高中数学立体几何中平行垂直概念以及定理归纳
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质:两个平行平面同时与第三个平面相交,则它们的交线平行。(定理5.4)
两平面平行,其中以平面内的任意一条直线必平行于另一平面。
两个平行平面中的一个平面与一条直线垂直,则另一平面也与此直线垂直。
线线垂直
线面垂直
面面垂直
定义:
定义:如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
线线平行
线面平行
面面平行
定义:如果两条共面直线无公共点,则这两条直线平行。
定义:如果一条直线与一个平面没有交点,则这条直线与此平面平行。
定义:平面与平面之间没有交点,则这两个平面平行。Biblioteka Baidu
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
定义:两个平面相交,如果他们所成的二面角是直二面角,就说这两个平面互相垂直。
判定:
判定:如果一条直线与平面内的两条相交直线都垂直,那么该直线与此平面垂直。
判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质:
性质:如果两条直线同时垂直于一个平面,则这两条直线平行。
性质:如果两平面垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
如果两条直线同垂直与一个平面,那么这两条直线平行(6.3)
判定:若平面外一条直线与此平面中的一条直线平行,则该直线与此平面平行。
判定:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质:两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
性质:如果平面外一条直线与此平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。
两平面平行,其中以平面内的任意一条直线必平行于另一平面。
两个平行平面中的一个平面与一条直线垂直,则另一平面也与此直线垂直。
线线垂直
线面垂直
面面垂直
定义:
定义:如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
线线平行
线面平行
面面平行
定义:如果两条共面直线无公共点,则这两条直线平行。
定义:如果一条直线与一个平面没有交点,则这条直线与此平面平行。
定义:平面与平面之间没有交点,则这两个平面平行。Biblioteka Baidu
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
定义:两个平面相交,如果他们所成的二面角是直二面角,就说这两个平面互相垂直。
判定:
判定:如果一条直线与平面内的两条相交直线都垂直,那么该直线与此平面垂直。
判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质:
性质:如果两条直线同时垂直于一个平面,则这两条直线平行。
性质:如果两平面垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
如果两条直线同垂直与一个平面,那么这两条直线平行(6.3)
判定:若平面外一条直线与此平面中的一条直线平行,则该直线与此平面平行。
判定:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质:两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
性质:如果平面外一条直线与此平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。