实验报告五SIMULINK仿真实验

合集下载

matlab中Simulink 的仿真实验报告

matlab中Simulink 的仿真实验报告

Simulink 的仿真实验报告1.实验目的:熟悉使用Simulink的各种使用方法及仿真系统2.数学建模:假设系统的微分方程为:r''(t)+3r'(t)+2r(t)=e(t) , 其中e(t)=u(t)求该系统的零状态响应令等式右边为零,则可求得方程的两个特征根为:r1=-1, r2=-2所以设该系统的零状态响应为:r(t)=Ae^-t+Be^-2t+C其中C为方程的一个特解,由微分方程可知,等式右边没有冲激函数及冲激函数的微分,故系统在零负到零正的过程中没有发生跳变,则C为一个常数。

将C带入方程可解得C=1/2由于零状态响应时系统的初值都为零即r(0-)=0 , r'(0-)=0,且系统无跳变,则r(0+)=0.r'(0+)=0.带入r(t)得:A+B+1/2=0-A-2B+1/2=0解得:A=-3/2 B=1所以系统的零状态响应为:r(t)=-3/2e^-t+e^-2t+1/2Simulink仿真:根据系统的微分方程可编辑仿真模型如下图打开开始按键,可以得到波形图:验证仿真结果:由前面得到的系统零状态响应结果:r(t)=-3/2e^-t+e^-2t+1/2可编辑仿真模型:>> t=(0:0.1:10);>> plot(t,((-3)/2)*exp((-1)*t)+exp((-2)*t)+1/2)实验结论:Simulink仿真结果和函数仿真结果基本一致,所以simulink仿真是正确的。

实验心得:1.此实验是利用matlab对一个微分方程进行建模求解,既要求我们掌握对微分方程的求解,又要求掌握用matlab对微分方程进行建模,所以要求我们对软件得熟悉。

2.信号与系统的实验主要是用matlab分析或验证书上的东西,前提当然是学好书本上的知识,再学好matlab这个软件。

3.用simulink仿真的时候,对函数用积分器较好,不知为什么用微分器做不出来,报错显示不出图形。

Simulink实验报告

Simulink实验报告

实验一:AM 信号的调制与解调实验目的:1.了解模拟通信系统的仿真原理。

2.AM 信号是如何进行调制与解调的。

实验原理:1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。

+m(t)S AM (t)A 0cos ωc tAM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+=式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(4-2)在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

其频谱是DSBSC-AM 信号的频谱加上离散大载波的频谱。

2.解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。

AM 信号的解调方法有两种:相干解调和包络检波解调。

AM 相干解调原理框图如图。

相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。

LPF m0(t)S AM(t)cosωc tAM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。

包络检波器一般由半波或全波整流器和低通滤波器组成:(1)整流:只保留信号中幅度大于0的部分。

(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。

实验内容:1.AM相干解调框图。

仿真实验报告

仿真实验报告

仿真实验报告
实验目的:通过进行基于仿真实验研究,探讨某种设备的性能优化方案。

实验环境:
- 仿真软件:MATLAB
- 建模软件:Simulink
实验流程:
1. 设备测试:通过实际测试记录该设备的真实性能指标。

2. 设备建模:基于测试结果建立该设备的仿真模型。

3. 性能优化:通过修改设备的参数、控制策略等途径,对设备模型进行优化。

4. 实验验证:通过对优化后的设备模型进行仿真,验证其实际性能指标是否有所提升。

实验步骤:
1. 设备测试
本实验选取了一款蓄电池供电的小型无线电设备作为研究对象。

通过对该设备进行电量、温度、功率等指标的测试,记录了其最
大输出功率、最大使用时间等参数。

2. 设备建模
基于以上测试结果,我们使用Simulink建立了该设备的仿真模型。

该模型涵盖了该设备的电路结构、能源储存系统以及控制策
略等方面,并能够准确模拟该设备的工作过程。

3. 性能优化
通过对设备模型进行调整,我们尝试优化了该设备的性能。


体优化措施主要包括:增加电量储备系统容量、优化功率调节策
略等方面。

4. 实验验证
根据优化后的设备模型,我们进行了全面的仿真实验。

实验结
果表明,优化后的设备在工作时间、输出功率等方面都有了显著
提升。

结论
通过本次仿真实验,我们成功地探究了一种设备的性能优化方案,并在实际仿真中验证了其有效性。

这种基于仿真实验的研究方法,为设备性能优化提供了一种全新的思路和手段。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

SIMULINK仿真实验

SIMULINK仿真实验

SimuLink 仿真二阶微分方程的求解专业:信息****** 1031020118****** 1031020124****** 1031020217指导老师:***日期:2012—12—25题目:二阶微分方程的求解一、实验目的1、熟悉Simulink 基本用法。

2、了解simulink 的一些模块的意义。

3、掌握模块的选取、复制、删除操作。

4、学会simulink 模块的连接以及模块参数的设置。

二、实验仪器1、计算机2、MATLAB 软件环境三、实验内容1、求解二阶微分方程x(t)0.4x(t)0.9x(t)0.7u(t)++=的方程解,其中u(t)是脉冲信号。

需要使用Simulink 求解x(t)。

2 、求解二阶微分方程x(t)0.2x(t)0.4x(t)0.2u(t)++=,其中u(t)是脉冲信号。

需要使用Simulink 求解x(t)。

3、求解二阶微分方程x(t)0.5x(t)0.8x(t)0.9u(t)++=的解x(t);其中初值为 ,并且 是一个余弦信号。

四、实验过程1、求解二阶微分方程x(t)0.4x(t)0.9x(t)0.7u(t)++=的方程解,其中u(t)是脉冲信号。

需要使用Simulink 求解x(t)。

1.1)用matlab 求解此二阶微分方程:在matlab 中输入程序: syms t y;u=sin(t); uu=0.7*u;y=dsolve(['D2y+0.4*Dy+0.9*y=',char(uu)]);程序运行结果:y =exp(-1/5*t)*sin(1/10*86^(1/2)*t)*C2+exp(-1/5*t)*cos(1/10*86^(1/2)*t)*C1-7/17*sin(t)-28/17*cos(t) 1.2)利用simulink 求解此二阶微分方程x(0)1x(0)3=⎧⎨=⎩u(t)cos(t)=1.21使用simulink创建微分方程:创建m文件:function Ts=yuejiewqqt=0:.1:20;y=heaviside(t);Ts=[t',y'];用Simulink做所得模块:1.22设置模块属性:设置模块pulse的模块属性:设置模块add的模块属性:1.23 运行simuliksimulink结果运行图:2、求解二阶微分方程x(t)0.2x(t)0.4x(t)0.2u(t)++=,其中u(t)是脉冲信号。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告一、实验目的本次实验的主要目的是通过使用Simulink软件来进行仿真实验,掌握Simulink仿真工具的基本使用方法,并且了解如何应用Simulink软件来进行系统建模和仿真分析。

二、实验内容1. Simulink软件的基本介绍2. Simulink仿真工具的使用方法3. Simulink模型建立与参数设置4. Simulink仿真结果分析三、实验步骤及方法1. Simulink软件的基本介绍Simulink是一种基于模块化编程思想的图形化编程工具,可以用于建立各种系统模型,并且进行系统仿真分析。

在Simulink中,用户可以通过拖动不同类型的模块来搭建自己所需要的系统模型,并且可以对这些模块进行参数设置和连接操作。

2. Simulink仿真工具的使用方法首先,在打开Simulink软件后,可以看到左侧有一系列不同类型的模块,包括数学运算、信号处理、控制系统等。

用户可以根据自己需要选择相应类型的模块,并将其拖入到工作区域中。

然后,用户需要对这些模块进行参数设置和连接操作,以构建出完整的系统模型。

最后,在完成了系统模型的构建后,用户可以进行仿真分析,并且观察系统的运行情况和输出结果。

3. Simulink模型建立与参数设置在本次实验中,我们主要是以一个简单的控制系统为例来进行仿真分析。

首先,我们需要将数学运算模块、控制器模块和被控对象模块拖入到工作区域中,并将它们进行连接。

然后,我们需要对这些模块进行参数设置,以确定各个模块的输入和输出关系。

最后,在完成了系统模型的构建后,我们可以进行仿真分析,并观察系统的运行情况和输出结果。

4. Simulink仿真结果分析在完成了Simulink仿真实验之后,我们可以得到一系列仿真结果数据,并且可以通过Simulink软件来对这些数据进行进一步的分析和处理。

例如,在本次实验中,我们可以使用Simulink软件来绘制出控制系统的输入信号、输出信号和误差曲线等图形,并且可以通过这些图形来判断系统是否满足预期要求。

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。

二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。

通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。

三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。

2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。

(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。

3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。

4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。

四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。

五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。

模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。

仿真软件操作实验报告(3篇)

仿真软件操作实验报告(3篇)

第1篇实验名称:仿真软件操作实验实验目的:1. 熟悉仿真软件的基本操作和界面布局。

2. 掌握仿真软件的基本功能,如建模、仿真、分析等。

3. 学会使用仿真软件解决实际问题。

实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 仿真软件:XXX2. 计算机一台3. 实验指导书实验内容:一、仿真软件基本操作1. 打开软件,熟悉界面布局。

2. 学习软件菜单栏、工具栏、状态栏等各个部分的功能。

3. 掌握文件操作,如新建、打开、保存、关闭等。

4. 熟悉软件的基本参数设置。

二、建模操作1. 学习如何创建仿真模型,包括实体、连接器、传感器等。

2. 掌握模型的修改、删除、复制等操作。

3. 学会使用软件提供的建模工具,如拉伸、旋转、镜像等。

三、仿真操作1. 设置仿真参数,如时间、步长、迭代次数等。

2. 学习如何进行仿真,包括启动、暂停、继续、终止等操作。

3. 观察仿真结果,包括数据、曲线、图表等。

四、分析操作1. 学习如何对仿真结果进行分析,包括数据统计、曲线拟合、图表绘制等。

2. 掌握仿真软件提供的分析工具,如方差分析、回归分析等。

3. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

实验步骤:1. 打开仿真软件,创建一个新项目。

2. 在建模界面,根据实验需求创建仿真模型。

3. 设置仿真参数,启动仿真。

4. 观察仿真结果,进行数据分析。

5. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

6. 完成实验报告。

实验结果与分析:1. 通过本次实验,掌握了仿真软件的基本操作,包括建模、仿真、分析等。

2. 在建模过程中,学会了创建实体、连接器、传感器等,并能够进行模型的修改、删除、复制等操作。

3. 在仿真过程中,成功设置了仿真参数,启动了仿真,并观察到了仿真结果。

4. 在分析过程中,运用了仿真软件提供的分析工具,对仿真结果进行了数据分析,并与实际数据或理论进行了对比,验证了仿真模型的准确性。

实验五 SIMULINK仿真实验

实验五   SIMULINK仿真实验

实验五 SIMULINK仿真实验专业班级16电气工程及其自动一班姓名黄静强学号 20160500145指导老师田乐成绩一、实验目的1.熟悉Simulink的操作环境并掌握绘制系统模型的方法。

2.掌握Simulink中子系统模块的建立与封装技术。

3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。

二、实验设备及条件计算机一台(带有MATLAB6.0以上的软件环境)。

三、实验内容1.建立下图5-1所示的Simulink仿真模型并进行仿真,改变Gain模块的增益,观察Scope显示波形的变化。

图5-1 正弦波产生及观测模型2.利用simulink 仿真来实现摄氏温度到华氏温度的转化:3259c f +=T T (c T 范围在-10℃~100℃),参考模型为图5-2。

图5-2 摄氏温度到华氏温度的转化的参考模型3.利用Simulink 仿真下列曲线,取πω2=。

t t t t t t x ωωωωωω9sin 917sin 715sin 513sin 31sin )(++++=。

仿真参考模型如下图5-3,Sine Wave5模块参数设置如下图5-4,请仿真其结果。

x t 的仿真参考模型图图5-4 Sine Wave5模块参数设置图图5-3 ()4.如图5-5所示是分频器仿真框图,其组成仅有三台设备:脉冲发生器,分频器和示波器。

分频器送出一个到达脉冲,第一路cnt(计数),它的数值表示在本分频周期记录到多少个脉冲;第二路是hit(到达),就是分频后的脉冲输出,仿真出结果来。

图5-5 分频器仿真框图四、思考题有初始状态为0的二阶微分方程为:x x t u 4.02.0)(2.0x '''--=其中)(t u 是单位阶跃函数,用积分器直接构造求解微分方程的模型,建立模型并仿真。

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。

(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。

2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。

后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。

2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。

2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。

解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。

matlab simulink仿真实验报告

matlab simulink仿真实验报告

matlab simulink仿真实验报告[Abstract]本篇报告介绍了一项利用Matlab和Simulink进行仿真实验的过程和结果。

实验主要涉及对加速度计数据的滤波和降噪处理,以及利用观测器估计一个非线性系统的状态变量。

本文介绍了实验设计的思路和步骤,详细讲解了实验中所使用到的算法和模型,并对实验结果进行了分析和总结。

[Keywords][Introduction]在自动化控制、机器人技术、航天航空、汽车电子等领域中,传感器和估计器是广泛应用的两类算法。

传感器可以测量物理量,如位置、速度、加速度等,并将其转化为电信号输出。

估计器则通过对物理模型的建模和输出信号的处理,来推测和估计系统的状态变量。

加速度计可以测量物体在三个轴向上的加速度,同时可以进行数据滤波和降噪。

估计器可以用于非线性系统的状态估计,具有广泛的应用前景。

[Simulation Process]1. 数据采集处理加速度计可以用于测量物体在三个轴向上的加速度。

由于传感器的噪声和误差,采集的数据往往不够准确和稳定,需要通过滤波和降噪等算法进行处理。

本实验中采用了常用的Butterworth低通滤波器和移动平均滤波器来对加速度计数据进行处理。

Butterworth低通滤波器是一种线性相位滤波器,可以将高频信号滤去,降低信号噪声。

在Matlab中,可以通过函数[b,a] = butter(n,Wn,'low')生成Butterworth低通滤波器。

其中,n为滤波器的阶数,Wn为截止频率。

移动平均滤波器是一种简单有效的滤波方法,可以对信号进行平均处理,消除信号的高频成分和噪声。

在Matlab中,可以通过函数smooth(x,n)生成移动平均滤波器。

其中,x为待处理的信号,n为滤波器窗口大小。

2. 状态估计模型状态估计模型是一种建立在数学模型基础上的估计方法,常常用于非线性系统的状态估计。

本实验中,给定了以下非线性系统的模型:$$\begin{cases}x_{1}' = x_{2} \cos(x_{1}) \\x_{2}'= u\end{cases}$$其中,x1和x2为系统状态变量,u为系统的控制输入。

simulink实验报告

simulink实验报告

simulink实验报告Simulink实验报告引言:Simulink是一种功能强大的图形化建模和仿真环境,广泛应用于控制系统设计、信号处理和通信系统等领域。

本实验报告将介绍Simulink的基本概念和使用方法,并通过一个具体的示例来展示Simulink的应用。

一、Simulink简介Simulink是MathWorks公司开发的一款基于模块化的仿真工具,它可以与MATLAB紧密集成,为系统建模和仿真提供了强大的支持。

相比于传统的编程方法,Simulink使用图形化界面,使得系统建模更加直观和易于理解。

Simulink 提供了丰富的模块库,用户可以通过拖拽和连接不同的模块来构建系统模型,并进行仿真和分析。

二、Simulink的基本概念1. 模块库:Simulink提供了各种各样的模块库,包括数学运算、信号处理、控制系统等。

用户可以从库中选择所需的模块,将其拖拽到工作区,并进行连接和参数配置。

2. 模块:模块是Simulink中的基本单元,它代表了系统中的一个功能模块或组件。

每个模块都有输入和输出端口,用户可以通过连接不同的模块来构建系统模型。

3. 信号:信号是模块之间传递的数据,可以是连续的或离散的。

Simulink支持多种信号类型,如模拟信号、数字信号、布尔信号等。

4. 仿真:Simulink提供了强大的仿真功能,用户可以通过设置仿真参数和模型参数,对系统进行仿真和分析。

仿真结果可以以图表、曲线等形式展示,帮助用户理解系统的行为和性能。

三、Simulink的应用示例:PID控制器设计以PID控制器设计为例,演示Simulink的应用过程。

1. 建立模型首先,我们需要建立一个PID控制器的模型。

在Simulink的模块库中,我们可以找到PID控制器的模块,并将其拖拽到工作区。

然后,我们需要连接输入信号、输出信号和反馈信号,并设置PID控制器的参数。

2. 设置仿真参数在进行仿真之前,我们需要设置仿真参数。

simulink仿真实验报告

simulink仿真实验报告

Simulink仿真实验报告1. 引言本报告旨在对Simulink仿真实验进行全面、详细、完整且深入地探讨。

Simulink 是一种基于模型的设计和仿真环境,广泛应用于工程领域。

本实验通过使用Simulink进行系统建模和仿真,以验证系统的性能和可行性。

2. 实验目的本实验的主要目的是熟悉Simulink的基本操作和功能,并通过实际案例来了解系统建模和仿真的过程。

具体目标如下: 1. 掌握Simulink的界面和基本操作; 2. 学习如何建立系统模型; 3. 了解如何进行仿真和分析。

3. 实验步骤3.1 Simulink介绍Simulink是一种图形化的建模和仿真环境,可以用于设计和分析各种系统。

它提供了丰富的工具箱和模块,使得系统建模变得更加简单和直观。

3.2 Simulink界面Simulink的界面由多个窗口组成,包括模型窗口、库浏览器、信号浏览器等。

模型窗口是主要的工作区域,用于建立和编辑系统模型。

3.3 系统建模在Simulink中,系统模型由各种模块和连接线组成。

模块可以是数学运算、信号源、控制器等。

通过拖拽和连接这些模块,可以建立系统的结构。

3.4 仿真设置在进行仿真前,需要设置仿真参数,如仿真时间、步长等。

这些参数会影响仿真的准确性和效率。

3.5 仿真分析仿真完成后,可以对系统的性能进行分析。

Simulink提供了丰富的工具和图表,可以用于绘制系统的输出响应、频谱分析等。

4. 实验案例本实验选取了一个简单的控制系统作为案例,用于说明Simulink的应用过程。

4.1 系统描述控制系统包括一个输入信号、一个控制器和一个输出信号。

输入信号经过控制器后,通过输出信号进行输出。

4.2 模型建立在Simulink的模型窗口中,通过拖拽和连接模块,可以建立控制系统的模型。

首先添加输入信号模块,然后添加控制器模块,最后添加输出信号模块。

4.3 仿真设置设置仿真参数,如仿真时间为10秒,步长为0.01秒。

实验5_SIMULINK建模与仿真实验

实验5_SIMULINK建模与仿真实验

课外实验 SIMULINK 建模与仿真实验 实验目的1、 掌握用SIMULINK 创建和编辑仿真模型的方法2、 掌握用SIMUINK 进行离散时间系统建模仿真的方法3、 熟悉用SIMUINK 进行连续时间系统建模仿真的方法4、 掌握SIMULINK 中子系统的创建、装帧及控制执行方法5、 掌握S 函数模块的创建和使用方法6、 熟悉用MA TLAB 指令运行SIMULINK 模型的方法实验内容1、 启动SIMULINK (使用simulink 命令),浏览Simulink Libarory Browser ,熟悉Simulink 提供的各种模块,参照下图建立仿真模型,求解以下微分方程的数值解: 2)0(',1)0(,300,cos )(sin d d d d 22==≤≤=⋅-+--y y x x e x y x x y e x y x x 实验过程中,注意练习模块的选定、复制、移动、删除、调整大小、旋转、改名、隐藏模块名、模块加阴影、模块参数设置,信号线的产生、移动、删除、分支、折曲、宽度显示、色彩、插入模块、标识,模型注释、仿真配置等。

2、 加法器是数字系统中最基本的逻辑器件,它可用于二进制的减法运算、乘法运算,BCD 码的加、减法,码组变换,数码比较等。

查阅加法器及相关资料,完成以下实验:(1)利用Simulink 中的Logical Operator 等模块建立一个全加器逻辑电路仿真模型;(2)将所设计的全加器另存为一个新文件(以防止后续操作破坏原文件),将其封装(简装)成一个子系统;(3)对简装的全加器进一步进行装帧(精装);(4)利用精装的全加器设计一个加法器应用系统仿真模型,设计的应用模型中,尽可能用到Enabled Subsystem 、Trigged Subsystem 和Trigged and Enabled Subsystem 等条件执行子系统。

3、 自编S 函数实现全加器功能,将上一实验第(4)步设计的应用系统中的全加器用S 函数模块替换,通过实验检验S 函数模块的功能是否正确。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink 仿真实验报告引言:Simulink 是一种常用的建模和仿真工具,它可以帮助工程师们在设计和开发过程中进行系统级建模和仿真。

本文将通过一个实际的仿真实验来展示 Simulink 的应用。

一、实验背景在现代工程领域中,系统的建模和仿真是非常重要的一步。

通过仿真实验,我们可以在实际制造之前对系统进行测试和优化,节省了时间和成本。

本实验的目标是使用 Simulink 对一个电机驱动系统进行建模和仿真,以验证其性能和稳定性。

二、实验步骤1. 系统建模在 Simulink 中,我们首先需要将电机驱动系统进行建模。

我们可以使用Simulink 提供的各种组件来构建系统模型,例如传感器、控制器、电机等。

在本实验中,我们将使用 PID 控制器来控制电机的转速。

2. 参数设置在建模过程中,我们需要设置各个组件的参数。

例如,我们需要设置 PID 控制器的比例、积分和微分系数,以及电机的转动惯量和阻尼系数等。

这些参数的设置将直接影响系统的性能。

3. 仿真运行在模型建立和参数设置完成后,我们可以进行仿真运行。

通过设置仿真时间和输入信号,我们可以观察系统在不同条件下的响应情况。

例如,我们可以通过改变输入信号的频率和幅度来测试系统的稳定性和鲁棒性。

4. 结果分析仿真运行完成后,我们可以分析仿真结果。

通过观察输出信号的波形和频谱,我们可以评估系统的性能和稳定性。

例如,我们可以计算系统的响应时间、超调量和稳态误差等指标,以评估系统的控制效果。

三、实验结果在本实验中,我们成功建立了一个电机驱动系统的 Simulink 模型,并进行了仿真运行。

通过观察仿真结果,我们发现系统在不同输入信号条件下的响应情况。

在一些情况下,系统的响应时间较短,稳态误差较小,表现出良好的控制效果。

然而,在一些极端情况下,系统可能出现超调或不稳定的现象,需要进一步优化参数和控制策略。

四、实验总结通过本次仿真实验,我们深入了解了 Simulink 的应用和优势。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink是一种基于MATLAB的图形化建模和仿真环境,用于建立和仿真各种复杂系统。

通过在Simulink中设计和配置系统的模型,可以进行系统的仿真并分析其性能。

Simulink在工程领域有着广泛的应用,特别是在控制系统设计、信号处理和通信系统等方面。

在进行Simulink仿真实验时,需要进行实验设计、建立系统模型、配置参数、运行仿真以及分析结果等步骤。

以下为一份Simulink仿真实验报告中可能包含的相关参考内容。

1. 实验目的与背景:简要介绍所要仿真的系统、实验目的及应用背景。

2. 实验设计:详细描述实验设计的步骤和方法,包括建立系统模型的原理、假设和建模方法。

3. 系统建模:详细说明建立系统模型的过程,可以包括系统的输入输出定义、关键参数的选择、系统方程的建立等内容。

4. 系统参数配置:描述对系统模型进行参数配置的方法和过程,包括各个参数的取值、单位和意义等。

5. 仿真运行:详细描述仿真运行的设置和过程,包括仿真时间设置、仿真模式选择、初始化条件等。

6. 仿真结果分析:对仿真结果进行详细分析和解释,可以包括输出曲线、系统响应特性、系统性能指标的计算等。

7. 结果讨论与分析:对实验结果进行讨论和分析,比较不同参数配置的结果差异,提出改进和优化的建议。

8. 实验总结:总结实验过程中的经验和教训,总结实验结果和结论。

9. 参考文献:列出在实验报告中引用的相关参考文献,包括书籍、期刊论文、技术报告等。

总之,Simulink仿真实验报告应该包含实验目的与背景、实验设计、系统建模、系统参数配置、仿真运行、仿真结果分析、结果讨论与分析、实验总结以及参考文献等内容。

这样的报告能够清晰地展示实验过程和结果,使得读者能够全面了解实验的目的、方法和结论。

MATLABSimulink与控制系统仿真实验报告

MATLABSimulink与控制系统仿真实验报告

MATLAB/Simulink 与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。

二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。

2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。

五、实验思考题总结仿真模型构建及调试过程中的心得体会。

题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。

(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。

Simulink仿真 实验报告

Simulink仿真 实验报告

集美大学计算机工程学院实验报告一、实验目的:1.熟悉Simulink工作环境及特点2.掌握线性系统仿真常用基本模块的用法3.掌握Simulink的建模与仿真方法。

二、实验内容和步骤1.用信号发生器产生0.2Hz,幅度为1V的正弦波和方波信号,并通过示波器观察波形。

启动simulink->选择Blank Model->点击Library Browser选择输入源模块以及接收端模块选择Sources: Sine Wave作为输入源模块,并设置频率参数为2πf即0.4*pi,接收端选择Scope模块开始仿真选择Sources :Signal Generator: Square作为输入源,设置频率,选择示波器开始仿真问题1.1:请总结一下示波器的使用方法,有哪些主要参数需要设置?示波器的参数设置主要有:Number of input ports 这一项用来设置示波器的输入端口数Layout 这一个操作可以用来设置输出格式,比如同时输出三个不同的波形图Time span 这一项用来设置横坐标的长度Time display offset 用来设置横坐标的起始端点,通常都为0Y-Limits 用来设置纵坐标的最大最小值2.Simulink仿真实际应用1建立一个很小的系统,用示波器观察正弦信号的平方的波形,如图所示系统中所需的模块:正弦波模块、示波器模块。

正弦波仿真电路和参数如下:(在Scope的Parameters里面,把Number of Axes设为3,可以变成有3个输入端的示波器)正弦波1参数:1Hz,幅度为1v;正弦波2参数:1Hz,幅度为2v,通过示波器观察结果,写出数学表达式。

该题目需要将示波器的Number of Input Ports设置为3,并且通过设置Layout来改变示波器的输出格式问题2.1:改变两个正弦波的幅度和频率,观察输出的波形?问题2.2:通过m语言编程实现其波形,给出代码和显示图形。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

控制系统校正的SIMULINK仿真_huang

控制系统校正的SIMULINK仿真_huang
实验5 控制系统校正的SIMULINK仿真 实验5 控制系统校正的SIMULINK仿真
SIMULINK是一个用来对动态系统进行建模、 SIMULINK是一个用来对动态系统进行建模、仿真 是一个用来对动态系统进行建模 和分析的软件包,它支持连续、 和分析的软件包,它支持连续、离散及两者混合的线性 和非线性系统,也支持具有多种采样速率的多速率系统。 和非线性系统,也支持具有多种采样速率的多速率系统。 SIMULINK 为用户提供了用方框图进行建模的图形 接口,该软件的名字表明了该系统的两个主要功能: 接口,该软件的名字表明了该系统的两个主要功能: Simu(仿真 Link(连接 Simu(仿真)和Link(连接),采用这种结构图模型就像用 仿真) 连接) 纸和笔画图一样容易。 纸和笔画图一样容易。 SIMULINK是MATLAB软件的扩展 它与MATLAB SIMULINK是MATLAB软件的扩展,它与MATLAB 软件的扩展, 语言的主要区别在于,与用户交互接口是基于Windows 语言的主要区别在于,与用户交互接口是基于Windows 的模型化图形输入, 的模型化图形输入,使得用户可以把更多的精力投入到 系统模型的构建,而非语言的编程上。 系统模型的构建,而非语言的编程上。
(1) 在Sources模块库中,拖动Step模块至模型窗口 Sources模块库中 拖动Step模块至模型窗口 模块库中, 双击该模块可以设 置它的跳跃时间、 置它的跳跃时间、初值 和终值,如图所示。 和终值,如图所示。
(2)打开Simulink的Continues模块库,选择该库中的 (2)打开 打开Simulink的Continues模块库 模块库, Integrator 和Transfer Fcn 模块 修改参数ULINK; 1.学习模型仿真工具箱 学习模型仿真工具箱SIMULINK; 2.建立SIMULINK动态结构图进行串联超前校正实验; 2.建立 建立SIMULINK动态结构图进行串联超前校正实验 动态结构图进行串联超前校正实验; 3.建立SIMULINK动态结构图进行串联滞后校正实验; 3.建立 建立SIMULINK动态结构图进行串联滞后校正实验 动态结构图进行串联滞后校正实验; 4.建立SIMULINK动态结构图进行串联滞后-超前校正实验。 4.建立 建立SIMULINK动态结构图进行串联滞后 超前校正实验。 动态结构图进行串联滞后-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五SIMULINK仿真实验
一、实验目的
考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔对Ts 对系统稳定性的影响
二、实验步骤
开机执行程序,用鼠标双击图标,进入MA TLAB命令窗口:Command Windows在Command Windows窗口中输入:simulink,进入仿真界面,并新建Model文件在Model界面中构造连续时间系统的结构图。

作时域仿真并确定系统时域性能指标。

图(6-1)
带零阶保持器的采样控制系统如下图所示。

作时域仿真,调整采样间隔时间Ts,观察对系统稳定性的影响。

图(6-2)
参考输入量(给定值)作用时,系统连接如图(6-1)所示:
图(6-3)
三、实验要求
(1)按照结构图程序设计好模型图,完成时域仿真的结构图
(2)认真做好时域仿真记录
(3)参考实验图,建立所示如图(6-1)、图(6-2)、图(6-3)的实验原理图;
(4)将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。

1. 单击工具栏中的图标,开始仿真,观测系统的响应曲线,分析系统性
能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。

2. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线,
分析比例微分控制的作用。

3. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线,
分析比例积分控制的作用。

4. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲
线,分析比例积分微分控制的作用。

5. 参照实验一的步骤,绘出如图(6-2)所示的方块图;
6. 将PID控制器的积分增益和微分增益改为0,对系统进行纯比例控制。

不断
修改比例增益,使系统输出的过渡过程曲线的衰减比n=4,记下此时的比例增益值。

7. 修改比例增益,使系统输出的过渡过程曲线的衰减比n=2,记下此时的比例
增益值。

8. 修改比例增益,使系统输出呈临界振荡波形,记下此时的比例增益值。

9. 将PID控制器的比例、积分增益进行修改,对系统进行比例积分控制。

不断
修改比例、积分增益,使系统输出的过渡过程曲线的衰减比n=2,4,10,记下此时比例和积分增益。

10、将PID控制器的比例, 积分, 微分增益进行修改,对系统进行比例、积分、
微分控制。

不断修改比例、积分、微分增益,使系统输出的过渡过程曲线的衰减比n=2、4、10记下此时的比例、积分、微分增益值。

四、实验报告要求
(1)叙述零阶保持器的作用
(2)讨论采样时间间隔Ts对系统的影响。

(3)写出完整实验报告
附:step模块在sources库中
sum模块在math operations库中
scope模块在sinks库中
transfer fcn模块在continuous库中
zero-order hold模块在discrete库中。

相关文档
最新文档