数学教学论文:浅谈小学数学思想方法的渗透
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈小学数学思想方法的渗透
十多年的教学实践与思考使我对数学教育的价值理解经历了一次又一次的升华,每一轮的教学改革都是对自己教育思想的一次洗礼。如今,站在新一轮课改的浪潮上,感悟了名师的教学课堂,领略了专家对新课标的深度解读,我看数学教育又有了新的视角…
一、渗透数学思想方法的重要性
关于教育,爱因斯坦有一句经典名言:“所谓教育,就是将学校学到的知识忘掉后剩下的那部分”。我们的数学教育又何尝不是这个道理呢?数学被称之为思维的体操,它可以提高一个人的思维水平,改变一个人的思维方式,它是一个人获得适应未来社会生活和进一步发展所必需的素养,是培养创新能力和实践能力的一个重要载体。而数学的精髓乃数学的思想方法。数学知识本身是非常重要的,但真正对学生今后学习生活工作长期起作用并使其终身受益的是知识背后积淀下的数学思想方法。
学习数学的根本任务是全面提高学生素质,其中重要因素是思维的素质,数学思想方法就是增强学生数学观念,形成良好思维素质的关键。学生数学素养的发展,并不能通过单存的接受事实来实现,更需要通过对数学思想方法的领悟来实现。《新课标》的课程目标将原有的“双基”(基础知识基本技能)扩展为“四基”增加了基本思想和基本活动经验。可见,小学数学中渗透数学思想方法随着新一轮课程改革的进行已放在重要而显性地位。向学生渗透一些基本的数学思想方法,使学生得到的不仅有“鱼”还有更重要的“渔”。因此思想方法的渗透是数学改革的新视角,更是进行数学素质教育的必然需求。
二、浅析数学教材中的思想方法
纵观小学数学教材体系,贯穿其中的有两条主线,一是写
进教材的最基础的数学知识,它是明线;另一条是数学能力培养和数学思想方法的渗透,这是条暗线,较少或没有直接写进教材。这两条主线正是以《新课标》所提出的四基为载体,两条主线在课堂教学中并进,无形的数学思想与有形的数学知识贯穿始终。
那么在小学数学中主要向学生渗透那些方面的数学思想呢?我结合自己的教学实践作如下分析:
1、抽象思想即从许多事物中,单存提取某一数学特征加以认识的过程,是形成概念的必要手段。它主要包括:分类、对应、集合、有限无限、函数等思想。。
在数的认识、数的运算、图形的认识内容的学习中都有分类思想的蕴含。如三角形的分类中按角的特征分类就是一个很好的渗透分类思想的教学资源,教师要引导学生发现三角形中的三个角有两个锐角是相同特征,只有第三个角才是不同特征,而分类的依据即为基于相同条件下的不同,所以第三个角才是分类的依据。这样的活动体验可以让学生很好的感悟一种基本的分类思想——基于不同特征进行分类。
集合思想又是将具有相同特征的事物放在一起。如数的认识、图形的认识都有集合思想的渗透。用集合圈表示等腰等边三角形关系,平行四边形长方形正方形之间的关系都在向学生渗透集合思想。
小学阶段的对应主要体现为一一对应,一一对应思想最先出现即是低年级从实物中抽象数,比较大小等内容中,高年级如三角形底高之间、数轴上的点与数之间都存在这对应思想。在此我想以《植树问题》为例谈谈一一对应思想的渗透。植树问题中“一端种一端不种”就是段数与棵树之间的一种一一对应,封闭图形植树就是“一端种”这种一一对应,有了这种一一对应思想再去理解“两端种”和“两端都不种”就比较容易一些。教学实践中很多老师将植树问题直接上成了找规律,重视规律的发
现而忽视了对这种思想的渗透,造成学生机械记忆规律而没有能力的提升和发展。
符号化思想在小学数学中应用比较广泛,如运算符号、数的认识、定律方程、计量单位、用分数表示概率等内容中都蕴含了符号化思想,同时也充分让孩子感受数学简洁之美。
有限和无限的思想在空间与图形领域有广泛渗透,如直线与射线谁长一些?(都是无限长所以一样长)、圆的面积公式推导也蕴含了极限思想,当把圆无限等分下去就会拼出圆形。图形与图形之间的内在联系也有极限思想,当我们把梯形的上底无限变小小到一点时会变成三角形。面与体之间的互相转化也是极限思想,把直柱体高无限变小就会出现对应的平面图形。无限的思想在循环小数中也可以体现,如对0.9·=1的理解就用到极限思想。
2、推理思想主要包括数形结合思想、类比思想、运筹化归思想等。推理思想是一个从特殊到一般的归纳过程。如学生在发现2+3=3+2的基础上总结出A+B=B+A,从三角形内角和推出多边形内角和就是一种推理思想的应用。
数形结合思想是充分利用“形”把抽象的数学语言、数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。如借助实物图理解四则运算算理,小数基本性质、分数基本性质以及乘法分配率的理解都有数形结合思想。例:(a+b)×c=a×c+b×c
运筹思想运筹是对资源进行统筹安排,决策者进行决策提供最优解决方案。人教版四年级上册数学广角中沏茶、烙饼卸货田忌赛马等内容的安排皆在向学生渗透运筹的思想。教学实践中很多老师将这些课上成了找规律课,如烙饼问题当孩子们出现三张饼的最优烙法后,教师就引导孩子直接进入探究4、5、6、7张饼的烙法环节,这就忽视了对烙饼问题中运筹思想的挖
掘和渗透。如果学生出现最优烙法后教师追问:为什么这样烙会省时间?经讨论让学生发现和感悟这样烙关键是“锅不闲”这样的运筹思想。
转化类比的思想在图形面积推导中得以突出体现,如平行四边形、三角形、梯形、圆形、面积公式的推导;小数乘除计算法则的推导都应用了转化思想。学生在整数中研究得到的运算定律、算理通过类比可以迁移到小数与分数的运算当中。
3、模型思想主要指根据特定目的和问题,采用数学语言表征所研究对象的主要特征、关系的一种数学结构。它主要包含函数思想方程思想优化和统计等小学阶段比较重要的一种思想即函数思想。
函数思想就像一座桥梁建立两个数量间的关系,它是以一种状态确定的刻画另一种状态,由研究状态过渡到研究变化过程的思想方法,函数思想的本质在于建立和研究变量间的对应关系,函数的核心就是:“把握并刻画变化中的不变,变化的是过程而不变的是规律(关系),学生探究发现规律并能将规律表述出来的意识和能力就是函数思想的渗透。具体的说函数思想体现于:
(1)四则运算中,加数变化和不变时;乘法中积商的变化规律。如:商不变规律,一个因数不变,另一个因数变化引起积的变化等。
(2)统计与概率知识领域中,折线统计图中渗透了函数思想。
(3)低年级练习设计5+=也有函数思想存在。
(4)空间与图形领域中如:周长不变,长宽的变化;面积一定底与高的变化;底面积或高的变化引起体积的变化等都有函数思想在里面。
(3)正反比例的教学内容集中让学生体会和感悟初步的函数思想。