与同位角 平行线与内错角 平行线与同旁内角 角平分线与角的两边
角度的度量单位是 度,线段的长度单 位是厘米或毫米。
标记线段名称:在线段上或旁 边标注线段的名称,以便识别 和区分不同的线段。
标记起点和终点:使用箭头或 文字标记线段的起点和终点, 以明确线段的名称。
标记线段长度:在线段上或旁 边标注线段的长度,以便了解
线段的长度信息。
标记线段颜色:使用不同颜色 标记不同的线段,以便区分和
识别不同的线段。
使用测量工具确定长度 根据已知比例计算长度 利用已知线段作为参照确定长度 使用数学公式计算长度
掌握基础作图工具:熟悉各种作图工具,如直尺、圆规、三角板等,是提高作图技能 的前提。
不断练习:通过大量的练习,熟悉各种线段与角的作图技巧,提高作图的准确性和速 度。
注重细节:在作图过程中,注意细节的把握,如线条的平滑度、角度的准确性等,这 些细节将直接影响作图的质量。
总结反思:及时总结作图的经验与教训,反思作图过程中的不足之处,针对性地加强 练习,不断提高作图技能。
随着科技的发展,线段与角的应用也在不断拓展和创新,如智能制造、机器人等 领域中也广泛应用了线段与角的理论和技术。
第七章_线段与角的画法测试卷
第七章.线段与角的画法班级________ 学号________ 姓名________ 得分________一、填空题(本大题共42分,每空3分)1、已知二元一次方程33159+=-y y x ,用含y 的式子表示x 的形式为________ 2、 右图为同一直线上的A 、B 、C 三点,图中共有_______条射线,_____条线段. (第2题)3、如图,如图,点C、D 在线段AB 上.AD =10cm ,CD =4 cm ,CB =12 cm ,则图中线段AC 与BD 的和是________cm . (第3题)4、图,O 为直线AD 上一点,∠AOB=45º,OC 平分∠BOD ,则∠COD=_____度。
5、如图, OC ⊥OA ,OD ⊥OB ,则∠AOB=∠_________.(第4题) (第5题) (第7题)6、互为补角的两角之差为22º,则这个两角分别为______度和______度.7、如图,∠AOB=72º,OC 平分∠AOB ,OD ⊥OC ,则∠AOD=______度.8 方程3x+2y=15的非负整数解是_______________9、计算:28º46´+57º32´-60º15´10、∠α=(x+10)º,∠β=(x-30)º,且∠α和∠β则∠α=______度. 11 如图所示,射线OA 表示________方向,射线OB 表示二、单项选择题(本大题共12分,每小题3分)1、以下说法中不正确的是( )A 、若OA=OB ,则O 是线段AB 的中点;B 、若O 是线段AB 的中点,则OA=OB ;C 、B 是线段AC 上一点,AB :BC=2:3,则AC BC 53= ;D 、延长线段AB 至C ,使BC=AB ,则B 是线段AC 的中点.2、∠α的余角是40º,则∠α的补角为( )A 、100º.B 、110º.C 、120º.D 、130º3、如图,线段AD=90cm ,B 、C 是这条线段上两点,AC=70cm ,且CD=31BC ,则AB 的长是( )A 、20cm.B 、15cm.C 、10cm.D 、8cm . (第3题)4、有几种说法,其中正确的有( )(1)只有补角而没有余角的角是钝角; (2)锐角既有余角又有补角;(3)一个锐角的余角比这个角的补角小90º;(4)互补的两个角一个是锐角一个是钝角。
第七章 线段与角的画法 提高题
第七章提高题判断题:1.经过一点可以画无数条直线,经过两点可以画一条直线,经过三点可以画三条直线2.两条直线如果有两个公共点,那么它们就有无数个公共点3.射线AP与射线P A的公共部分是线段P A4.线段的中点到这条线段两端点的距离相等5.有公共端点的两条射线叫做角6.互补的角就是平角填空题:7.如图,图中有________条直线,有________条射线,有________条线段,以E为顶点的角有________个.(第7题)(第8题)(第9题)8.如图,点C、D在线段AB上.AC=6 cm,CD=4 cm,AB=12 cm,则图中所有线段的和是________cm.9.线段AB=12.6 cm,点C在BA的延长线上,AC=3.6 cm,M是BC中点,则AM 的长是cm.(第10题)(第11题)10.如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=________°.11.如图,OB平分∠AOC.且∠2∶∠3∶∠4=3∶5∶4,则∠2=____°,∠3=____°,∠4=____°.12.∠A与∠B互补,∠A与∠C互余,则2∠B-2∠C=________°.13.已知:∠α 的余角是52°38′15″,则∠α 的补角是________.∠α 的补角=90°+∠α 的余角,即任一锐角的补角比它的余角大90°14.由2点30分到2点55分,时钟的时针旋转了________度,分针旋转了________度,此刻时针与分针的夹角是________度.选择题:15.已知线段AB =10 cm ,AC +BC =12 cm ,则点C 的位置是在:①线段AB 上;②线段AB 的延长线上;③线段BA 的延长线上;④直线AB 外.其中可能出现的情况有……………………………………………………………………………………………( )(A )0种 (B )1种 (C )2种 (D )3种【答案】D .若点C 在线段AB 上,如下图,则AC +BC =AB =10 cm .与AC +BC =12 cm 不合,故排除①.若点C 在线段AB 的延长线上,如下图,AC =11 cm ,BC =1 cm ,则AC +BC =11+1=12(cm ),符合题意.若点C 在线段BA 的延长线上,如下图,AC =1 cm ,BC =11 cm ,则AC +BC =1+11=12(cm ),符合题意.若点C 在直线AB 外,如下图,则AC +BC =12(cm ),符合题意.综上所述:可能出现的情况有3种,故选D .16.分别在线段MN 的延长线和MN 的反向延长线上取点P 、Q ,使MP =2NP .MQ =2MN .则线段MP 与NQ 的比是…………………………………………( )(A )31 (B )32 (C )21 (D )23解法一:∵ MP =2NP ,∴ N 是MP 的中点.∴ MP =2MN .∵ MQ =2MN , ∴ NQ =MQ +MN =2MN +MN =3MN .∴ MP ∶NQ =2MN ∶3MN =2∶3=32. (普遍)解法二:设MN =x∵ MP =2NP ,∴ N 是MP 的中点.∴ MP =2MN =2x .∵ MQ =2MN =2x , ∴ NQ =MQ +MN =2MN +MN =3MN =3x . ∴ MP ∶NQ =2MN ∶3MN =2 x ∶3 x =32. 【补充】(1)已知点M 和点N 在线段AB 上,且AM:MB=2:3,AN:NB=3:4,若MN=3cm ,求线段AB 的长.(2)将线段AB 五等分,等分点依次为点C 、D 、E 、F ,求AD :CB 和CF :AB 的比值*17.一条直线可以将平面分成两部分,两条直线最多可以将平面分成四部分,三条直线最多可以将平面分成n 部分,则n 等于……………………………………………………( )(A )6 (B )7 (C )8 (D )9【提示】画图探索.一条线 两条直线 三条直线 【答案】B .【点评】平面内一条直线将平面分成两部分,记作a 1=1+1=2; 平面内两条直线将平面最多分成四部分,记作a 2=1+1+2=4; 平面内三条直线将平面最多分成七部分,记作a 3=1+1+2+3=7;平面内四条直线将平面最多分成几部分?由图可知,共可分成11个部分,记作a 4=1+1+2+3+4=11.若平面上有n 条直线,最多可将平面分成多少部分,此时n 条直线的相对位置如何?从前面的分析不难推出平面上有n 条直线时,最多可将平面分成a n =1+1+2+3+4+…+n =1+2)1(+n n =222++n n 个部分,此时每两条直线都相交,且没有三条直线交于一点.18.若互补两角有一条公共边,则这两个角的平分线所组成的角………………………( )(A )一定是直角 (B )一定是锐角 (C )一定是钝角 (D )是直角或锐角【提示】分两种情况:①互补两角有公共顶点,有一条公共边没有重叠部分;②互补两角有公共顶点有一条公共边有重叠部分.如图:19.已知α 、β都是钝角,甲、乙、丙、丁四人计算51)(βα+的结果依次是30°、35°、60°、75°,其中恰有正确结果.这个正确结果是…………………………………………( ) (A )30° (B )35° (C )60° (D )75° ∵α 、β都是钝角,∴ 180°<βα+<360°.∴ 36°<51)(βα+<72°20.如图,∠AOB =∠BOC =∠COD =∠DOE =30°.图中互补的角有……( )(A )10对 (B )4对 (C )3对 (D )4对【提示】补角的概念仅与角的大小有关而与角的位置无关. ∵ ∠AOB =∠BOC =∠COD =∠DOE =30° ∴ ∠AOE +∠AOC =120°+60°=180°, ∠AOE +∠BOD =120°+60°=180°, ∠AOE +∠COE =120°+60°=180°,∠AOD +∠BOE =90°+90°=180°.21.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是…………………………( )(A )21)21(∠+∠ (B )21∠1 (C )21)21(∠-∠ (D )21∠222.设时钟的时针与分针所成角是α ,则正确的说法是………………………( )(A )九点一刻时,∠α 是平角 (B )十点五分时,∠α 是锐角 (C )十一点十分时,∠α 是钝角 (D )十二点一刻时,∠α 是直角【时钟的时针1小时转30°,1分转0.5°,分针1小时转360°,1分转6°】计算题:23.118°12′-37°37′×2. 【提示】先算乘,再求差. 24.132°26′42″-41.325°×3.【提示】化成以“度”为单位的量或化成“度、分、秒”后再算.25.360°÷7(精确到分).26.已知:线段a 、b 、c (b >c ),画线段AB ,使AB =2a -21(b -c ).27.已知∠α ,∠β ,∠γ ,画∠AOB ,使∠AOB =2∠α+∠β-31∠γ .【补充】在图中画射线OC 、OD ,使CO A ∠,DOB ∠都与AOB ∠互余,在图中画射线OP 、OQ 使POM ∠、QON ∠都与MON ∠互补28.读句画图,填空:(1)画线段AB =40 mm ;(2)以A 为顶点,AB 为一边,画∠BAM =60°; (3)以B 为顶点,BA 为一边,在∠BAM 的同侧画∠ABN =30°,AM 与BN 相交于点C ; (4)取AB 的中点G ,连结CG ;(5)用量角器量得∠ACB =______度;(6)量得CG 的长是_____mm ,AC 的长是_____mm ,图中相等的线段有________.AN M B OO29.如图,线段AB被点C、D分成了3︰4︰5三部分,且AC的中点M和DB的中点N 之间的距离是40 cm,求AB的长.30.一个角的补角与20°角的和的一半等于这个角的余角的3倍,求这个角.31.如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,求∠AOD和∠AOC的度数.32.如图,∠AOC、∠BOD都是直角,且∠AOB与∠AOD的度数比是2︰11,求∠AOB 和∠BOC的度数.33.考察队从营地P 处出发,沿北偏东60°前进了5千米到达A 地,再沿东南方向前进到达C 地,C 地恰好在P 地的正东方向.(1)按1︰100 000画出考察队行进路线图. (2)量出∠P AC 、∠ACP 的度数(精确到1°). (3)测算出考察队从A 到C 走了多少千米?此时他们离开营地多远?(精确到0.1千米).*34.已知直角∠AOB ,以O 为顶点,在∠AOB 的内部画出100条射线,则以OA 、OB 及这些射线为边的锐角共有多少个?若以O 为项点,在∠AOB 的内部画出几条射线(n ≥1的自然数),则OA 、OB 以及这些射线为边的锐角共有多少个?【提示】在∠AOB 的内部,以O 为顶点,画1,2,3,4条射线,数数各有多少个锐角,找出规律,再计算100条射线、n 条射线所构成的锐角的个数.【答案】5 150个锐角;232nn +个锐角.1条射线 1+1=2(个锐角), 2条射线 2+2+1=5(个锐角), 3条射线 3+3+2+1=9(个锐角), 4条射线 4+4+3+2+1=14(个锐角), ……100条射线 100+100+99+98+…+3+2+1 101条=100+2100)1100(⨯+=100+5 050=5 150(个锐角),n 条射线 n +n +(n -1)+(n -2)+…+3+2+1=n +2)1(n n ⋅+=232nn +(个锐角).【点评】若题目改成:已知∠AOB ,以O 为顶点,在∠AOB 的内部画出n 条射线,n 为非零自然数,以OA 、OB 以及这些射线为边的角共有多少个?答案是:共有2232++n n 个角.。
第七章 线段和角的画法测试卷
(第10题)OA B C (第11题) 一、 填空题1.A 、B 两个城市的位置如图所示,那么B 城在A 城的_____________________方向.第一题图 第二题图 第三题图2.如图,已知M 、N 分别为线段AC 、BC 的中点,且C 是线段MB 的中点,线段MN= 6 cm ,则线段AM=______cm ,BN=______cm . 3.如图, OM 是AOB ∠ 的平分线,OP 是MOB ∠ 内的一条射线.已知AOP ∠比BOP ∠ 大30︒ ,则MOP ∠的度数是______. 4.已知OC 是AOB ∠的角平分线,如果50AOB ∠=︒,那么BOC ∠的度数是__________. 5.已知3824A '∠=︒ ,则A ∠的余角的大小是________________. 6.一个角与它的补角之比为1:4,则这个角等于_______度; 7.延长线段AB 至C ,使BC =AB 31,D 是AC 的中点, 若DC =2cm ,则AB = 厘米;8.如图,∠AOD=80°,∠COD=30°,OB 平分∠AOC ,则∠AOB = 度;9.如果一个角是50º,那么这个角的补角是 度.10.如图,AB=10厘米,C 是线段AB 上任意一点,D 是线段AC 的中点,E 是线段BC 的中点,那么DE =________厘米. 11.如图,已知∠AOB=58º,∠BOC =(5+x )º,∠AOC =(72-x )º,那么∠AOC = 度.12.已知线段a 、b 的长分别为10厘米、6厘米,如果在射线OP 上截取OM=a ,MC=b ,那么线段OC=________厘米.13.已知α∠ 的补角等于125º4′,那么=∠α __________.14.如图,已知∠AOC=120º,OB 平分∠AOC ,OD 平分∠AOB ,那么∠DOC = 度.二、 选择题15.下列说法错误的是……………………( )(A )∠AOB 的顶点是点O ; (B )∠AOB 的两边是两条射线; (C )射线BO 、射线AO 分别是∠AOB 的边; (D )∠AOB 与∠BOA 表示同一个角. 16.下列说法错误的是……………………………………………………………………( ) (A )画线段AB=3厘米; (B )画射线AB=3厘米;(C )在射线A C 上截取AB=3厘米; (D )延长线段AB 到C ,使得AC=2AB .北. A. B东60︒BCAMNO ABMPD BAC O 第8题 (第14题图) OA B CD17.已知线段AB ,延长BA 到C ,使AC= BC ,D 为AC 中点,且CD=2厘米,那么线段AB 的长为……………………………………………………………………………( ) (A )4厘米; (B )6厘米; (C )8厘米; (D )10厘米.18.如图,直线AB 、CD 相交于点O ,OP 是BOC ∠的平分线,若∠1等于40°,则∠2等于( )A .50°B .60°C .70°D .80°19.如图1,已知点C 是线段AB 的中点,点D 是CB 的中点,那么下列结论中错误的是…( )A .AC CB = ; B .2BC CD = ;C .2AD CD =; D .14CD AB = .20.如图,四条表示方向的射线,表示北偏东 60°的是……………( )三、 作图题21.已知线段a 、b ,且2a b >(如图4),画一条线段AB ,使它等于2a b - .(不写画法或作法,保留画图或作图痕迹)22.如图, 已知∠α 和∠AOB .(1) 以OA 为一边在∠AOB 的外部画∠AOC, ∠AOC=∠α ; (2) 画出∠AOB 的平分线OD ; (不写作法,保留作图痕迹)(3) 量一量,∠COD 的度数是多少? 解:B D1 2 O A C P αOBA● ●● ● A C D B a b (图4)23.如图,将一副三角板叠放在一起,使直角顶点(图中点C请找出以点C 为顶点的角中:(1)一定相等的角为 ;(请写出所有的情况)(2)一定互补的角为 . (请写出所有的情况)24.如图,已知120∠=AOB .点C 在AOB ∠ 的内部,且30∠=BOC ;OP 是AOB ∠ 的角平分线.(1)作BOC ∠ ;(2)尺规作图:作AOB ∠的角平分线OP ;(不写作法,保留作图痕迹.)(3)若射线OC 、OA 分别表示从点O 出发的北、东两个方向,则射线OB 表示_______方向; (4)在图中找出与AOP ∠ 互余的角是_________________; (5)在图中找出与AOB ∠ 互补的角是_________________.四、解答题25.一个角的余角是它的补角的16,求这个角的度数.26.已知一个角的补角比它的余角的3倍大10°,求这个角的度数.27.已知∠AOB=70º,∠BOC 与∠AOB 互余,OP 是∠AOC 的角平分线. (1)画出所有符合条件的图形. (2)计算∠BOP 的度数.AB O 第24题图。
第七章线段与角的画法
7.1 线段的大小的比较一、课前思考1.怎样比较两条线段的大小?2.什么叫两点之间的距离?3.在所有连接两点的线中,什么线最短?二、课堂练习1.填空:比较线段AB,CD大小的方法有:(1)___________比较法:如果AB=acm,CD=bcm若a>b则AB____CD,若a<b则AB__CD.(2)___________比较法:将端点___与端点___重合,线段___与线段___叠合,如果B点在线段CD上,则AB____CD,如果点B与点D重合,则AB____CD,如果点B在线段CD的延长线上则AB___CD.2.按要求画图,并写全画法.已知线段a,用圆规、直尺画出线段AB,使AB=a.a解(1)画射线________;(2)在射线_______上截取_______.________就是___________.三、课后测试知识巩固1、根据要求画图,并理解文字语言和图形语言的对应关系:(1)点C在线段AB上;(2)线段MN上有一点P;(3)点P在线段CD的延长线上;(4)点P在线段DC的延长线上;2、根据要求做题,并理解文字语言、图形语言和数学符号语言的对应关系.(1)用两种形式的文字语言表达点B与线段CD的关系:BC D①_________________________________________________________________;②_________________________________________________________________.数学符号语言(用“>”、“<”或“=”填空):CD______BC,BD______CD.(2)用两种形式的文字语言表达点P与线段MN的关系:NM P① _________________________________________________________________; ② _________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空):MP_____MN,NP_____MP . (3)用两种形式的文字语言表达点M 与线段EF 的关系:MFE①_________________________________________________________________;②_________________________________________________________________.数学符号语言(用“>”、“<”或“=”填空):MF_____EF,ME_____MF.3、用直尺、圆规按要求画图,理解比较线段大小的方法:ba在射线OC 上截取OA=a ,OB=b.CO比较a 与b 的大小:a_____b.4、根据要求做题,并理解叠合的意义.已知线段AB 、CD ,如果将AB 移动到CD ,使点A 与点C 重合,CD 与AB 重叠,那么点B 的位置状况怎样?点D 的位置状况怎样?ABC D第4题图5、 从点A 到点B 有4条路可以到达,你认为哪条路最短?理由是什么?BA第5题图 知识拓展铁路上海站与南京站之间途经四个车站,车站应准备多少种不同的车票?7.2画线段的和、差、倍一、课前思考1. 理解截取、顺次截取的意义.2. 你会画线段的和(a+b )、差(a-b )、倍(2a )吗?3. 你会用尺规作图法作图法作线段的中点吗?4. “画图”与“作图”的工具要求有点不同,你明白吗?二、课堂练习 1、根据如图填空D A _B C_(1) AD=___+BC+___=AB+___=CD+___ (2) AB=AD-___;(3) AC=BC+___=AD-___; (4) BD-CD+AB=___.2、如图:已知点C是线段AB的中点,AC=___,AB=2___=2___,21AB=___=___. CAB第2题图三、课后测试知识巩固1、如图,A 、B 、C 、D 、四点在一条直线上,图中有( )条线段.ADCB第1题图2、根据所示图形填空,理解截取、顺次截取的意义,熟练掌握基本画图语句. 已知线段a 、b ,画出一条线段,使它等于a+b.ab第3题图 解:(1)画射线OP ;(2)在射线OP 上顺次截取( )=a ,( )=b. 线段( )就是所要画的线段.POBA3、根据所示图形填空,理解截取、顺次截取的意义,熟练掌握基本画图语句. 已知线段a 、b ,画出一条线段,使它等于a-b.a b解法一:(1)画射线OP;(2)在射线OP上截取()=a,在线段()上截取()=b.线段()就是所要画的线段.O B AP解法二:(1)画射线OP;(2)在射线OP上截取()=a,在线段()上截取()=b.线段()就是所要画的线段.O D CP4、如图,点M是线段AB上的一点,点C是线段AM的中点,点D是线段MB的中点,已知AM=8cm,MD=2cm.根据图形填空:A BC M D第4题图AC=( )cm,BM=( )cm,BC=( )cm,AB=( )cm,CD=( )cm,CD=( )AB.5、根据所示图形填空,理解截取、顺次截取的意义,熟练掌握基本画图语句.已知线段a、b、c,画出一条线段,使它等于2a-b+c.a b c第5题图解:(1)画射线OP;(2)在射线OP上顺次截取()=a,()=b,()=c;(3)在线段()上截取CD=b.线段()就是所要画的线段.O A D B CP知识拓展6、A、B、C、D四个小区在同一条路上,为了给小区的居民出行带来方便准备在这条路上增设一个车站,车站应建在哪里使车站与各个小区的距离和最短,请同学们设计出方案.B7.3角的概念与表示一、课前思考1. 角的顶点、边、外部、内部,你理解吗?2. 角有四种表示方法,是不是任何一个角都可以用四种方法表示?3. 你会表示两个点的相对方位吗? 二、课堂练习1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________.2、 用阴影部分表示角的外部.三、课后测试知识巩固1、分别用三种形式表示下图中的角:1CBAαNMO2AB2、分别说出∠ABC 、∠MON 、∠PCQ 的顶点和边.3、把下图中小于平角的角用三个大写字母的形式表示出来:ABCDOOFN EABPQEFFBAE4、下图中,标明了上海、哈尔滨、呼和浩特、西安与北京的大致方位,请你用规范的数学用语写出上海、哈尔滨、呼和浩特、西安分别在北京的什么方向?北京上海南30°70°呼和浩特45°西安西哈尔滨50°东北5、图中共有()个角.能用一个大写字母表示的就用一个大写字母表示出来,否则就用三个大写字母表示出来.AB CFED6、图中共有()个角. 能用一个大写字母表示的就用一个大写字母表示出来,否则就用三个大写字母表示出来.知识拓展7、如果点B在点O南偏东60°方向,在点A的正南方向,你能确定点B的位置吗?试着找出点B的位置.西东北南A7.4角的大小的比较、画相等的角一、课前思考1.怎么比较两个角的大小?2.你会用量角器画一个角等于已知角吗?3.你会用直尺和圆规作一个角等于已知角吗?二、课堂练习1、因为OA与OA是公共边,边OC在∠AOB的__,所以∠AOC____∠AOB;2、因为OA与OA是公共边,边____与边OC叠合,所以∠AOC____∠AOD;3、因为OB与OB是公共边,边OA在___的___,所以∠BOC____∠BOA.第1题图ABCD三、课后测试知识巩固1、用量角器分别量出下图中∠B、∠A、∠ACD的大小,指出最大的角.B DAC B DAC2、根据图形,写出OC与∠AOB的位置关系,并用数学符号写出∠AOB与∠COB的大小关系. O BACBAO BA(C)3、用量角器画∠AOB=35°,以OB为一边,在∠AOB的外部画∠BOC=55°,比较一下∠AOC 与三角板的直角的大小.4、用量角器画∠AOB=135°,以OB为一边,在∠AOB的外部画∠BOC=45°,用直尺比画一下∠AOC与平角的大小.5、已知射线BC,∠β,仿照上题,用直尺和圆规作∠ABC,使∠ABC=∠β(不写作法,保留作图痕迹).注意,点A在射线BC的上边还是下边?βB C6、用量角器量图中的角,45°的角有()个,90°的角有()个.7、用量角器量图中的角,30°的角有()个,60°的角有()个,90°的角有()个,120°的角有()个.知识拓展8、学校的绿化带有一个花坛,花坛的各种变长都相等,相邻的两条边的夹角都是120°,其中的一条边AB长5.5米,按比例画出图形,花坛的周长是多少米?A B7.5画角的和、差、倍一、课前思考1.你会用量角器画两个角的和(α+β)、差(α-β),倍(2a)吗?2.你会用直尺和圆规作一个角的平分线吗?二、课堂练习1、如图,从点O出发有4条射线OA、OB、OC、OD,图中共有()个角.ODBAC∠AOD=()+∠COD;∠AOB=()-∠COB;∠AOC=()+();∠DOB=()-∠AOB;∠BOC=∠AOD-()-∠COD.2、已知∠AOB=78°,射线OE是∠AOB的平分线,∠AOE=____.3、已知射线OE平分∠AOB,∠AOE=30°,∠AOB=____三、课后测试知识巩固1、如图:根据图形填空∠BOC=∠AOD-____-____=____-∠AOB=____-∠DOC;∠BOD=∠AOD-____=∠DOC+____.第1题图DCB2、已知∠α、∠β,用量角器画出∠AOB=∠α+∠β.(不写作法,标明字母)αβ3、已知∠α、∠β,用量角器画出∠AOB=∠α+2∠β.(不写作法,标明字母)αβ4、已知∠α、∠β,用量角器画出∠AOB=2∠α-∠β.(不写作法,标明字母)αβ5、已知∠1+∠2=180°,∠1-∠2=90°,求∠1、∠2的度数.6、已知∠A+∠B+∠C=180°,∠A :∠B :∠C=1:2:3,求∠A 、∠B 、∠C 的度数.7、如图,作∠A 、∠B 的平分线,并作出它们的交点O ,再连结OC ,用量角器度量、比较∠ACO 、∠BCO 的大小.(不写作法,保留作图痕迹)ACBA知识拓展8、如图已知点O为直线AC上一点,OE平分∠AOB,∠DOB:∠DOC=1:3,∠EOD=65°,求∠DOC的度数?_ ACE B D_O7.6余角、补角 一、课前思考1.两个角互余(或互补),和这两个角所在的位置有关吗?2.你会用计算器进行度、分、秒互化吗?3.你会根据角的互余(或互补)关系列方程吗?4.同角的余角__________;同角的补角__________.二、课堂练习1、如果∠α与∠β=互为余角,那么∠α+∠β=____°,∠α=____-∠β,∠β=____-____.2、1°=____',1'=____''.3、∠1=a°,∠1的余角=____°,∠1的补角=____°.4、如图:已知∠BOD=∠AOC=90°,∠AOB=25°,那么∠COD____°,理由_______________________.第4题图DCB第5题图OBACD5、如图:已知AB与CD相交于点O,∠AOD=34°,那么∠BOC=________°,理由____________.三、课后测试知识巩固1、填空:(1)30°角的余角的度数是( ); (2)45°角的余角的度数是( ); (3)30°角的补角的度数是( ); (4)120°角的补角的度数是( );(5)36°30’20” 角的余角的度数是( ); (6)108°19’40” 角的补角的度数是( ); 2、(1)一个角与它的余角相等,这个角的度数为_____;(2)一个角等于它的余角的2倍,这个角的度数为_____; (3)一个角等于它的补角的2倍,这个角的度数为_____; (4)一个角比它的补角大36°,这个角的度数为_____; (5)一个角比它的补角小90°,这个角的度数为_____;3、在左下图中画射线OC、OD,使∠COA、∠DOB都与∠AOB互余. 在右下图中画射线OP、OQ,使∠POM、∠QON都与∠MON互补.OBOMN∠COA=∠DOB,可以概括为:_________________________________;∠POM=∠QON,可以概括为:_________________________________.4、(1)18°19’14”+17°26’41”=_______________;(2)98°47’55”-68°15’24”=_______________;(3)36°47’51”+59°48’47”=_______________;(4)104°33’31”-59°57’45”=_______________;(5)68°13’-59°48’45”=_______________;5、动手做一做:剪一张直角三角形的纸片ABC,将点B折到线段AB上,折痕经过点C,探究一下图中互余的角有哪几对?CDA B6、动手做一做:剪一张直角三角形的纸片ABC,将点A与点B重合,折痕为DE,探究一下图中与∠A互余的角有哪几个?CD知识拓展动手做一做:将一张长方形的纸块ABCD折一下,折痕为MN,再将MC与MN叠合、MB与MN叠合,折痕分别为ME、MF,探究一下∠EMF的大小,与∠CMF互余的角有哪些?图中以M为顶点的哪些角互补?C'NEA'AB'第七章测试(A )卷(时间:45分钟,满分:100分) 一、填空题(每小题3分,共36分)1.点D 在线段AB 的延长线上,则AD_____BD(填“<”或“>”).2.点C 是线段MN 的中点,则CM=_____MN.3.如图,A 、B 、C 、D 四点在一条直线上,图中共有_____条线段. A DC B4.如图,点C 是线段AD 的中点,AC=2cm ,BC=5cm ,那么BD=_____cm.5.已知线段a=4cm ,b=3cm ,c=2cm 那么a-2b+3c=_____cm.6.OC 在∠AOB 的内部,则∠COB_____∠AOB(填“<”或“>”).7.OD 是∠MON 的平分线,则∠MOD=_____∠MON.8.如图,A 、O 、B 三点在一条直线上,图中小于180°的角共有_____个.ABO9.72°角的补角比它的余角大_____. 10.一个角是它的补角的32,这个角的度数为_____. 11.58°19’34”+16°55’41”=__________.12.如图,浦东国际机场大致在人民广场的什么位置?答:__________.二、判断题(每小题3分,共12分)13.互余的两个角都是锐角. ( ) 14.互补的两个角一个是锐角,一个是钝角. ( ) 15.连接两点的线段叫做两点之间的距离. ( ) 16.角的平分线是一条射线. ( ) 三、选择题(每小题3分,共12分)17.一个钝角与一个锐角的差是 ( ) A.锐角; B.直角;C.钝角;D.锐角、直角或钝角.18.点C 、D 是线段AB 的三等分点,点E 是线段AB 的中点,那么下面结论中正确的是A BC D E ( )A.AC=21AD; B.AD=32AB ; C.AD=4CE; D.CE=61AB.19.如图,A 、O 、B 三点在一条直线上,OC 为∠AOE 的平分线,OD 为∠BOE 的平分线,图中共有__________对互余的角. ( )A BOA.1;B.2;C.3;D.4.20.用两个三角板(一个是30°的,一个是45°的)可以画出的角度是 ( ) A.75°; B.15°; C.135°; D.115°. 四、作图题(每小题10分,共20分)21.已知线段a 、b ,用直尺和圆规画出一条线段,使它等于2a-b.(不写作法,保留作图痕迹,表明字母,说明结论) ab22.已知∠ABC ,用直尺和圆规画出∠ABC 的平分线.(不写作法,保留作图痕迹,表明字母,说明结论)C五、解答题(每小题10分,共20分)23.如图,点M 是线段AB 上的一点,点C 是线段AM 的中点,点D 是线段MB 的中点,已知AM=18cm ,MD=3cm.通过计算、比较,说明线段CD 与线段AB 有什么关系?ABMCD24.一个角的补角比它的余角的3倍多40°,求这个角的度数.第七章测试(B )卷一、 填空题1. 点C在线段AB上,那么AC____AB.(天上“<”,“>”或“=”)2. 已知线段AB=8,点C是线段AB的中点,点D是线段BC的中点,AD=____.3. 如图:已知OB平分∠AOC,OC平分∠BOD,∠AOB=25°,那么∠AOB=____.第3题图OABC D4. 将一个直角3等分,每份是____度.5. 时针由3点钟走到11点,时针走了____度.6. 如图:已知AB-AC=5cm,AC:BC=2:3,AB=____cm.第6题图B第7题图O7. 如图:已知OC是∠AOB的平分线,图中所有角的度数和是120度,∠AOC=____度.8. 如图:已知∠AOC=∠BOD=90°,∠AOD:∠DOC=5:1,∠AOB=____度.第8题图A第10题图C9. 45°54'=____°.10. 如图:∠1=(x-4)度,∠2=3x度,那么∠1=____度,∠2=____度.11. 一个角的余角与这个角的补角互为补角,这个角是____度. 12. 画出∠α的邻补角第12题图二、 选择题13. 如图:已知点C是线段AB上一点,一下天健不能确定点C是线段AB中点的是( ) A.AB=2AC B.BC=21AB C.AC=BC D.AC+BC=AB 第13题图第14题图14. 图中小于平角的角有____个.( )A.7个 B.8个 C.9个 D.10个 15. 一个角的补角是____角.( )A.锐角 B.直角 C.钝角 D.锐角,直角或钝角16. 如果AB=10cm,BC=5cm,那么AC=____cm. A.15㎝ B.5㎝ C.15㎝或5㎝ D.无法确定 三、简答题 17. 计算:(1) 180°-14°25'15''+25°34'45''; (2) 33°23'14''×4.18. 已知线段a,b,用直尺,圆规作出AB=21(a+b).第18题图19. 如图:已知AC:CD:DB=2:3:4,点E、F、G分别是线段AC、CD、DB的中点,EF=10cm,线段AD,AB的长分别是多少厘米?第19题图20. 一个角的余角比这个角的补角的31小10°,这个角是多少度? 21. 如图:已知点A、O、B在同一条直线上,OD平分∠BOC,∠BOC-∠AOC=56°,求∠BOD的度数?O第21题图AB四、解答题22. 如图:已知∠AOC=58°,∠BOC=112°,OD,OE分别平分∠AOC,∠BOD,求∠AOE的度数?第22题图A23. 如图:已知点C,D在线段AB上,AC:BC=2:3,AD:BD=2:5,DC=8cm,求AB长多少厘米?第23题图五、能力题24. 已知线段AB=10cm,点C是线段AB上任意一点,点D、E分别是线段AC、BC的中点,① 求线段DE的长度?② 如果点C在线段AB的延长线上,求线段DE的长度?③ 如果点C在线段AB的反方向延长线上,求线段DE的长度?。
难点解析沪教版(上海)六年级数学第二学期第七章线段与角的画法同步测评试题(含详细解析)
沪教版(上海)六年级数学第二学期第七章线段与角的画法同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,射线最短;③38°15′和∠AOB,则射线OC是∠AOB的平分线,其中38.15°相等;④已知三条射线OA,OB,OC,若∠AOC=12错误说法的个数为()A.1个B.2个C.3个D.4个2、如图,AB=24,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.12 B.15 C.18 D.203、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE =∠BOW,则轮船B在货轮()A .西北方向B .北偏西60°C .北偏西50°D .北偏西40°4、已知线段AB ,延长AB 至C ,使2BC AB =,D 是线段AC 上一点,且12BD AB =,则AC AD 的值是( ).A .6B .4C .6或4D .6或25、下列说法中,正确的是( )A .相交的两条直线叫做垂直B .经过一点可以画两条直线C .平角是一条直线D .两点之间的所有连线中,线段最短6、如图,点B 在点O 的北偏东60°方向上,∠BOC =110°,则点C 在点O 的()A .西偏北60°方向上B .北偏西40°方向上C .北偏西50°方向上D .西偏北50°方向上7、下列的四个角中,是图中角的补角的是( )A .B .C .D .8、图中哪一个角的度数最接近45°( )A .1∠B .2∠C .3∠D .4∠9、点A 、B 、C 在同一条数轴上,点A 、B 表示的数分别是1、﹣3,若AB =2AC ,则点C 表示的数是( )A .3或﹣1B .9或﹣7C .0或﹣2D .3或﹣710、下列图形中能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知75AOB ∠=︒,在同一平面内作射线OC ,使得25AOC ∠=︒,则∠COB =________.2、如图,工人师傅用两根钉子就可以把一根木条固定在墙上,能正确解释这一现象的数学基本事实是 _____.3、已知4818α'∠=︒,那么α∠的余角是_____.4、已知∠1=71°,则∠1的补角等于__________度.5、若∠α=23°30′,则∠α的补角的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点,若16AB =,5CE =,求出线段AD 的长度.2、如图,已知不在同一条直线上的三点A ,B ,C .(1)延长线段BA 到点D ,使得AD AC AB =+(用尺规作图,保留作图痕迹);(2)若∠CAD 比∠CAB 大100︒,求∠CAB 的度数.3、在所给的图形中,根据以下步骤完成作图:(1)尺规作图:在线段AD 的延长线上截取DE =AD ;(2)连接BE ,交线段CD 于点F ;(3)作射线AF ,交线段BC 的延长线于点G .4、如图,点C 是线段AB 上的一点,延长线段AB ,使BD CB =.(1)请依题意补全图形(用尺规作图,保留作图痕迹);(2)若7AD =,3AC =,求线段DB 的长.5、计算题:(1)471734293853''''''︒-︒;(2)23353107436''︒⨯-︒÷.-参考答案-一、单选题1、D【分析】根据射线、线段、角度的运算、角平分线逐个判断即可得.【详解】解:因为射线AB 的端点是点A ,射线BA 的端点是点B ,所以射线AB 和射线BA 不是同一条射线,说法①错误;两点之间,线段最短,则说法②错误;381538(1560)'︒=︒+÷︒,380.25=︒+︒,38.25=︒,所以3815'︒和38.15︒不相等,说法③错误;如图,当射线OC 在AOB ∠的外部,且12AOC AOB ∠=∠时,但射线OC 不是AOB ∠的平分线,则说法④错误;综上,错误说法的个数为4个,故选:D .【点睛】本题考查了射线、线段、角度的运算、角平分线,熟练掌握各概念和运算法则是解题关键.2、D【分析】根据线段中点的定义可得BC =12AB ,再求出AD ,然后根据DB =AB -AD 代入数据计算即可得解.解:∵AB=24,点C为AB的中点,∴BC=12AB=12×24=12,∵AD:CB=1:3,∴AD=13×12=4,∴DB=AB-AD=24-4=20.故选:D.【点睛】本题考查了两点间的距离,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.3、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.4、D根据延长AB 至C ,使2BC AB =,求出AC 与AB 的关系,再根据点D 在AB 或BC 上,分别求出AD 与AB 的关系,再求两线段的比.【详解】解:∵线段AB ,延长AB 至C ,使2BC AB =,∴AC =AB +BC =AB +2AB =3AB ,∵D 是线段AC 上一点,且12BD AB =, 当点D 在AB 上,AD =AB -BD =AB -12AB =12AB , ∴3612AC AB AD AB ==,当点D 在BC 上,∴AD =AB +BD =AB +1322AB AB =, ∴3232AC AB AD AB ==.故选择D .【点睛】本题考查线段的画法,分类考虑点D 的位置,线段的和差倍分,两线段的比,掌握线段的画法,分类考虑点D 的位置,线段的和差倍分,两线段的比,利用数形结合思想再求求出AD 与AB 的关系是解题关键.5、D【分析】利用线段、直线的有关概念进行分析判断即可.【详解】解:A 、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B 、经过一点可以画无数条直线,错误;C 、平角和直线是两种不同的概念,说平角是一条直线,错误;D 、两点之间的所有连线中,线段最短,是公理,正确.故选:D .【点睛】本题主要是考查了线段、直线的有关概念和性质.注意当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.另外,熟练应用概念和性质进行求解,是解决本题的关键.6、C【分析】根据题意即可知AOB ∠的大小,再由AOC BOC AOB ∠=∠-∠,可求出AOC ∠的大小,最后即可用方位角表示出点C 和点O 的位置关系.【详解】如图,由题意可知60AOB ∠=︒,∵=110BOC ∠︒,∴1106050AOC BOC AOB ∠=∠-∠=︒-︒=︒.∴点C在点O的北偏西50 方向上.故选:C.【点睛】本题考查与方位角有关的计算.掌握方位角的表示方法是解答本题的关键.7、D【分析】根据补角性质求出图中角的补角即可.【详解】解:∵图中的角为40°,它的补角为180°-40°=140°.故选择D.【点睛】本题考查补缴的性质,掌握补角的性质是解题关键.8、D【分析】根据目测法或度量法解答即可.【详解】解:根据图形,∠1和∠2是钝角,∠3接近直角,∠4接近45°,故选:D.【点睛】本题考查角的比较,熟知角的度量的方法是解答的关键.9、A【分析】由已知可得AB=4,分点C在A左边和点C在A右边两种情况来解答.【详解】解:AB=1﹣(﹣3)=4,当C在A左边时,∵AB=2AC,∴AC=2,此时点C表示的数为1﹣2=﹣1;当点C在A右边时,此时点C表示的数为1+2=3,故选:A.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.10、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.二、填空题1、50°或100°【分析】根据已知条件,不能确定OC的位置,因此应分OC在∠AOB的内部和OC在∠AOB的外部这两种情况讨论.【详解】解:当OC在∠AOB的内部时,如图1,∠COB=∠AOB-∠AOC=75°-25°=50°;当OC在∠AOB的外部时,如图2,∠COB=∠AOB+∠AOC=75°+25°=100°,故答案为:50°或100°.【点睛】本题考查角的运算,分情况讨论是解答的关键.2、两点确定一条直线【分析】直接利用直线的性质,两点确定一条直线,由此即可得出结论.【详解】解:木工师得要将一根木条固定在墙上,通常需要钉两根钉子,请你写出这一现象反映的一个数学基本事实:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查的是直线的性质,熟知两点确定一条直线是解答此题的关键.3、4142︒'【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】∵4818α'∠=︒,∴α∠的余角为:904818'︒-︒=4142︒'.故答案为:4142︒'.【点睛】此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、156°30′【分析】如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.【详解】解:∵∠α=23°30′,∴∠α的补角=180°﹣∠α=23°30′=156°30',故答案为:156°30'.【点睛】本题考查补角的计算,熟练掌握两个角互补的定义,并能准确计算是解题的关键.三、解答题1、6.5【分析】先求解182BC AB==,再利用线段的和差关系求解,,BE AE再利用中点的含义求解16.52AD AE==即可.【详解】解:因为点C为线段AB的中点,16AB=,所以182BC AB==,因为5CE=,所以853=-=-=BE BC CE ,所以16313AE AB BE =-=-=,因为点D 为线段AE 的中点, 所以1 6.52AD AE ==. 【点睛】本题考查的是线段的中点的含义,线段的和差关系,利用线段的和差关系与中点的含义逐步求解线段的长度是解本题的关键.2、(1)见解析,(2)40°【分析】(1)先画射线BA ,在BA 延长线上截取AE =AC ,然后在线段AE 的延长线上截取ED =AB ;(2)利用邻补角的定义得到∠CAD +∠CAB =180°,再加上已知条件∠CAD ﹣∠CAB =100°,然后通过解方程组得到∠CAB 的度数.【详解】解:(1)如图,线段AD 为所作;(2)∵∠CAD ﹣∠CAB =100°,∠CAD +∠CAB =180°,∴100°+∠CAB +∠CAB =180°,2∠CAB =80°,∴∠CAB =40°.【点睛】本题题考查了画线段和求角度,解题关键是熟练掌握几何作图,明确角之间的数量关系.3、(1)见解析;(2)见解析;(3)见解析;【分析】(1)已点D为圆心,以AD为圆心画弧,交AD的延长线于点E;(2)用线段连接即可;(3)作射线AF和BC相交即可;【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.4、(1)作图见解析;(2)2【分析】(1)根据题干的语句作图即可;(2)先求解线段4,CD = 再结合,BC BD = 从而可得答案.【详解】解:(1)如图,线段BD 即为所求作的线段,(2) 7AD =,3AC =,734,CD AD AC,BC BD = 1 2.2BD CD 【点睛】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键.5、(1)173841'''︒;(2)524750'''︒【分析】根据角的运算的意义和度、分、秒的关系进行计算即可【详解】(1)471734293853467694293853173841'''''''''''''''︒-︒=︒-︒=︒;(2)233531074367045175710524750'''''''''︒⨯-︒÷=︒-︒=︒【点睛】此题考查度分秒之间的运算. 注意度、分、秒是60进制的.角度的运算规律:①两个度数相减,被减数可借1°转化为60',借1'转化为60'',再计算;②两个度数相加,度与度、分与分、秒与秒对应相加,秒的结果若满60则转化为分,分的结果若满60则转化为度;③度数乘一个数,则用度、分、秒分别乘这个数,秒的结果满60则转化为分,分的结果满60则转化为度;④度数除以一个数,则用度、分、秒分别除以这个数,秒不够则从分中转化,分不够则从度中转化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章线段与角的画法
(能力提升)
考试时间:90分钟
注意事项:
本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、单选题(共6小题)
1.下列运算正确的是()
A.63.5°=63°50′B.18°18′18″=18.33°
C.36.15°=36.15′D.28°39′+17°31'=46°10′
2.将一副直角三角尺如图放置,若∠BOC=165°,则∠AOD的大小为()
A.15°B.20°C.25D.30°
3.如图所示,点O在直线AB上,OE平分∠AOC,∠EOF=90°,则∠COF与∠AOE的关系是()
A.相等B.互余C.互补D.无法确定
4.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C=73°,则∠DAE的
度数是()
A.14°B.24°C.19°D.9°
5.如图,点D是线段AB的中点,点C是线段AD的中点.若AB=16cm,则线段BC=()
A.4cm B.10cm C.12cm D.14cm
6.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,
则CD长的最大值是()
A.16B.19C.20D.21
二、填空题(共12小题)
7.比较大小:38°15′38.15°(选填“>”“<”“=”).
8.一个角的补角比这个角的余角的4倍少60°,这个角的度数是(度).
9.计算:70°﹣32°26′=,35°30′=度.
10.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.
11.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则
∠BON的度数为.
12.已知∠AOB=80°,OC是过点O的一条射线,∠AOC:∠AOB=1:2,则∠BOC的度数是.
13.如图,∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,下列结论:①∠AOE=∠DOE;
②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.所有正确结
论的序号是.
14.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠
BOD的大小为.
15.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,
30°),用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在.
16.如图,直线AB、CD、EF相交于点O,且AB⊥EF,OG平分∠AOD,若∠BOC=70°,则∠GOF
=°.
17.如图,将正方形纸片ABCD折叠,使点D落在BC边点E处,点A落在点F处,折痕为MN,若
∠NEC=32°,∠FMN=°.
18.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE=120°,
则DE的最大值是.
三、解答题(共7小题)
19.如图,∠AOB=120°,OD平分∠AOC,OE平分∠BOC,∠AOD=40°,求∠DOE的度数.
20.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,
(1)说明射线OP是∠COB的平分线;
(2)写出图中与∠COD互为余角的角.
21.如图,OB是∠AOC的平分线,OD是∠COE的平分线.
(1)若∠AOB=40°,∠AOE=140°,求∠BOD的度数;
(2)若∠AOB=α,∠AOE=β,求∠BOD的度数.
22.如图,A,O,B三点在同一条直线上,∠DOE=90°.
(1)写出图中∠AOD的补角是,∠DOC的余角是;
(2)如果OE平分∠BOC,∠DOC=36°,求∠AOE的度数.
23.如图①,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE是
∠AOD的平分线.
(1)当∠AOE=50°时,求∠BOD的度数;
(2)当∠COE=30°时,求∠BOD的度数;
(3)当∠COE=α时,则∠BOD=(用含α的式子表示);
(4)当三角板绕点O逆时针旋转到图②位置时,∠COE=α,其它条件不变,则∠BOD=(用含α的式子表示).
24.如图,点O为直线AB上一点,将一个等腰直角三角尺(三个内角分别是90°、45°、45°)的
直角顶点和另一个含30°角的直角三角尺的60°角顶点都放在O处.
(1)如图①,∠AOM=°;
(2)如图②,将等腰直角三角尺绕点O旋转一定角度到图②的位置,OM恰好平分∠EOB时,求出∠AOE和∠MOF的度数;
(3)如图③,将等腰直角三角尺绕点O旋转一定角度到图③的位置,若∠AOE是∠MOF的3倍,则等腰直角三角尺所旋转的角∠BOF=°.
25.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)
的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后ON与OC重合?
(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.
(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.。