第八章:圆轴扭转
工程力学第四版电子课件gclx8最新
1 A B
2 C
3 n D
T2 = −m2 − m3 = −(4.78 + 4.78) = −9.56kN⋅ m
10
③绘制扭矩图 Draw the torque diagram
T max = 9.56 kN ⋅ m
BC段为危险截面。 段为危险截面。 段为危险截面 Section BC is dangerous section .
目 的
①确定扭矩变化规律 To determine the rule of change of the torque |T| max 截面 的确定
purposes
To determine the location of dangerous section
8
[例1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从动轮输出 P2=150kW, 例 已知 一传动轴, 已知: , , , P3=150kW,P4=200kW,试绘制扭矩图。 , ,试绘制扭矩图。 Example 1 The transmission shaft is shown as Fig.the input power of driver wheel C is 500KW The export powers of driven wheel A,Band D are 150KW,150KW,200KW.To draw the torque diagram of the transmission shaft .
3
8–1 扭转的概念及外力偶矩的计算
Concepts of torsion and how to calculate the external couple moment 轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、钻杆等。 工程中以扭转为主要变形的构件。 机器中的传动轴、钻杆等。 Shaft :the members create torsion deformation due to subjected to the external moments.such as the transmission shafts and drill pipes of the machines . 扭转的外力特点:外力的合力为一力偶, 扭转的外力特点:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直。 垂直。 external forces:Two couples that have the same magnitude moment, the opposite direction and the plane of couples perpendicular to the axial line 变形特点: 变形特点:各横截面绕轴线发生相对转动 The deformation is that the external loads tend to twist one segment of the body with respect to the other
圆 轴扭转时的变形和刚度计算
a<[
]
60MP
a
可见强度满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
4)刚度校核。轴的单位长度最大扭转角为
=
max
Tmax GIp
180=
2.86103 N m
π 80109 P a 6.44106
m4
180 3.14
=0.318 / m 1.1 / m
可见刚度也满足要求。
目录
扭转\圆轴扭转时的变形和刚度计算
【例3.6】 一钢制传动圆轴。材料的切变模量G=79×103MPa,
许用切应力[τ]= 88.2 MPa,单位长度许用扭转角 0.5 /m,承受
的扭矩为T = 39.6 kN·m。试根据强度条件和刚度条件设计圆轴的直 径D。
【解】 1)按强度条件设计圆轴的直径。由强度条件
=Tmax W max
床的加工精度;机器的传动轴如有过大的扭转变形,将使机器在运
转时产生较大振动。因此,必须对轴的扭转变形加以限制,即使其
满足刚度条件:
=Tmax max GIp
式中:[ ]——单位长度许用扭转角,单位为rad/m,其数值是由轴
上荷载的性质及轴的工作条件等因素决定的,可从有关设计手册中
查到。在工程实际中,[ ]的单位通常为 /m ,因而刚度条件变为
Gπ2[ ]
3 21 8 0 3 9.6 1 03
79109 2 0.5 m 0.156m 156mm
故取D=160mm,显然轴能同时满足强度条件和刚度条件。
目录
力学
该轴的强度和刚度。
目录
扭转\圆轴扭转时的变形和刚度计算
【解】 1)计算外力偶矩。
M eA
9549
第八章 扭转
二、选择题
1、阶梯圆轴的最大切应力发生在( A.扭矩最大截面 C.单位长度扭转角最大的截面 2、扭转切应力公式 )。 B.直径最小的截面 D.不能确定 )杆件。
MT 适用于( Ip
A.任意截面 B.任意实心截面 C.任意材料的圆截面 D.线弹性材料的圆截面 3、单位长度扭转 与( )无关。 A.杆的长度 B.扭矩 C.材料性质 D.截面几何性质 解析:长度为 l 的等截面圆杆承受矩Mn 时,圆杆两端的相对扭转角为 式中GIP称为圆杆的抗扭刚度。单位长度扭转角为
故,强度满足。 (2)刚度校核。 180 4774 .5 180 T ' max GI P 80109 0.14 10.54 32
0.37
故,刚度满足。
m
' 0.5
m
6、如图所示的空心轴,外径 D=69mm,内径 d=50mm,受均布力偶 m=0.2KN.m/m 的作用。 轴的许用应力[ ]=40MPa,[ ]=1.3o/m,G=80GPa。轴的长度 l=4m。试校核轴的强度和刚 度。
Mn 2 At
式中 t 为横截面的厚度(等厚度截面 t 为常数),A为截面中线包围的面积。 截面的最大切应力发生在厚度最小处,即
max
Mn 2 At min
等厚度闭口薄壁杆件的扭转角为
M n sl (式中 s 为截面中线的长度) 4GA 2 t
9.当闭口薄壁杆件扭转时,横截面上最大切应力出现在最小厚度处。 (√) 10.受扭杆件所受的外力偶矩,经常要由杆件所传递的功率及其转速换算而得。(√) 解析:杆件所受外力偶(称为转矩)的大小一般不是直接给出时,应经过适当的换算。若已 知轴传递的功率P(kW)和转速 n(r/min),则轴所受的外力偶矩T=9549P/n(Nm)。
第八章圆轴扭转
如图所示汽车发动机将功率通过主轴AB传递给后桥,驱动车轮行使。
如果已知主传动轴所承受的外力偶矩、主传动轴的材料及尺寸情况 下,请分析(1)主传动轴承受的载荷;(2)主传动轴的强度是否 足够?
§8.1 圆轴扭转的概念 工程实例分析:工程上传递功率的轴大多数为圆轴。
改锥拧螺母-力偶实例
钻探机钻杆
大小不变,仅绕轴线发生相对转动(无轴向移动),这一 假设称为圆轴扭转的刚性平面假设。
圆轴变形试验
按照平面假设,可得如下两点推论: (1)横截面上无正应力; (2)横截面上有切应力; (3)切应力方向与半径垂直; (4)圆心处变形为零,圆轴表面变形最大。
二、扭转横截面切应力分布规律
(1)切应力的方向垂直于半径,指向与截面扭矩的转向 相同。
圆轴扭转的刚度计算
圆轴扭转变形的程度,以单位长度扭转角θ度量,其刚度条 件为:整个轴上的最大单位长度扭转角θmax不超过规定的单位长度 许用扭转角[θ] ,即
max
l
T GI p
[ ]
式中:θmax—轴上的最大单位长度扭转角;单位rad/m [θ] —单位长度许用扭转角;单位rad/m
工程上,单位长度许用扭转角常用单位为°/m ,考虑单位换
二、圆轴扭转时横截面上的内力—扭矩 (一)用截面法确定发生圆轴扭转变形截面的内力—扭矩,
用符号T 表示。
T=截面一侧(左或右)所有外力偶矩的代数和
(二)扭矩正负号的规定
按“右手螺旋法则”确定扭矩的正负:用四指表示扭矩的转向, 大拇指的指向与该截面的外法线方向相同时,该截面扭矩为正,反 之为负。
(三)扭矩图
三、举例应用
传动轴如图6-8a所示,主动轮A输入功率PA=120kW,从动轮B、C、D 输 出 功 率 分 别 为 PB=30kW , PC=40kW , PD=50kW , 轴 的 转 速
扭转
扭转
d1
A
M e1
C
M e2
d2
B M e3
max
等直圆轴扭转时横截面上 任一点处切应力的计算公式
max
TR IP
max
I P / R 称为抗扭截面系数
T WP
第八章
扭转
圆柱的极惯性矩
实心圆截面
O
d 2 0 2
d
I P A dA 2 d d 4 D 3 WP 32 16
2
D
空心圆截面 令内外径比为 =d/D,则有:
d1
A M e1
C
M e2
d2
B M e3
解: 1.外力
M e2
M e1 9549
160 M e1 400
P 400 1 9549 7640 N m n 500 240 3060 N m M e3 M e1 4580 N m 400
第八章
2.扭矩图 3.直径d1的选取 按强度条件
输出功率为与外力偶功率应相等
计算外力偶矩的表达式为
P 1000 M e
M e N m 9549
PkW nr m
2n 60
第八章 二、外力偶矩的计算
扭转
P M 9549 n
M — 作用在轴上的外力偶矩,单位为牛顿· 米(N· m)
P — 为轴所传递的功率,单位为千瓦(kW)
可见空心圆轴所用材料只占实心轴所用材料 的61%,节约了材料。
第八章
扭转
例:传动轴的转速为n=500r/min,主动轮A 输入功率 P1=400kW,从动轮C,B 分别输出功率P2=160kW,P3=240kW。 已知[τ]=70MPa,[φˊ]=1°/m,G=80GPa。 (1)试确定AC 段的直径d1 和BC 段的直径d2; (2)若AC 和BC 两段选同一直径,试确定直径d; (3)主动轮和从动轮应如何安排才比较合理?
第08章剪切和扭转
得
M x2 M x1
GI p2
GI p1
解得:
I p1
32
(d 4
d4 )
I p2
M x1 M x2
d d 4 1 M x1 0.08m 8cm M x2
8-6圆轴扭转时的强度条件和刚度条件
(一)强度条件
受扭圆轴破坏的标志: 塑性材料:在试样表面的横向和纵向出现滑移线,
工程中常见受剪切连接构件
铆钉
(a)
焊缝
(c)
图3−2
销钉 (b) Me
键
轴 轮 (d)
8-2连接接头的强度计算
铆钉结构强度计算,其破坏断; (2)铆钉与钢板之间的挤压破坏; (3)钢板沿被削弱了的横截面被拉断。
剪切及挤压破坏
F
F
m m
解:1.确定铆钉数目N
P
每个铆钉所受剪力 Q=P/N P
每个铆钉所受挤压力Pbe=P/N
先按剪切强度条件确定N 再按挤压强度条件确定N
Q A
P/N
d2 /4
N
4P
d 2
3.64(个)
be
Pbe Abe
P/N td
be
N
td
P
be
2.5(个)
t
t
60
功率 时间
角速度
每分钟 的转数
M 60P(KW ) 9.549 P (KN m)
2n(r / min)
n
传动装置
8-4 扭矩的计算&扭矩图
工程力学--第八章_圆轴的扭转
df /dx ,称为单位扭转角。
对半径为r的其它各处,可作类 似的分析。
1. 变形几何条件
MT
A
r
B r
rr
C
df
C O D
D
dx
对半径为r的其它各处,作类 似的分析。 同样有:
CC= dx=rdf
即得变形几何条件为:
rdf / dx --(1)
剪应变的大小与半径r成
2
TBC 2
B mx C
2 TBC
2
T
A
用假想截面2将圆轴切开 ,取左段或右段为隔离 体,根据平衡条件求得 :
TBC=-mx
(3)作扭矩图
2mx +
B
–
Cx mx
[例8-2]图示为一装岩机的后车轴,已知其行走的功率 PK=10.5kW,额定转速n=680r/min,机体上的荷载通过轴承 传到车轴上,不计摩擦,画出车轴的扭矩图
4.78
6.37
15.9
4.78
简捷画法:
MT图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
向 按右手法确定
向
MT / kN m
20
5kN
3kN
10
N图
5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增减;至右端回到零。
G
df
dx
A
r 2dA
MT
3. 力的平衡关系
令:
圆轴的扭转变形与刚度条件
第五节圆轴的扭转变形与刚度条件一、圆周的扭转变形圆轴受扭转时,除了考虑强度条件外,有时还要满足刚度条件。
例如机床的主轴,若扭转变形太大,就会引起剧烈的振动,影响加工工件的质量。
因此还需对轴的扭转变形有所限制。
轴受扭转作用时所产生的变形,是用两横截面之间的相对扭转角ϕ表示的,如下图所示。
由于γ角与ϕ角对应同一段弧长,故有ϕ·R = γ·l (a)式中的R是轴的半径,由剪切虎克定律,τ=G·γ,所以可得ϕ=τ·l/ (G·γ)(b)式中τ=M·R/ Jρ,代入(b)得:ϕ=M·l/ (G·Jρ)(1-46)公式(1-46)是截面A、B之间的相对扭转角计算公式,ϕ的单位是rad。
两截面间的相对扭转角与两截面间的距离l成正比,为了便于比较,工程上一般都用单位轴长上的扭转角θ表示扭转变形的大小:θ=ϕ/ l=M/ (G·Jρ)(1-47)θ的单位是rad/m。
如果扭矩的单位是N·m,G的单位MP a,Jρ的单位m4。
但是工程实际中规定的许用单位扭转角[θ]是以°/m 为单位的,则公式(1-47)可改写为:(1-48)式中G·Jρ称为轴的抗扭刚度,取决于轴的材料与截面的形状与尺寸。
轴的G·Jρ值越大,则扭转角θ越小,表明抗扭转变形的能力越强。
二、扭转的刚度条件圆轴受扭转时如果变形过大,就会影响轴的正常工作。
轴的扭转变形用许用扭转角[θ]来加以限制,其单位为°/m,其数值的大小根据载荷性质、工作条件等确定。
在一般传动和搅拌轴的计算中,可选取[θ]=0.5°/m~10°/m。
由此得出轴的扭转刚度条件:θ=M/ (G·Jρ)·(180/ π)≤[θ](1-49)圆轴设计时,一般要求既满足强度条件(1-45),又要满足刚度条件(1-49)。
第八章 轴的扭转
第八章 轴的扭转判断题:1. 传动轴的转速越高,则轴横截面上的扭矩也越大。
(错)2. 扭矩是指杆件受扭时横截面上的内力偶矩,扭矩仅与杆件所收的外力偶矩有关,而与杆件的材料和横截面的形状大小无关。
(对)3圆截面杆扭转时的平面假设,仅在线弹性范围内成立。
(错)4. 一钢轴和一橡皮轴,两轴直径相同,受力相同,若两轴均处于弹性范围,则其横截面上的剪应力也相同。
(对)5. 铸铁圆杆在扭转和轴向拉伸时,都将在最大拉应力作用面发生断裂。
(错)6.木纹平行于杆轴的木质圆杆,扭转时沿横截面与沿纵截面剪断的可能性是相同的。
(错)7. 受扭圆轴横截面之间绕杆轴转动的相对位移,其值等于圆轴表面各点的剪应变。
(错)习题八1.直径D =50mm 的圆轴,受到扭矩T =2.15kN.m 的作用。
试求在距离轴心10mm 处的剪应解:4.实心轴与空心轴通过牙嵌式离合器连在一起,已知轴的转速n =1.67r/s ,传递功率N =7.4kW ,材料的[]40t =MPa ,试选择实心轴的直径1d 和内外径比值为1/2的空心轴的外径2D 。
N.m5.机床变速箱第Ⅱ轴如图所示,轴所传递的功率为N=5.5 kW,转速n=200r/min ,材料为45钢,[]40t =MPa ,试按强度条件设计轴的直径。
6.某机床主轴箱的一传动轴,传递外力偶矩T=5.4N.m,若材料的许用剪应力[]30t=MPa,G=80GN/2m, []0.5q=/m,试计算轴的直径。
7.驾驶盘的直径520f=mm,加在盘上的力P=300N[]60t=MPa。
(1)当竖轴为实心轴时,试设计轴的直径;(2)如采用空心轴,试设计轴的内外直径;(3)比较实心轴和竖心轴的重量。
解:方向盘传递的力偶矩m Pϕ= 330052010-=⨯⨯156=N.m8解:(1)20105AB N =--5=kN.m105BC N =--15=-kN.m5CD N =-kN.m(2) 120T =-kN.m22010T =-+10=-kN.m320T =kN.m第九章 梁的弯曲判断题:1. 梁发生平面弯曲时,梁的轴线必为载荷作用面内的平面曲线。
扭矩、扭矩图
AB T L / GIP
GI P称为抗扭刚度,反映轴抵抗变形的能力。
若扭矩、材料,截面尺寸改变,则需分段求解。 27
例2.
空心圆轴如图,已知MA=150N· m,MB=50N· m MC=100N· m,材料G=80GPa, 试求(1)轴内的最大切应力; (2)C截面相对A截面的扭转角。
MA
8
A
例 某传动轴如图,转速n=700r/min,主动轮的输入功 率为PA=400kW,从动轮B、C和D的输出功率分别为 PB=PC=120kW,PD=160kW。试作轴的扭矩图。 解:由功率-转速关 系计算外力偶矩
MB
B
MC
C
MA
A
MD
D
PA 400 M A 9.55 9.55 5.46kN m n 700 PB 120 M B M C 9.55 9.55 1.64kN m n 700 PD 160 M D 9.55 9.55 2.18kN m 9 n 700
A
f22
2) 计算各段应力:
f24
MA
f18
MB
MC
C
BC段: N-mm-MPa单位制
A
1000
B
1000
t max 2
T2 T2 3 pD2 d WT 2 [1 ] 16 D2
3
T /N· m
150
100 B C
100 10 16 3 4 86.7MPa 22 p[1 - (18 / 22) ]
13
返回主目录
8.3.1 圆轴扭转的应力公式
1. 变形几何条件
变形前
变形后
1. 变形几何条件
取长为dx的微段研究,在扭矩作用下,右端面刚性 转动角df,原来的方形ABCD变成为菱形ABCD。
第八章__变形及刚度计算
8×103 ×180 o = 0.40 / m < [θ ] 4 9 π × 0.110 80×10 × ×π 32
满足刚度条件
例:实心圆轴受扭,若将轴的直径减小一半 实心圆轴受扭, 时,横截面的最大切应力是原来的 8 倍? 圆轴的扭转角是原来的 16 倍?
τ max MT MT = = W p πd 3 16
又因为BD段内虽然轴力 又因为 段内虽然轴力 为常数, 为常数,但截面面积又分两 所以要分4段求变形 段求变形。 段,所以要分 段求变形。
∆L AE =
∑ ∆L
i
= ∆L AB + ∆L BC
FN图
+ ∆L CD + ∆L DE =
∑
FN l EA
§ 8-1 轴向拉压杆的变形
已知杆的长度、 受力如图。 例 已知杆的长度、截面面 积,受力如图。 材料的 弹性模量 E = 2.1 × 10 5 MPa。求杆的总变形 。
A1 = 250mm
50kN
2
A 2 = 200mm
30kN E
∆L AB
2
解:用直接法画轴力图 用直接法画轴力图
20kN
∆L AE =
∑ ∆L
i
= ∆L AB + ∆L BC
A B C D 1m 2m 1m 3m 10KN + – – 40KN 20KN
+ ∆L CD + ∆L DE =
∑
3
FN l EA
§8—2
圆杆扭转时的变形和刚度计算
一、扭转变形——扭转角 扭转变形 扭转角
MT 扭转角: 扭转角: ϕ = θdx = dx ∫ ∫0 GI p l
l
单位: 单位:rad
圆轴扭转
空心圆截面:
Wt
D3
16
(1
d4 D4
)
D3
16
(1 4 )
四 等直圆杆扭转时的应力
例题1 已知空心圆截面的扭矩T=1kN·m,D=40mm,d=20mm,求 最大、最小切应力。
解:
max
T
Wt
T
16
D3
(1
d4 D4
)
max min
16 1000
4.按大小比例和正负号,将各段杆的扭矩画在基线两 侧,并在图上标出数值和正负号
例题1 画出图示杆的扭矩图 3kN·m Ⅰ 5kN·m Ⅱ 2kN·m
解: AC段
m 0
AⅠ 3kN·m
CⅡ
T1 T2
3kN·m
B 2kN·m
T1 3 0 T1 3kN m
BC段 m 0
T2 2 0 T2 2kN m
ρ
τdA b dA
O2 T
四 等直圆杆扭转时的应力
4 极惯性矩
【公式3-16;公式3-18】
IP
2dA
A
D
2 2 2 d 0
O
D4
32
D
环形截面:
IP
32
(D4
d4)
d D
极惯性矩单位: m4
四 等直圆杆扭转时的应力
同一截面,扭矩T,极惯性矩IP为常数,因此各点 切应力τ的大小与该点到圆心的距离ρ成正比,方向垂 直于圆的半径,且与扭矩的转向一致
例题3 画出图示杆的扭矩图
4kN·mⅠ 6kN·mⅡ 8kN·mⅢ 6kN·m
工程力学08扭转
28
等直圆杆在扭转时的应力 ·强度条件
⑤ 确定最大剪应力: 由
T Ip
知:当
R d , m ax
2
max
d T 2 Ip
T Ip
T d (令 W I p ) 2 d Wt 2
抗扭截面系数(抗扭截面模量) 几何量,单位:mm3或m3。
17
薄壁圆筒的扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
四、剪切虎克定律:
18
薄壁圆筒的扭转
T=m
T ( 2 A 0t)
( L ) R
剪切虎克定律:当剪应力不超过材料的剪切比例极限时(τ ≤τp),剪应力与剪应变成正比关系。
19
等直圆杆在扭转时的应力 ·强度条件
二、等直圆杆扭转时横截面上的应力: 1. 变形几何关系:
G1G d tg dx dx
d dx
距圆心为 任一点处的与到圆心的距离成正比。
d —— 扭转角沿长度方向变化率。 dx
22
等直圆杆在扭转时的应力 ·强度条件
34
等直圆杆在扭转时的应力 ·强度条件
[例2]功率为150kW,转速为15.4转/秒的电动机转子轴如图, 许用剪应力 []=30M Pa, 试校核其强度。 m m 解:①求扭矩及扭矩图 A T B D3 =135 C D2=75 D1=70
N 103 TBC m 2n
150 103 (N m) 2 3.14 15 .4 1.55(kN m)
6
传动轴的外力偶矩 · 扭矩及扭矩图
第八章园轴的扭转_工程力学
第八章 圆轴的扭转工程构件一般可分为三类。
第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。
此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。
若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。
本课程主要讨论直杆,这是一种最简单的构件。
如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。
为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。
前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。
§8.1扭转的概念和实例工程中承受扭转的构件是很常见的。
如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。
又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。
以上二例都是承受扭转的构件实例。
由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。
本章亦仅限于讨论直圆轴的扭转问题。
图8.2 传动轴图8.3所示为等截面直圆轴扭转问题的示意图。
扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。
如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。
圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。
图8.3中,φAB 表示截面B 相对于截面A 的扭转角。
必须指出,工程中的传动轴,除受扭转作用外,往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。
这类问题属于组合变形,将在以后研究。
§8.2 扭矩与扭矩图已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。
圆轴的扭转强度条件
圆轴的扭转强度条件
CATALOGUE
目录
引言 圆轴的扭转强度基础 圆轴的扭转强度条件 圆轴的扭转强度应用 结论
01
引言
主题介绍
圆轴的扭转强度条件是机械工程中的重要概念,涉及到圆轴在受到扭矩作用时的承载能力和稳定性。
圆轴在机械传动、车辆、航空航天等领域广泛应用,因此对其扭转强度条件的掌握对于保证机械系统的安全性和稳定性至关重要。
直径与长度
圆轴的圆度和表面粗糙度影响扭矩传递的平稳性和效率,圆度越好,表面粗糙度越低,则传递效果更佳。
圆度与表面粗糙度
圆轴的几何特性
材料的抗拉强度决定了圆轴在受到扭力时的承载能力,抗拉强度越高,抗扭能力越强。
材料的弹性模量影响圆轴在受到扭力时的变形程度,弹性模量越大,变形越小,稳定性越好。
圆轴的材料特性
THANKS FOR
WATCHING
感谢您的观看
截面尺寸和形状
扭矩的大小和作用方式决定了圆轴所受的扭矩载荷,从而影响其扭转强度。
扭矩大小和作用方式
温度、湿度和腐蚀等环境因素也会对圆轴的扭转强度产生影响。
环境因素
圆轴的扭转强度影响因素
圆轴的扭转强度实验方法
实验设备:实验需要使用扭矩测试仪来测量圆轴在不同扭矩下的扭转角度和转角扭矩。
实验步骤
1. 选择合适的圆轴试样,测量其直径、长度、材料等参数。
考虑圆轴的工作环境和循环载荷情况,进行疲劳寿命评估,确保圆轴具有足够的耐久性。
圆轴的强度校核方法
05
结论
பைடு நூலகம்
主题总结
圆轴的扭转强度条件是工程中一个重要的力学问题,涉及到圆轴在扭矩作用下的稳定性。本文通过理论分析和实验验证,得出了圆轴的扭转强度条件,为工程实践提供了重要的理论依据。
扭转
已知:空心圆截面轴d=20mm,D=40mm,Mx=1kN· m 求:τ A 、τ max 、τmin
解:
110 15 M x rA A 63.66MPa 4 40 Ip 4 (1 0.5 ) 32
6
max
Mx 110 84.88MPa 3 WP 40 4 (1 0.5 ) 16
②施加一对外力偶 Me。
实验现象:
Me
Me
1.各圆周线绕轴线有相对转动,但形状、大小及相邻 两圆周线之间的距离均不变 。 这说明横截面上没有正应力 2. 在小变形下,各纵向线倾斜了同一角度,但仍为 直线,表面的小矩形变形成平行四边形。 这说明横截面上有切应力 (由于壁很薄,可以假设剪应力沿壁厚均匀分布)
m-m截面上切应力引起的 内力系对x轴的力矩:
M x 2 r r
x
M
0
Me M x 0
Me 2 2 r
二、切应力互等定理
三、切应变
剪切胡克定律
单元体截面上只有切应力而无正应力作用,这种 应力状态叫做纯剪切应力状态。 纯剪切单元体的相对两侧面将发生微小的相对错 动,使原来互相垂直的两个棱边的夹角 ( 直角 ) 改变了 一个微量γ即为切应变。
②| Mx |max值及其截面位置 (危险截面)。
强度计算
x
例8-2
MB
计算例8-1中所示轴的扭矩,并作扭矩图。 M M M 解: M A 1592N m
A C D
MB
B
C
M B M C 477.5N m
A D
M x1
M D 637N m
x
B MB MC
工程力学 第8章 扭转
G1=G2=G
G1=2G2
工程力学电子教案
§8-3 圆杆扭转时的应力与变形
19
将横截面上分布的切应力汇总即等于横截面上的扭矩,于是
T = ∫A τ ρ ⋅ ρ ⋅ d A ⇒ dφ T = d x GI p
工程力学电子教案
§8-3 圆杆扭转时的应力与变形
20
等直圆杆受扭时横截面上任一点处的切应力 切应力: 切应力 几何关系 ⇒ γ ρ = ρ ( 物理关系
工程力学电子教案
截面几何性质
2
极惯性矩: 1.概念 任意截面如图所示,其面积为A,在矢径为 ρ 的任一点处,取微面 积dA,则下述面积分,称为截面对原点O的极惯性矩或截面二次极 矩。
O ρ dA z
I P = ∫ ρ 2 dA
A
y
截面的极惯性矩恒为正,量纲为L4。
工程力学电子教案
截面几何性质
3
2.圆截面的极惯性矩 a.薄壁圆截面 平均半径为R0,厚为 δ的薄壁圆截面如图 所示,此薄壁圆截面 的极惯性矩为
§8-1 扭矩和扭矩图
6
Me a
O
m b
O′
Me
b′ m m T x m Me l B
A
亦可以取右段杆来分析: ∑Mx= 0 T - Me =0 即T = Me
B
截取杆件的不同部分分析,应该得到相同的结果。
工程力学电子教案
§8-1 扭矩和扭矩图
7
思考题:分析轴的左边部分,得出的结果是扭矩T的方向向右。但 是如果分析轴的右边部分,得出的结果是轴力T 的方向向左。那么 横截面m-m上的轴力方向到底是向左还是向右? 答:不矛盾,内力的作用效果只是变形效应,它们作用效果相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
返回主目录
2.刚度条件
扭另,单 (转一即位 弧圆方还统度轴 面 须一转必 , 满为 换须 轴 足为/满 类 刚角m足零度,强件条)则度若件有条变。:件形q ,过max以大保,GT证则I 不不破能18坏正0o;常工[q作]
轴AB间的相对扭转角为:AB=TL/GI 单位长度的扭转角为:q =AB/L=T/GI
11
讨论:试作扭矩图
M A 40kN.m 10kN.m 10kN.m o
x
10kN.m 10kN.m 40kN.m 20kN.m A
B
CD
o
x
A BC D
+ 向 按右手法确定
求反力偶: M A 20kN m + 向 按右手法确定
T / kNm
20 10
T图
T / kNm
20
T图
A
B
C
D
M0
M0
T
取左边部分
M0 假想切面
外力偶
扭矩
由平衡方程:
平衡
M0
T M0 T
取右边部分 T
T 和T 是同一截面上的内力, 应当有相同的大小和正负。
扭矩
外力偶
平衡
5
扭矩的符号规定:
M0
T
正
M0
T
负
按右手螺旋 法则确定扭 矩的矢量方 向,扭矩矢 量的指向与 截面的外法 线方向一致 者为正,反 之为负。
7
简捷画法:
FN图(轴力)
2kN 8kN
T图
5kN
5kN 2kN 8kN
5kN
+向
5kN
3kN
+
FN 图
- 5kN
10kN m 10kN m
o
x
A
C B 20kN m
+ 向 按右手法确定
T / kNm
20 10
A
B
C
8
例 某传动轴如图,转速n=700r/min,主动轮的输入功 率为NA=400kW,从动轮B、C和D的输出功率分别为 NB=NC=120kW,ND=160kW。试作轴的扭矩图。
AD段 T3 2.18kN m
最大扭矩在AB段,且
T 3280N m
10
MB MC
MA
MD
B
C
A
D
+ 向 按右手法确定
T图
T /kN.m
C B
1.64
2.18 AD 3.28
简捷画法:
M A 5460N m M B M C 1640N m M D 2180N m
6
画扭矩图:
10kN m 10kN m
AB段:10kN m
o
x
A
C B 20kN m
TAB
T / kNm
20
BC段:TBC TAB 10kN m
10
A
B
C
M BC 20kN m 20kN m
以平行于杆轴线的坐标x表示截面的位置,以垂 直于x轴的坐标表示截面扭矩值,即得到扭矩图。
d
D
17
讨论:
1)已知二轴长度及所受外力矩完全相同。若二轴截 面尺寸不同,其扭矩图相同否? 相同 若二轴材料不同、截面尺寸相同, 各段应力是否相同?相同 变形是否相同? 不同
2)下列圆轴扭转的剪应力分布图是否正确?
T
ooooTTT
18
8.3.4 圆轴的扭转变形
相对扭转角 :B截面相对于 AB
A截面的扭转角。若AB=L,则
100
B
C
20
2) 计算各段应力:
MA f18 MB
MC
f2 4 f2 2
BC段: N-mm-Mpa单位制
A 1000 B
t max 2
T2 WT 2
D23
T2 [1 -
d
]
16
D2
T /N.m
150
C
1000 100
100103 16
223 [1- (18 / 22)
4
]
86.7MPa
A
B
C
故 tmax=86.7Mpa
3) 计算扭转角AC
AC
TAB l AB + T BC lBC
GI AB
GI BC
0 .183 rad
21
8.4 圆轴扭转的强度条件和刚度条件 1.强度条件 拉压
s max FN / A [s ] t max T /WT [t ]
[t]=0.5~0.6[s] (钢材,延性) [t]与[s]之关系:
32
WT
D3 ( 1- 4)
16
WT
D3
16
16
结论:
1)圆轴扭转时,横截面上只有剪应力,剪应力在横 截面上线性分布,垂直与半径,指向由扭矩的转 向确定。
2) 截面任一处截面外圆周处(表面)
t=T/I
tmax=T/WT
实 心
tmax t
圆
oT
轴
D
tmax
空
T
t
心
圆
o
轴
解: 1) 画扭矩图。
MA f18 MB
MC
f2 4 f2 2
2) 计算各段应力:
AB段: N-mm-Mpa单位制
A
1000 B 1000 C
t max 1
T1 WT 1
D13
T1 [1 -
d
]
16
D1
T /N.m
150
150103 16
243
[1
-
(18
/
24)4
]
A
80.8MPa
=71mm 取 D=78mm
27
小结 杆的拉压 圆轴扭转
强度 设计
s
FN A
[s ]
t
max
T WT
[t ]
抗扭截 面模量:
实心轴
WT
D3
16
空心轴
WT
D3
16
(1- 4 )
刚度 设计
q T 180o [q ] GI
极惯性矩:实心轴
I
D 4
32
空心轴
I
第八章 圆轴的扭转
8.1 扭转的概念与实例 8.2 扭矩、扭矩图 8.3 圆轴扭转时的应力与变形 8.4 圆轴扭转的强度条件和刚度条件 8.5 静不定问题和弹塑性问题
返回主1目录
工程构件分类:
杆
杆的基本变形:
板
块体
y x
z
轴向拉压
扭转
弯曲
2
8.1 扭转的概念与实例
研究对象: 圆截面直杆
受力特点: 作用在垂直于轴线的不 同平面内的外力偶,且 满足平衡方程:
解:由功率-转速关 系计算外力偶矩
MB MC
MA
MD
B
C
A
D
M
A
9.55
NA n
9.55 400 5.46kN m 700
MB
MC
9.55
NB n
9.55 120 700
1.64kN m
MD
9.55
ND n
9.55
160 700
2.18kN m
9
MB MC
g
A
AB
B
T
L
若AB间扭矩不变,材料不变,截面尺寸不变,则
T/GI=const. , 故有: AB T L / GI
单位扭转角为:
d / dx T / GI
GI 称为抗扭刚度,反映轴抵抗变形的能力。
若扭矩、材料,截面尺寸改变,则需分段求解。 19
例2. 空心圆轴如图,已知MA=150N.m,MB=50N.m MC=100N.m,材料G=80Gpa, 试求(1)轴内的最大剪应力; (2)C截面相对A截面的扭转角。
7510-3(m) 75mm
25
2) 按刚度设计,有:
q max
T GI
180o
T
GD4 / 32
180o
[q
]
则有: 4 D
32
M 180°
max
G 2[q ]
4
32 3280 180
80109 2 1
69.9 10-3 (m) 70 mm N-m-pa单位制
(1
]
-
2
)
/
1
D
3
16 T max
(1- 4)[t ]
3
16 3280 (1 - 0.54 )40 106
=76.4mm
按刚度设 计,有:
q max
T
G D 4 (1 - 4 ) / 32
180 o
[q ]
则有:
D
4
32 3280180
80109 2 (1- 4 ) 1
解: 1) 画扭矩图。
最大扭矩在AB段,且
T 3280N m
2) 按强度设计,有:
t max
T WT
T D
3/16
[t
]
MB MC
B
C
T /kN.m