人教版七年级上册数学第一章有理数复习知识点例题练习(含答案)
人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)
人教版七年级数学第一章 有理数 专题练习试题小专题(一) 有理数的加减运算有理数加减运算的简便方法归纳方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2 同号结合法——把正数和负数分别结合相加【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)+(-10-2)=20-12=8.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.方法4 凑整法——分数相加,把相加得整数的数结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.方法5 分解法——将一个数拆分成两个数的和或差【例5】 计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =-1-56-5-23+24+34+3+12=(-1)+(-56)+(-5)+(-23)+24+34+3+12=[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110;(2)计算12+16+112+120+…+19 900的值为99100. 易错点 分解带分数时弄错符号【例7】 计算:634+313-514-312+123. 解:原式=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.强化训练计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7+(-7)=0.(4)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=112.(5)34-72+(-16)-(-23)-1; 解:原式=34-72-16+23-1 =-134.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =14-14+[112+(-512)+(-23)](7)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(8)-212+(+56)+(-0.5)+(+116); 解:原式=[-212+(-0.5)]+[(+56)+(+116)] =-3+2=-1.(9)-478-(-512)+(-412)-318; 解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.小专题(二) 有理数的乘除运算有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531×(-29)×(-3115)×(-92).解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.方法2 正用分配律【例2】 计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277. 解:原式=-277×(4-3+6) =-27.方法4 除法变乘法,再利用分配律【例4】 计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =-75+125-285=-235.强化训练计算:(1)54×(-95)+38×(-95)-8×95;解:原式=(-95)×(54+38+8)= -9 500.(2)(-13)×(-134)×113×⎝⎛⎭⎫-167; 解:原式=-13×134×113×167=-⎝⎛⎭⎫13×113×⎝⎛⎭⎫134×167 =-1×2=-2.(3)⎝⎛⎭⎫29-14+118×(-36);解:原式=29×(-36)-14×(-36)+118×(-36)=-8+9+(-2)=1+(-2)=-1.(4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;解:原式=13×(-30)+16×(-30)-25×(-30) =-10+(-5)-(-12)=-10-5+12=-3.(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.解:原式=79×18-56×18+318×18+(3.95-1.45)×6 =14-15+3+2.5×6=2+15=17.小专题(三) 有理数的混合运算计算:(1)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=2×9÷(-1)=-18.(2)-0.75×(-32)÷(-94); 解:原式=-34×(-32)×(-49) =-12.(3)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(4)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24) =-12+15+6=9.(5)24÷(32-43)-62122×22; 解:原式=24÷(96-86)-(6+2122)×22 =24÷16-132-21 =24×6-132-21=144-132-21=-9.(6)(-5)÷(-97)×45×(-94)÷7; 解:原式=-5×79×45×94×17=-5×45×(79×94)×17=-4×(74×17) =-4×14=-1.(7)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(8)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.(9)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178. (10)(-5)-(-5)÷10×110×(-5); 解:原式=(-5)-(-5)×110×110×(-5) =-5-14=-514.(11)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(12)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(14)(-42)÷(83)2+112×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(15)(-2)3-16×(38-1)+2÷(12-14-16); 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.(16)(-48)×(-16-116+34)-1.85×6+3.85×6. 解:原式=(-48)×(-16)+(-48)×(-116)+(-48)×34+6×(-1.85+3.85) =8+3-36+12=-13.小专题(四) 数列规律探索观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,….(2)第②行每个数是第①行每个数加2得到的;第③行每个数是第①行每个数除以2得到的.(3)(-2)10+(-2)10+2+(-2)10÷2=(1+1+12)×(-2)10+2 =52×210+2 =2 562.1.观察下面三行数:-3,9,-27,81,…;①1,-3,9,-27,…;②-2,10,-26,82,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)分别写出第①②③行的第100个数,并求出它们的和.解:(1)第①行数是-3,(-3)2,(-3)3,(-3)4,….(2)第②行每个数是第①行每个数除以-3得到的;第③行每个数是第①行每个数加1得到的.(3)第①②③行的第100个数分别是(-3)100,(-3)100÷(-3),(-3)100+1.(-3)100+(-3)100÷(-3)+(-3)100+1=[1+(-13)+1]×(-3)100+1 =53×3100+1 =5×399+1.2.观察下面三行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③(1)第①行第8个数为-256,第②行第8个数为 -254,第③行第8个数-128;(2)设第一行第n 个数为x ,则第二行第n 个数为x +2,第三行第n 个数为x 2;取每行的第n 个数,这三个数的和等于1 282,求这三个数.解:根据题意,得x +x +2+x 2=1 282,解得x =512.所以x +2=514,x 2=256. 答:这三个数是512,514,256.3.观察有规律的整数-1,2,-3,4,-5,6,…按照如图所示的方式排成的数阵.-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16…(1)按照该数阵呈现的规律排下去,那么第10行共有19个数,其中最左侧的一个是82,最右侧的一个是100;(2)按照该数阵呈现的规律排下去,那么第10行从左数第9个数是90.4.记P 1=-2,P 2=(-2)×(-2),P 3=(-2)×(-2)×(-2),…,P n =(-2)×(-2)×…×(-2).n 个(1)计算P 4+P 6的值;(2)计算2P 2 019+P 2 020的值;(3)猜想2P n 与P n +1的关系.解:(1)P 4+P 6=(-2)4+(-2)6=80.(2)2P 2 019+P 2 020=2×(-2)2 019+(-2)2 020=-22 020+22 020=0.(3)2P n +P n +1=0.小专题(五) 本章易错专练1.下列说法:①-213是负分数;②3.6不是正数;③非负有理数不包括零;④正整数、负整数统称为整数;⑤零是最小的有理数,其中正确的有(A )A .1个B .2个C .3个D .4个2.化简:(1)-(-2)=2;_ (2)-|-2|=-2;(3)|-(-2)|=2;_ (4)(-1)2=1;(5)-12=-1;_ (6)-(-1)2=-1.3.计算:(1)-143=-164; (2)-324=-94; (3)-(-23)2=-49; (4)-(-2)4=-16; (5)-(-2)3=8;_ (6)[-(-2)]3=8.4.|-12|的相反数是-12. 5.用四舍五入法将12.897 2精确到0.01的近似数是12.90.6.在数轴上,距离表示数1的点3个单位长度的点表示的数是-2或4.7.计算: (1)-38÷35×53;解:原式=-38×53×53=-2524.(2)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(3)24÷(13-18-16). 解:原式=24÷124=24×24=576.8.已知|x|=1,|y|=2,且|x -y|=y -x ,求x +y 的值. 解:因为|x -y|=y -x ,所以x -y<0,即x<y.因为|x|=1,|y|=2,所以y=2,x=1或-1.当x=1时,x+y=1+2=3;当x=-1时,x+y=-1+2=1.9.已知|a|=1,|b|=2,|c|=3,且a>b>c,求ab+bc的值.解:因为a>b>c,|a|=1,|b|=2,|c|=3,所以b=-2,c=-3,a=1或-1.当a=1时,ab+bc=1×(-2)+(-2)×(-3)=4;当a=-1时,ab+bc=-1×(-2)+(-2)×(-3)=8.。
第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024
第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;
人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)
人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。
人教版七年级上册数学第一章 有理数 含答案
人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、已知a,b在数轴上的位置如图所示,那么下面结论正确的是()A. a﹣b<0B. ab>0C. a+ b<0D.| a|>| b|2、下列运算结果为正数的是()A. B. C. D.3、若m为有理数,则10m2, 20+m, |m|,1+m2,m2-1中,正数的个数为()A.4B.3C.2D.14、下列结论中,不能由a+b=0得到的是()A.a 2=﹣abB.a=0,b=0C.|a|=|b|D.a 2=b 25、如图所示的图形为四位同学画的数轴,其中正确的是()A. B. C.D.6、﹣6的相反数是()A.6B.﹣6C.D.-7、23表示()A.2×2×2B.2×3C.3×3D.2+2+28、如图,数轴上点P表示的数可能是()A. B. C. D.9、下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|10、如图所示,a、b、c表示有理数,则a、b、c的大小顺序是()A.a<b<cB.a<c<bC.b<a<cD.c<b<a11、数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2013㎝的线段AB,则AB盖住的整点个数是()A.2013或2014B.2012或2013C.2014D.201312、在-︱-2︱,︱-(-2)︱,-(+2),,+(-2),-(-3)2,-22中,负数有()A.2个B.3个C.4个D.5个13、-3的相反数是()A.3B.-3C.D.-14、下列等式,正确的是()A. B. C. D.15、下列说法: -a是负数; -2的倒数是; -(-3)的相反数是-3;④绝对值等于2的数2.其中正确的是()A.1个B.2 个C.3个D.4个二、填空题(共10题,共计30分)16、如果|﹣a|=|﹣4|,则a=________.17、–3的绝对值是________,倒数是________,相反数是________.18、已知 a 、b 、c 的位置如图:则=________19、我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为________吨.20、比较大小:0________-2(填“>”“<”或“=”).21、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是________。
人教版七年级数学上册第一章有理数习题十(含答案) (111)
人教版七年级数学上册第一章有理数复习试题十(含答案)一、单选题1.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.等于0 D.小于a【答案】A【解析】【分析】根据有理数的加法法则判断即可.【详解】由数轴可知:a<0,b>0,且a b根据有理数的加法法则:异号相加,取绝对值大的符号故a+b>0.故选A【点睛】此题考查的是有理数的加法,掌握有理数的加法法则:异号相加,取绝对值大的符号是解决此题的关键.2.如图,点A在数轴上表示的数是-16,点B在数轴上表示的数是8. 若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动. 问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】【分析】设运动t秒时,AB=8,然后分点B在点A左边和右边两种情况,根据题意列出方程求解即可.【详解】设运动t秒时,AB=8,(1)当点B在点A的左边时,由题意得:2t-24+6t=8,解得t=4.(2)当点B在点A的右边时,由题意得:2t+8+6t=24,解得t=2.故选C.【点睛】本题考查了数轴上两点之间的距离,根据题意分类讨论是解题的关键.3.(﹣2)5表示()A.5个﹣2相乘的积B.﹣2与5相乘的积C.2个5相乘的积的相反数D.5个2相乘的积【答案】A【解析】【分析】(−2)5表示5个−2相乘的积,再把各个选项表示成算式比较即可.【详解】A、(−2)5表示5个−2相乘的积,故本选项正确;B、(−2)5表示5个−2相乘的积,−2与5相乘的积表示为−2×5,故本选项错误;C、(−2)5表示5个−2相乘的积,2个5相乘的积的相反数表示为−5×5,故本选项错误;D、(−2)5表示5个−2相乘的积,5个2相乘的积表示为2×2×2×2×2,故本选项错误;故选A.【点睛】本题考查了对有理数的乘方的应用,关键是能把语言叙述表示成正确算式.4.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A.15×107B.0.15×109C.1.5×108D.1.5亿【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将150000000用科学记数法表示为:1.5×108.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.根据如图所示的程序计算,若输出的结果为5,则不是开始输入的值为()A.-2 B.0 C.-1 D.1【答案】B【解析】【分析】将各选项的数值,根据运算程序分别代入求解即可.【详解】A、(-2)×2+3=-1,(-1)×2+3=1,1×2+3=5,故-2是开始输入的数,不符合题意;B、0×2+3=3,输出的结果为3,而不是5,则0不是开始输入的值,符合题意;C、-1×2+3=1,1×2+3=5,故-1是开始输入的数,不符合题意;D、1×2+3=5,故1是开始输入的数,不符合题意.故选B.【点睛】本题考查了代数式求值,读懂图表信息,根据运算程序列式计算是解题的关键.6.点A在数轴上,到原点的距离是5,则点A表示的数是()A.5 B.-5 C.±5 D.±2.5【答案】C【解析】【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为5,即表示5和-5的点.【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C.【点睛】本题考查了数轴的知识,利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.7.下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数,a b互为相反数,则它们的和一定为0.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据相反数的定义,分别判断①②③④是否正确即可解答.【详解】①中0的相反数还是0,故错误;②如2和-6符号相反,但它们不是互为相反数,故错误;③互为相反数的两个数m ,n ,m=-n ,到原点的距离相等,故正确; ④互为相反数的性质:两数互为相反数,它们的和为0,故正确; 所以正确的个数是2;故选:B.【点睛】本题考查互为相反数的性质,熟练掌握互为相反数的性质是解题的关键.8.化简 -(-3)等于 ( )A .-3B .3C .13D .13【答案】B【解析】【分析】根据相反数的计算法则进行计算即可得到答案.【详解】-(-3)=3,故选择B.【点睛】本题考查相反数,解题的关键是掌握相反数的计算.9.绝对值等于本身的数有( )A .1个B .2个C .4个D .无数个 【答案】D【解析】【分析】根据绝对值的定义得出绝对值等于它本身的数进行解答即可.【详解】解:有理数分为正数、负数和0,其中绝对值等于本身为正数和0,即有无数个数的绝对值等于它本身,故选:D.【点睛】本题考查绝对值的运算,即正数和0的绝对值是其本身,负数的绝对值是它的相反数.10.下列四个数中最小的是( )A.-10 B.-1 C.0 D.0.1【答案】A【解析】【分析】根据正负数比较大小的法则比较出各数的大小即可.【详解】0.1>0>-1>-10,故答案选A.【点睛】本题考查有理数大小比较,解题的关键是熟练掌握有理数大小比较.。
人教版数学七年级上册第1章有理数单元复习题(一)(含答案)
七年级上册第1章单元复习题(一)一.选择题1.一个数在数轴上对应的点与它的相反数在数轴上对应的点的距离是6个单位长度,则这个数是()A.6或﹣6B.﹣3或3C.6或3D.﹣6或﹣32.若|x|=|y|,则x与y的关系是()A.相等或互为相反数B.都是零C.互为相反数D.相等3.若a的相反数是2,|b|=3,且a,b异号,求a﹣b的值()A.﹣1B.5C.1D.﹣54.下列计算正确的是()A.1÷=B .÷2=C .÷=2D .÷=15.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.4第1页(共1页)6.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.47.如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣b C.﹣b>a>b>﹣a D.b>a>﹣b>﹣a 8.如果比例的两个外项互为倒数,那么比例的两个内项成()A.正比例B.反比例C.不成比例D.无法确定9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的效字序号对应(如图),如字母Q与效字序号0对应,当明文中的字母对应的序号为a时,将a+7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X”对应密文“W”.按上述规定,将密文“TKGDFY”解密成明文后是()第1页(共1页)A.DAISHU B.TUXING C.BAIYUN D.SHUXUE二.填空题11.若a=1,b是2的相反数,则|a﹣b|的值为.12.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣1℃,乙此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.6℃,那么这个山峰的高度大约是米.13.在数轴上A、B两点分别表示的数是2和8,在数轴上,点A右侧有另外一点P到A、B的距离和是10,则点P表示的数是.14.如果abc>0且ab<0,那么+﹣=.15.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.三.解答题16.计算:(1)20﹣11+(﹣10)﹣(﹣11)(2)(﹣1)6×4+8÷(﹣)第1页(共1页)17.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.18.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?第1页(共1页)19.某出租车一天下午某时间段以广场为出发点,在东西方向的大道上营运,规定向东为正,向西为负,单次行车里程依先后顺序记录如下:+9,﹣3,﹣5,+4,﹣8,+7,﹣2,﹣5,+8,﹣4(单位:km)(1)该出租车司机将最后一名乘客送到目的地后,出租车在广场的什么方向?距广场多远?(2)若每千米耗油0.08升,该出租车这个时间段共耗油多少升?20.规定一种新的运算△:a△b=a(a+b)+a﹣b.例如,1△2=1×(1+2)+1﹣2=2.(1)10△12=.(2)若x△3=﹣7,求x的值.(3)求代数式﹣2x△4的最小值.第1页(共1页)参考答案一.选择题1.解:因为互为相反数的两数的绝对值相等,设这个数为a,则|a|+|﹣a|=6,所以a=±3.故选:B.2.解:∵|x|=|y|,∴x=y或x=﹣y,∴x与y的关系是相等或互为相反数.故选:A.3.解:∵a的相反数是2,∴a=﹣2,∵|b|=3,且a,b异号,∴b=3,∴a﹣b=﹣2﹣3=﹣5.故选:D.4.解:A、1÷=1×=,故A错误;B 、÷2=×=,故B错误;第1页(共1页)C 、÷=×3=2,故C正确;D 、÷=×4=,故D错误.故选:C.5.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.6.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.7.解:∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>a,第1页(共1页)∴﹣b>a>﹣a>b.故选:A.8.解:如果比例的两个外项互为倒数,那么比例的两个内项成反比例.故选:B.9.解一:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.解二:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴≤≤,即≤≤6,∴的一切值中属于整数的有2,3,4,5,6.故选:B.10.解:由“明文”与“密文”的转换规则可得:故选:C.第1页(共1页)11.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.12.解:[5﹣(﹣1)]÷0.6×100=(5+1)÷0.6×100=6÷0.6×100=10×100=1000(米),即这个山峰的高度大约是1000米,故答案为:1000.13.解:∵数轴上A、B两点分别表示的数是2和8,∴AB=|8﹣2|=6,又∵点A右侧有另外一点P到A、B的距离和是10,∴点P在点B的右侧,设点P所表示的数为x,则(x﹣2)+(x﹣8)=10,解得x=10,故答案为:10.14.解:∵abc>0且ab<0,第1页(共1页)对a的值分类讨论如下:①设a>0,∵ab<0,∴b<0,bc>0,∴+﹣=++=1﹣2﹣=﹣;②设a<0,∵ab<0,∴b>0,bc<0,∴+﹣=++=﹣1+2+=;故答案为:﹣或.15.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.三.解答题16.解:(1)20﹣11+(﹣10)﹣(﹣11)=20+(﹣11)+(﹣10)+11=10;(2)(﹣1)6×4+8÷(﹣)=1×4+8×(﹣)第1页(共1页)=4+(﹣14)=﹣10.17.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.18.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB ′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,第1页(共1页)所以点C在数轴上对应的数为﹣6.故答案为:9;﹣6.5.19.解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣8)+(+7)+(﹣2)+(﹣5)+(+8)+(﹣4)=9﹣3﹣5+4﹣8+7﹣2﹣5+8﹣4=(9+4+7+8)﹣(3+5+8+2+5+4)=28﹣27=1(km).所以出租车司机将最后一名乘客送到目的地后,出租车在广场的东面,距广场1km;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+7|+|﹣2|+|﹣5|+|+8|+|﹣4|=9+3+5+4+8+7+2+5+8+4=55千米.55×0.08=4.4升.所以该出租车这个时间段共耗油4.4升.20.解:(1)∵a△b=a(a+b)+a﹣b,∴10△12=10×(10+12)+10﹣12=218.(2)∵x△3=﹣7,∴x(x+3)+x﹣3=﹣7,第1页(共1页)∴x2+4x+4=0,解得x=﹣2.(3)∵a△b=a(a+b)+a﹣b,∴﹣2x△4=﹣2x(﹣2x+4)﹣2x﹣4=4x2﹣10x﹣4=(2x﹣2.5)2﹣10.25∴2x﹣2.5=0,即x=1.25时,﹣2x△4的最小值是﹣10.25.故答案为:218.第1页(共1页)。
人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)
人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。
人教版七年级上册数学第一章 有理数 含答案
人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、若1<x<2,则的值是()A.﹣3B.﹣1C.2D.12、﹣的倒数是()A.8B.﹣8C.D.﹣3、已知:a、b、c在数轴上位置如图,O为原点,则下列正确的是()A. B. C. D.4、下列各数:﹣(﹣2),(﹣2)2,﹣22,(﹣2)3,负数的个数为()A.1B.2C.3D.45、质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个0.13mm,第二个﹣0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是()A.第一个B.第二个C.第三个D.第四个6、若,则三者之间的大小关系满足()A. B. C. D.7、2018 年10月23日,世界上最长的跨海大桥-港珠澳大桥正式开通这座大桥集跨海大桥、人工岛海底隧道于一身,全长约 55000 米.其中 55000 用科学记数法可表示为().A.5.5×10B.55×10C.5.5×10D.0.55×108、已知a=255, b=344, c=433,则a、b、c的大小关系为()A.a>b>cB.a>c>bC.b>c>aD.b>a>c9、若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.不能确定10、若a<0,则下列结论不正确的是()A.a 2=(﹣a)2B.a 3=(﹣a)3C.a 2=|a| 2D.a 3=﹣|a| 311、|﹣8|的相反数是()A.8B.-8C.D.-12、有理数a在数轴上的位置如图所示,则下列说法不正确的是()A.﹣a>2B.a+2>2C.|a|>2D.2a<013、下列各式的计算结果是负数的是()A. B. C.D.14、如果上升8℃记作+8℃,那么-5℃表示()A.上升5℃B.下降5℃C.上升3℃D.下降3℃15、下列说法:①若m满足|m|+m=0,则m<0;②若|a-b|=b-a,则b>a;③若|a|>|b|,则(a+b)(a-b)是正数;④若三个有理数a,b,c,满足++=1,则=1,其中正确的有()个A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为________.17、已知数轴上点A,B,C所表示的数分别是-2,+8,x,点D是线段AB的中点,则点D所表示的数为________;若CD=3.5,则x=________ 。
第1章 有理数 人教版七年级数学上册单元复习题(含解析)
人教版七年级数学上册第一章有理数单元复习题一、选择题1.若汽车向东行驶2km记作,则向西行驶3km记作( )A.B.C.D.2.在数-5,2,0,,2011,-71,3.14中,非负整数的个数是( )A.1B.2C.3D.4 3.如图,数轴上有A,B,C三点.若点A,B到原点的距离相等,每小段表示1个单位长度,则点C表示的数是( )A.2B.1C.-1D.-2 4.的相反数是( )A.B.C.D.5.下列各数中,绝对值最大的数是( )A.B.C.D.6.四个有理数,其中最小的是( )A.-2B.-1C.0D.2 7.已知四个互不相等的整数a、b、c、d的乘积等于14,则它们的和等于( )A.B.5C.9D.5或8.下列计算结果正确的是( )A.B.C.D.9.中国的太空空间站离地球大约400000米,则近似数400000用科学记数法表示为( )A.B.C.D.10.数a的近似数为1.50,那么a的真实值的范围是( ) .A.1.495<a<1.505B.1.495≤a<1.505C.1.45<a<1.55D.1.45≤a<1.55二、填空题11.比较大小: -1.12.某市今年元旦的最低气温为,最高气温为,这天的最高气温比最低气温高 ℃.13.从、、、、几个数中任取三个数相乘,所得到的最大乘积是 . 14.已知|a|=5,b2=9,且|a+b|≠a+b,求a2﹣b的值为 .三、计算题15.计算:(1)(2)(3).(4).四、解答题16.某商店现有8袋大米,以每袋50千克为准,超过的千克数记作正数,记录如下:+4,﹣3,+5,﹣2,+1,﹣3,+4,﹣6.问:8袋大米共重多少?17.如果,求的值.18.在数轴上表示下列各数,.并用“<”把这些数连接起来.五、综合题19.在数轴上画出表示下列各数点:;;;;;(1)用“”号写出他们的顺序.(2)写出沿数轴平移3个单位长度后得到的数.20.已知数轴上的点A,B分别表示和.(1)在数轴上画出A,B两点;(2)写出数轴上点A和点B之间的所有整数,并求它们的和.21.薛老师坚持跑步锻炼身体,他以为基准,超过的部分计为“+”,不足的部分计为“-”,将连续7天的跑步时间(单位:)记录如下:星期一二三四五六日与30分钟差值(1)薛老师跑步时间最长的一天比最短的一天多跑几分钟?(2)若薛老师跑步的平均速度为,请计算这七天他共跑了多少?22.某检修小组从地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下:(单位:第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距地多远?(2)若每耗油0.3升,问一天共耗油多少升?答案解析部分1.【答案】D【解析】【解答】解:汽车向东行驶2km记作,向西行驶3km应记作.故答案为:D.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负数表示. 2.【答案】C【解析】【解答】解:在数-5,2,0,,2011,-71,3.14中,非负整数的个数是3个:2,0,2011,故答案为:C.【分析】正整数和0统称非负整数,据此判断即可.3.【答案】C【解析】【解答】解:由题可知:AB=6,又∵点A,B到原点的距离相等,∴A点表示的数为-3,B点表示的数为3,∴点C所表示的数为-1.故答案为:C.【分析】根据互为相反数的两个数,在数轴上表示的时候,位于原点的两侧,并且到原点的距离相等,结合AB的长度可得点A、B所表示的数,进而即可得出点A右边两点单位长度处的点C所表示的数.4.【答案】A【解析】【解答】解:根据概念可知的相反数是.故答案为:A.【分析】根据只有符号不同的两个数互为相反数解答即可.5.【答案】B【解析】【解答】解:、、、,绝对值最大的数是.故答案为:B.【分析】先利用绝对值的性质化简,再比较大小即可。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)
人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)
2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。
人教版初中七年级数学上册第一章《有理数》经典复习题(含答案解析)
1.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.2--的相反数是( )A .12-B .2-C .12D .2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 3.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.4.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 5.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 6.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 2A 解析:A【分析】根据题意确定出a ,b ,c 中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a 、b 、c 为非零有理数,且a+b+c=0∴a 、b 、c 只能为两正一负或一正两负.①当a 、b 、c 为两正一负时,设a 、b 为正,c 为负,原式=1+1+(-1)+(-1)=0,②当a 、b 、c 为一正两负时,设a 为正,b 、c 为负原式1+(-1)+(-1)+1=0, 综上,a b c abc a b c abc+++的值为0, 故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.10.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10D 解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .11.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.12.6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6. 故选B .13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.15.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3B .﹣13C .0D .﹣3D 解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D .【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.1.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.2.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.3.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.4.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.6.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010 =-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.7.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.8.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.9.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+ (99)100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.10.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型 解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2. 【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知: |x |=2,∴x =±2. 故答案为±2. 【点睛】本题考查了绝对值的性质,属于基础题型.11.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18 【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可. 【详解】解:∵2x =,3y =, ∴2x =±,3=±y . ∵x y <, ∴2x =±,3y =,当x=2,y=3时,346x y -=-; 当x=-2,y=3时,3418x y -=-. 故答案为:-6或-18. 【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 1.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案. 【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.2.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.3.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题: (1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠ 【分析】(1)根据平衡点的定义进行解答即可; (2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可. 【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5; 故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点, ∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键. 4.计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-. 【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值. 【详解】 解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+=-.1【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
【3套打包】人教版七年级数学上册第1章有理数单元复习复习(含解析答案)
人教版七年级数学上第一章有理数单元练习试题(含答案)一.选择题(共11小题)1.关于字母a所表示的数,下列说法正确的是()A.a一定是正数B.a的相反数是﹣aC.a的倒数是D.a的绝对值等于a2.下列各组数中,互为倒数的是()A.2和B.3和C.|﹣3|和﹣D.﹣4和43.当|a|=﹣a时,则a是()A.a≤0 B.a<0 C.a≥0 D.a>04.室内温度是15℃,室外温度是﹣3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为()A.15+(﹣3)B.15﹣(﹣3)C.﹣3+15 D.﹣3﹣155.下列命题中,正确的是()A.若m•n>0,则m>0,n>0 B.若m+n<0,则m<0,n<0C.若m•n=0,则m=0且n=0 D.若m•n=0,则m=0或n=06.(﹣1)2018的相反数是()A.﹣1 B.1 C.﹣2018 D.20187.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A.48 B.48.0 C.47 D.47.98.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1069.下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个10.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A.5或1 B.1或﹣1 C.5或﹣5 D.﹣5或﹣1 11.下列语句,正确的个数是()①若a>0,b>0,则ab>0 ②若a<0,b<0,则ab<0③若a是有理数,则a2>0 ④若a>b,则|a|>|b|A.1个B.2个C.3个D.4个二.填空题(共9小题)12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则.13.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.14.没有最小的负数,但有最小的正数.15.﹣的倒数是.16.如果|a|=7,|b|=4,则a+b=.17.若|a|=3,|b|=5且a>0,则a﹣b=.18.如图,已知纸面上有一数轴,折叠纸面,使表示﹣2的点与表示5的点重合,则表示的点与表示的点重合.19.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.20.已知|x|=3,|y|=7,x<y,则x+y=.三.解答题(共4小题)21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.计算:(﹣)×(﹣)÷(﹣2)23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.24.若“*”是一种新的运算符号,并且规定a*b=.例如:3*5=,求[2*(﹣2)]*(﹣3)的值.参考答案一.选择题(共11小题)1.解:A、a也可能是0或负数,故本选项错误;B、a的相反数是﹣a,故本选项正确;C、a若是0时,没有倒数,故本选项错误;D、a是非负数时,a的绝对值是a,故本选项错误;故选:B.2.解:A、2和不是倒数关系,故此选项错误;B、3和是倒数关系,故此选项正确;C、|﹣3|=3,3和﹣不是倒数关系,故此选项错误;D、﹣4和4不是倒数关系,故此选项错误;故选:B.3.解:当|a|=﹣a时,则a≤0.故选:A.4.解:由题意,可知:15﹣(﹣3),故选:B.5.解:A、若m•n>0,则m、n同号,可以都是正数也可以都是负数,故本选项错误;B、若m+n<0,则m、n中绝对值较大的一个一定是负数,不一定都是负数,故本选项错误;C、若m•n=0,则m=0或n=0,故本选项错误;D、若m•n=0,则m=0,或n=0,故本选项正确.故选:D.6.解:(﹣1)2018的相反数是﹣1,故选:A.7.解:47.95精确到0.1的近似值为48.0.故选:B.8.解:316 000 000用科学记数法可表示为3.16×108,故选:C.9.解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选:A.10.解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵a+b>0,∴a=3,b=±2.当a=3,b=﹣2时,a﹣b=5;当a=3,b=2时,a﹣b=1.故a﹣b的值为5或1.故选:A.11.解:①若a>0,b>0,则ab>0,正确;②若a<0,b<0,则ab>0,不正确;③若a是有理数,则a2≥0,不正确;④若a>b,则|a|不一定大于|b|,不正确,∴正确的只有一个;故选:A.二.填空题(共9小题)12.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,又m的绝对值为2,所以m=±2,m2=4,则原式=0+2×4﹣3×1=5.故答案为5.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.14.解:根据有理数的定义,没有最小的负数,因为正数和负数都有无数个,它们都没有最小的值;所以没有最小的负数,但有最小的正数说法错误,故答案为:×.15.解:﹣的倒数是﹣2.故答案为:﹣2.16.解:∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,∴a+b=11,当a=7,b=﹣4时,∴a+b=3,当a=﹣7,b=4时,∴a+b=﹣3,当a=﹣7,b=﹣4时,∴a+b=﹣11,故答案为:±11或±317.解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.18.解:5﹣(﹣2)=7,7÷2=,5﹣=,﹣=,即点在中点右边个单位,故与的重合点在中点左边个单位,表示数字,,故答案为:.19.解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;所以他们的和是﹣4.故答案为:﹣4.20.解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=﹣3,y=7,∴x+y=10或4,故答案为10或4.三.解答题(共4小题)21.解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.解:原式=﹣××=﹣.23.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.24.解:原式=*(﹣3)=0*(﹣3)==﹣.人教版七年级数学第一章有理数单元测试(含答案)一、单选题1.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数2.下列各对量中,具有相反意义的量的是()A.购进50斤苹果与库存200斤苹果B.高于海平面786m与低于230m C.东走9m和北走10m D.飞机上升100m与前进100m 3.在下列选项中,既是分数,又是负数的是( )A.9 B.15C.-0.125 D.-724.下列说法中正确的个数是()①a-一定是负数;②只有负数的绝对值是它的相反数;③任何一个有理数都可以在数轴上找到对应的点;④最大的负整数是1-;A.1个B.2个C.3个D.4个5.1()3--的相反数是( )A.13-B.13C.3D.3-6.若x的相反数是-3,y=5,x+y的值为( )A.-8 B.2 C.8或-2 D.-8或27.计算|34-|+1的结果是()A.74B.1 C.14-D.148.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为()A.-2 B.3C.3-D.79.对有理数a,b,规定运算如下:a※b=a+ab,则-2※3的值为()A .-10B .-8C .-6D .-410.2019年端午节假日,中国出游旅客共计395万人次,将395万用科学记数法表示应为( ) A .70.39510⨯B .339510⨯C .63.9510⨯D .53.9510⨯11.根据如图所示的程序,计算当输入x =3时,输出的结果y 是( )A .2B .4C .6D .812.若|m -n |=n -m ,且|m |=4,|n |=3,则()2m n +=( ). A .1 B .49C .0D .1或49二、填空题13.如果向东走2km 记作2km +,那么向西走3km 记作_____________km . 14.已知|3||1|0a b -++=,则a b ⨯=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册第一章有理数复习知识点例题(含答案) 第一部分:知识点与对应例题一.正数与负数大于0的数叫做正数,小于0的数叫做负数,0既不是负数也不是偶数练习:电梯上升到四楼记为+4,下降到负二楼记为______________二.有理数能够写成分数的形式的数都是有理数三.数轴(1 )在直线上任取一个点为0,这个点叫做原点(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为正反向-5 -4 *1 -1 -I 0 I 2 3 4 5 6四.相反数2的相反数为一2,—2的相反数为2五.绝对值1•一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0⑴当a是正数(大于0)时,|a|=a⑵当a是负数(小于0)时,|a|=- a⑶当a=0时,|a|=0练习:写出下面各数的绝对值—8 5 02. (1)正数大于0,0大于负数•正数大于负数⑵两个负数,绝对值大的反而小练习:比较下面两个数的大小(1)—8 和一5 (2) 2.5 和| — 2.15|六.有理数的加减法1. 有理数加法法则(1 )同号两位数相加,取相同的符号,并把绝对值相加(2)绝对值不相等的异号两个数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0(3)一个数同0相加,得数为这个数计算:①一8+ (—10)= ②一4.9+7=2. (1)有理数的加法中,两个数相加,交换加数的位置,和不变a+b=b+a(2)三个数相加,先把前两个数相加,或者先把后两位数相加,和不变(a+b) +c=a+(b+c)练习:计算:16+ (—8) +24+ (—12)七.有理数的减法减去一个数,等于加上这个数的相反数a—b=a+ (—b)计算:①一3 —(—13) ② 0—(—4) ③ 6.3 —(— 2.7)八.有理数的乘除法(法则)(1 )两数相乘,同号得正,异号得负,并把绝对值相乘(2)任何数乘以0都得0(3)乘积是1的两个数是相反数(4)两个数相乘,交换因数的位置,积相等:ab=ba(5)三个数相乘,先把前面两个数相乘,或者先把后两个数相乘,积不变:(ab) c=a(bc) (6)一个数与两个数的和 (或差)相乘,等于这个数分别与这两个数相乘,再相加(或减)a (b+c) =ab+ac计算:① | x ( —4)笑(一6) x (—8)③(—50)x(—25)x ( —4)九.有理数的除法1•一般地,我们都需将除法变换成乘法(即变成乘以除数的倒数)2•计算有理数的混合运算时,我们要先加减后乘除,有括号的要先算括号里面的,有负号得要记得变号!练习:计算:一3x(15)- 5—( 15—12X 3)十.有理数的乘方1•求n个相同的数的乘积叫做乘方,乘方的结果叫做幕。
在a n中,a叫做底数,n叫做指数,可以读为a的n次幕(指数为1的通常不写)。
2•负数的奇次幕是负数,负数的偶次幕是正数;正数的奇偶次幕都是正数;0的任何次幕都是0;任何数的0次幕都是13. 混合运算时应注意:①先乘方,再乘除,最后加减②同级运算,从左到右进行③如果有括号,先计算括号里面的值,按小括号,中括号,大括号的顺序进行练习:(一10) 3+[ (—1) 4( 3—32)- 6]十一.科学计数法用科学计数法记下面的数字① 3600000 ②1000000000 ③10300000十二.近似数有效数字:从一个数的左边第一个非0的数字起,到末位数字止,所有数字都是这个数的有效数字。
如:0.0225的有效数字为3个。
第二部分:专项练习题(分教师卷与学生卷)教师用卷:一、精心选一选 :1. 据国家环保总局通报,北京市是“十五”水污染防治计划完成最好的城市,预计今年年底,北京市污水处理能力可以达到1684000吨,将1684000?吨用科学记数法表示为(AA . 1.684 X 10 6吨B . 1.684 X 105吨C . 0.1684 X 10 7吨D . 16.84 X 105吨2、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边100米,张明同学从家里出发,向北走了50米,接着又向北走了一70米,此时张明的位置在(B )A.在家B. 在学校C. 在书店D. 不在上述地方3、下列交换加数的位置的变形中,正确的是(D )5、a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是(A )A.a+b<0B.a+c<0\ 1 1 1C. a —b>0D.b—c<0 a b 0 c6、1 2 345 6 +……+2005—2006的结果不可能是: (A )A、奇数B、偶数 C 、负数 D 、整数7、、两个非零总有理数的和是0,则它们的商为:(B )A 0B 、--1 C 、+1 D、不能确定二.填空题:8、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 + 2 ;地下第一层记作-1 ;数一2的实际意义为地下室2层 ,数+ 9的实际意义为地面第九层 ______________________ 。
9、如果数轴上的点A对应的数为-1.5,那么与A点相距3个单位长度的点所对应的有理数为___ 1.5 或-4.5 _______10、倒数是它本身的数是1或-1 ;相反数是它本身的数是 _______ ;绝对值是它本身的数是0或1 _________11、绝对值大于1而小于4的整数有_4 _________ 个;12、某零件的直经尺寸在图纸上是10 0 . 05 (mr)i,合格产品的零件尺寸范围是9.95 —10.05 __________________ (mr)。
13、如果| x+8 | =5,那么x= ________ -3____14、观察等式:2 2 21 + 3= 4=2 , 1 + 3+ 5= 9 =3 , 1 + 3+ 5 + 7 = 16=4 , 1 + 3 + 5+ 7 + 9=25= 5 , ...猜想:(1) 1 + 3+ 5 + 7…+ 99 = 2500 ; (2) 1 + 3+ 5 + 7+・・・+( 2n-1 ) = ______ n(结果用含n的式子表示,其中n =1,2,3,……)。
20米,书店在家北边A、1 4 5 4 1 4 4 5 BC. 1 2 3 4 2 1 4 3 D、4、下列各对数中,互为相反数的是A. + (- 5.2 )与—5.2B.+C. -( - 5.2 )与5.2D. 5.213 1 1 13 1 134 6 4 44 3 64.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7(B )(+;5.2 ) 与-5.2与+(+5.2 )15、计算|3.14 - 卜的结果是 3.14 .答案:一 3.5 v — 2v- 1 v 0v 0.5 v 2v 3.5319、已知:x 14,(y 2)2 4,求 x y 的值.X=- 5 或 x=3 y=0 或-4X+y= - 5 或-9 或 3 或-1 五、学以致用20、淮海商场经理对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是33万元、32万元、52.5万元、28万元,3、4月亏损分别是17.7万元和17.8万元。
试用正、 负数表示各月的利润,并算出该商场上半年的总利润额。
答案:+ 33+ 32— 17.7 — 17.8 + 52.5+ 28总利润:110万元黄金周期间,淮北市风景区在 7天假期中每天旅游的人数变化如下表(正y w-).三、计算题:(解答每一题时应写出过程!) 17、(1) 15+ (—丄)一15—( — 0.25)(2) ( 81)4=0 =0.523(3) 29空 X<12)24=-374 (4) 25X 3 — ( — 25) X 1 + 25X ( — _4 )=25四、解答题18、在数轴上表示下列各数,并按从小到大的顺序用v ”把这些数连结起来。
(6分)3. 5,— 3.5, 0 ,2, — 2 , — 1, 0.5321、在“十•16、规定图形 表示运算a - b + c,图形直接写出答案数表示比前一天多的人数,负数表示比前一天少的人数)(2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?0.6+2 X 7=14.6 万人第一章有理数练习题一、精心选一选:1. 据国家环保总局通报,北京市是“十五”水污染防治计划完成最好的城市,预计今年年底,北京市污水处理能力可以达到1684000吨,将1684000?吨用科学记数法表示为( )A . 1.684 X 10 6吨B . 1.684 X 105吨C . 0.1684 X 10 7吨D . 16.84 X 105吨2、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了一70米,此时张明的位置在()A.在家B. 在学校C. 在书店D. 不在上述地方3、下列交换加数的位置的变形中,正确的是( )A、1 4 5 4 1 4 4 5 BC. 1 2 3 4 2 1 4 3 D、4、下列各对数中,互为相反数的是A. + (- 5.2 )与—5.2B.+C. -( - 5.2 )与5.2D. 5.2131113113 4 6 4 4 4 3 64.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7()(+5.2 )与-5.2与+ ( +5.2 )5、a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0B.a+c<01 1 1 1C. a —b>0D.b—c<0 a b 0 c6、1 2 345 6 +……+2005-2006的结果不可能是: ( )A、奇数B、偶数 C 、负数 D 、整数7、、两个非零总有理数的和是0,则它们的商为:()A 0B 、--1 C 、+1 D、不能确定二.填空题:8、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为___________ ;地下第一层记作____________ ;数- 2的实际意义为___________ ,数+ 9的实际意义为________________ 。
9、如果数轴上的点A对应的数为-1.5,那么与A点相距3个单位长度的点所对应的有理数为___________ 。
10、倒数是它本身的数是__________ ;相反数是它本身的数是_______________ ;绝对值是它本身的数是 ____________ 。