广东省六校联盟2020届高三第三次联考 数学(理)试题(含答案)

合集下载

2024届广东省高三第三次六校联考数学试题及答案

2024届广东省高三第三次六校联考数学试题及答案

东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第三次六校联考试题数学一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2A =,集合{}2,0,1B =-,则A B = ( )A. {}0,1B. {}2,0- C. {}2,1,0- D. {}0,1,22. 若复数z 满足()34i 1z -=,则z =( )A. 1B.15C.17 D.1253. 已知非零向量a 、b 满足2b a = ,且()a a b ⊥- ,则a 与b夹角为( )A.π3B.π2C.2π3D.5π64. 已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=( )A. 12-B.12C. 45-D.455. 已知函数()sin2f x x =和直线l :2y x a =+,那么“直线l 与曲线()y f x =相切”是“0a =”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知a ,b 为正实数,且21a b +=,则22121a b a b+++的最小值为( )A. 1+B. 2+C. 3+D. 4+7. 已知三棱锥S ABC -如图所示,AS 、AB 、AC两两垂直,且AS AB AC ===E 、F 分别是棱AS 、BS 的中点,点G 是棱SC 靠近点C 的四等分点,则空间几何体EFG ABC -的体积为( )的A.B.C.D.8. 已知数列{}k a 为有穷整数数列,具有性质p :若对任意的{}1,2,3,4n ∈,{}k a 中存在i a ,1i a +,2i a +,…,i j a +(1i ≥,0j ≥,i ,N j *∈),使得12i i i i j a a a a n ++++++⋅⋅⋅+=,则称{}k a 为4-连续可表数列.下面数列为4-连续可表数列的是( )A. 1,1,1B. 1,1,2C. 1,3,1D. 2,3,6二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 关于平面向量,有下列四个命题,其中说法正确的是( )A 9,2a k ⎛⎫= ⎪⎝⎭,(),8b k = ,若//a b r r,则6k =B. 若a c b c =⋅⋅ 且0c ≠,则a b= C. 若点G 是ABC 的重心,则0GA GB GC ++=D. 若向量()1,1a =- ,()2,3b = ,则向量b 在向量a 上投影向量为2a10. 已知函数22si 1()s cos co n f x x x x =+-的图象为C ,以下说法中正确的是( )A. 函数()f xB. 图象C 相邻两条对称轴的距离为π2C. 图象C 关于π,08⎛⎫-⎪⎝⎭中心对称D.要得到函数in y x =的图象,只需将函数()f x 的图象横坐标伸长为原来的2倍,再向右平移π4个单位.的11. 若函数()f x 的定义域为D ,若对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,则称()f x 为“Ⅰ型函数”,则下列说法正确的是( )A. 函数()ln f x x =是“Ⅰ型函数”B. 函数()sin f x x =是“Ⅰ型函数”C. 若函数()f x 是“Ⅰ型函数”,则函数()1f x -也是“Ⅰ型函数”D. 已知R m ∈,若()sin f x m x =+,ππ,22x ⎡⎤∈-⎢⎥⎣⎦是“Ⅰ型函数”,则12m =12. 已知棱长为1的正方体1111ABCD A B C D -中,P 为线段1AC 上一动点,则下列判断正确的是( )A. 存在点P ,使得11//C P AB B. 三棱锥1P BC D -C. 当P 为1AC 的中点时,过P 与平面1BC DD. 存在点P ,使得点P 到直线11B C 的距离为45三、填空题:本题共45分,共20分.13. 关于x 的不等式()220ax a b x +++>的解集为()3,1-,则a b +=______.14. 已知数列{}n a 的前n 项和,21n n S =-,则210log a =_________.15. 已知函数()()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩,关于x 的方程()()20f x a f x -⋅=有六个不等的实根,则实数a 的取值范围是______.16. 如图,已知函数()()sin f x A x ωϕ=+(其中0A >,0ω>,π2≤ϕ)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,π3OCB ∠=,2OA =,AD =.则函数()f x 在[]1,6上的值域为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知n S 为数列{}n a 的前n 项和,且11a =,()211n n nS n S n n +=+++,n *∈N .(1)证明:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n S 的通项公式;(2)若11n n n b a a +=⋅,设数列{}n b 前n 项和为n T ,求n T .18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且cos cos 2cos b A a B c A +=-.(1)求角A 的值;(2)已知点D 为BC 的中点,且2AD =,求a 的最大值.19. 若二次函数()f x 满足()()25152f x f x x x +=---(1)求()f x 的解析式;(2)若函数()()ln g x x x f x =+,解关于x 的不等式:()()22g x x g +≥.20. 如图(1)所示,在ABC 中,60ABC ∠= ,过点A 作AD BC ⊥,垂足D 在线段BC上,且AD =CD =,沿AD 将CDA 折起(如图(2)),点E 、F 分别为棱AC 、AB 的中点.的(1)证明:AD EF ⊥;(2)若二面角C DA B --所成角的正切值为2,求二面角C DF E --所成角的余弦值.21. 已知数列{}n a 是公比大于0的等比数列,14a =,364a =.数列{}n b 满足:21n n nb a a =+(N n *∈).(1)求数列{}n b 的通项公式;(2)证明:{}22n n b b -是等比数列;(3)证明:)N*k n k =∑<∈22. 已知函数()()ln f x x t x =-,R t ∈(1)讨论函数()f x 的单调区间;(2)当1t =时,设1x ,2x 为两个不相等的正数,且()()12f x f x a ==,证明:121(2e)e ex x a +>-+-..东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第三次六校联考试题数学一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2A =,集合{}2,0,1B =-,则A B = ( )A. {}0,1B. {}2,0- C. {}2,1,0- D. {}0,1,2【答案】A 【解析】【分析】根据交集的定义计算可得.【详解】因为{}0,1,2A =,{}2,0,1B =-,所以{}0,1A B = .故选:A2. 若复数z 满足()34i 1z -=( )A. 1 B.15C.17D.125【答案】B 【解析】【分析】利用复数的除法运算及模长公式计算即可.【详解】由()()()134i 34i 3434i 1i 34i 34i 34i 252525z z ++-=⇒====+-+⋅-,所以15z ==.故选:B.3. 已知非零向量a 、b 满足2b a = ,且()a ab ⊥- ,则a 与b的夹角为( )A.π3B.π2C.2π3D.5π6【答案】A【解析】【分析】分析可得()0a a b ⋅-= ,利用平面向量数量积的运算性质可得出cos ,a b的值,结合平面向量夹角的取值范围可得出a 与b的夹角.【详解】因为非零向量a 、b满足2b a = ,且()a ab ⊥- ,则()2222cos ,2cos ,0a a b a a b a a b a b a a a b ⋅-=-⋅=-⋅=-=,所以,1cos ,2a b = ,又因为0,πa b ≤≤ ,故π,3a b = .因此,a 与b 的夹角为π3.故选:A.4. 已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=( )A. 12-B.12C. 45-D.45【答案】C 【解析】【分析】利用两角和的正切公式可得出关于tan θ的方程,解出tan θ的值,再利用二倍角的余弦公式以及弦化切可求得cos 2θ的值.【详解】因为πtan tanπtan 1174tan tan π41tan 221tan tan 4θθθθθθ++⎛⎫+===- ⎪-⎝⎭-,整理可得2tan 6tan 90θθ-+=,解得tan 3θ=,所以,222222cos sin 1tan 194cos 2cos sin 1tan 195θθθθθθθ---====-+++.故选:C.5. 已知函数()sin2f x x =和直线l :2y x a =+,那么“直线l 与曲线()y f x =相切”是“0a =”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】根据直线l 与曲线()y f x =相切,求出2π,a k k Z =-∈,利用充分条件与必要条件的定义即可判断出结论.【详解】设函数()sin 2f x x =和直线:2l y x a =+的切点坐标为()00,x y ,则()0000'2cos 22sin 22f x x x x a ⎧==⎨=+⎩,可得2π,a k k Z =-∈,所以0a =时,直线l 与曲线()y f x =相切;直线l 与曲线()y f x =相切不能推出0a =.因此“0a =”是“直线l 与曲线()y f x =相切”的必要不充分条件.故选:B .6. 已知a ,b 为正实数,且21a b +=,则22121a b a b+++的最小值为( )A. 1+B. 2+C. 3+D. 4+【答案】D 【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.【详解】正实数,a b 满足21a b +=,则221211111(2)()1(2)()a b a b a b a b a b a b+++=+++=+++2444b a a b =++≥+=+2b a a b =,即1a ==-时取等号,所以当1,1a b ==时,22121a b a b +++取得最小值4+.故选:D7. 已知三棱锥S ABC -如图所示,AS 、AB 、AC两两垂直,且AS AB AC ===E 、F 分别是棱AS 、BS 的中点,点G 是棱SC 靠近点C 的四等分点,则空间几何体EFG ABC -的体积为( )A.B. C.D.【答案】C 【解析】【分析】过点G 作//GH AC ,交SA 于点H ,证明出GH ⊥平面SAB ,计算出三棱锥C SAB -、G SEF -的体积,可得出EFG ABC C SAB G SEF V V V ---=-,即可得解.【详解】过点G 作//GH AC ,交SA 于点H ,因为AC AB ⊥,AC SA ⊥,AB AS A ⋂=,AB 、AS ⊂平面SAB ,所以,AC ⊥平面SAB ,因为//GH AC ,则GH ⊥平面SAB ,且34GH SG AC SC ==,则34GH AC ==因为E 、F 分别为SA 、BS 的中点,则(21111442SEF ABS S S ==⨯⨯=△△,所以,11133G SEF SEF V S GH -=⋅=⨯=△(3111332C SABSAB V S AC -=⋅=⨯⨯=△,因此,EFG ABC C SAB G SEF V V V ---=-==故选:C.8. 已知数列{}k a 为有穷整数数列,具有性质p :若对任意的{}1,2,3,4n ∈,{}k a 中存在i a ,1i a +,2i a +,…,i j a +(1i ≥,0j ≥,i ,N j *∈),使得12i i i i j a a a a n ++++++⋅⋅⋅+=,则称{}k a 为4-连续可表数列.下面数列为4-连续可表数列的是( )A. 1,1,1 B. 1,1,2C. 1,3,1D. 2,3,6【答案】B 【解析】【分析】根据新定义进行验证即可得.【详解】选项A 中,1233a a a ++=,和不可能为4,A 不是4-连续可表数列;选项B 中,112231231,2,3,4a a a a a a a a =+=+=++=,B 是4-连续可表数列;选项C 中,没有连续项的和为2,C 不是4-连续可表数列;选项D 中,没有连续项的和为1,D 不是4-连续可表数列.故选:B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 关于平面向量,有下列四个命题,其中说法正确的是( )A. 9,2a k ⎛⎫= ⎪⎝⎭,(),8b k = ,若//a b r r ,则6k =B. 若a c b c =⋅⋅ 且0c ≠,则a b= C. 若点G 是ABC 的重心,则0GA GB GC ++=D. 若向量()1,1a =- ,()2,3b = ,则向量b 在向量a 上的投影向量为2a【答案】CD 【解析】【分析】利用共线向量的坐标表示可判断A 选项;利用向量垂直的表示可判断B 选项;利用三角形重心的向量性质可判断C 选项;利用投影向量的定义可判断D 选项.【详解】对于A 选项,已知9,2a k ⎛⎫= ⎪⎝⎭ ,(),8b k = ,若//a b r r ,则298362k =⨯=,解得6k =±,A 错;对于B 选项,若a c b c =⋅⋅ 且0c ≠,则()0a c b c c a b ⋅-⋅=⋅-= ,所以,a b = 或()c a b ⊥-,B 错;对于C 选项,若点G 是ABC 的重心,则0GA GB GC ++=,C 对;对于D 选项,若向量()1,1a =- ,()2,3b =,则向量b 在向量a上的投影向量为21cos ,2a a b a a b b a b b a a a a b a a⋅⋅⋅=⋅⋅=⋅=⋅,D 对.故选:CD.10. 已知函数22si 1()s cos co n f x x x x =+-的图象为C ,以下说法中正确的是( )A. 函数()f xB. 图象C 相邻两条对称轴的距离为π2C. 图象C 关于π,08⎛⎫-⎪⎝⎭中心对称D.要得到函数in y x =的图象,只需将函数()f x 的图象横坐标伸长为原来的2倍,再向右平移π4个单位【答案】BCD 【解析】【分析】利用二倍角公式及两角和的正弦公式将函数化简,再根据正弦函数的性质一一判断即可.【详解】因为22si 1()s cos co n f x x x x =+-cos 2111sin2π222224x x x x x ⎫+⎛⎫=+-=+=+⎪ ⎪⎪⎝⎭⎭,所以函数()f x,故A 错误;函数()f x 的最小正周期2ππ2T ==,所以图象C 相邻两条对称轴的距离为π2,故B 正确;因为πππ20884f ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以图象C 关于π,08⎛⎫- ⎪⎝⎭中心对称,故C 正确;将()π24f x x ⎛⎫=+ ⎪⎝⎭的横坐标伸长为原来的2倍,纵坐标不变得到π4y x ⎛⎫=+ ⎪⎝⎭,再将π4y x ⎛⎫=+ ⎪⎝⎭向右平移π4个单位得到y x =,故D 正确;故选:BCD11. 若函数()f x 的定义域为D ,若对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,则称()f x 为“Ⅰ型函数”,则下列说法正确的是( )A. 函数()ln f x x =是“Ⅰ型函数”B. 函数()sin f x x =是“Ⅰ型函数”C. 若函数()f x 是“Ⅰ型函数”,则函数()1f x -也是“Ⅰ型函数”D. 已知R m ∈,若()sin f x m x =+,ππ,22x ⎡⎤∈-⎢⎥⎣⎦是“Ⅰ型函数”,则12m =【答案】ACD 【解析】【分析】根据所给函数的定义求解C ,根据对数运算求解A ,根据三角函数的周期性以及单调性求解BD.【详解】对于A,由()()121f x f x +=可得121212ln ln 1ln 1e x x x x x x +=⇒=⇒=,所以21ex x =,故A 正确,对于B ,取1π2x =,则由()()121f x f x +=以及()sin f x x =可得22sin 0π,Z x x k k =⇒=∈,故这与存在唯一2x D ∈矛盾,故B 错误,对于C ,由于函数()f x 是“Ⅰ型函数”,则对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,故()()12111f x f x -+-=,因此对于对于任意1x D ∈,都存在唯一的2x D ∈,使得()()12111f x f x -+-=,故()1f x -是“Ⅰ型函数”,C 正确,对于D ,对于任意1x D ∈,都存在唯一的2x D ∈,使得12sin sin 1m x m x +++=,所以21sin 12sin x m x =--,由于[]11ππ,,sin 1,122x x ⎡⎤-∈-⎢⎥⎣∈⎦,所以[]21sin 12sin 2,22,x m x m m =--∈--,由于sin y x =在ππ,22x ⎡⎤∈-⎢⎥⎣⎦单调递增,的所以21m -≥-且221m -≤,故12m =,D 正确,故选:ACD12. 已知棱长为1的正方体1111ABCD A B C D -中,P 为线段1AC 上一动点,则下列判断正确的是( )A. 存在点P ,使得11//C P ABB. 三棱锥1P BC D -C. 当P 为1AC 的中点时,过P 与平面1BC DD. 存在点P ,使得点P 到直线11B C 的距离为45【答案】BCD 【解析】【分析】建立空间坐标系,根据向量共线求解A ,根据正三棱锥的性质,结合外接球半径的求解即可判定B ,根据面面平行的性质,结合六边形的面积求解即可判定C ,建立空间坐标系,利用点线距离的向量求法,由二次函数的性质即可求解D.【详解】由于111BC C D BD BDC ===∴ 为等边三角形,且其外接圆的半径为12r ==,由于1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又11,,,AC BD AC AA A AC AA ⊥⋂=⊂平面11AAC C ,所以BD ⊥平面11AAC C ,1AC ⊂平面11AAC C ,故1BD AC ⊥,同理可证11BC AC ⊥,因此11,,BD BC B BD BC ⋂=⊂平面1BDC ,故1AC ⊥平面1BDC ,因此三棱锥1P BC D -为正三棱锥,设外接球半径为R ,球心到平面1BDC 的距离为h ,则R =0h =时,R r ==B 正确,取11,,ABCD AD 的中点为,M Q ,N ,连接,,NM MQ NQ ,当P 是1AC 的中点,也是QM 的中点,则该截面为与平面1BC D 平行的平面截正方体所得的截面,进而可得该截面为正六边形,边长为NM==,所以截面面积为16sin602⎛⎫⨯=⎪⎪⎝⎭,C正确,对于D,建立如图所示的空间直角坐标系,则()()()10,0,0,0,1,0,1,0,1D C A()111,0,0C B DA==,设()()111,1,1,,A P a A C a a a a==--=--,(01a≤≤),()()()1111,,0,1,0,1,B P A P A B a a a a a a=-=---=---,所以点P到直线11B C的距离为d====,由于01a≤≤,所以d⎤=⎥⎦,由于45⎤∈⎥⎦,故D正确,由于()()1,1,,1,,1B P a a a P a a a=---∴--,()10,1,1C,则()11,1,C P a a a=---,()()()111,0,0,1,1,1,0,1,1A B AB=,若()10,1,1AB=与()11,1,C P a a a=---共线,则10a-=,1a=,此时()10,0,1C P=-,此时()10,1,1AB=与()10,0,1C P=-不共线,故11,C P AB不平行故A错误,故选:BCD三、填空题:本题共4小题,每小题5分,共20分.13. 关于x 不等式()220ax a b x +++>的解集为()3,1-,则a b +=______.【答案】43-##113-【解析】【分析】分析可知,3-、1是关于x 的方程()220ax a b x +++=的两根,利用韦达定理可得出a b +的值.【详解】因为关于x 的不等式()220ax a b x +++>的解集为()3,1-,则a<0,且3-、1是关于x 的方程()220ax a b x +++=的两根,由韦达定理可得31a b a +-+=-,231a -⨯=,解得23a =-,所以,423a b a +==-.故答案为:43-.14. 已知数列{}n a 的前n 项和,21n n S =-,则210log a =_________.【答案】9【解析】【分析】根据10109a S S =-求出10a ,再根据对数的运算性质计算可得.【详解】因为数列{}n a 的前n 项和21n n S =-,所以()10991010921212a S S =-=---=,所以92102log log 29a ==.故答案为:9的15. 已知函数()()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩,关于x 的方程()()20f x a f x -⋅=有六个不等的实根,则实数a 的取值范围是______.【答案】(0,1)【解析】【分析】方程变形为()0f x =或()f x a =,其中()0f x =可解得两个根,因此()f x a =应有4个根,作出函数y =()f x 的图象与直线y a =,由图象得它们有4个交点时的参数范围.【详解】2()()0f x af x -=,则()0f x =或()f x a =,2100x x -=⇒=,2(2)02x x -=⇒=,即()0f x =有两个根,因此()f x a =应有4个根,作出函数y =()f x 的图象与直线y a =,由图象可知,当01a <<时满足题意,故答案为:(0,1).16. 如图,已知函数()()sin f x A x ωϕ=+(其中0A >,0ω>,π2≤ϕ)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,π3OCB ∠=,2OA =,AD =.则函数()f x 在[]1,6上的值域为______.【答案】816,33⎡⎤-⎢⎥⎣⎦【解析】π|sin |2A ϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据||AD =222π28(1243A sin ϕω-+=,进而解出ω,ϕ,A ,即可求出()f x ,再由三角函数的性质求解.【详解】由题意可得:||||OB OC =,2πϕω=+,sin(2)0ωϕ+=,(2,0)A ,2,0B πω⎛⎫+ ⎪⎝⎭,(0,sin )C A ,πsin 1,22A D ϕω⎛⎫∴+ ⎪⎝⎭,AD = ,222πsin 281243A ϕω⎛⎫∴-+= ⎪⎝⎭,把πsin A ϕω=+代入上式可得:2ππ(2240ωω-⨯-=,0ω>.解得π6ω=,π6ω∴=,πsin()03ϕ∴+=,π||2ϕ≤,解得π3ϕ=-.πsin 263⎛⎫-=+ ⎪⎝⎭,0A >,解得163A =,所以函数16ππ()sin()363f x x =-,[]1,6x ∈时,πππ2π,6363x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,ππ1sin(,1632x ⎡⎤-∈-⎢⎥⎣⎦,16ππ816()sin(),36333f x x ⎡⎤=-∈-⎢⎥⎣⎦故答案为:816,33⎡⎤-⎢⎥⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知n S 为数列{}n a 的前n 项和,且11a =,()211n n nS n S n n +=+++,n *∈N .(1)证明:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n S 的通项公式;(2)若11n n n b a a +=⋅,设数列{}n b 的前n 项和为n T ,求n T .【答案】(1)证明见解析,2n S n = (2)n T =【解析】【分析】(1)利用等差数列的定义可证得数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列n S n ⎧⎫⎨⎬⎩⎭的通项公式,进而可得出数列{}n S 的通项公式;(2)利用n S 与n a 的关系可求出数列{}n a 的通项公式,再利用裂项相消法可求得n T .【小问1详解】解:对任意的n *∈N ,()211n n nS n S n n +=+++,则()()()21111111n n n n nS n S S S n nn n n n n n ++-++-===+++,所以,数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且其首项为111S =,公差为1,所以,11nS n n n=+-=,故2n S n =.【小问2详解】解:当2n ≥时,()221121n n n a S S n n n -=-=--=-,11a =也满足21n a n =-,故对任意的n *∈N ,21n a n =-.所以,()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪⋅-+-+⎝⎭,故111111111111232352212122121n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭ .18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且cos cos 2cos b A a B c A +=-.(1)求角A 的值;(2)已知点D 为BC 的中点,且2AD =,求a 的最大值.【答案】(1)2π3A = (2)【解析】【分析】(1)利用正弦定理结合两角和的正弦公式可求出cos A 的值,结合角A 的取值范围可求得角A 的值;(2)利用平面向量的线性运算可得出2AD AB AC =+,利用平面向量数量积的运算性质结合余弦定理、基本不等式可得出关于a a 的最大值.【小问1详解】解:因为A 、()0,πC ∈,则sin 0C >,由正弦定理可得()2cos sin sin cos sin cos sin sin A C B A A B A B C -=+=+=,所以,1cos 2A =-,故2π3A =.【小问2详解】解:因为D 为BC 中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,所以,2AD AB AC =+,所以,22222222π422cos 163AD AC AB AC AB b c bc b c bc =++⋅=++=+-= ,由余弦定理可得222222π2cos 3a b c bc b c bc =+-=++,所以,222162a b c ++=,2216bc a =-,的由基本不等式可得222b c bc +≥,即2216162a a +≥-,解得0a <≤,当且仅当2216b cb c bc =⎧⎨+-=⎩时,即当4b c ==时,等号成立,故a的最大值为19. 若二次函数()f x 满足()()25152f x f x x x ++=---(1)求()f x 的解析式;(2)若函数()()ln g x x x f x =+,解关于x 的不等式:()()22g x x g +≥.【答案】(1)()2122f x x x =-- (2)[)(]2,10,1--⋃【解析】【分析】(1)()()20f x ax bx c a =++≠,根据()()25152f x f x x x ++=---可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式;(2)求出函数()g x 的定义域,利用导数分析函数()g x 的单调性,由()()22g x x g +≥可得出关于实数x 的不等式组,由此可解得实数x 的取值范围.【小问1详解】解:设()()20f x ax bx c a =++≠,则()()()()22111f x f x a x b x c ax bx c++=+++++++()225222252ax a b x a b c x x =+++++=---,所以,21225522a a b a b c ⎧⎪=-⎪+=-⎨⎪⎪++=-⎩,解得1220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩,故()2122f x x x =--.【小问2详解】解:函数()()2l ln 1n 22x x x x g x x x f x +-==-的定义域为()0,∞+,且()ln 12ln 1g x x x x x '=+--=--,令()ln 1h x x x =--,其中0x >,则()111x h x x x-'=-=,由()0h x '>可得01x <<,由()0h x '<可得1x >,所以,函数()h x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故对任意的0x >,()()()10g x h x h '=≤=,所以,函数()g x 在()0,∞+上为减函数,由()()22g x x g +≥可得202x x <+≤,解得21x -≤<-或01x <≤,因此,不等式()()22g x x g +≥的解集为[)(]2,10,1--⋃.20. 如图(1)所示,在ABC 中,60ABC ∠= ,过点A 作AD BC ⊥,垂足D 在线段BC 上,且AD =CD =,沿AD 将CDA 折起(如图(2)),点E 、F 分别为棱AC 、AB 的中点.(1)证明:AD EF ⊥;(2)若二面角C DA B --所成角的正切值为2,求二面角C DF E --所成角的余弦值.【答案】(1)证明见解析 (2)1319【解析】【分析】(1)证明出AD ⊥平面BCD ,可得出AD BC ⊥,利用中位线的性质可得出//EF BC ,即证得结论成立;(2)分析可知,二面角C DA B --的平面角为BDC ∠,以点D 为坐标原点,DB 、DA 所在直线分别为x 、y 轴,平面BCD 内过点D 且垂直于BD 的直线为z 轴建立空间直角坐标系,利用空间向量法可求得二面角C DF E --所成角的余弦值.【小问1详解】证明:翻折前,AD BC ⊥,则AD CD ⊥,AD BD ⊥,翻折后,则有AD CD ⊥,AD BD ⊥,因为BD CD D ⋂=,BD 、CD ⊂平面BCD ,所以,AD ⊥平面BCD ,因为BC ⊂平面BCD ,所以,AD BC ⊥,在四棱锥A BCD -中,因为点E 、F 分别为棱AC 、AB 的中点,则//EF BC ,因此,AD EF ⊥.【小问2详解】解:因为AD CD ⊥,AD BD ⊥,则二面角C DA B --的平面角为BDC ∠,即tan 2BDC ∠=,因AD ⊥平面BCD ,以点D 为坐标原点,DB 、DA 所在直线分别为x 、y 轴,平面BCD 内过点D 且垂直于BD 的直线为z 轴建立如下图所示的空间直角坐标系,因为60ABD ∠=o ,AD BD ⊥,AD =2tan 60AD BD ===,又因为CD =()0,A 、()2,0,0B 、()1,0,2C 、()0,0,0D、12E ⎛⎫⎪⎝⎭、()F ,设平面CDF 的法向量为()111,,m x y z =,()1,0,2DC =,()DF = ,则1111200m DC x z m DF x ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,可得(2,m =- ,设平面DEF 的法向量为()222,,x n y z = ,1,0,12EF ⎛⎫=- ⎪⎝⎭,则22220102n DF x n EF x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取2x =,可得(n =- ,为所以,13cos ,19m n m n m n ⋅===⋅,由图可知,二面角C DF E --的平面角为锐角,故二面角C DF E --的余弦值为1319.21. 已知数列{}n a 是公比大于0的等比数列,14a =,364a =.数列{}n b 满足:21n n nb a a =+(N n *∈).(1)求数列{}n b 的通项公式;(2)证明:{}22n n b b -是等比数列;(3)证明:)N*k n k =∑<∈.【答案】(1)2144nn n b =+(2)见解析 (3)见解析【解析】【分析】(1)由等比数列的通项公式运算可得{}n a 的通项公式,进而求出数列{}n b 的通项公式;(2)运算可得2224nn n b b -=⋅,结合等比数列的定义即可得证;(3)放缩得2222(21)(21)422n n n n n n b b -+<-⋅,进而可得112k k n n k ==-∑<∑,结合错位相减法即可得证.【小问1详解】设等比数列{}n a 的公比为q ,则2231464a a q q =⋅==,则4q =,所以1444n n n a -=⋅=,又221144n n n n n b a a =+=+.【小问2详解】所以22242211442444n n n n n n nb b ⎛⎫⎛⎫-=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭,所以220nn b b -≠,且211222224424n n n nn n b b b b +++-⋅==-⋅,所以数列{}22n n b b -是首项为8,公比为4的等比数列;【小问3详解】由题意知,()()2222222121(21)(21)414242222n n nn n n n n n n n b b -+-+-==<-⋅⋅⋅,12n n-<==,所以112k k n n k==-∑<∑,设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑,则123112322222n n nT =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n n nn n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以4n T =所以1112422k k n n n k n ==--+⎫∑<∑=-<⎪⎭【点睛】关键点点睛:最后一问考查数列不等式的证明,因为k n =∑相减法即可得证.22. 已知函数()()ln f x x t x =-,R t ∈(1)讨论函数()f x 的单调区间;(2)当1t =时,设1x ,2x 为两个不相等的正数,且()()12f x f x a ==,证明:121(2e)e ex x a +>-+-.【答案】22. ()10,e t -上单调递增,()1e,t -+∞上单调递减.23. 证明见解析【解析】【分析】(1)利用导数研究函数的单调性;(3)利用切割线放缩证明.【小问1详解】()()ln f x x t x =-,()n 1l 1ln t x f x t x x x ⎛'⎫-⎝=-+=-- ⎪⎭,()100e t f x x ->⇔<<',()10e t x f x -<⇔>',()10,e t -上单调递增,()1e,t -+∞上单调递减.【小问2详解】()()1ln f x x x =-,()ln f x x '=-,()()1ln f x x x =-在()0,1上单调递增,()1,+∞上单调递减.()11f =()e 0f =,()()00000211ln lim lim 1ln lim lim lim 011x x x x x x x f x x x x x x +++++→→→→→⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ -⎪ ⎪⎝⎭=--⎝-==⎭,因()10f x x'⎤⎦=-<⎡⎣',所以函数()f x 在区间()0,e 上为上凸函数,函数()f x 在区间(]0,e 的图象如图所示.不妨设12x x <,则1201e x x <<<<.连接()1,1A 和点()e,0的直线l 2的方程为:()1e 1ey x =--,当y a =时,()41e e x a =-+,由图可知24x x >,所以要证明121(2e)e e x x a +>-+-,只需证明411(2e)e ex x a +>-+-,即只需证明1411(2e)e e ex a x a >-+--=-,连接OA 的直线1l 的方程为y x =,设函数()f x 的图象的与OA 平行的切线是直线3l ,为()1ln 1e x f x x '-===⇒,11121ln e e e e f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝-⎭=,直线3l 的方程为21e e y x -=-,即1ey x =+,令y a =,得直线y a =与直线3l 的交点横坐标为1ea -,由图可知,11ex a >-,故要证不等式成立.。

广东省六校联盟高三数学第三次联考试题 理

广东省六校联盟高三数学第三次联考试题 理

数学(理科)(满分150分) 考试时间:120分钟参考公式:柱体的体积公式V Sh =,锥体的体积公式13V Sh =.一、选择题:(本大题共8小题,每小题5分,共计40分.每小题只有一个正确答案,请把正确答案填涂在答题卡相应位置)1. 设集合{}{}{}1,2,3,4,5,2,3,4,3,5U A B ===,则图中阴影部分所表示的集合为( )A.{}2,3B.{}1,4C.{}5D.{}62. 已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( )A.()p q ⌝∨B.p q ∨C.p q ∧D.()()p q ⌝∧⌝ 3. 已知向量()()()5,2,4,3,,a b c x y ==--=,若320a b c -+=,则c =( )A.()23,12--B.()23,12C.()7,0D.()7,0-4. 下列函数中,在其定义域上为奇函数的是( )A.xxy e e -=+B.y =C.tan y x =D.1ln1xy x+=- 5. 某几何体的三视图如图所示,该几何体的体积为( )A.263 B.83π+ C.143π D.73π 6. 已知等差数列{}n a 中,10,0a d >>,前n 项和为n S ,等比数列{}n b 满足11b a =,44b a =,前n 项和为n T ,则( ) A.44S T >B.44S T <C.44S T =D.44S T ≤7. 已知直线()1:2110l ax a y +++=,()()2:110l a x a y ++-=,若12l l ⊥,则a =( )A.2或12 B.13或1- C.13D.1- 8. 已知函数()f x 的定义域为D ,如果存在实数M ,使对任意的x D ∈,都有()f x M ≤,则称函数()f x 为有界函数,下列函数: ①()2,xf x x R -=∈ ②()()ln ,0,f x x x =∈+∞③()()()2,,00,1xf x x x =∈-∞+∞+; ④()()sin ,0,f x x x x =∈+∞为有界函数的是( )A.②④B.②③④C.①③D.①③④二、填空题:(本大题共6小题,每小题5分,共计30分.)9. 函数()ln f x x x =在点()(),e f e 处的切线方程为___________________.U AB主视图 侧视图俯视图10. 在ABC ∆中,45,75,2A B c =︒=︒=,则此三角形的最短边的长度是________.11. 已知递增的等差数列{}n a 满足21252,6a a a ==+,则n a =___________.12. 已知圆2220x y x +-=上的点到直线:2l y kx =-的最近距离为1,则k =______. 13. 如图,为了测量两座山峰上两点P 、Q 之间的距离,选择山坡上一段长度为P,Q 两点在同一平面内的路段AB 的 两个端点作为观测点,现测得四个角的大小分别是90PAB ∠=︒,60PAQ PBA PBQ ∠=∠=∠=︒,可求得P 、Q 两点间的距离为 米.14. 已知(){}:,23p M x y x x ∈+-+;()(){}()222:,10q M x y x y r r ∈-+<>如果p 是q 的充分但不必要条件,则r 的取值范围是_ .三、解答题(本大题共六个小题,共80分.解答应写出文字说明、证明过程和演算步骤) 15.(本小题满分12分)已知函数()sin 1f x x x ωω=+(其中0,x R ω>∈)的最小正周期为6π. (1)求ω的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,13217f πα⎛⎫-= ⎪⎝⎭,()1135f βπ+=,求()cos αβ+的值. 16.(本小题满分12分)寒假期间校学生会拟组织一次社区服务活动,计划分出甲、乙两个小组,每组均组织①垃圾分类宣传,②网络知识讲座,③现场春联派送三项活动,甲组计划12的同学从事项目①,14的同学从事项目②,最后14的同学从事项目③;乙组计划15的同学从事项目①,另15的同学从事项目②,最后35的同学从事项目③,每个同学最多只能参加一个小组的一项活动,从事项目①的总人数不得多于20人,从事项目②的总人数不得多于10人,从事项目③的总人数不得多于18人,求人数足够的情况下,最多有多少同学能参加此次的社区服务活动?17.(本小题满分14分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A 1B 1C 1D 1的四个侧面,记底面上一边(),02AB t t =<<,连接A 1B,A 1C,A 1D.(1)当长方体ABCD-A 1B 1C 1D 1的体积最大时,求二面角B-A 1C-D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由.18.(本小题满分14分)已知数列{}n a 中,1141,13n n a a a +==-+ ,数列{}n b 满足()*1,1n n b n N a =∈+. (1)求数列{}n b 的通项公式; (2)证明:222121117n b b b +++<. 19.(本小题满分14分)已知直角坐标系中,圆O 的方程为222x y r +=()0r >,两点()()4,0,0,4A B ,动点P 满足(),01AP AB λλ=≤≤. (1)求动点P 的轨迹C 方程;(2)若对于轨迹C 上的任意一点P ,总存在过点P 的直线l 交圆O 于M,N 两点,且点M 是线段PN 的中点,求r 的取值范围.20.(本小题满分14分)已知函数()()ln f x x a ax =++. (1)求函数()f x 的单调区间和极值;(2)若()1,0a ∈-,函数()()g x a f x '=的图像上存在12,P P 两点,其横坐标满足1216x x <<<,C 1A BC D A 1B 1D 1g x的图像在此两点处的切线互相垂直,求a的取值范围. 且()六校联盟第三次联考理科数学参考答案及评分标准一、选择题:CBAD DABC二、填空题:9.20x y e --=;10.3; 11.2n 12.0或者43-; 13. 900;14. r >)r ∈+∞或者直接)+∞均可三、解答题:15. 解:⑴ ()sin 12sin()13f x x x x πωωω=+=-+ …………3分26T ππω==,所以13ω=. ………………………………………………6分 ()12sin()133f x x π=-+注:如果()2cos()16f x x πω=-++等正确结果的话相应给分即可.⑵1132sin (3)12sin 12cos 12323217f ππππαααα⎛⎫⎛⎫⎛⎫-=--+=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以8cos 17α= ………………………………………………………………7分()11132sin (3)12sin 1335f πβπβπβ⎛⎫+=+-+=+= ⎪⎝⎭所以3sin 5β= …………………………………………………………………8分因为,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以154sin ,cos 175αβ====,10分所以()13cos cos cos sin sin 85αβαβαβ+=-=-. …………………………12分16.解:设甲组x 名同学,乙组y 名同学,根据题意有:……………………1分1120251110451318450,0x y x y x y x y ⎧+≤⎪⎪⎪+≤⎪⎨⎪+≤⎪⎪⎪≥≥⎩ 整理得: 52200542005123600,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 可行域如图: 参加活动的总人数z x y =+,变形为y x z =-+,当经过可行域内的点,斜率为1-的直线在y 轴上Ox y 54200x y += 52200x y += 512360x y += y x =- A (24,20) ………7分,约束条件和图像各3分,不化简不扣分截距最大时,目标函数z x y=+取得最大值. 由可行域图像可知,直线y x z=-+经过54200x y+=和512360x y+=的交点A时,在y轴上截距最大. ……………8分解方程组54200512360x yx y+=⎧⎨+=⎩得:24,20x y==……………………………………10分所以max242044z x y=+=+=…………………………………………………11分答:甲组24名同学参加,乙组20名同学参加,此时总人数达到最大值44人.………12分17.解:法一:⑴ 根据题意,长方体体积为()()2221212t tV t t t t+-⎛⎫=-⨯=-≤=⎪⎝⎭……2分当且仅当2t t=-,即1t=时体积V有最大值为1所以当长方体ABCD-A1B1C1D1的体积最大时,底面四边形ABCD为正方形……4分作BM⊥A1C于M,连接DM,BD ……………5分因为四边形ABCD为正方形,所以1A BC∆与1A DC∆全等,故DM⊥1BMD∠即为所求二面角的平面角……6分因为BC⊥平面AA1B1B,所以1A BC∆为直角三角形又11A B AC=113A B BCBMAC⨯===,同理可得,DM=在∆BMD中,根据余弦定理有:6621cos2BMD+-∠==-………………8分因为()0,180BMD∠∈︒︒,所以120BMD∠=︒即此时二面角B-A1C-D的值是120︒. ……………………………………………………9分⑵ 若线段A1C上存在一点P,使得 A1C⊥平面BPD,则A1C⊥BD ………………10分又A1A⊥平面ABCD,所以A1A⊥BD,所以BD⊥平面A1AC所以BD⊥AC ……………………………………………………………………12分底面四边形ABCD为正方形,即只有ABCD为正方形时,线段A1C上存在点P满足要求,否则不存在由⑴知,所求点P即为BM⊥A1C的垂足M此时,21113A BA PAC===……………………………………………………14分法二:根据题意可知,AA1, AB,AD两两垂直,以AB为x轴,AD为y轴,AA1为z轴建立如图所示的空间直角坐标系:⑴长方体体积为()()2221212t tV t t t t+-⎛⎫=-⨯=-≤=⎪⎝⎭………………………2分当且仅当2t t=-,即1t=时体积V有最大值为1 …………………………………3分AB CDA1B1C1DM所以当长方体ABCD-A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形…………………4分 则()()()()()110,0,1,1,0,0,1,1,0,1,0,1,0,1,0A B C A B BC =-=, 设平面A 1BC 的法向量(),,m x y z =,则0x z y -=⎧⎨=⎩取1x z ==,得:()1,0,1m = ………………6分 同理可得平面A 1CD 的法向量()0,1,1n = ……7分 所以,1cos ,2m n m n m n⋅==⋅ ………………8分 又二面角B-A 1C-D 为钝角,故值是120︒.…………9分 (也可以通过证明B 1A ⊥平面A 1BC 写出平面A 1BC 的法向量)⑵ 根据题意有()()(),0,0,,2,0,0,2,0B t C t t D t --,若线段A 1C 上存在一点P 满足要求,不妨11A P AC λ=,可得()(),2,1P t t λλλ--()()(),2,1,,2,0BP t t t BD t t λλλ=---=--1100BP A C BD A C ⎧⋅=⎪⎨⋅=⎪⎩ 即:()()()()22221020t t t t t t λλλ⎧-+---=⎪⎨-+-=⎪⎩…………………………11分 解得:21,3t λ== …………………………………………………………13分即只有当底面四边形是正方形时才有符合要求的点P ,位置是线段A 1C 上1:2:1A P PC =处. ………………………………………………………14分18.解:⑴ 12241233n n n n a a a a +++=-=++ …………………………………………2分 ()()11123111112221122n n n n n n n n a a b b a a a a +++++====+=+++++ …………………6分又112b =,所以数列{}n b 是首项为12,公差为12的等差数列,2n nb = …………8分(也可以求出12341234,,,2222b b b b ====,猜想并用数学归纳法证明,给分建议为计算前2项1分,计算前3项或者更多2分,猜想通项公式2分,数学归纳法证明4分数学归纳法证明过程如下:① 当1n =时,112b =符合通项公式2n nb =; ② 假设当n k =时猜想成立,即112k k k b a ==+,21k a k=- 那么当1n k =+时12111123113k k k a kk a a kk+----===++-+,1111111211k k k b k a k +++===-+++即1n k =+时猜想也能成立综合①②可知,对任意的*n N ∈都有2n n b =. ⑵ 当1n =时,左边=21147b =<不等式成立;……………………………………9分 当2n =时,左边=2212114157b b +=+=<不等式成立; …………………………10分当3n ≥时,()2214411411n b n n n n n ⎛⎫=<=- ⎪--⎝⎭ 左边=22212111111111414()23341n b b b n n+++<++-+-++-- 11454()772n n=+-=-<不等式成立 …………………………………………………………………………14分19.解:⑴ 设(),P x y ,因为(),01AP AB λλ=≤≤,所以444x y λλ-=-⎧⎨=⎩消去λ并注意到01λ≤≤可得动点P 的轨迹C 即为线段AB ,方程为:()40,04x y x +-=≤≤ ……5分,不写出x 的范围扣1分⑵ 设()()()00,,,4,04N x y P t t t -≤≤,则004(,)22x t y tM ++- 方程组22200222004()()22x y r x t y t r ⎧+=⎪⎨++-+=⎪⎩即2220022200()(4)4x y r x t y t r ⎧+=⎪⎨+++-=⎪⎩有解 ……7分 法一:将方程组两式相减得:()()22200224430tx t y t t r +-++--= ………8分原方程组有解等价于点()0,0到直线()()222:224430l tx t y t t r +-++--=的距离小于或等于r r ≤ (9)分整理得:()()()22222221683444t t r t t r +--≤+-即()()22222816281690t t r tt r -+--+-≤也就是,22228169r t t r ≤-+≤对任意的04t ≤≤恒成立 ……………………10分 根据二次函数22816y t t =-+的图像特征可知,在区间[]0,4上,当0t =或者4t =时,()2max281616tt -+=;当2t =时,()2min28168t t -+= …………………………12分所以21689r ≤≤,4r ≤≤……………………………………………………13分 特别的,当r =228x y +=与40x y +-=切于点()2,2,此时过C 上的点()2,2P没有合乎要求的直线,故r ≠r的范围为4,3r ⎡∈⎢⎣. ……14分法二:上述方程组有解即以()0,0为圆心,r 为半径的圆与以(),4t t --为圆心,2r 为半径的圆有公共点,故对于任意的04t ≤≤都有3r r ≤成立 (9)分整理得:22228169r t t r ≤-+≤对任意的04t ≤≤恒成立 ……………………10分 根据二次函数22816y t t =-+图像特征可知,在区间[]0,4上,当0t =或者4t =时,()2max281616tt -+=;当2t =时,()2min28168t t -+= …………………………12分所以21689r ≤≤,4r ≤≤……………………………………………………13分 特别的,当r =228x y +=与40x y +-=切于点()2,2,此时过C 上的点()2,2P没有合乎要求的直线,故r ≠r 的范围为4,3r ⎡∈⎢⎣. ……14分20.解:⑴函数()()ln f x x a ax =++的定义域为(),a -+∞,()1f x a x a'=++ (1)分当0a >时,原函数在区间(),a -+∞上有()0f x '>,()f x 单调递增,无极值; 当0a =时,原函数在区间()0,+∞上有()0f x '>,()f x 单调递增,无极值;……2分 当0a <时,令()10f x a x a '=+=+得:1x a a=-- ………………………………3分当1(,)x a a a∈---时,()0f x '>,原函数单调递增;当1(,)x a a∈--+∞时,()0f x '<,原函数单调递减 …………………………………………………………………………………4分所以()f x 的极大值为()21ln 1f a a a a ⎛⎫--=---- ⎪⎝⎭………………………………5分⑵ 由⑴知,当()1,0a ∈-时()()221,(,)11,(,)a a x a a x a ag x a f x a a a x a a x a x a a ⎧+∈---⎪⎪+'==+=⎨+⎪--∈--+∞⎪+⎩ (6)分函数图像上存在符合要求的两点,必须12116x ax a<<--<<,得:13a -<<-+………………………………………………………………………8分当1(,)x a a a∈---时,()2a g x a x a =++,函数在点1P 处的切线斜率为()121ak x a =-+; 当1(,)x a a ∈--+∞时,()2ag x a x a=--+,函数在点2P 处的切线斜率为()222ak x a =+;………………………………………………………………10分 函数图像在两点处切线互相垂直即为:()()22121aax a x a ⋅=++,即()()22212x a x a a ++= ………………………………11分因为121016a x a x a a a<+<+<-<+<+,故上式即为()()12x a x a a ++=- …12分 所以()()1116a a a a aa⎧-+<-⎪⎪⎨⎪-+>-⎪⎩,解得:2a -<<综合得:所求a的取值范围是(a ∈-. ………………………………14分。

2020届广东省惠州市高三第三次调研考试数学(理)试题(解析版)

2020届广东省惠州市高三第三次调研考试数学(理)试题(解析版)

2020年1月2日高中数学作业一、单选题1.已知全集U =R ,{}|21xA x =<,则UA =( )A .{}1x x > B .{}1x x ≥C .{}0x x >D .{}0x x ≥【答案】D 【解析】 【分析】化简集合A ,再求补集即可 【详解】{21}{0}x A x x x =<=<,{0}U C A x x =≥,故选:D. 【点睛】本题考查补集运算,考查指数不等式解法,是基础题2.设i 为虚数单位,复数2122z i ⎛⎫=+ ⎪ ⎪⎝⎭,则z 在复平面内对应的点在第( )象限 A .一 B .二C .三D .四【答案】B 【解析】 【分析】先根据复数乘法求复数代数形式,再确定象限. 【详解】22111122422z ⎛⎫⎫=+=+⋅+=-+ ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以z 在复平面内对应的点为12⎛- ⎝⎭,在第二象限. 故选:B 【点睛】本题考查复数乘法运算以及复数几何意义,考查基本分析求解能力,属基础题. 3.已知20201log πa =,20201πb ⎛⎫= ⎪⎝⎭,1π2020c =,则( )试卷第2页,总21页A .c a b <<B .a c b <<C .b a c <<D .a b c <<【答案】D 【解析】 【分析】利用指数与对数的性质与0,1比较即可 【详解】202020201log log 10πa =<=,()2020101πb ⎛⎫=∈ ⎪⎝⎭,,1π20201c =>,所以a b c <<.故选:D. 【点睛】本题考查指数与对数的单调性,插入中间值与0,1 比较是常用方法,是基础题 4.在直角坐标系xOy 中,已知角θ 的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线3y x =上,则3sin(2)2πθ-= ( ) A .45B .45-C .35D .12【答案】A 【解析】 【分析】由终边确定角的正切值,利用诱导公式及二倍角公式求解 【详解】因为角θ终边落在直线3y x =上,所以tan 3θ=,21cos 10θ=, 所以()234sin 2cos22cos 1.25πθθθ⎛⎫-=-=--= ⎪⎝⎭故选:A. 【点睛】本题考查三角函数的定义,考查二倍角公式及诱导公式,意在考查计算能力及公式运用,是中档题5.在平行四边形ABCD 中,AB a =,AD b =,4AM MC =,P 为AD 的中点,则MP = ( )A .43510a b + B .4354a b + C .43510a b -- D .1344a b -- 【答案】C 【解析】 【分析】利用向量加减运算法则求解 【详解】MP = ()144325510AP AM AD AB AD AB AD -=-+=--=43510a b -- 故选:C 【点睛】本题考查平面向量基本定理,考查用基底表示向量,熟练运用加减运算是关键,是基础题6.设a R ∈,则“a =是“直线1:250l x ay +-=与直线2:420l ax y ++=平行”的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要 【答案】A 【解析】 【分析】根据直线平行的等价条件,利用充分条件和必要条件的定义进行判断即可. 【详解】依题意,知-4a =-12a ,且-52a ≠-12,解得a =.故“a =是“直线1:250l x ay +-=与直线2:420l ax y ++=平行”的充分不必要条件 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,利用直线平行的等价关系是解决本题的关键.7.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该试卷第4页,总21页数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( ) A .201920202S a =+ B .201920212S a =+ C .201920201S a =- D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.8.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为( )A .114B .17C .528D .514【答案】D 【解析】 【分析】直接根据概率公式计算即可. 【详解】从八卦中任取两卦,基本事件有2828C =种,其中这两卦的六根线中恰有三根阳线和三根阴线,基本事件共有10中, ∴这两卦的六根线中恰有三根阳线和三根阴线的概率为p 514m n == 故选:D【点睛】本题考查概率的求法,考查古典概型等基础知识,考查函数与方程思想,是基础题.9.函数()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】A 【解析】 【分析】根据已知中函数的解析式,可得函数f (x )为偶函数,可排除C,D ,由()0,0x f x →>得到答案. 【详解】()211sin sin 11x x x e f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭故()()f x f x -=则()f x 是偶函数,排除C 、D ,又当()0,0x f x →> 故选:A. 【点睛】本题主要考查函数的图象特征,函数的奇偶性的判断,结合排除特值与极限判断是常见方法,属于基础题.10.如图,平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D α⋂,平面ABCD m α=⋂,平面11ABB A n =,则m 、n 所成角的正弦值为( )A.12-B.12C.33D .32【答案】D【解析】【分析】画出图形,判断出m、n所成角,求解即可.【详解】如图://α面11CB D,α⋂面ABCD m=,α⋂面11ABA B n=,可知1//n CD,11//m B D,因为△11CB D是正三角形,m n、所成角为60°.则m、n所成角的正弦值为32.故选:D.【点睛】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力,熟练运用线面平行的性质定理是关键11.已知是抛物线的焦点,点,在该抛物线上且位于轴的两侧,试卷第6页,总21页(其中为坐标原点),则与面积之和的最小值是( )A .B .C .D .【答案】B 【解析】试题分析:据题意得,设,则,或,因为位于轴两侧所以.所以两面积之和为.【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.12.已知函数()()sin (0)f x x ωϕω=+>满足()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值.给出下述四个结论:①0112f x ⎛⎫+=- ⎪⎝⎭; ②若00x =,则()sin 26f x x ππ⎛⎫=- ⎪⎝⎭; ③()f x 的最小正周期为3;④()f x 在()0,2019上的零点个数最少为1346个. 其中所有正确结论的编号是( ) A .①②④ B .①③④C .①③D .②④【答案】C 【解析】 【分析】根据三角函数的性质,结合对称性以及周期性分别进行判断即可. 【详解】()00,1x x +区间中点为012x +,根据正弦曲线的对称性知0112f x ⎛⎫+=- ⎪⎝⎭,①正确.若00x =,则()()00112f x f x =+=-,即12sin ϕ=-,不妨取6πϕ=-,此时试卷第8页,总21页()sin 26f x x ππ⎛⎫=- ⎪⎝⎭,满足条件,但113f ⎛⎫= ⎪⎝⎭为()0,1上的最大值,不满足条件,故②错误.不妨令0526x k πωϕπ+=-,()0126x k πωϕπ++=-,两式相减得23πω=, 即函数的周期23T πω==,故③正确.区间()0,2019的长度恰好为673个周期,当()00f =时,即k ϕπ=时,()f x 在开区间()0,2019上零点个数至少为673211345⨯-=,故④错误. 故正确的是①③, 故选:C . 【点睛】本题主要考查与三角函数有关的命题的真假关系,结合三角函数的图象和性质,利用特值法以及三角函数的性质是解决本题的关键.综合性较强,有一定的难度.二、填空题13.执行如图所示的程序框图,则输出的n 值是_________.【答案】6 【解析】 【分析】执行循环,根据判断条件判断是否继续循环,直至跳出循环输出结果. 【详解】①22,220;n =<②44,220;n =<③66,220.n =>结束循环,输出结果:6 故答案为:6.【点睛】本题考查循环结构流程图,考查基本分析求解能力,属基础题.14.若7280128(1)(12)x x a a x a x a x +-=++++,则1278a a a a ++++的值为________ 【答案】3- 【解析】令1x =,得012782a a a a a +++++=-,令0x =,得01a =,则1278213a a a a ++++=--=-.点睛:本题考查二项式定理的应用;在利用二项式定理求二项展开式的系数和时,往往采用赋值法或整体赋值法,要灵活注意展开式中未知数的系数的特点合理赋值,往往是1,0,或1-.15.设数列{}n a 的前n 项和为n S .若24S =,121n n a S +=+,*n N ∈,则1a =______;5S =______.【答案】1 121 【解析】 【分析】根据前n 项和与通项关系,求出通项公式,然后再求和. 【详解】由2121214a a a a =+⎧⎨+=⎩,解得11a =,23a =,当2n ≥时,由已知可得:121n n a S +=+,①121n n a S -=+,②①-②得12n n n a a a +=-,∴13n n a a +=,又213a a =, ∴{}n a 是以11a =为首项,以3q =为公比的等比数列.∴5511312113S -⨯==-.故答案为:3,121 【点睛】试卷第10页,总21页本题考查已知前n 项和求通项以及等比数列的前n 项和公式,考查运算能力,属于基础题.16.已知双曲线1:C 22221(00)x y a b a b -,=>>的左、右焦点分别为12,F F ,其中2F 也是抛物线()22:20C y px p =>的焦点,1C 与2C 在一象限的公共点为P ,若直线1PF 斜率为34,则双曲线离心率()2e e >为______.【答案】4+ 【解析】 【分析】由题可得2p c =,1123tan 4PF k PF F =∠=,124cos 5PF F ⇒∠=,过P 作抛物线准线的垂线,垂足为M ,设0(P x ,0)y ,可得2002pPM PF x x c ==+=+,1015()4cos 45PM PM PF x c MPF ===+∠.结合122PF PF a -=,化简可得08x a c =-,在△12PF F 中,由余弦定理可得2880e e -+=,即可求解 【详解】解:因为2F 是双曲线的右焦点且是抛物线的焦点,所以2pc =, 解得2p c =,所以抛物线的方程为:24y cx =;由1123tan 4PF k PF F =∠=,124cos 5PF F ⇒∠=, 如图过P 作抛物线准线的垂线,垂足为M ,设0(P x ,0)y ,则2002p PM PF x x c ==+=+,⇒1015()4cos 45PM PM PF x c MPF ===+∠. 由122PF PF a -=,可得0005()()284x c x c a x a c +-+=⨯⇒=-在△12PF F 中,208PF x c a =+=,21210PF PF a a =+=,122F F c =, 由余弦定理可得2222222112112122?cos 880880PF PF F F PF F F PF F c ac a e e =+-∠+=⇒-+-⇒=,4e ∴=±,又2e >,242e ∴=+,故答案为:422+. 【点睛】本题考查了双曲线的简单几何性质和解三角形的运算,属于中档题.三、解答题17.在平面四边形ABCD 中,3ABC π∠=,2ADC π∠=,2BC =.(1)若ABC ∆33,求AC ; (2)若23AD =3ACB ACD π∠=∠+,求tan ACD ∠.【答案】(1) 7AC =(2) 3tan ACD ∠=【解析】 【分析】(1)利用已知条件与面积公式即可得到结果; (2) 设ACD α∠=,则3ACB πα∠=+,结合正弦定理即可得到tan ACD ∠.【详解】(1)在ABC ∆中,因为2BC =,3ABC π∠=,133··sin 22ABC S AB BC ABC ∆=∠=, 333AB =,解得:3AB =. 在ABC ∆中,由余弦定理得:2222?cos 7AC AB BC AB BC ABC =+-∠=试卷第12页,总21页所以7AC =(2)设ACD α∠=,则33ACB ACD ππα∠=∠+=+如图,在Rt ACD ∆中,因为23AD =,所以23sin sin AD AC αα==在ABC ∆中,3BAC ACB ABC ππα∠=-∠-∠=-,由正弦定理,得sin sin BC AC BAC ABC =∠∠,即2233sin sin 3παα=⎛⎫- ⎪⎝⎭ 所以2sin sin 3παα⎛⎫-=⎪⎝⎭所以312cos sin sin 22ααα⎛⎫-= ⎪ ⎪⎝⎭,即3cos 2sin αα= 所以3tan 2α=,即3tan 2ACD ∠= 【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值. 18.如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(Ⅰ)证明:AE PB ⊥;(Ⅱ)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值. 【答案】(I )见解析;(II )5-. 【解析】 【分析】(I )先证明AE POB ⊥平面,再证明AE PB ⊥;(II )在平面POB 内作PQ ⊥OB,垂足为Q ,证明OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法求二面角A PE C --的余弦值. 【详解】(I )证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,∵AB||CE,AB=CE ,∴四边形ABCE 为平行四边形,∴AE=BC=AD=DE , ∴△ADE 为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,23DAB ABC π∠=∠=, ∴在等腰ADB ∆中,6ADB ABD π∠=∠=∴2362DBC πππ∠=-=,即BD ⊥BC , ∴BD ⊥AE ,翻折后可得:OP ⊥AE,OB ⊥AE ,又,,OP POB OB POB OP OB O ⊂⊂=平面平面,AE POB ∴⊥平面, ,PB POB AE PB ⊂∴⊥平面;(II )解:在平面POB 内作PQ ⊥OB,垂足为Q , 因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE∩OB=O试卷第14页,总21页∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,由题意得,各点坐标为3131313(0,0,),(,0,0),(0,,0),(,0,),(,,0)2222P E C PE EC ∴=-=, 设平面PCE 的一个法向量为1(,,)n x y z =,则11130022,,013022x z PE n EC n x y ⎧-=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩ 设3x =,则y=-1,z=1, ∴1(3,-1,1)n =,由题意得平面PAE 的一个法向量2(0,1,0)n =, 设二面角A-EP-C 为α,1212||5|cos |=5||||5n n n n α⋅==.易知二面角A-EP-C 为钝角,所以5cos =-5α.【点睛】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.19.为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.(1)已知在被抽取的学生中高一()1班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;(2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一()8班和高一()9班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为ξ,求随机变量ξ的分布列及数学期望.【答案】(1)12;(2)分布列见解析,65【解析】 【分析】(1)利用组合数结合古典概型求出从这6名学生中随机抽取3人,至少有2人对游泳有兴趣的概率.(2)由题意可知ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E (ξ). 【详解】 (1)记事件i A {=从6名学生抽取的3人中恰好有i 人有兴趣,i 0=,1,2,3}; 则2A 与3A 互斥故所求概率为()()()()2323P 2P A A P A P A =+=+至少人感兴趣试卷第16页,总21页213033333366C C C C C C ⋅⋅=+ 101202==; (2)由题意知,随机变量ξ的所有可能取值有0,1,2,3;()22342255C C 9P ξ0C C 50⋅===⋅()11221234342255C C C C C 12P ξ1C C 25⋅⋅+⋅===⋅ ()22111243242255C C C C C 3P ξ2C C 10⋅+⋅⋅===⋅()21242255C C 1P ξ3C C 25⋅===⋅则ξ的分布列为:…数学期望为()9241526E ξ0123505050505=⨯+⨯+⨯+⨯= 【点睛】本题考查概率、离散型随机变量概率分布列、数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程能力,是中档题.20.在平面直角坐标系xOy 中,已知过点()4,0D 的直线l 与椭圆22:14x C y +=交于不同的两点()11,A x y ,()22,B x y ,其中120y y ≠.(1)若10x =,求OAB 的面积;(2)在x 轴上是否存在定点T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形.【答案】(1)4 5(2) x 轴上存在定点()1,0T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形 【解析】 【分析】(1)当10x =时得直线l :440x y +-=,与椭圆联立得B 83,55⎛⎫ ⎪⎝⎭,再求面积 (2)设直线l :4x my =+ ,与椭圆联立,由直线TA 、TB 与y 轴围成的三角形始终为等腰三角形,得0TA TB k k += ,利用斜率代入韦达定理化简得定点坐标 【详解】(1)当10x =时,代入椭圆方程可得A 点坐标为()0,1或()0,1- 若A 点坐标为()0,1,此时直线l :440x y +-=联立2244044x y x y +-=⎧⎨+=⎩,消x 整理可得25830y y -+= 解得11y =或235y =,故B 83,55⎛⎫ ⎪⎝⎭ 所以OAB 的面积为1841255⨯⨯= ()0,1A -若点坐标为,由对称性知OAB 的面积也是45,综上可知,当10x =时,OAB 的面积为45.(2)显然直线l 的斜率不为0,设直线l :4x my =+联立22444x my x y =+⎧⎨+=⎩,消去x 整理得()2248120m y my +++= 由()226441240m m =-⨯+>,得212m > 则12284m y y m +=-+,122124y y m =+ , 因为直线TA 、TB 与y 轴围成的三角形始终为等腰三角形, 所以0TA TB k k += 设(),0T t ,则()()()()()()()()122112121212111224TA TB y x t y x t my y t y y y yk k x t x t x t x t x t x t -+-+-++=+==------,试卷第18页,总21页即()()()()1212222848124240444m t m t m my y t y y m m m --+-+=+==+++, 解得1t =.故x 轴上存在定点()1,0T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形. 【点睛】本题考查直线与椭圆的位置关系,考查直线过定点问题,解决此类问题,通常先猜后证,重点考查计算能力,是中档题21.已知实数0a ≠,设函数()e ax f x ax =-. (1)求函数()f x 的单调区间; (2)当12a >时,若对任意的[)1,x ∈-+∞,均有()()212a f x x ≥+,求a 的取值范围.注:e 2.71828=为自然对数的底数.【答案】(1)()f x 在(,0)-∞内单调递减,在(0,)+∞内单调递增;(2)122a <≤ 【解析】 【分析】(1)求导后取出极值点,再分0a >,0a <两种情况进行讨论即可.(2)当0x =时得出a 的一个取值范围,再讨论1x =-时的情况,再对(1,)x ∈-+∞时构造函数两边取对数进行分析论证122a <≤时()()212af x x ≥+恒成立.【详解】(1)由()(1)=0ax ax f x a e a a e =-'=⋅-,解得0x =.①若0a >,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.②若0a <,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减. 综上所述,()f x 在(,0)-∞内单调递减,在(0,)+∞内单调递增.(2)2()(1)2a f x x ≥+,即2(1)2ax ae x ≥+. 令0x =,得12a≥,则122a <≤.当1x =-时,不等式2(1)2axaex ≥+显然成立, 当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ≥++恒成立. 令函数()2ln(1)ln2aF x x ax =+-+,即()0F x ≤在(1,)-+∞内恒成立. 由22(1)()=011a x F x a x x -+'=-=++,得211x a =->-. 故当2(1,1)x a ∈--时,()0F x '>,()F x 单调递增;当2(1+)x a∈-∞,时,()0F x '<,()F x 单调递减. 因此22()(1)2ln 2ln 2ln 22a aF x F a a a a ≤-=-++=--.令函数()2ln 2ag a a =--,其中122a <≤,则11()10a g a a a='-=-=,得1a =, 故当1(,1)2a ∈时,()0g a '<,()g a 单调递减;当(1,2]a ∈时,()0g a '>,()g a 单调递增.又13()ln 4022g =-<,(2)0=g ,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立,即当122a <≤时,对任意的[1,)x ∈-+∞,均有2()(1)2a f x x ≥+成立.【点睛】本题主要考查了利用求导解决含参的函数的单调性问题以及在区间上恒成立求参数的范围的问题,需要构造函数讨论函数的单调性进行求解,属于难题.22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线M 的极坐标方程为2cos ρθ=,若极坐标系内异于O 的三点()1,A ρϕ,2,6B πρϕ⎛⎫+ ⎪⎝⎭,()3123,,06,C πρϕρρρ⎛⎫-> ⎪⎝⎭都在曲线M 上.(1123ρρ=+;(2)若过B ,C两点直线的参数方程为2212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),求四边形OBAC 的面积.试卷第20页,总21页【答案】(1)详见解析;(2)4. 【解析】 【分析】(1)将()12,,,,6B πρϕρϕ⎛⎫+⎪⎝⎭ 3123,(,,0)6C πρϕρρρ⎛⎫-> ⎪⎝⎭代入极坐标方程ρ2cos θ=,求出123ρρρ、、,利用两角和与差的余弦公式化简可得结论;(2)求得()1,2,02B C ⎛ ⎝⎭,则231,2,6πρρϕ===;又得1ρ=.四边形面积为121311sin sin 2626OBAC S ππρρρρ=+,化简可得结果. 【详解】(1)由122cos ,2cos ,6πρϕρϕ⎛⎫==+⎪⎝⎭ 32cos 6πρϕ⎛⎫=- ⎪⎝⎭,则232cos 2cos 66ππρρϕϕ⎛⎫⎛⎫+=++- ⎪ ⎪⎝⎭⎝⎭1ϕ==; (2)由曲线M 的普通方程为:2220x y x +-=,联立直线BC的参数方程得:20t =解得120,t t ==()1,,2,022B C ⎛ ⎝⎭ 则231,2,6πρρϕ===;又得1ρ.即四边形面积为121311sin sin 2626OBAC S ππρρρρ=+=. 【点睛】本题主要考查极坐标方程以及参数方程的应用,考查了极径与极角的几何意义的应用,意在考查综合应用所学知识,解答问题的能力,属于中档题. 23.已知函数()24f x x x =++-. (1)求不等式()3f x x ≤的解集;(2)若()(1)f x k x ≥-对任意x ∈R 恒成立,求k 的取值范围. 【答案】(1) [2,)+∞ (2) (,2]-∞【解析】【分析】(1) 把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求;(2)对x 分类讨论,当1x ≠时,241x x k x ++-≤-,借助绝对值不等式即可得到右侧的最小值,从而得到k 的取值范围.【详解】(1)当4x >时,原不等式等价于243x x x ++-≤,解得2x ≥-,所以4x >;当2x <-时,原不等式等价于243x x x ---+≤,解得25x ≥,所以此时不等式无解; 当24x -≤≤时,原不等式等价于243x x x +-+≤,解得2x ≥,所以24x ≤≤; 综上所述,不等式解集为[)2,+∞.(2)由()1f x k x ≥-,得241x x k x ++-≥-当1x =时,60≥恒成立,所以k R ∈;当1x ≠时,24131333111111x x x x k x x x x ++--++--≤==++----- 因为3333111121111x x x x ⎛⎫⎛⎫++-≥++-= ⎪ ⎪----⎝⎭⎝⎭当且仅当3311|011x x ⎛⎫⎛⎫+-> ⎪⎪--⎝⎭⎝⎭即4x ≥或2x ≤-时,等号成立 所以,2k ≤综上,k 的取值范围是(],2-∞.【点睛】本题主要考查绝对值不等式的解法,函数的恒成立问题,绝对值三角不等式,体现了等价转化的数学思想,属于中档题.。

广东省实验中学2020届高三上学期第三次阶段考试数学(理)试题 Word版含答案

广东省实验中学2020届高三上学期第三次阶段考试数学(理)试题 Word版含答案

- 1 - 广东实验中学2020届高三级第三次阶段考试数 学(理科)本试卷分选择题和非选择题两部分,共4页,满分 分,考试用时 分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区 域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。

第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{},06|2<--=x x x A 集合{}1log |2<=x x B ,则=B A ( ) A .)3,2(- B .)3,(-∞ C .)2,2(- D .)2,0(2.己知i 是虚数单位,复数z 满足i zz =-1,则z 的模是( ) A .1B .21C .22D .2 3.若,2ln =a 215=b ,xdx c cos 2120⎰=π,则c b a ,,的大小关系( ) A .c b a <<B .c a b <<C .a b c <<D .a c b << 4.若12cos sin 2=⎪⎭⎫⎝⎛+-x x π,则=x 2cos ( ) A .98- B .97- C .97 D .1-5.)2,(--∞∈m 是方程165222=--+-m m y m x 表示的图形为双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.点p 是ABC ∆所在平面上一点,若AC AB AP 5352+=,则ABP ∆与ACP ∆的面积之比是( )A .53B .25C .23D .32。

2020年广东省第三次高考模拟考试理科数学试题与答案

2020年广东省第三次高考模拟考试理科数学试题与答案

2020年广东省第三次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}{}22|22,|log A x Z x B x y x =∈-<<==,则AB =( )A .{}1,1-B .{}1,0,1-C .{}1D .{}0,12. 复数z 满足(1)|1|z +=+,则z 等于( )A .1B .1C .12D 12i -3. 已知实数,满足约束条件,则的最大值为( )A.B.C. D. 24. 在由直线,和轴围成的三角形内任取一点,记事件为,为,则( )A.B. C. D.5. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15B. 16C. 18D. 216. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种7. 若1x 是方程4xxe =的解,2x 是方程ln 4x x =的解,则12x x +等于( ) A .4B .2C .eD .18. 已知函数()2()12sin 06f x x πωω⎛⎫=-+> ⎪⎝⎭在区间,62ππ⎡⎤⎢⎥⎣⎦为单调递减函数,则ω的最大值是( ) A .12 B .35 C .23 D .349. 已知三棱锥的底面是以为斜边的等腰直角三角形,且,则该三棱锥的外接球的表面积为 A.B.C.D.10. 函数的图象大致是( )A. B. C. D.11.已知函数a x ax e ex f +--+=)(,若c b a ==3log 3,则( )A.)(a f <)(b f <)(c fB.)(b f <)(c f <)(a fC.)(a f <)(c f <)(b fD.)(c f <)(b f <)(a f12.已知函数1,)21(1,2542{)(≤>-+-=x x x x x x f ,若函数()()g x f x mx m =--的图象与x 轴的交点个数不少于2个,则实数m 的取值范围为( )A.1,64⎡⎢⎣ B.1,64⎡⎢⎣C .][1,2ln2,64⎛-∞-⋃ ⎝ D .][1,2ln2,64e ⎛-∞-⋃ ⎝ 二、填空题:本题共4小题,每小题5分,共20分。

广东省广州市广东实验中学2020届高三第三次阶段考试理科数学试题

广东省广州市广东实验中学2020届高三第三次阶段考试理科数学试题

广东实验中学2020届高三级第三次阶段考试数 学(理科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区 域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回.第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}260A x x x =--<,集合{}2|log 1B x x =<,则AB =( )A. ()2,3-B. (),3-∞C. ()2,2-D. ()0,2【答案】A 【解析】 【分析】先由二次不等式的解法得{}|23A x x =-<<,由对数不等式的解法得{}|02B x x =<<,再结合集合并集的运算即可得解.【详解】解不等式260x x --<,解得23x -<<,则{}|23A x x =-<<, 解不等式2log 1x <,解得02x <<,即{}|02B x x =<<, 即AB =()2,3-,故选:A.【点睛】本题考查了二次不等式的解法及对数不等式的解法,重点考查了集合并集的运算,属基础题.2.己知i 是虚数单位,复数z 满足1zi z=-,则z 的模是( )A. 1B.12【答案】C 【解析】 【分析】利用复数的运算法则和模的计算公式即可得出. 【详解】1zz=-i , ∴z =i -zi , ∴z 1(1)11222i i i i i ===++-, ∴|z|2==, 故选:C .【点睛】本题考查了复数的运算法则和模的计算公式,属于基础题.3.若2,a ln =125b -=,21cos 2c xdx π=⎰,则,,a b c 的大小关系( )A. a b c <<B. b a c <<C. c b a <<D.b c a <<【答案】D 【解析】 【分析】利用对数函数的性质,以及微积分定理与12比较即可.【详解】12,2a ln =>=121,25b -=<== ()02111cos sin 22220c xdx x ππ=⎰=⨯=,故选:D【点睛】本题考查实数大小的比较,考查对数函数的性质,微积分定理,考查利用中间量比较大小,属于常考题型.4.若2sin cos 12x x π⎛⎫-+= ⎪⎝⎭,则cos2x =( ) A. 89-B. 79-C.79D. -1【答案】C 【解析】 【分析】利用诱导公式化简得到sin x ,再结合二倍角的余弦公式即可求解. 【详解】2sin sin 1x x +=,即1sin 3x =所以22cos 212sin 1799x x =-=-= 故选C【点睛】本题主要考查了三角函数的化简和求值,属于基础题.5.(,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的( )A. 充分不必要条件B. 必要不充分条件C. 充要条D. 既不充分也不必要条件【答案】A 【解析】 【分析】方程表示双曲线,可得()()()5320m m m --+<,解得m 范围即可判断出结论,解得m 范围即可判断出结论.【详解】由方程222156x y m m m +=---表示的图形为双曲线,可得()()2560m m m ---<,即()()()5320m m m --+<即2m <-,或35m <<,∴ (,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的充分不必要条件,故选:A【点睛】本题考查了双曲线的标准方程、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6.点P 是ABC 所在平面上一点,若2355A APB AC =+,则ABP △与ACP △的面积之比是( ) A.35B.52C.32D.23【答案】C 【解析】 【分析】由向量的线性运算可得32=BP PC ,即点P 在线段AB 上,且32=BP PC ,由三角形面积公式可得:ABP S ∆APC S ∆:3:2BP PC ==,得解.【详解】解:因为点P 是ABC 所在平面上一点,又2355AP AB AC =+, 所以2233-=-5555AP AB AC AP ,即23=55BP PC ,即32=BP PC , 则点P 在线段BC 上,且32=BP PC ,又1sin 2APC S AP PC APC ∆=∠,1sin 2ABP S AP BP APB ∆=∠,又APB APC π∠+∠=,即sin sin APC APB ∠=∠, 所以点P 在线段BC 上,且32=BP PC , :ABP S ∆APCS ∆1sin :2AP BP APB =∠1sin 2AP PC APC ∠:3:2BP PC ==, 故选:C.【点睛】本题考查了向量的线性运算及三角形的面积公式,重点考查了运算能力,属中档题.7.已知()121sin 221x x f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则函数()y f x =的图象大致为()A. B.C. D.【答案】D 【解析】 【分析】由函数解析式可得()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称,再取特殊变量4π得04f π⎛⎫< ⎪⎝⎭,即可得在()0,∞+存在变量使得()0f x <,再观察图像即可. 【详解】解:因为()121sin 221xx f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则()121sin 221x x f x x x ---⎛⎫-=-+⋅ ⎪+⎝⎭=121sin 221xx x x -⎛⎫-⋅ ⎪+⎝⎭,即()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称,不妨取4x π=,则 ()44221(08221f x πππ-=-<+,即在()0,∞+存在变量使得()0f x <, 故选D.【点睛】本题考查了函数奇偶性的判断及函数的图像,重点考查了函数的思想,属中档题. 8.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A. 24 B. 16C. 8D. 12【答案】B 【解析】 【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解.【详解】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况; (2)将这个整体与英语全排列,有222A =中顺序,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个, 安排物理,有2中情况,则数学、物理的安排方法有224⨯=种, 所以不同的排课方法的种数是22416⨯⨯=种,故选B .【点睛】本题主要考查了排列、组合的综合应用,其中解答红注意特殊问题和相邻问题与不能相邻问题的处理方法是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( ) A. 3(0,]5B. 13[,]25C. 13[,]24D. 15[,)22【答案】B 【解析】 【分析】先化简()f x ,再根据正弦函数性质列方程与不等式,解得结果. 【详解】222()2sin cos ()sin sin (1cos())sin 422x f x x x x x x ωππωωωωω=--=+-- 2sin (1sin )sin sin x x x x ωωωω=+-=因为()f x 在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值, 所以255,,236222ππωπωπππωπ-≤-≤≤<,即13[,]25ω∈故选B【点睛】本题考查二倍角余弦公式、辅助角公式以及正弦函数性质,考查综合分析与求解能力,属中档题.10.设变量y 满足约束条件342y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =|x -3y |的最大值为( )A. 8B. 4C. 2D.45【答案】A 【解析】由题意作出满足条件的可行域如图中阴影部分,则对于目标函数z=|x ﹣3y|,平移直线y=13x 可知, 当直线经过点A (﹣2,2)时,z=|x ﹣3y|取得最大值, 代值计算可得z max =|﹣2﹣3×2|=8. 故选A .11.AOB 中,OA a OB b ==,,满足||2a b a b ⋅=-=,则AOB ∆的面积的最大值为( ) 3 B. 2C. 23D. 22【答案】A 【解析】 【分析】利用数量积公式以及平方关系计算得到sin AOB ∠,利用模长公式以及基本不等式得到||||4a b ≤,结合三角形面积公式化简即可求解.【详解】||||cos 2a b a b AOB ⋅=∠=,即2cos ||||AOB a b ∠=22(||||)4sin 1|||2|||||a b AOB a b a b -⎛⎫∴∠=-=⎪⎝⎭22||||2||2a b a a b b -=-⋅+= ,即228||||2||||a b a b =+≥所以||||4a b ≤ 所以22(||||)41111||||sin ||||=(||||)4164=32222||||AOBa b S a b AOB a b a b a b ∆-=∠=-≤-故选A【点睛】本题主要考查了平面向量的数量积公式以及模长公式的应用,属于中档题.12.椭圆22221(0)x y a b a b+=>>上有一点P ,1F ,2F 分别为椭圆的左、右焦点,椭圆内一点Q在线段2PF 的延长线上,且1,QF QP ⊥15sin 13F PQ ∠=,则该椭圆离心率的取值范围是( )A. 26⎛⎫ ⎪ ⎪⎝⎭B. 1,53⎛ ⎝⎭C. 1,52⎛⎫⎪ ⎪⎝⎭D.2⎫⎪⎪⎝⎭【答案】C 【解析】 【分析】首先满足QF 1⊥QP ,点Q 在椭圆的内部,故点Q 轨迹在以F 1F 2为直径,原点为圆心的圆上,且圆在椭圆的内部,得到e <;根据Q 在线段2PF 的延长线上,考虑极端情况,得到15e >,得到答案.【详解】∵QF 1⊥QP ,∴点Q 在以F 1F 2为直径,原点为圆心的圆上, ∵点Q 在椭圆的内部,∴以F 1F 2为直径的圆在椭圆内,∴c <b ;∴c 2<a 2﹣c 2,∴212e <,故0<e 2; 当Q 点与2F 重合时,此时不妨设113PF =,则125F F =,故212PF =.即252a =,52c =,此时15e =. Q 在线段2PF 的延长线上,故212PF F π>∠,故15e >. 综上可得:12,52e ⎛⎫∈ ⎪ ⎪⎝⎭.故选:C .【点睛】本题考查了椭圆的性质、圆的性质,考查了推理能力与计算能力,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数()3ln 2f x x x x =+,则曲线()y f x =在点()1,2处的切线方程是___________.【答案】750x y --= 【解析】 【分析】先求函数()f x 的导函数()'fx ,再由导数的几何意义,求()'17f =,则曲线()y f x =在点()1,2处的切线的斜率为7,再由直线的点斜式方程求解即可.【详解】解:因为()3ln 2f x x x x =+,所以()'2ln 16fx x x =++,则()'21ln11617f =++⨯=,即曲线()y f x =在点()1,2处的切线方程是27(1)y x -=-,即750x y --=, 故答案为750x y --=.【点睛】本题考查了导数的几何意义、直线的点斜式方程,重点考查了导数的应用及运算能力,属基础题.14.()422x x --的展开式中,3x 的系数为 . (用数字填写答案) 【答案】40- 【解析】试题分析:()422x x --()422x x ⎡⎤=-+⎣⎦展开后只有()42x +与()33242C x x -+中含3x 项其系数和为133124432240C C C ⨯-⨯⨯=-,故答案为40-.考点:二项展开式定理. 15.己知函数sin ()xx af x e-=有极值,则实数a 的取值范围为_____________【答案】( 【解析】 【分析】求出函数的导函数,则cos sin ()xx x af x e -+'=有可变零点,求三角函数的值域得到结果.【详解】由sin ()x x a f x e -=可得:cos sin ()xx x af x e -+'=, ∵函数sin ()xx af x e-=有极值, ∴cos sin ()xx x af x e -+'=有可变零点,∴cos sin 0x x a -+=,即sin cos 4a x x x π⎛⎫=-=- ⎪⎝⎭,∴(a ∈故答案为:(【点睛】本题考查函数存在极值的条件,考查三角函数的值域问题,考查转化思想,属于中档题.16.点D 是直角ABC ∆斜边AB 上一动点,5,AC =4,BC =将直角ABC ∆沿着CD 翻折,使B DC '∆与ADC ∆构成直二面角,则翻折后AB '的最小值是_______.【解析】 【分析】过点B ′作B ′E ⊥CD 于E ,连结BE ,AE ,设∠BCD =∠B ′CD =α,则有B ′E =4sin α,CE =4cos α,2ACE πα∠=-,由此利用余弦定理、勾股定理能求出当4πα=时,AB ′取得最小值7.【详解】解:过点B ′作B ′E ⊥CD 于E ,连结BE ,AE , 设∠BCD =∠B ′CD =α,则有B ′E =4sin α,CE =4cos α,2ACE πα∠=-,在△AEC 中,由余弦定理得:222516402AE cos cos cos πααα⎛⎫=+-- ⎪⎝⎭=25+16cos 2α﹣40sin αcos α,在Rt △AEB ′中,由勾股定理得:AB '2=AE 2+B ′E 2=25+16cos 2α﹣40sin αcos α+16sin 2α=41﹣20sin2α,∴当4πα=时,AB ′取得最小值21.故答案为:21.【点睛】本题考查线段长的最小值的求法,考查余弦定理、勾股定理、直二面角等基础知识,运算求解能力,考查函数与方程思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,公比是正数的等比数列{}n b 的前n 项和为n T ,已知.1122331,3,8,15a b a b T S ==+=-=(Ⅰ)求{}{},n n a b 的通项公式; (Ⅱ)若数列{}n c 满足11211222n n n n a c a c a c n +--+++=--对任意*n N ∈都成立;求证:数列{}n c 是等比数列.【答案】(1)1,32n n n a n b -==⋅;(2)证明见解析.【解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为(0)q q >2375d q q q d +=+-=由题意得 (2)分2375d q q q d +=+-=解得………………………………………………………5分(Ⅱ)由知两式相减:………………………………8分…………………………………………………………………10分当时,,适合上式即是等比数列…………………………18.如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.(1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值. 【答案】(1)证明见解析 (2)θ最小值为60° 【解析】 【分析】(1)在梯形ABCD 中,利用勾股定理,得到AD ⊥BD ,再结合面面垂直的判定,证得DE ⊥平面ABCD ,即可证得AD ⊥平面BFED ;(2)以D 为原点,直线DA ,DB ,DE 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,求得平面PAB 与平面ADE 法向量,利用向量的夹角公式,即可求解。

广东省六校联盟高三数学第三次联考试题 理

广东省六校联盟高三数学第三次联考试题 理

数学(理科)(满分150分) 考试时间:120分钟参考公式:柱体的体积公式V Sh =,锥体的体积公式13V Sh =.一、选择题:(本大题共8小题,每小题5分,共计40分.每小题只有一个正确答案,请把正确答案填涂在答题卡相应位置) 1. 设集合{}{}{}1,2,3,4,5,2,3,4,3,5U A B ===,则图中阴影部分所表示的集合为( )A.{}2,3B.{}1,4C.{}5D.{}62. 已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( )A.()p q ⌝∨B.p q ∨C.p q ∧D.()()p q ⌝∧⌝ 3. 已知向量()()()5,2,4,3,,a b c x y ==--=,若320a b c -+=,则c =( )A.()23,12--B.()23,12C.()7,0D.()7,0-4. 下列函数中,在其定义域上为奇函数的是( )A.xxy e e -=+B.y =C.tan y x =D.1ln1xy x+=- 5. 某几何体的三视图如图所示,该几何体的体积为( )A.263 B.83π+ C.143π D.73π 6. 已知等差数列{}n a 中,10,0a d >>,前n 项和为n S ,等比数列{}n b 满足11b a =,44b a =,前n 项和为n T ,则( ) A.44S T >B.44S T <C.44S T =D.44S T ≤7. 已知直线()1:2110l ax a y +++=,()()2:110l a x a y ++-=,若12l l ⊥,则a =( )A.2或12 B.13或1- C.13D.1- 8. 已知函数()f x 的定义域为D ,如果存在实数M ,使对任意的x D ∈,都有()f x M ≤,则称函数()f x 为有界函数,下列函数: ①()2,xf x x R -=∈ ②()()ln ,0,f x x x =∈+∞③()()()2,,00,1xf x x x =∈-∞+∞+; ④()()sin ,0,f x x x x =∈+∞为有界函数的是( )A.②④B.②③④C.①③D.①③④二、填空题:(本大题共6小题,每小题5分,共计30分.)9. 函数()ln f x x x =在点()(),e f e 处的切线方程为___________________.U AB主视图 侧视图俯视图10. 在ABC ∆中,45,75,2A B c =︒=︒=,则此三角形的最短边的长度是________. 11. 已知递增的等差数列{}n a 满足21252,6a a a ==+,则n a =___________.12. 已知圆2220x y x +-=上的点到直线:2l y kx =-的最近距离为1,则k =______. 13. 如图,为了测量两座山峰上两点P 、Q 之间的距离,选择山坡上一段长度为P,Q 两点在同一平面内的路段AB 的 两个端点作为观测点,现测得四个角的大小分别是90PAB ∠=︒,60PAQ PBA PBQ ∠=∠=∠=︒,可求得P 、Q 两点间的距离为 米.14. 已知(){}:,23p M x y x x ∈+-+;()(){}()222:,10q M x y x y r r ∈-+<>如果p 是q 的充分但不必要条件,则r 的取值范围是_ .三、解答题(本大题共六个小题,共80分.解答应写出文字说明、证明过程和演算步骤) 15.(本小题满分12分)已知函数()sin 1f x x x ωω=+(其中0,x R ω>∈)的最小正周期为6π. (1)求ω的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,13217f πα⎛⎫-= ⎪⎝⎭,()1135f βπ+=,求()cos αβ+的值. 16.(本小题满分12分)寒假期间校学生会拟组织一次社区服务活动,计划分出甲、乙两个小组,每组均组织①垃圾分类宣传,②网络知识讲座,③现场春联派送三项活动,甲组计划12的同学从事项目①,14的同学从事项目②,最后14的同学从事项目③;乙组计划15的同学从事项目①,另15的同学从事项目②,最后35的同学从事项目③,每个同学最多只能参加一个小组的一项活动,从事项目①的总人数不得多于20人,从事项目②的总人数不得多于10人,从事项目③的总人数不得多于18人,求人数足够的情况下,最多有多少同学能参加此次的社区服务活动?17.(本小题满分14分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A 1B 1C 1D 1的四个侧面,记底面上一边(),02AB t t =<<,连接A 1B,A 1C,A 1D.(1)当长方体ABCD-A 1B 1C 1D 1的体积最大时,求二面角B-A 1C-D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由.18.(本小题满分14分)已知数列{}n a 中,1141,13n n a a a +==-+ ,数列{}n b 满足()*1,1n n b n N a =∈+. (1)求数列{}n b 的通项公式; (2)证明:222121117n b b b +++<. 19.(本小题满分14分)已知直角坐标系中,圆O 的方程为222x y r +=()0r >,两点()()4,0,0,4A B , 动点P 满足(),01AP AB λλ=≤≤. (1)求动点P 的轨迹C 方程;(2)若对于轨迹C 上的任意一点P ,总存在过点P 的直线l 交圆O 于M,N 两点,且点M 是线段PN 的中点,求r 的取值范围.20.(本小题满分14分)已知函数()()ln f x x a ax =++. (1)求函数()f x 的单调区间和极值;(2)若()1,0a ∈-,函数()()g x a f x '=的图像上存在12,P P 两点,其横坐标满足1216x x <<<,C 1A BC D A 1B 1D 1g x的图像在此两点处的切线互相垂直,求a的取值范围. 且()六校联盟第三次联考理科数学参考答案及评分标准一、选择题:CBAD DABC二、填空题:9.20x y e --=;; 11.2n 12.0或者43-; 13.900;14. r >)r ∈+∞或者直接)+∞均可三、解答题:15. 解:⑴ ()sin 12sin()13f x x x x πωωω=+=-+ …………3分26T ππω==,所以13ω=. ………………………………………………6分 ()12sin()133f x x π=-+注:如果()2cos()16f x x πω=-++等正确结果的话相应给分即可.⑵1132sin (3)12sin 12cos 12323217f ππππαααα⎛⎫⎛⎫⎛⎫-=--+=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以8cos 17α= ………………………………………………………………7分()11132sin (3)12sin 1335f πβπβπβ⎛⎫+=+-+=+= ⎪⎝⎭所以3sin 5β= …………………………………………………………………8分因为,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以154sin ,cos 175αβ====,10分 所以()13cos cos cos sin sin 85αβαβαβ+=-=-. …………………………12分16.解:设甲组x 名同学,乙组y 名同学,根据题意有:……………………1分1120251110451318450,0x y x y x y x y ⎧+≤⎪⎪⎪+≤⎪⎨⎪+≤⎪⎪⎪≥≥⎩ 整理得: 52200542005123600,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 可行域如图: 参加活动的总人数z x y =+,变形为y x z =-+,当经过可行域内的点,斜率为1-的直线在y 轴上Ox y 54200x y += 52200x y += 512360x y += y x =- A (24,20) ………7分,约束条件和图像各3分,不化简不扣分截距最大时,目标函数z x y =+取得最大值. 由可行域图像可知,直线y x z =-+经过54200x y +=和512360x y +=的交点A 时,在y 轴上截距最大. ……………8分解方程组54200512360x y x y +=⎧⎨+=⎩得:24,20x y == ……………………………………10分所以max 242044z x y =+=+= …………………………………………………11分答:甲组24名同学参加,乙组20名同学参加,此时总人数达到最大值44人.………12分 17.解:法一:⑴ 根据题意,长方体体积为()()2221212t t V t t t t +-⎛⎫=-⨯=-≤= ⎪⎝⎭……2分当且仅当2t t =-,即1t =时体积V 有最大值为1所以当长方体ABCD-A 1B 1C 1D 1的体积最大时,底面四边 形ABCD 为正方形 ……4分作BM ⊥A 1C 于M ,连接DM ,BD ……………5分因为四边形ABCD 为正方形,所以1A BC ∆与1A DC ∆全等,故DM⊥1BMD ∠即为所求二面角的平面角 ……6分因为BC ⊥平面AA 1B 1B ,所以1A BC ∆为直角三角形又11AB AC =113A B BC BM AC ⨯===,同理可得,3DM =在∆BMD 中,根据余弦定理有:6621cos 2BMD +-∠==- ………………8分 因为()0,180BMD ∠∈︒︒,所以120BMD ∠=︒即此时二面角B-A 1C-D 的值是120︒. ……………………………………………………9分 ⑵ 若线段A 1C 上存在一点P ,使得 A 1C ⊥平面BPD ,则A 1C ⊥BD ………………10分 又A 1A ⊥平面ABCD,所以A 1A ⊥BD ,所以BD ⊥平面A 1AC所以BD ⊥AC ……………………………………………………………………12分 底面四边形ABCD 为正方形,即只有ABCD 为正方形时,线段A 1C 上存在点P 满足要求,否则不存在由⑴知,所求点P 即为BM ⊥A 1C 的垂足M此时,21113A B A P AC ===……………………………………………………14分 法二:根据题意可知,AA 1, AB,AD 两两垂直,以AB 为x 轴,AD 为y 轴,AA 1为z 轴建立如图所示的空间直角坐标系:⑴长方体体积为()()2221212t t V t t t t +-⎛⎫=-⨯=-≤= ⎪⎝⎭………………………2分当且仅当2t t =-,即1t =时体积V 有最大值为1 …………………………………3分AB C DA 1B 1C 1DM所以当长方体ABCD-A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形…………………4分 则()()()()()110,0,1,1,0,0,1,1,0,1,0,1,0,1,0A B C A B BC =-=, 设平面A 1BC 的法向量(),,m x y z =,则0x z y -=⎧⎨=⎩取1x z ==,得:()1,0,1m = ………………6分 同理可得平面A 1CD 的法向量()0,1,1n = ……7分 所以,1cos ,2m n m n m n⋅==⋅ ………………8分 又二面角B-A 1C-D 为钝角,故值是120︒.…………9分 (也可以通过证明B 1A ⊥平面A 1BC 写出平面A 1BC 的法向量)⑵ 根据题意有()()(),0,0,,2,0,0,2,0B t C t t D t --,若线段A 1C 上存在一点P 满足要求,不妨11A P AC λ=,可得()(),2,1P t t λλλ--()()(),2,1,,2,0BP t t t BD t t λλλ=---=--1100BP AC BD AC ⎧⋅=⎪⎨⋅=⎪⎩ 即:()()()()22221020t t t t t t λλλ⎧-+---=⎪⎨-+-=⎪⎩…………………………11分 解得:21,3t λ== …………………………………………………………13分即只有当底面四边形是正方形时才有符合要求的点P ,位置是线段A 1C 上1:2:1A P PC =处. ………………………………………………………14分18.解:⑴ 12241233nn n n a a a a +++=-=++ …………………………………………2分 ()()11123111112221122n n n n n n n n a a b b a a a a +++++====+=+++++ …………………6分又112b =,所以数列{}n b 是首项为12,公差为12的等差数列,2n nb = …………8分(也可以求出12341234,,,2222b b b b ====,猜想并用数学归纳法证明,给分建议为计算前2项1分,计算前3项或者更多2分,猜想通项公式2分,数学归纳法证明4分数学归纳法证明过程如下:① 当1n =时,112b =符合通项公式2n nb =; ② 假设当n k =时猜想成立,即112k k kb a ==+,21k a k =- 那么当1n k =+时12111123113k k k a k k a a k k +----===++-+,1111111211k k k b k a k+++===-+++即1n k =+时猜想也能成立综合①②可知,对任意的*n N ∈都有2n n b =. ⑵ 当1n =时,左边=21147b =<不等式成立;……………………………………9分 当2n =时,左边=2212114157b b +=+=<不等式成立; …………………………10分当3n ≥时,()2214411411n b n n n n n ⎛⎫=<=- ⎪--⎝⎭ 左边=22212111111111414()23341n b b b n n+++<++-+-++-- 11454()772n n=+-=-<不等式成立 …………………………………………………………………………14分19.解:⑴ 设(),P x y ,因为(),01AP AB λλ=≤≤,所以444x y λλ-=-⎧⎨=⎩消去λ并注意到01λ≤≤可得动点P 的轨迹C 即为线段AB ,方程为:()40,04x y x +-=≤≤ ……5分,不写出x 的范围扣1分⑵ 设()()()00,,,4,04N x y P t t t -≤≤,则004(,)22x t y tM ++- 方程组22200222004()()22x y r x t y t r ⎧+=⎪⎨++-+=⎪⎩即2220022200()(4)4x y r x t y t r ⎧+=⎪⎨+++-=⎪⎩有解 ……7分 法一:将方程组两式相减得:()()22200224430tx t y t t r +-++--= ………8分原方程组有解等价于点()0,0到直线()()222:224430l tx t y t t r +-++--=的距离小于或等于r r ≤ (9)分整理得:()()()22222221683444t t rt t r +--≤+-即()()22222816281690t t rtt r -+--+-≤也就是,22228169r t t r ≤-+≤对任意的04t ≤≤恒成立 ……………………10分根据二次函数22816y t t =-+的图像特征可知,在区间[]0,4上,当0t =或者4t =时,()2max281616tt -+=;当2t =时,()2min28168tt -+= …………………………12分所以21689r ≤≤,43r ≤≤……………………………………………………13分 特别的,当r =228x y +=与40x y +-=切于点()2,2,此时过C 上的点()2,2P没有合乎要求的直线,故r ≠r的范围为43r ⎡∈⎢⎣. ……14分法二:上述方程组有解即以()0,0为圆心,r 为半径的圆与以(),4t t --为圆心,2r 为半径的圆有公共点,故对于任意的04t ≤≤都有3r r ≤≤成立 (9)分整理得:22228169r t t r ≤-+≤对任意的04t ≤≤恒成立 ……………………10分根据二次函数22816y t t =-+图像特征可知,在区间[]0,4上,当0t =或者4t =时,()2max281616tt -+=;当2t =时,()2min28168t t -+= …………………………12分所以21689r ≤≤,43r ≤≤……………………………………………………13分 特别的,当r =228x y +=与40x y +-=切于点()2,2,此时过C 上的点()2,2P 没有合乎要求的直线,故r ≠r 的范围为43r ⎡∈⎢⎣. ……14分20.解:⑴函数()()ln f x x a ax =++的定义域为(),a -+∞,()1f x a x a'=++ ……1分当0a >时,原函数在区间(),a -+∞上有()0f x '>,()f x 单调递增,无极值; 当0a =时,原函数在区间()0,+∞上有()0f x '>,()f x 单调递增,无极值;……2分 当0a <时,令()10f x a x a '=+=+得:1x a a=-- ………………………………3分当1(,)x a a a∈---时,()0f x '>,原函数单调递增;当1(,)x a a∈--+∞时,()0f x '<,原函数单调递减 …………………………………………………………………………………4分所以()f x 的极大值为()21ln 1f a a a a ⎛⎫--=---- ⎪⎝⎭………………………………5分⑵ 由⑴知,当()1,0a ∈-时()()221,(,)11,(,)a a x a a x a ag x a f x a a a x a a x a x aa ⎧+∈---⎪⎪+'==+=⎨+⎪--∈--+∞⎪+⎩ (6)分函数图像上存在符合要求的两点,必须12116x a x a<<--<<,得:13a -<<-+ ………………………………………………………………………8分当1(,)x a a a∈---时,()2a g x a x a =++,函数在点1P 处的切线斜率为()121a k x a =-+; 当1(,)x a a ∈--+∞时,()2ag x a x a=--+,函数在点2P 处的切线斜率为()222ak x a =+;………………………………………………………………10分 函数图像在两点处切线互相垂直即为:()()22121aax a x a ⋅=++,即()()22212x a x a a ++= ………………………………11分因为121016a x a x a a a<+<+<-<+<+,故上式即为()()12x a x a a ++=- …12分 所以()()1116a a a a aa⎧-+<-⎪⎪⎨⎪-+>-⎪⎩,解得:122a -<<综合得:所求a 的取值范围是1(1,)2a ∈-. ………………………………14分。

【2020年数学高考】广东省六校(珠海一中,中山纪念中学等)2020届高三下学期第三次联考 数学(理).doc

【2020年数学高考】广东省六校(珠海一中,中山纪念中学等)2020届高三下学期第三次联考 数学(理).doc

绝密★启用前2020届广东省六校第三次联考理科数学满分:150分 考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”. 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,M x y x y =为实数,且222}x y +=,{(,)|,N x y x y =为实数,且2}x y +=, 则MN 的元素个数为A .0B .1C .2D .3 2.设等差数列{}n a 的前n 项和为n S ,若39S =,530S =,则789a a a ++=A .63B .45C .36D .273.若变量,x y 满足约束条件0210430y x y x y ≤⎧⎪--≥⎨⎪--≤⎩,则35z x y =+的取值范围是A .[)3,+∞B .[]8,3-C .(],9-∞D .[]8,9- 4.函数1ln sin 1ln xy x x-=⋅+的部分图象大致为A .B .C .D .5.设函数 ())f x ϕ=+,其中常数ϕ满足0πϕ-<<.若函数()()()g x f x f x '=+(其中()f x ' 是函数()f x 的导数)是偶函数,则ϕ等于A .3π-B .56π- C .6π-D .23π- 6.执行右面的程序框图,如果输入的a ,b ,k 分别为1,2输出的158M =,那么,判断框中应填入的条件为 A .n k < B .n k ≥ C .1n k <+ D .1n k ≤+7.已知02012(1i)(2i)(2i)(2i)n n b b b -+=-++-++-++又数列{}n a 满足:当1n =时, 12a =-;当2n ≥,n a 为22(2i)b -+的虚部.若数列2{}na - 的前n 项和为n S ,则2018S =A .20172018 B .20182017 C .40352018 D .403320178.如图,在同一个平面内,三个单位向量OA ,OB ,OC 满足条件:OA 与OC 的夹角为α,且tan α=7,OB 与OC 与的夹角为45°.若OC mOA nOB =+(,m n R ∈),则m n +的值为 A .3 B C . D .29.四面体ABC S -中,三组对棱的长分别相等,依次为5,4,x ,则x 的取值范围是A .)41,2(B .)9,3(C .)41,3(D .)9,2(10.从2个不同的红球、2个不同的黄球、2个不同的蓝球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有 A .42种 B .36种 C .72种 D .46种11.已知点F 为双曲线2222:1(,0)x y E a b a b-=>的右焦点,直线(0)y kx k =>与E 交于M ,N 两点,若MF NF ⊥,设MNF β∠=,且[,]126ππβ∈,则该双曲线的离心率的取值范围是A. B.1] C. D.1]12.已知()()2211,,y x B y x A 、是函数x x x f ln )(=与2)(xkx g =图象的两个不同的交点,则()21x x f +的取值范围是 A .2ln ,2e e ⎛⎫+∞ ⎪⎝⎭ B .⎪⎭⎫ ⎝⎛e e e 1,2ln 2 C .⎪⎭⎫ ⎝⎛e 1,0 D .⎪⎭⎫ ⎝⎛0,2ln 2e e二、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()y f x =是定义在R 上的奇函数,则311[(2)]f x dx x -+=⎰__ ________. 14.已知函数()sin cos f x a x b x =-,若()()44f x f x ππ-=+, 则函数13ax b y ++=恒过定点___ __.15.已知几何体的三视图如图所示,其中俯视图为一正方形,则该几何体的表面积为 .16.若函数()f x 的图象上存在不同的两点11(,)A x y ,22(,)B x y ,其中1122,,,x y x y 使得1212x x y y +0,则称函数()f x 是“柯西函数”. 给出下列函数:①()ln (03)f x x x =<<; ②1()(0)f x x x x=+>;其中是“柯西函数”的为 (填上所有..正确答案的序号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足2*2n n T S n n N =-∈,.(Ⅰ)求123,,a a a 的值; (Ⅱ)求数列{}n a 的通项公式.18.(12分)某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.(Ⅰ)若小店一天购进16份,求当天的利润y (单位:元)关于当天需求量n (单位:份,N n ∈)的函数解析式;(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )小店一天购进16份这种食品,X 表示当天的利润(单位:元),求X 的分布列及数学期望;(ii )以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?19.(12分)如图,在四棱锥P ABCD -中,ABCD 是平行四边形,1AB BC ==,120BAD ∠=,PB PC ==2PA =,E ,F 分别是AD ,PD 的中点.(Ⅰ)证明:平面EFC ⊥平面PBC ;PF(Ⅱ)求二面角A BC P --的余弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,1A 、2A 分别为椭圆C 的左、右顶点,点(2,1)P -满足121PA PA ⋅=. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 经过点P 且与C 交于不同的两点M 、N ,试问:在x 轴上是否存在点Q ,使得直线 QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标及定值;若不存在,请说明理由.21.(12分)已知函数2()(1)e 2xa f x x x =--,其中a ∈R . (Ⅰ)函数()f x 的图象能否与x 轴相切?若能,求出实数a ,若不能,请说明理由;(Ⅱ)求最大的整数a ,使得对任意12,(0,)x x ∈∈+∞R ,不等式12122()()2f x x f x x x +-->-恒成立.(二)选考题:共10分. 请考生在第22、23题中任选一题作答. 如果多做,则按所做的第一题计分. 22. [选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩ (t 为参数,0)απ≤<,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线()44ππθϕϕ=-<<,4πθϕ=+,4πθϕ=-分别与曲线C 交于A B C 、、三点(不包括极点O ).(Ⅰ)求证:OB OC OA +=; (Ⅱ)当12πϕ=时,若B C 、两点在直线l 上,求m 与α的值. 23. [选修4-5:不等式选讲](10分)已知函数()222f x x a x a =+-+-.(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若不等式()2≥f x 恒成立,求实数a 的取值范围.2020届广东省六校第三次联考理科数学参考答案一、选择题:本大题共12小题,每小题5分.二填空题:本大题共4小题,每小题5分.13.;14.;15.;16.①④说明:本参考答案给出一种解法的评分标准,其它解法可参照本评分标准相应评分.三、解答题:共70分.17.(12分)解:(Ⅰ)∵,,∴. ……………1分∵,∴. …………………………………………………2分∵,∴. ……………………………………………4分(Ⅱ)∵…①,…②,∴①-②得,,∵,……………………6分∴…③,……………………………………………………8分…④,③-④得,,. ……………………………………………………………………10分∵,∴是首项3公比的等比数列,,故. ……………………………………………………………………12分18.(12分)解:(Ⅰ)当日需求量时,利润,…………………………1分当日需求量时,利润,…………………………2分所以关于的函数解析式为.……………………3分(Ⅱ)(i)可能的取值为62,71,80,………………………………………………4分并且,,.的分布列为:……………………………………………………7分的数学期望为元.……………………8分(ii)若小店一天购进17份食品,表示当天的利润(单位:元),那么的分布列为的数学期望为元.………11分由以上的计算结果可以看出,,即购进17份食品时的平均利润大于购进16份时的平均利润.所以,小店应选择一天购进17份.………………………………12分19.(12分)解法一:(Ⅰ)取中点,连,∵,∴,∵是平行四边形,,,∴,∴是等边三角形,∴,∵,∴平面,∴. ………………………3分∵分别是的中点,∴∥,∥,∴,,∵,∴平面,…………………5分∵平面,∴平面平面. …………………………………………6分(Ⅱ)由(Ⅰ)知,,∴是二面角的平面角. …………………………………………………7分, ,,……………………………………………9分在中,根据余弦定理得,, ………11分∴二面角的余弦值为.…………………………………………………12分解法二:(Ⅰ)∵是平行四边形,,,∴,∴是等边三角形,∵是的中点,∴,∵∥,∴. ………………………………………………………………………………1分分别以,的方向为轴、轴的正方向,为坐标原点,如图建立空间直角坐标系. ……………………………………………………………2分则,,,,,设,∵,,解得,,,∴可得,………………………………………………………………4分∵是的中点,∴,∵,∴,∵,,∴平面,∵平面,∴平面平面.…………………………………………………………………6分(Ⅱ)由(Ⅰ)知,,,设是平面的法向量,则,∴,…………………………8分令,则,………………………………………………………9分又是平面的法向量,…………………………………………………10分∴,………………………………………………………11分∴二面角的余弦值为.…………………………………………………12分注:直接设点,或者说平面,,酌情扣分.20.(12分)解:(Ⅰ)依题意,、,,∴,………………………………………………2分由,,得,∵,∴,,………………………………………………………………4分故椭圆的方程为.……………………………………………………5分(Ⅱ)假设存在满足条件的点. 当直线与轴垂直时,它与椭圆只有一个交点,不满足题意. …………………………………………………6分因此直线的斜率存在,设:,由,消得,…………………………………………7分设、,则,,∵,………10分∴要使对任意实数,为定值,则只有,此时,.故在轴上存在点,使得直线与直线的斜率的和为定值.…………12分21.(12分)解:(Ⅰ)由于.…………………………………………1分假设函数的图象与轴相切于点,则有,即.………………………………………………3分显然,代入方程中得,.…………5分∵,∴无解.故无论a取何值,函数的图象都不能与轴相切.……6分(Ⅱ)依题意,恒成立.……………………………7分设,则上式等价于,要使对任意恒成立,即使在上单调递增,∴在上恒成立.…………………………………………8分则,,∴在上恒成立的必要条件是:.下面证明:当时,恒成立.…………10分设,则,当时,,当时,,∴,即.那么,当时,,;当时,,.∴恒成立.因此,的最大整数值为3.……………………………………………………12分22. [选修4-4:坐标系与参数方程](10分)解:(Ⅰ)证明:依题意,,………………………………………………1分,,…………………………………………3分则.…………5分(Ⅱ)当时,两点的极坐标分别为,,…………6分化直角坐标为,. ………………………………………………7分经过点的直线方程为,…………………………………………8分又直线经过点,倾斜角为,故,. ………………………10分23. [选修4-5:不等式选讲](10分)解:(Ⅰ)∵,∴,……………………………………………1分①当时,得,,∴;…………2分②当时,得,,∴;…………3分③当时,得,,∴. …………4分综上所述,实数的取值范围是.……………………………………5分(Ⅱ)∵,根据绝对值的几何意义知,当时,的值最小,……………………………………………………………………7分∴,即,……………………………………………………8分解得或.∴实数的取值范围是. …………10分。

2020届广东省广州市广东实验中学高三第三次阶段考试数学(理)试题(解析版)

2020届广东省广州市广东实验中学高三第三次阶段考试数学(理)试题(解析版)

2020届广东省广州市广东实验中学高三第三次阶段考试数学(理)试题一、单选题1.集合{}260A x x x =--<,集合{}2|log 1B x x =<,则AB =( )A .()2,3-B .(),3-∞C .()2,2-D .()0,2【答案】A【解析】先由二次不等式的解法得{}|23A x x =-<<,由对数不等式的解法得{}|02B x x =<<,再结合集合并集的运算即可得解.【详解】解不等式260x x --<,解得23x -<<,则{}|23A x x =-<<, 解不等式2log 1x <,解得02x <<,即{}|02B x x =<<, 即AB =()2,3-,故选:A. 【点睛】本题考查了二次不等式的解法及对数不等式的解法,重点考查了集合并集的运算,属基础题.2.己知i 是虚数单位,复数z 满足1zi z=-,则z 的模是( )A .1B .12C D【答案】C【解析】利用复数的运算法则和模的计算公式即可得出. 【详解】1zz=-i , ∴z =i -zi ,∴z 1(1)11222i i i i i ===++-,∴|z |2==,故选:C . 【点睛】本题考查了复数的运算法则和模的计算公式,属于基础题.3.若2,a ln =125b -=,201cos 2c xdx π=⎰,则,,a b c 的大小关系( ) A .a b c << B .b a c << C .c b a << D .b c a <<【答案】D【解析】利用对数函数的性质,以及微积分定理与12比较即可. 【详解】12ln ,2a ln =>=121,25b -=<== ()02111cos sin 22220c xdx x ππ=⎰=⨯=,故选:D 【点睛】本题考查实数大小的比较,考查对数函数的性质,微积分定理,考查利用中间量比较大小,属于常考题型. 4.若2sin cos 12x x π⎛⎫-+= ⎪⎝⎭,则cos2x =( ) A .89-B .79-C .79D .-1【答案】C【解析】利用诱导公式化简得到sin x ,再结合二倍角的余弦公式即可求解. 【详解】2sin sin 1x x +=,即1sin 3x =所以22cos 212sin 1799x x =-=-= 故选:C 【点睛】本题主要考查了三角函数的化简和求值,属于基础题.5.(,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条D .既不充分也不必要条件【答案】A【解析】方程表示双曲线,可得()()()5320m m m --+<,解得m 范围即可判断出结论,解得m 范围即可判断出结论. 【详解】由方程222156x y m m m +=---表示的图形为双曲线,可得()()2560m m m ---<,即()()()5320m m m --+<即2m <-,或35m <<,∴ (,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的充分不必要条件, 故选:A 【点睛】本题考查了双曲线的标准方程、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6.点P 是ABC △所在平面上一点,若2355AP AB AC =+,则ABP △与ACP △的面积之比是( ) A .35B .52C .32D .23【答案】C【解析】由向量的线性运算可得32=BP PC ,即点P 在线段AB 上,且32=BP PC ,由三角形面积公式可得:ABP S ∆APC S ∆:3:2BP PC ==,得解. 【详解】解:因为点P 是ABC △所在平面上一点,又2355AP AB AC =+, 所以2233-=-5555AP AB AC AP ,即23=55BP PC ,即32=BP PC ,则点P 在线段BC 上,且32=BP PC , 又1sin 2APC S AP PC APC ∆=∠,1sin 2ABP S AP BP APB ∆=∠, 又APB APC π∠+∠=,即sin sin APC APB ∠=∠, 所以点P 在线段BC 上,且32=BP PC , :ABP S ∆APCS ∆1sin :2AP BP APB =∠1sin 2AP PC APC ∠:3:2BP PC ==, 故选:C. 【点睛】本题考查了向量的线性运算及三角形的面积公式,重点考查了运算能力,属中档题.7.已知()121sin 221x x f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则函数()y f x =的图象大致为()A .B .C .D .【答案】D【解析】由函数解析式可得()()f x f x =-,则函数()y f x =为偶函数,其图像关于y轴对称,再取特殊变量4π得04f π⎛⎫< ⎪⎝⎭,即可得在()0,∞+存在变量使得()0f x <,再观察图像即可. 【详解】解:因为()121sin 221xx f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则()121sin 221x x f x x x ---⎛⎫-=-+⋅ ⎪+⎝⎭=121sin 221xx x x -⎛⎫-⋅ ⎪+⎝⎭,即()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称,不妨取4x π=,则 ()4421(08221f x πππ-=-<+, 即在()0,∞+存在变量使得()0f x <, 故选D. 【点睛】本题考查了函数奇偶性的判断及函数的图像,重点考查了函数的思想,属中档题. 8.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16 C .8 D .12【答案】B【解析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。

广东省六校联盟2020届“六校联盟” 第三次联考理科综合试题(word版,含答案)

广东省六校联盟2020届“六校联盟” 第三次联考理科综合试题(word版,含答案)

绝密★启用前2020届广东省高三“六校联盟”第三次联考理科综合注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

可能用到的原子量H1C12O16S32Cu64Ba137第I卷(选择题共126分)一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.胰岛素是一种含有51个氨基酸的蛋白质。

有关胰岛素的叙述,正确的是A.其含有C、H、O、N、S、P等元素B.胰岛B细胞中含有胰岛素基因对应的mRNAC.加热会破坏胰岛素中的肽键而改变其空间结构D.其属于信息分子,直接参与细胞内的生命活动2.下列有关生物学实验的叙述,正确的是A.盐酸处理口腔上皮细胞,能促进健那绿染液染色B.鉴定生物组织样液中的脂肪,需要体积分数为50%的酒精溶液C.探究培养液中酵母菌种群数量的变化的实验中运用了数学模型D.探究维持pH稳定机制的实验中,仅自来水和生物材料形成对照3.下列有关种子萌发的叙述,正确的是A.种子萌发前需要大量吸水,其吸水方式是渗透吸水B.萌发种子中自由水与结合水的比值大,代谢速率快C.种子萌发过程中,有机物的种类和总量都在增加D.种子萌发后长成植株,此过程体现了植物细胞的全能性4.我国传统文化中蕴藏着大量的生物学知识,下列对应关系错误的是A.“螟蛉有子,蜾赢负之”(春秋《诗经·小雅·小宛》)——寄生关系B.“牝鸡司晨”(春秋《尚书·牧誓》)——性激素分泌异常导致母鸡性反转C.“正其行,通其风”(北魏《齐民要术》)——二氧化碳浓度影响光合作用D .“竹外桃花三两枝,春江水暖鸭先知”(北宋《惠崇春江晓景》)——体现物理信息的 作用5.下列关于植物生长素的叙述,错误的是A .生长素在细胞内可由色氨酸合成B .芽比根对生长素的敏感性更高C .豌豆幼苗切段中乙烯的合成受生长素浓度的影响D .苹果树开花后,喷施适宜浓度的生长素可以防止果实脱落6.由苯丙氨酸羟化酶基因突变引起的苯丙酮尿症是常染色体隐性遗传病,我国部分地市对新生儿进行免费筛查并为患儿提供低苯丙氨酸奶粉。

2020届广东省六校联盟高三毕业班下学期第三次联合考试数学(文)试题(解析版)

2020届广东省六校联盟高三毕业班下学期第三次联合考试数学(文)试题(解析版)

绝密★启用前广东省六校联盟(广州二中 深圳实验中学 珠海一中 中山纪念 惠州一中 东莞中学)2020届高三毕业班下学期第三次联合考试数学(文)试题(解析版)一、选择题:本题共12小题,每小题5分,共60分.1. 已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃=A. {1}B. {12},C. {0123},,,D. {10123}-,,,, 【答案】C【解析】试题分析:集合{}{|12,}0,1B x x x Z =-<<∈=,而{}1,2,3A =,所以{}0,1,2,3A B ⋃=,故选C.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2. 若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A. 1B. 2 D. 【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模3. 已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( )A. −8B. −6C. 6D. 8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.4. AQI 是表示空气质量的指数,AQI 指数值越小,表明空气质量越好,当AQI 指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI 指数值的统计数据,图中点A 表示4月1日的AQI 指数值为201,则下列叙述不正确的是( )A. 这12天中有6天空气质量为“优良”B. 这12天中空气质量最好的是4月9日C. 这12天的AQI 指数值的中位数是90D. 从4日到9日,空气质量越来越好【答案】C【解析】由图可知,AQI 不大于100天有6日到11日,共6天,所以A 对,不选. AQI 最小一天为10日,所以B 对,不选.中位为是929593.52+=,C 错.从图中可以4日到9日。

六校联盟2020届高三数学下学期第三次联考试题理含解析

六校联盟2020届高三数学下学期第三次联考试题理含解析
(2,1,0), (0,0, ), (1,﹣1, ).
设 (x,y,z)为平面PDE的一个法向量.
由 ,令x=1,可得 (1,﹣2,0)
设PC与平面PDE所成的角为θ,得
所以PC与平面PDE所成角的正弦值为 .
【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线线垂直,利用空间向量求线面角的正弦值,属于中档题目。
A. B. 2C. D。
【答案】A
【解析】
∵由 ,∴ 内切圆半径为 ,∴离心率 ,故选A
11.设函数f(x)=sin(ωx+φ),若f( )=f( )=﹣f( ),则ω的最小正值是( )
A。 1B。 C。 2D。 6
【答案】B
【解析】
【分析】
根据函数值的关系,求出函数的一条对称轴和一个对称中心,结合对称轴和对称中心与周期之间的关系进行求解即可.
【详解】由正弦定理得 ,
∴ .
又 ,
∴ 为锐角,
∴ .
故选B.
【点睛】在已知两边和其中一边的对角解三角形时,需要进行解的个数的讨论,解题时要结合三角形中的边角关系,即“大边(角)对大角(边)”进行求解,属于基础题.
7.已知椭圆C: 的左右焦点为F1,F2离心率为 ,过F2的直线l交C与A,B两点,若△AF1B的周长为 ,则C的方程为( )
故选:B.
【点睛】本题考查条件概率,正确理解条件概率的意义及其计算公式是解题的关键.
5。设等差数列 的前n项和为Sn ,当首项a1和公差d变化时,若a1+ a8+ a15是定值,则下列各项中为定值的是( )
A. S15B. S16C. S17D。 S18
【答案】A
【解析】
【分析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2020届六校联盟高三第三次联考
理科数学
本试卷共5页,23小题,满分150分.考试用时120分钟.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1. 满足
z +
(i 为虚数单位的复数z =( )
A .
1122i + B . 1122i - C . 1122i -+ D . 1122
i -- 2. 已知集合{
}(){
}
22
|1,|lg 2y y x B x y x x A ==-==-,则
A . 1[0,)2
B . (,0)-∞∪1
[,+)2∞
C . 1(0,)2
D . (,0] -∞∪1
[,+)2

3. 设a R ∈,0b >,则3a b >是3log a b >的( )
A . 充分而不必要条件
B . 必要而不充分条件
C . 充要条件
D . 既不充分也不必要条件
4. 根据历年气象统计资料,某地四月份吹东风的概率为730,既吹东风又下雨的概率为1
10
.则在吹东风的条件下下雨的概率为( )
A .
311 B . 37
C .
711
D .
1
10
5. 设等差数列的前n 项和为()n S n N *
∈,当首项和公差d 变化时,若是定值,则下列各项中为定值的是( )
A . 15S
B . 16S
C . 17S
D . 18S
6. 设的内角A ,B ,C 所对边分别为a ,b ,c 若,,3
A π
=
,则B =( )
A .
6
π
B .
23
π C .
6
π

56
π D .
4
π
7. 已知椭圆C :22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,离心率为,过2F 的直线l 交
C 于A 、B 两点,若的周长为,则C 的方程为( )
A . 22132x y +=
B . 2
213x y +=
C . 221128x y +=
D . 22
1124
x y +=
8. 已知向量()cos ,sin a θθ=r ,()
1,2b =r ,若a r 与b r 的夹角为6
π
,则||a b -r r =( )
A . 2
B . 3
C . 2
D . 1
9. 函数sin ()=
2x
x
f x e
的图象的大致形状是( ) A . B .
C .
D .
10. 已知双曲线22
221x y a b
-=(0,0a b >>)的左,右焦点分别为1F 、2F ,点A 在双曲线上,且2AF x
⊥轴,若的内切圆半径为,则其离心率为( )
A 3
B . 2
C . 31
D . 2311. 设函数()()sin f x x ωϕ=+,若7(
)(
)()6
63
f f f π
ππ
==-,则ω的最小正值是( ) A . 1 B .
6
5
C . 2
D . 6 12. 在我国古代数学名著九章算术中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵如图,在堑堵111ABC A B C -中,AB BC =,1AA AB >,堑堵的顶点1C 到直线1A C 的距离为m ,1
C
到平面1A BC 的距离为n ,则
m
n
的取值范围是 A . 23(1,
) B . 223(,)2 C . 23(,3) D . 23
(,2)
二、填空题:本题共4小题,每小题5分,共20分.
13. 已知函数1
()sin 2sin 33
f x a x x =-(a 为常数)在3
x π
=处取得极值,则a 值为______.
14. 若2020
220200122020(1)(1)(1)x
a a x a x a x =+-+-+⋅⋅⋅+-,则
202012
22020
333
a a a ++⋅⋅⋅+=______. 15. 若函数()=(0)ax
b f x
c cx
d +≠+,其图象的对称中心为(,)d a c c -,现已知22()=21
x
f x x --,数列{}
n a 的通项公式为(
)()2020
n n
a f n N *=∈,则此数列前2020项的和为______. 16. 已知正方体1111ABCD A B C D -的棱长为1,以顶点A 为球心,23
为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考
题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.
17. (本小题满分12分)
已知函数 . (1)若 ,求函数()f x 的值域;
(2)设的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若A 为锐角且3
()=f A ,,3c =,求的值.
18. (本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,
90DAB ∠=o ,AD ∥BC ,侧面PAB ,是等边三角形,,,E 是线段AB
的中点.
()2sin()cos 3
f x x x π
=
+02
x π≤≤
1)求证:;
2)求PC 与平面PDE 所成角的正弦值.
19. (本小题满分12分)
已知O 为坐标原点,过点()1,0M 的直线l 与抛物线C :2
2(0)y px p =>交于A ,B 两点,且
3OA OB u u u r u u u r
⋅=-.
(1)求抛物线C 的方程;
(2)过点M 作直线'l l ⊥交抛物线C 于P ,
Q 两点,记OAB ∆,OPQ ∆的面积分别为1S ,
2S ,证明:
22
1211S S +为定值.
20. (本小题满分12分)
十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:
根据频率分布直方图估计50位农民的年平均收入单位:千元同一组数据用该组数据区间的中点值表示;
由频率分布直方图可以认为该贫困地区农民年收入X 服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得:,利用该正态分布,求:
()i 在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
()ii 为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收人相互独立,问:这1000位农民中的年收入不少于千元的人数最有可能是多少?
附:参考数据与公式,若2
(,)X N μσ~,则;
21. (本小题满分12分)
已知函数1)1()(-+=t
x x f 的定义域为()+∞,1-,其中实数t 满足10≠≠t t 且.直线
:l )(x g y =是)(x f 的图像在0=x 处的切线.
(1)求l 的方程)(x g y =;
(2)若)()(x g x f ≥恒成立,试确定t 的取值范围; (3)若()1,0,21∈a a ,求证:12212121a
a
a
a
a a a a +≥+.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22. [选修4 ― 4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x t y t α
α=⎧⎨=+⎩
,以原点O 为极点,x 轴正半轴
为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.
若曲线1C 方程中的参数是,且1C 与2C 有且只有一个公共点,求1C 的普通方程;
已知点()0,1A ,若曲线1C 方程中的参数是t ,,且1C 与2C 相交于P ,Q 两个不同点,求
11
||||
AP AQ +的最大值.
23. [选修4 ― 5:不等式选讲](本小题满分10分) 已知函数()|1|||()f x x x a a N *=--+∈,恒成立. (1)求a 的值; (2)若正数x ,y 满足12a x y +=,证明:11
22
x y xy ++≥。

相关文档
最新文档