教学设计1 集合的含义与表示

合集下载

1.1.1集合的含义与表示教学设计

1.1.1集合的含义与表示教学设计

1.1.1集合的含义与表示一、教材分析本节课选自人教版《普通高中课程标准实验教科书数学》必修1,第一章1.1.1集合的含义与表示。

《课程标准》对本课内容的要求是:通过实例,了解集合的含义,理解元素与集合的属于关系;针对具体问题,能够在自然语言和图形语言的基础上,用符号语言刻画集合。

集合在高中阶段的数学课程中,具有十分重要的地位。

集合是高中阶段数学课程引入的第一个概念,是整个高中数学课程内容的基础,集合的初步知识与后续内容的学习有着密切的联系。

集合是学习掌握使用数学语言的基础,集合形象化的将生活实际问题用数学符号表示出来,从而简化了用数学分析实际问题的语言,为相关数学知识奠定一定的理论基础。

许多重要的高中数学内容,如函数,方程,不等式,立体几何解析几何,概率统计的,都需要用集合的语言来表述相关问题及核对这些内容的后续学习均发挥了显著作用。

集合是集合论中的原始的不定义只描述的概念。

在初中数学不等式解集的定义中涉及过集合,学生已经有了一定的感性认识,在此基础上,本节结合实例引出集合与集合中元素的相关概念,集合中元素的特征,及集合的表示方法等。

二、学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,有了对周围事物的发现总结能力。

对部分粗心大意的学生,培养其细致的观察力,在本节的学习中学生可能会对集合的表示方法:列举法和描述法会有所混淆,通过不断的练习巩固来达到标准要求。

学生可能会用初中熟知的记忆学习方法来学习,鼓励学生理解学习,事半功倍。

三、教学目标1、知识与技能目标:通过实例,了解集合的含义,理解元素与集合的属于关系;针对具体问题,能够在自然语言和图形语言的基础上,用符号语言刻画集合。

2、过程与方法目标:通过集合含义教学,培养学生的抽象思维能力。

通过集合表示方式的教学,培养学生运用数学语言学习数学、进行交流的能力。

树立用集合语言表示数学内容的意识。

3、情感态度与价值观目标:学生在掌握集合相关的基本概念的基础上,解决相关问题,获得数学学习的成就感;学生的数学学习进入到新阶段,培养学生对数学学习的兴趣。

1.1.1 集合的含义及其表示教案

1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。

○3无序性:集合中的元素间是无次序关系的。

(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。

(2)我国的小河流。

2.说出集合A={a,b,c}和集合B={b, a,c}的关系。

(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案主题:集合的含义与表示教案目标:1. 理解集合的基本含义。

2. 掌握集合的表示方法。

3. 能够用集合的表示方法描述给定的情境。

4. 能够运用集合的基本操作解决问题。

教学重点:1. 集合的含义与基本操作。

2. 集合的表示方法。

教学难点:1. 运用集合的表示方法描述实际情境。

教学准备:1. PowerPoint课件。

2. 教学板书。

教学过程:Step 1:导入新知1. 教师出示一些实物,如水果、玩具等,引导学生思考这些实物有什么相同之处。

2. 引导学生总结归纳,提出“集合”的概念,解释集合的基本含义。

Step 2:集合的含义1. 引导学生研究集合的定义:集合是由一些元素组成的整体。

2. 通过实例让学生理解集合的概念,如{1, 2, 3}表示由1、2、3三个元素组成的集合。

Step 3:集合的表示方法1. 教师出示集合的符号表示方法,如用大括号{}括起来的元素列表。

2. 通过实例让学生掌握集合的符号表示方法,如{苹果, 香蕉, 梨子}表示由苹果、香蕉、梨子三个元素组成的集合。

3. 教师引导学生讨论集合中的元素是否有顺序之分,解释集合与序列的区别。

4. 教师出示集合的文字表示方法,如用描述性的句子来表示集合。

Step 4:集合的基本操作1. 教师引导学生了解集合的基本操作:包含关系、相等关系、子集关系。

2. 通过实例让学生掌握集合的基本操作,如集合A={1, 2, 3},集合B={1, 2},则A包含B,B是A的子集。

Step 5:运用集合的表示方法描述实际情境1. 教师设计一些情境,如描述班级同学的集合、描述某个地区的居民集合等。

2. 学生进行小组讨论,用集合的表示方法描述给定情境。

3. 学生报告讨论结果,集体分享。

Step 6:拓展应用1. 教师引导学生思考集合在数学中的应用,如数集、函数等。

2. 学生进行小组讨论,分享集合的拓展应用。

3. 教师总结讨论结果,提出个人思考问题。

Step 7:小结与评价1. 教师总结集合的基本含义与表示方法,并强调集合的基本操作。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。

2. 学会用列举法、描述法表示集合。

3. 能够运用集合的基本运算解决实际问题。

二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。

2. 教学难点:理解集合中元素的确定性、互异性、无序性。

三、教学准备1. 教学素材:黑板、PPT、教学卡片。

2. 教学工具:多媒体投影仪、笔记本电脑。

四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。

3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。

(2)描述法:引导学生学会用描述法表示集合。

4. 集合的基本运算:讲解并演示集合的并、交、差运算。

5. 课堂练习:布置练习题,让学生巩固所学知识。

五、课后作业1. 完成练习册上的相关题目。

2. 思考生活中的集合实例,总结集合的特点。

教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。

在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。

通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。

六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。

2. 引导学生学会利用数轴、Venn图解决集合问题。

七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。

2. 强调集合中元素的确定性、互异性、无序性。

八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。

2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。

九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。

2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案教学目标:1. 了解集合的含义和表示方法。

2. 学会使用集合符号和描述法表示集合。

3. 能够解决与集合相关的基本问题。

教学内容:一、集合的含义1. 集合的定义2. 集合的元素3. 集合的特点二、集合的表示方法1. 集合符号表示法2. 描述法表示法3. 集合的列举法三、集合的关系1. 子集的概念2. 真子集与非真子集3. 集合的包含关系四、集合的运算1. 集合的并集2. 集合的交集3. 集合的补集五、集合的应用1. 集合的分类2. 集合在数学中的应用3. 集合在日常生活中的应用教学步骤:一、导入(5分钟)1. 引入集合的概念,引导学生思考日常生活中遇到的集合现象。

2. 举例说明集合的特点,引起学生对集合的兴趣。

二、讲解集合的含义(15分钟)1. 给出集合的定义,解释集合的元素和特点。

2. 通过示例让学生理解集合的概念。

三、学习集合的表示方法(20分钟)1. 介绍集合符号表示法和描述法表示法。

2. 讲解集合的列举法,让学生学会用符号表示集合。

四、探讨集合的关系(15分钟)1. 讲解子集的概念,区分真子集与非真子集。

2. 引导学生理解集合的包含关系。

五、学习集合的运算(20分钟)1. 讲解集合的并集、交集和补集的定义和性质。

2. 通过示例让学生掌握集合的运算方法。

六、集合的应用(10分钟)1. 讲解集合的分类,让学生了解不同类型的集合。

2. 引导学生思考集合在数学和日常生活中的应用。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生的参与度和提问反馈。

3. 课后作业的完成质量和学生的掌握程度。

教学资源:1. PPT课件。

2. 集合的相关例题和习题。

3. 教学参考书籍和网络资源。

教学建议:1. 在讲解集合的含义时,举例要贴近学生的生活,让学生更容易理解。

2. 在学习集合的表示方法时,引导学生动手练习,加深对集合符号的理解。

3. 在探讨集合的关系和运算时,注重引导学生思考和发现规律,提高学生的逻辑思维能力。

集合的含义与表示优秀教案

集合的含义与表示优秀教案

篇一:《集合的含义与表示》教学设计《集合的含义与表示》教学设计一、教材分析1、教材的地位与作用剖析《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。

本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。

2、教学内容与学情剖析本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。

高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。

3、教学目标与重、难点剖析鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:(1)教学目标知识技能目标:①了解。

(集合的含义)②理解。

(元素与集合的关系)③掌握。

(集合的表示方法)④培养。

(学生观察、类比、归纳、表达的能力)过程与方法目标:①体验从特殊到一般的学习规律;②渗透分类思想;情感与价什观目标:①通过教学,激发学生的学习兴趣,培养学生积极的学习态度;②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;(2)教学重、难点重点:集合的基本概念与表示。

难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。

[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。

二、教法设计由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。

集合的含义及表示教案+同步习题

集合的含义及表示教案+同步习题

§1.1.1集合的含义与表示教案教学目标:1通过具体的例子了解集合的含义,知道常用数集及其记法;2初步了解集合和元素的关系,3初步掌握集合的两种表示方法、教学重点:集合的概念与其表示教学重点:1、正确理解集合的概念及特征2、集合表示法的恰当选择新课讲解:创设情境,引入新课:生活中我们经常听到以下说法:1.第四中学2018年9月入学的高一全体学生;2.我国从2001~2015年的15年内所发射的所有人造卫星;3.2016年里约热内卢奥运会的所有比赛项目;4.我国古代的四大发明;以上描述有什么共同特征?引入新课。

【知识点1】集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示而元素用小写的拉丁字母a,b,c…表示。3.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.⑶无序性:即集合中的元素无顺序,可以任意排列、调换。构成两个集合的元素完全一样,这两个集合相等。◇同步练习◇⑴判断下列每组对象的全体能否构成集合?①我班16岁以下的学生②接近于2000的数③大于2的所有整数④函数y=x+1图像上的点⑤鲜艳的颜色⑥2018年中考卷中的难题⑵由实数−a,a,a,2a,−55a元素组成的集合中,最多有几个元素?说明为什么?4.常用的数集合及记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R;5.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。例如, A ={2,4,8,16},则4∈A ,8∈A ,32∉A . ◇同步练习◇ 用符号,∈∉填空:①2 N ②1.414 Q ③7 R , ④ −1 N⑤12Q ⑥0 N ⑦ −4 Z ⑧ π Q ⑨ 3 R 【知识点2】集合的表示方法1.列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法如:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}“maths 中的字母” 构成的集合,写成{m ,a ,t ,h ,s }“方程组20{=+=-y x y x 的解”构成的集合是)}1,1{(…说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;【例1】用列举法表示下列集合:(1)中国国旗的颜色的集合;(2)单词mathematics 中的字母的集合;(3)自然数中不大于10的质数的集合;(4)同时满足240121x x x +>⎧⎨+≥-⎩的整数解的集合; (5)由||||(,)a b a b R a b+∈所确定的实数集合. ⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。符号形式:{代表元素∣p (代表元素)}方法:⑴在花括号内先写上表示这个集合元素的一般符号⑵再画一条竖线,⑶在竖线后写出这个集合中元素所具有的共同特征。如:不等式12x +<-的解集可以表示为:{-3}x R x ∈<{三角形∣含有30°角的三角形}“中国的直辖市”构成的集合,写成{x ∣x 为中国的直辖市};“抛物线y =x 2+1上的点”构成的集合,写成{ (x ,y )|y =x 2+1};“直线y =x +2上的点”构成的集合,写成{(x ,y )|y =x +2}{(x ,y )|y =x 2+2}表示y =x 2+2上的点构成的集合。 说明:⑴描述法表示集合应注意集合的代表元素,如{(x ,y )|y = x 2+3x +2}与{y |y = x 2+3x +2}是不同的两个集合。 ◇同步练习◇区分以下集合A ={(x ,y )∣y =x 2−1,x ∈R}B ={y ∣y =x 2−1,x ∈R}C ={x ∣y =x 2−1}D ={x ∣x 2−1=0,x ∈R}【例2】用描述法表示下列集合:(1)方程x 2+2x +1=0所有实数解的集合;(2)使2x y x-=有意义的x 的集合; (3)所有被3整除的整数的集合;(4)抛物线y =−x 2+3x −6上所有点的集合;◇同步练习◇㈠分别用列举法和描述法表示下列集合(1)方程x 2−2=0的所有实数根组成的集合 (2)由大于10小于20的所有整数组成的集合⑶方程x 2−5x +6=0的解集 ⑷{15以内的质数};㈢用适当的方法表示下列集合⑴由方程x 2−9=0的所有实数根组成的集合; ⑵不等式453x -<的解集;⑶坐标平面内,第一象限的点的集合; ⑷ 二次函数y =x 2−4的函数值组成的集合;⑸ 函数y =x 2−4的自变量的值组成的集合; ⑹二次函数24y x =-图像上的点组成的集合;⑺一次函数3y x =+与26y x =-+的图像的交点组成的集合;◇基础达标◇1. 下列各组对象不能组成集合的是 ( )A .大于6的所有整数B .充分小的负数全体C .被3除余2的所有整数D .函数y =x 1图象上所有的点 2. 给出下列关系:①12R ∈ ②2Q ∉ ③3N +-∉ ④3Q -∈,其中正确的个数为 ( )A .1B .2C .3D .43. 下列结论中,不正确的是( )A .若a ∈N ,则−a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则R a ∈34. 下列集合表示法正确的是( )5. A .{1,2,2,3} B .{全体实数} C .{有理数} D .不等式x 2−5>0的解集为{x 2−5>0}6. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7. 把集合{x ∣−3≤x ≤3,x ∈N}用列举法表示,正确的是 ( )A .{3,2,1}B .{3,2,1,0}C .{−2,−1,0,1,2}D .{−3,−2,−1,0,1,2,3}8. 方程组31x y x y +=⎧⎨-=⎩的解组成的集合是 ( )A .{2,1}B .{−1,2}C .(2,1)D .{(2,1)}9. 用符号,∈∉填空:⑴5 {}2*1,x x n n N=+∈, ⑵(1,1)- {}2y y x =, ⑶(1,1)- {}2(,)x y y x = ⑷ 0 }2{2x x x =. 10. 已知集合A ={2a ,a 2−a },则a 的取值范围是 。11. 已知集合{}1,1A m =+,则实数m 满足的条件是 。12. 集合{}32x N x +∈-<用列举法可表示为 。13. 集合{}2210x x x -+=用列举法可表示为 。14. 集合{}220x x x m -+=含有两个元素,则实数m 满足的条件为 。15. 已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,列举法表示集合A 。16. 若集合}{1,x -与}{2,x x为同一个集合,求实数x 的值;17. 已知x 2是集合{1,0,}x 中的元素,求实数x 的值。

集合的含义及其表示教学设计

集合的含义及其表示教学设计

集合的含义及其表示教学设计集合的含义及其表示教学设计篇1一、教材分析本节课的主要目的是为了让学生了解集合的含义、体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用的数集及其记法和集合元素的三个特征。

最终学会用集合这种数学模型来解释自然生活现象,为自然生活现象进行数学建模。

二、学生分析由于学生初识集合,需要我们通过适当的情境引入集合的含义及其表示方法。

学生的学习认知过程是一个循序渐进的过程,通过合适的情境引入,让学生在生活中掌握数学的基础知识,也教会了学生使用数学思路来解释生活现象。

这是一个双赢的局面。

三、教学目标让学生理解集合的含义及其表示方法,学会用集合这种数学模型解释自然生活现象,从而学会数学建模思想。

四、教学环境简易多媒体教学环境,辅助黑板板书教学。

五、信息技术应用思路在教学过程中,我使用了ppt作为教学内容的基本板书,提纲挈领的给出课程目标、基础知识梳理、要点导航、典例剖析,从而有条不紊的进行集合知识的讲解。

在进行情境教学时,我放映了一个日常生活中的自我介绍片段(VCR),并且通过跟学生互动,让学生们也进行自我介绍。

然后让学生总结在介绍的过程中提及到的常用词语。

提及“家庭”、“学校”、“班级”、“男生”、“女生”等词语,这些所涉及的范围与“学生×××”相比,它们有什么区别,又有什么联系呢?从而引出本节课的集合的主题。

一般地,由在一定范围内不同的、确定的对象的全体组成一个集合。

同时,在集合的表示的环节中,我使用了ppt的动画演示的方法,演示了集合的三种表示方法,列举法、描述法、venn图法。

通过ppt技术、视频演示技术、动画演示技术,让学生可以直观形象生动的进行学习,可以起到举一反三的功效。

让学生在轻松的环境中进行学习。

六、教学流程设计1、教学环节首先,通过播放一段日常生活中的自我介绍VCR视频,导入本节课的主题,然后通过跟学生互动,让学生自己也参与到自我介绍的过程中,通过与学生的互动,增进了与学生之间的'交流,然后接着通过总结分析,发现介绍过程中的通用介绍词汇,接着引入本节课的集合的概念。

《集合的含义与表示》教学设计

《集合的含义与表示》教学设计

《集合的含义与表示》教学设计一、教材分析1.普通高中数学课程标准要求:学生通过实例初步认识集合的含义与表示,同时学生能够用集合语言表示有关数学对象,并运用集合和对应的语言进一步描述函数概念。

2.本节内容在数学知识体系中的地位本节内容是在小学和初中接触过的一些集合基础上对集合知识的延伸与扩展,与学生的生活联系十分密切。

并且本节内容是高中数学课程的起始内容,具有一定的抽象性,研究的方法也与初中数学不同,同时教材将集合的初步知识作为初、高中课程的衔接,因此设计好这一节内容不但对学生的知识掌握而且对学生能否入门高中数学都是很重要的。

当然,通过对这一节的学习能够帮助学生用集合语言简洁、准确的描述数学内容,为后面的学习打好基础。

3.教材内容与体系安排教材的本节内容遵循关注学生发展和重视以学定教的新课程理念。

教材的编写思路是通过实例以及学生熟悉的数集,引入集合的概念,进而给出函数的表示方法。

二、学情分析1.认知层面:学生在初中阶段的学习中,已经对集合有了初步认知,接触过一些集合的实例。

2.知识层面:对于高一学生,知识经验已较为丰富,对一些具体知识有了一定的掌握,但对一些抽象的知识还不能完全明了如何去学,一些良好的数学素养还需要去形成。

3.能力层面:高一学生已具备较强的抽象思维能力和演绎推理能力,但还有一些能力需要去培养、提高,比如要培养学生细致的观察能力,使得学生能够去正确表示集合。

因此在授课时要注重符合这一类学生的心理发展特点,从而促进思维能力的进一步发展。

三、教学目标1.知识与技能目标:(1)了解集合的含义,体会集合与元素的属于关系,知道常用数集的专用符号,能够判断具体数值与常用数集之间的关系,了解集合之间的三性,能够用集合语言熟练的表示数学对象。

(2)能够用正确的方法表示集合,即熟练运用列举法和描述法来描述具体问题。

2.过程与方法目标:(1)让学生经历从具体实例中抽象概括出集合共同特征的过程,体会对集合的含义。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .

集合的含义与表示教案

集合的含义与表示教案

§1 集合的含义与表示(1课时)一、教材分析《集合的含义与表示》是在学生系统地学习了初中课程,并对集合有了感性认识的基础上对集合的含义与表示进行学习,在这里只是将集合作为一种语言来学习,为进一步学习数学奠定基础,集合是高中数学中最原始的概念,高中数学的运算结果,大都需要使用集合语言来描述,所以正确使用最基本的集合语言表示有关的数学对象,提高运用数学语言进行交流的能力正确使用集合语言处理高中数学各种数与形的问题,是一项极为重要的基本功。

《集合的含义与表示》教学在《大纲》中用一个课时完成:主要通过实例了解集合的含义,体会元素与集合的“属于”关系;能够选择自然语言、图形语言、集合语言(列举法或者描述法)描述不同的具体问题,提高语言的转换能力,感受集合语言表示数学内容的简洁性和准确性。

二、学情分析通过初中阶段的学习,学生对集合的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生学习了圆的定义、线段的垂直平分线的概念之后,对于集合已经有了一定的感性认识。

能力层面:学生在初中已经掌握了圆的定义,初步具备了抽象概括的能力。

情感层面:高中生活伊始,学生对数学新内容《集合的含义与表示》学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡。

三、教学方法和手段采用引导-发现式,合作-讨论式教学方式,配合多媒体、投影等辅助教学。

四、教学过程的设计为尽可能地让学生经历知识的形成与发展过程,更好地使不同层次的学生形成自己对集合的含义、表示方法、常用数集,集合分类的理解和掌握,结合本单元教材的特点,教学中采用了“自主探究”教学模式。

五、教学目标及重难点【目标呈现】1、通过举例(与本班有关的或生活中集合实例)让学生观察,能够说出集合,元素的概念,会用符号表示他们之间的关系;2、了解集合中元素的三大特征;内容识记常用的数集及其专用符号;3、阅读课本P44、会用描述法或列举法表示集合;5、能区分有限集、无限集;教学重点:描述法或列举法表示集合教学难点:描述法表示集合六、教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

精 品 教 学 设 计1.1集合的含义与表示

精 品 教 学 设 计1.1集合的含义与表示

精品教学设计1.1集合的含义与表示一.教学目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,提高语言转换能力,感受集合语言表达数学内容时的简洁性和准确性。

二.教学重、难点重点:集合的概念与表示方法。

难点:应用集合的两种常用表示方法—列举法与描述法,正确表示一些简单的集合。

三.教学过程设计(一)创设情境初中接触过的“集合”1.正分数集合与负分数集合.2.x2-1=0的解集为1,-1.3.圆,角平分线,线段垂直平分线.4.军训前学校通知: 8月15日8点,高一年级在体育馆进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?(二)新课讲解1.集合:指定的某些对象的全体。

常用大写拉丁字母A,B,C…来标记.例如(1) 遂川二中高一(1)班的全体同学组成的集合,记作A;(2)所有小于10的素数组成的集合,记作B;(3)地球上的四大洋组成的集合,记作C;(4)方程x-1=0的所有解组成的集合,记作D;注:集合是数学中的一个原始概念,不能加以定义,只能作描述性说明。

2.元素:集合中的每一个对象,常用小写拉丁字母a,b,c表示。

问:说出下列集合中的元素?(1) 遂川二中高一(1)班的全体同学组成的集合A;(2)所有小于10的素数组成的集合B;(3)地球上的四大洋组成的集合C;(4)方程x-1=0的所有解组成的集合D;注:集合中元素的三大特性:(1) 确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

(2) 互异性:集合中的元素没有重复。

(3) 无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)3.元素与集合的从属关系属于:如果a是集合A中的元素,说a属于A,记作a∈A.不属于:如果a不是集合A中的元素,说a不属于A,记作a∈A.注意:符号“∈”不可颠倒例如:A={能被3整除的整数}∈;若a=-6,a A∉;若a=8,a A4.常用数集及记法(1) 非负整数集(自然数集): 全体非负整数的集合。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案教学目标:1. 理解集合的含义和特点;2. 学会使用集合的表示方法;3. 能够运用集合的概念解决实际问题。

教学内容:第一章:集合的概念1.1 集合的定义1.2 集合的元素1.3 集合的特点第二章:集合的表示方法2.1 列举法2.2 描述法2.3 图像法第三章:集合之间的关系3.1 子集的概念3.2 真子集与非真子集3.3 集合的相等第四章:集合的运算4.1 并集的定义及运算4.2 交集的定义及运算4.3 补集的定义及运算第五章:集合的实际应用5.1 集合在数学中的应用5.2 集合在生活中的应用5.3 集合在其他学科中的应用教学方法:1. 采用讲授法,系统地介绍集合的概念、特点、表示方法、关系和运算;2. 利用例题和练习题,让学生巩固集合的基本知识;3. 结合生活实例,让学生了解集合在实际中的应用。

教学步骤:第一章:集合的概念1.1 集合的定义1. 引入集合的概念,讲解集合的定义;2. 通过实例让学生理解集合的元素和特点。

1.2 集合的元素1. 讲解集合元素的特点;2. 分析集合元素的属性。

1.3 集合的特点1. 总结集合的特点;2. 通过练习题让学生巩固集合的特点。

第二章:集合的表示方法2.1 列举法1. 讲解列举法的概念和用法;2. 让学生通过练习题学会使用列举法表示集合。

2.2 描述法1. 讲解描述法的概念和用法;2. 让学生通过练习题学会使用描述法表示集合。

2.3 图像法1. 讲解图像法的概念和用法;2. 让学生通过练习题学会使用图像法表示集合。

第三章:集合之间的关系3.1 子集的概念1. 讲解子集的概念;2. 让学生通过练习题学会判断子集关系。

3.2 真子集与非真子集1. 讲解真子集与非真子集的概念;2. 让学生通过练习题学会判断真子集与非真子集关系。

3.3 集合的相等1. 讲解集合的相等概念;2. 让学生通过练习题学会判断集合的相等关系。

第四章:集合的运算4.1 并集的定义及运算1. 讲解并集的定义和运算方法;2. 让学生通过练习题学会计算并集。

集合的含义与表示优秀教案

集合的含义与表示优秀教案

篇一:《集合的含义与表示》教学设计《集合的含义与表示》教学设计一、教材分析1、教材的地位与作用剖析《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。

本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。

2、教学内容与学情剖析本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。

高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。

3、教学目标与重、难点剖析鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:(1)教学目标知识技能目标:①了解。

(集合的含义)②理解。

(元素与集合的关系)③掌握。

(集合的表示方法)④培养。

(学生观察、类比、归纳、表达的能力)过程与方法目标:①体验从特殊到一般的学习规律;②渗透分类思想;情感与价什观目标:①通过教学,激发学生的学习兴趣,培养学生积极的学习态度;②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;(2)教学重、难点重点:集合的基本概念与表示。

难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。

[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。

二、教法设计由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。

1.1.1《集合的含义与表示》参考教案1

1.1.1《集合的含义与表示》参考教案1

1.1.1 集合的含义与表示教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础。

一方面,许多重要的数学分支,都建立在集合理论的基础上;另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

教学重点:集合的基本概念与表示方法。

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员。

试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样。

5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A ∈(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案

高一数学必修1《集合的含义与表示》教案【教学目标】1. 理解集合的概念,能够用通俗易懂的语言描述集合的含义。

2. 熟悉常见集合符号的表示及其含义。

3. 能够运用集合的相关性质解决实际问题。

4. 能够分别用文字描述和图形表示集合。

【教学重点】1. 集合的概念与基本符号的熟练掌握。

2. 集合运算的理解和运用。

【教学难点】1. 集合的基本概念,包括空集、全集、子集等。

2. 集合运算的细节及其运用。

【教学方法】1. 演讲法:介绍集合的基本概念和相关性质。

2. 互动式教学:让学生根据实际问题思考集合的处理方法,提高学生的思维能力。

3. 提问式教学:通过提出问题,引导学生自己思考和总结。

【教学资源】1. 高一数学必修1教材。

2. PPT。

3. 多媒体教学设备。

【教学过程】一、导入(15分钟)1. 引入集合概念。

通过图片或文字向学生展示几个集合,引导学生了解集合的概念。

2. 创建集合。

让学生自己尝试创建几个集合,并用文字或图形表示出来。

二、集合的概念(30分钟)1. 什么是集合?集合是由一些互不相同的元素所组成的整体。

例如,由0、1、2、3、4这5个元素组成的集合可以用花括号表示:{0,1,2,3,4}。

2. 集合的符号表示。

集合用大写字母表示,元素用小写字母表示。

例如,集合A={a1,a2,…,an}。

3. 集合的基本概念。

有限集合、无限集合、空集、全集、真子集、超集。

4. 练习。

通过几个例题,让学生巩固集合的基本概念。

三、集合的运算(45分钟)1. 集合的运算符号。

并集、交集、差集、补集、对称差集等。

2. 集合的运算法则。

交换律、结合律、分配律、消去律、德摩根定律等。

3. 练习。

通过较易的例题,让学生理解集合运算的概念和运算法则。

四、作业布置(10分钟)1. 课后练习。

布置一定量的集合练习题,让学生掌握集合概念和运算法则,并合理运用集合来解决实际问题。

2. 知识巩固。

要求学生按照课上所学知识,撰写一篇500字的集合概念详解。

1_1集合的含义与表示教案

1_1集合的含义与表示教案

1.1.1集合的含义及其表示一、知识与技能(1)理解集合的含义,掌握元素与集合的属于关系。

(2)理解常用数集及其专用记号。

(3)理解集合元中元素的确定性、互异性、无序性。

(4)观察集合的几组实例,并能举出一些集合的例子。

(5)通过实例,体会元素与集合的“属于”关系,准确的理解集合。

三、情感态度与价值观在学生使用集合语言的过程中,增强学生理解事物的水平,初步培养学生实事求是、扎实严谨的科学态度。

四、重点集合的概念,元素与集合的关系。

难点集合概念的理解五、教学过程:(一)导入新课1、问:我们初中学习都有哪些数集啊?生:有自然数集,有理数集等(老师讲解一下圆的概念,让同学温故知新产生兴趣)(二) 教学过程1、问:同学们对于课本上的8个例子,你们能发现出他们有什么共同特点吗?通过教材的例子等,给出集合概念的描绘性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。

2、问:结合教材“思考”,通过举例观察例题(1)里面我们列举出的1~20的素数,这些元素之间有什么关系呢?(引导学生明确集合元素的性质—确定性、互异性、无序性)3、阐述元素与集合的关系。

“属于”记为“∈”;“不属于”记为“∉”。

一般地,元素用小写字母表示;集合用大写字母.4、常用数集及其记法记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作或N*或N+;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。

5、问:你能用列举法表例如1中的集合吗?思考一以下举法的特点,完成习题1.1A组第3 题。

师和学生一起讨论例2,教师讲解引导,让同学们探讨第4页的“思考”。

讨论理应如何根据问题选择适当的集合表示法。

集合的含义与表示教案

集合的含义与表示教案

1.1.1 集合的含义与表示一、教材分析:集合概念及其基本理论,称为集合论,是近现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在数学理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用。

二、教学目标:①通过实例,了解集合的含义,体会元素与集合的属于关系;②知道常用数集及其记法;③了解集合中元素的确定性、互异性、无序性;④会用集合语言表示有关数学对象;三、教学重点:掌握集合中元素的三个特性.四、教学难点:通过实例了解集合的含义.五、课时安排:2课时六、教学过程(一)、自主导学(预习)1、设计问题,创设情境在初中代数不等式的解法一节中提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.不等式解集的定义中涉及了“集合”,那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.问题1:下面这5个实例的共同特征是什么?(1)1~ 20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)北京大学2014年9月入学的全体学生.2、自主探索,尝试解决分小组讨论,讨论后每个小组选出一位同学代表本组宣布讨论结果,在此基础上,共同概括出5个实例的特征:都是有某些对象组成的全体.3、信息交流,揭示规律根据讨论的结果得出集合的含义:1.集合的含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).问题2:集合应当如何表示呢?元素与集合是什么样的关系?2.集合的表示方法一:(字母表示法):大写的英文(拉丁)字母表示集合,集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示.国际标准化组织(ISO)制定了常用数集的记法:自然数集(包含零):N,正整数集:N*(N+),整数集:Z,有理数集:Q,实数集:R.方法二:(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等.3.元素与集合的关系:元素与集合的关系:“属于”和“不属于”分别用“∈”和“ ”表示.问题3:一组对象满足什么条件才能组成集合?4.集合元素的性质(1)确定性:即任给一个元素和一个集合,那么这个元素和这个集合的关系只有两种:这个元素要么属于这个集合,要么不属于这个集合;元素确定性的符号语言表述为:对任意元素a和集合A,要么a∈A,要么a∉A.(2)互异性:一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的;(3)无序性:集合中的元素是没有顺序的.(4)集合相等:如果两个集合中的元素完全相同,那么这两个集合是相等的.问题4:(1)请列举出“小于5的所有自然数组成的集合A”.(2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等式的解集?5.集合的表示:字母表示法、自然语言、列举法、描述法.列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.(二)、合作学习【例1】下列各组对象不能组成集合的是( B )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x图象上所有的点【例2】用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.【例3】试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合(2)由大于10小于20的所有整数组成的集合.解:(1)设所要表示的集合为A,方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.(2)设所要表示的集合为B,大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.点评:描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.(三)、当堂检测1.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z};(5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.1.思路分析:用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3}.(2){x|x=3n,n∈Z}.(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可以表示为{0,1,2,3,4}.(4){-2}.(5){(1,5),(2,4),(3,3),(4,2),(5,1)}.2.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的取值范围.2.思路分析:对于方程ax2-3x+2=0,a∈R的解,要看这个方程左边的x2的系数,a=0和a≠0方程的根的情况是不一样的,则集合A的元素也不相同,所以首先要分类讨论.解:当a=0时,原方程为-3x+2=0⇒x=,符合题意;当a≠0时,方程ax2-3x+2=0为一元二次方程,则解得a≠0且a≤.综上所得a的取值范围是{a|a≤}.3.用适当的方法表示下列集合:(1)1 000以内被3除余2的正整数所组成的集合;(2)直角坐标平面上在第二象限内的点所组成的集合;(3)所有正方形;(4)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.3、思路分析:本题考查集合的表示方法.所谓适当的表示方法,就是较简单、较明了的表示方法.由于方程组的解为x=4,y=-2,故(1)宜用列举法;(2)中尽管是有限集,但由于它的元素个数较多,所以用列举法表示是不妥当的,故用描述法;(3)和(5)也宜用描述法;而(4)则宜用列举法.解:(1){(4,-2)};(2){x|x=3k+2,k∈N且x<1000};(3){(x,y)|x<0,且y>0};(4){正方形};(5){(x,y)|x<-1或x>1,y∈R}.(四)、课堂小结请同学们回忆一下(想一想):(1)本节课我们学习了哪些知识内容?(2)你认为学习集合有什么意义?(3)选择集合的表示法时应注意些什么?七、课外作业1.课本P12习题1.1 A组第4题.2.元素、集合间有何种关系?如何用符号表示?类似地集合与集合间的关系又如何呢?如何表示?通过预习课本来解答.八、教学反思:。

教案——集合的含义与表示

教案——集合的含义与表示

1.1.1集合的含义与表示一、教材分析在初中学生已经接触过一些集合,在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础。

集合论及其所反映的数学思想,在越来越广泛的领域的得到应用。

二、教学目标1.知识与技能(1)了解集合的含义,体会元素和集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、无异性、无序性;(4)会用集合语言(列举法或描述法)恰当的表示集合。

2.过程与方法(1)观察关于集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义.(2)通过实例,初步体会元素与集合的“属于”关系;(3)学会借助实例分析、探究数学问题,如集合中元素的确定性、互异性;(4)通过实例理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.三、教学重点集合的含义和表示方法。

四、教学难点恰当选择集合表示法(列举法与描述法)表示一些简单的集合。

五、教学方法讲练结合六、教学具体过程(一)引入课题同学们,军训前学校来了个通知:8月15日8点,高一年级在操场集合进行军训动员;于是我想问,这个通知的对象是全体的高一学生还是个别学生?有时候,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象。

在这里,集合是我们常用的一个词语。

因此,我们将学习一个新的概念——集合【板书】,即一些研究对象的总体。

初中的时候我们已经接触过一些集合了,比如说不等式的解法一节中提到的有关知识:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.(二)新课教学1.集合的含义那么集合到底是怎样定义的呢?请大家阅读一下课本第2页的8个例子,想一想例3到例8 能不能组成集合,如果可以的话它们的元素分别是什么?在例1中,我们把1—20以内的每个素数作为一个元素,这些元素的全体就是集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1集合的含义与表示
李宁陕西师范大学附属中学 710061
【教材版本】北师大版
【教材分析】
1.知识内容与结构分析
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用.课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力.2.知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用.
3.教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用.通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性.
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线).这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”.集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题.学习集合,可以发展同学们用数学语言进行交流的能力.
【教学目标】
1.知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法.
2.过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
3.情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识.
【重点难点】
1.教学重点:集合的基本概念与表示方法.
2.教学难点:选择合适的方法正确表示集合.
【教学环境】
◆多媒体教室
◆课件
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的.教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排.
【教学过程】
一、导入新课
师:同学们,我们在初中时最开始接触到的有理数的分类大家应该还很熟悉.下面我们来看一个当时我们常见的很简单的题目:
问题1:将下列各数填入相应的图形中:
214737 4.2 3.56310.3334
-----,,,,,,,,,
正整数 负整数 正分数 负分数
生:
正整数 负整数 正分数 负分数
师:在上面的问题中,我们将给定的一些数按“正整数、负整数、正分数、负分数”分类,具有相同性质的数“集中”在了一起.
我再来说这样一句话:“今天下午所有的女同学留下来.”那么谁应该留下来应该很清楚了.刚才这两个问题是否让大家想起了一个熟悉的成语呢?
生:“物以类聚,人以群分”.
二、新知探究
(一)集合的含义
“物以类聚,人以群分”,应该指的是:把指定的所有的“物”聚在一起,或所有的“人”分在一起.在数学上,我们把它叫做“集合”.
1、集合——指定的某些对象的全体称为集合.集合常用大写字母A ,B ,C ,D ,…标记.
2、元素——集合中的每个对象叫做这个集合的元素.元素常用小写字母a ,b ,c ,d ,…标记.
例如:在问题1中,-3和-7组成了负整数的集合,可以记为A ,-3、-7都是它的元素;小于10的素数集合可以记为B ,它的元素为2、3、5、7.
3、元素与集合的关系:给定一个集合,任何一个对象是不是这个集合的元素就确定了.
610, 37--, 234,3.5,3 174.2,3,34
--
若元素a 在集合A 中,就说元素a 属于集合A ,记作 a ∈A ;
若元素a 不在集合A 中,就说元素a 不属于集合A ,记作a ∉A .
例如:在上述的素数问题中,2∈B ,6∉B .
4、集合元素的特征
(1)确定性;(2)互异性;(3)无序性.
5、数的集合简称数集.下面是一些常用的数集及其记法:
自然数组成的集合简称自然数集,记作N ;
正整数组成的集合简称正整数集,记作N + ;
整数组成的集合简称整数集,记作Z ;
有理数组成的集合简称有理数集,记作Q ;
实数组成的集合简称实数集,记作R .
例如:0∈N ,0.618∈Q ,R ∈3,R ∈π 等.
6、有限集、无限集、空集
有限集——含有限个元素的集合叫有限集.
无限集——含无限个元素的集合叫无限集.
空集——不含有任何元素的集合叫做空集.记作∅.
(二)集合的常用表示法
1、列举法:把集合中的元素一一列举出来,写在大括号内的方法.
例如:①小于10的素数集合可以记为B ,用列举法可以表示为:B={},
,,,7532; ②“中国的直辖市”构成的集合:{北京,天津,上海,重庆};
③由“maths 中的字母” 构成的集合:{m,a,t,h,s};
④从51到100的所有整数组成的集合:{51,52,53,…,100};
⑤所有正奇数组成的集合:{1,3,5,7,…}.
注意:a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素。

2、描述法:用确定的条件表示某些对象是否属于这个集合的方法.
例如:①大于3小于10的实数组成的集合:{}103<<∈x R x 或{}103<<x x ;
(注:若一个集合中的元素都是实数范围内的,可写成第二种形式)
②“平面直角坐标系中第二象限的点” 组成的集合{(x,y )| x<0且y>0};
③“方程x 2+5x-6=0的实数解” 组成的集合{x| x 2
+5x-6=0};
④“中国的直辖市”构成的集合,写成{x x 为中国的直辖市};
⑤“maths 中的字母” 构成的集合,写成{x x 为maths 中的字母}.
注:(1)有的集合可以用列举法表示,也可以用描述法表示。

有的集合则不是用两种均可表示的;(2)在不致混淆的情况下,可以省去竖线及左边部分。

如:{直角三角形};{大于10的实数}. 三、例题讲解
例1 用列举法表示下列集合:
(1)由大于3小于10的整数组成的集合;
(2)方程092=-x 的解的集合.
解:(1)由大于3小于10的整数组成的集合用列举法可表示为:{}987654,,,,,;
(2)方程092=-x 的解的集合用列举法可表示为:{}33,-.
例2 用描述法表示下列集合:
(1)小于10的所有有理数组成的集合;
(2)所有偶数组成的集合;
(3){}12108642,,,,,.
解:(1)小于10的所有有理数组成的集合用描述法可表示为:{}10<∈x Q x ;
(2)偶数是能被2整除的数,可以写成)(2Z n n x ∈=的形式,因此,偶数的集合用描述法可表示为:{}
Z n n x x ∈=,2; (3) {}12108642,,,,,这个集合用描述法可表示为:{}
+∈≤=N n n n x x ,6,2. 四、课堂练习
1、课本练P5练习.
2、用描述法表示集合:(1)⎭⎬⎫⎩⎨⎧7564534231,,,,;(2)方程组11
x y x y +=⎧⎨
-=-⎩的解. 3、用描述法分别表示:
(1)抛物线y=x 2上的点;(2)抛物线y=x 2上点的横坐标;(3)抛物线y=x 2上点的纵坐标. 五、课时小结
1、集合的概念;
2、集合元素与集合间的关系,元素的三要素;
3、常用数集的记法;
4、集合的表示——列举法和描述法.
六、作业布置
1、 P6 A 组题:
2、
3、4
2、思考:P6 B 组题。

相关文档
最新文档