电磁场理论基础柯亨玉第六章部分答案
电磁场理论 武汉大学 柯亨玉chap6[1]
其中
A
0
r j0 P e jkr 4 πr
J r' dV
V V
dr' dP ni r qi dV jP dt i dt
1 ˆ ˆ ˆ J r r' dV r r' J dV r r' J Jr' r' J Jr' dV 2 V V V dr dr 1 1 ˆ r' r' ˆ r'J dV r r' dV r 2 V 2 dt dt V 1 d 1 1 ˆ ˆ ˆ ˆ r 3 r' r' r dV r r'J dV r D r m 6 dt V 2 6 V
dV dV
r r' J r' exp j t a 0 4 π r r' V Ar e jt
E r ,t r ,t Ar ,t E r r jAr t Br Ar Br ,t Ar ,t
②
r r'
1
场点与源区的距离大约在一个波长的数量级,在 这个范围中,源直接产生的场与变化电磁场相互 激发所产生的电磁场同时并存,量级上相当。在 这个区域中,既有变化的电磁场相互激发形成的 电磁波,将源的能量以电磁波形式辐射出去。同 时也存在不向外辐射的静态场,将源提供能量的 一部分存储在空间中,这一区域称为感应区。
2 I 0 Lk 3cos 1 j jkr ˆ E r H r er e 2 3 j0 4π0 kr kr 1 2 I 0 Lk 3cos j 1 j jkr ˆ e e 4π0 kr kr 2 kr 3
电磁场理论 柯亨玉 著 人民邮电出版社 课后答案
v v v v v v ∇ ⋅ ( E × H ) = ∇ ⋅ ( Ec × H ) + ∇ ⋅ ( E × Hc )
再 ∇ 算子的矢量性,并据公式
v v v v v v v v v a ⋅ (b × c ) = c ⋅ (a × b ) = b ⋅ (c × a )
1-6. (1) 证: ∇ ⋅ A =
v
∂Ax ∂Ay ∂Az + + ∂z ∂x ∂y dAx ∂u dAy ∂u dAz ∂u + + du ∂x du ∂y du ∂z
=
v dA = ∇u ⋅ du
ˆx ( (2) 证: ∇ × A(u ) = e
v
∂Ax ∂Az ∂Ay ∂Ax ∂Az ∂Ay ˆy ( ˆz ( − )+e − )+e − ) ∂y ∂y ∂z ∂z ∂x ∂x
v
性质
a)偶函数: δ ( x ) = δ ( − x ) b)取样性:
∫
∞
−∞
f ( x)δ ( x − a)dx = f (a)
有机会用到的表达式:
δ (r − r ') = −
v
1 2 1 ∇ v 4π r − r'
1-1.
证明:
v v ˆx9 + e ˆy 2 − e ˆz 6) ⋅ (e ˆx 2 + e ˆy3 + e ˆz 4) A ⋅ B = (e =18+6-24
1 ∂u ∂ 2 u 1 ∂ 2u ∂ 2u + 2 + 2 + ρ ∂ρ ∂ρ ρ ∂ϕ 2 ∂z 2
合肥工业大学电磁场与电磁波第6章答案
合肥⼯业⼤学电磁场与电磁波第6章答案第6章习题答案6-1 在1=r µ、4=r ε、0=σ的媒质中,有⼀个均匀平⾯波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2µw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η(2)0=t ,0=z 的电场?)0,0(=E (3)时间经过µs 1.0之后电场)0,0(E 值在什么地⽅(4)时间在0=t 时刻之前µs 1.0,电场)0,0(E 值在什么地⽅解:(1))rad/m (22πεπµεω== =r cfk)m/s (105.1/8?==r p c v ε)m (12==kπλ )Ω(60120πεµπη=rr=(2)∵ 6200210265.02121-?===m rm av E E S εεµη∴ (V /m)1000.12-?=m E)V/m (1066.83sin)0,0(3-?==πm E E(3)往右移m 15=?=?t v z p(4)在O 点左边m 15处6-2 ⼀个在⾃由空间传播的均匀平⾯波,电场强度的复振幅是⽶伏/1010)202(j 420j 4yx e e E z zeeπππ----+=试求:(1)电磁波的传播⽅向(2)电磁波的相速?=p v 波长?=λ频率?=f (3)磁场强度?=H (4)沿传播⽅向单位⾯积流过的平均功率是多少解:(1)电磁波沿z ⽅向传播。
(2)⾃由空间电磁波的相速m/s 1038?==c v p )m (1.02022===πππλk ∵πω20==ck∴ c πω20=∴ Hz 1031029?===c f πω(3))A/m )((10652120j )220(j 7y z x z z e e .e e E e H πππη-+--+?=?=(4))W/m (106522)Re(21211*z z av .e e H E S *-?=?=?=ηE E6-3 证明在均匀线性⽆界⽆源的理想介质中,不可能存在z e E kz e E j 0-=的均匀平⾯电磁波。
电磁场与电磁波理论第6章习题解答
第6章习题解答已知空气中存在电磁波的电场强度为 ()80cos 6π102πy E e E t z =⨯+r rV /m试问:此波是否为均匀平面波传播方向是什么求此波的频率、波长、相速以及对应的磁场强度H r。
解:均匀平面波是指在与电磁波传播方向相垂直的无限大平面上场强幅度、相位和方向均相同的电磁波。
电场强度瞬时式可以写成复矢量j 0e kzy E e E -=r r &。
该式的电场幅度为0E ,相位和方向均不变,且0z E e ⋅=r r ⇒z E e ⊥r r ,此波为均匀平面波。
传播方向为沿着z -方向。
由时间相位86π10t t ω=⨯ ⇒ 86π10ω=⨯ 波的频率Hz 1038⨯=f 波数2πk =波长2π 1 m k λ== 相速p 310 m/s v kω==⨯ 由于是均匀平面波,因此磁场为j 0w w1() e kz z x EH e E e Z Z -=-⨯=r r r v &&有一频率为600MHz 的均匀平面波在无界理想介质(r r 4,1εμ==)中沿x +方向传播。
已知电场只有y 分量,初相位为零,且010t t ==s 时,1x =m 处的电场强度值为800kV/m 。
试写出E v 和H v的瞬时表达式。
解:根据题意,角频率812π10ω=⨯,r r 0028πk cωεμεμεμ====,因此 80cos(12π108π)y E e E t x =⨯-r r由s 10=t ,m 1=x 处的电场强度值为kV /m 800,可以得到kV/m 8000=E8800cos(12π108π) kV/m y E e t x =⨯-r r根据电场的瞬时表达式可以写出电场的复矢量为j8π800e kV/m x y E e -=r r&波阻抗为()0r w r 060π ΩZ μμμεεε===。
因此磁场强度复矢量为 j8πw 140() e kA/m 3πx x z H e E e Z -=⨯=r r r r &&因此,磁场的瞬时表达式为840cos(12π108π)3πz H e t x =⨯-r r在无界理想介质中,均匀平面波的电场强度为 ()80sin 2π102πx E e E t z =⨯-r rV /m已知介质的r 1μ=,试求其r ε,并写出H r的表达式。
电磁场与电磁波(第4版)第6章部分习题参考解答
G ex
Erm
cos(ωt
+
β1
z
)
=
G ex
Eim
cos(2πft
+
β1
z
)
= =
eGxGηη22
−η1 + η1
−ex18.37
100 cos(2π ×109t + 20.93z) cos(2π ×109t + 20.93z) V/m
G H1r
(
z,
t
)
= =
1 ηG 1 ey
G (−ez × E1r ) = 0.049 cos(2π
距离导体平面最近的合成波电场 G
E1
为
0
的位置;(5) 距离导体平面最近的合成波磁场 H1 为 0 的位置。
解:(1) ω = 2πf = 2π ×108 rad/s
β
=
ω c
=
2π ×108 3 ×108
=
2 3
π
rad/m
η1 = η0 =
μ0 = 120π Ω ε0
G
G
则入射波电场 Ei 和磁场 Hi 的复矢量分别为
G Ei (x)
=
G
− j2 πx
ey10e 3
G V/m , Hi (x)
=1 η1
G ex
G × Ei (x)
G = ez
1
− j2 πx
e3
12π
A/m
G
G
(2) 反射波电场 Er 和磁场 Hr 的复矢量分别为
G Er (x) =
G
j2 πx
−ey10e 3
G V/m , Hr (x)
电磁学课后习题答案及解析
第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。
电磁场与电磁波 习题6
www×
⎡ ⎢ ⎢⎣
−
10−4
sin(ωt − 120π
20πz
)evx
+
10−4
cos(ωt − 120π
20πz)evy
)
⎤ ⎥ ⎥⎦
=
10−8 120π
evz
(W/m2 )
v S av
=
1
Re[
v E
×
v H
*
]
2
86
课后答案网
《电磁场与电磁波》——习题详解
=
1 2
课后答案网
《电磁场与电磁波》——习题详解
第六章 平面电磁波
6-1 理想媒质中一平面电磁波的电场强度矢量为
v E
(t
)
=
evx
5
cos
2π
(108
t
−
z
)
(V/m)
(1) 求媒质及自由空间中的波长。
(2) 已知媒质 µ = µ0 , ε = ε 0ε r ,求媒质的 ε r 。
v
m H
=1 η
evz
×
v E
=1 η0
(evy
+
jevx )10−4 e− j20π z
课 后 答 案 网
o = 10−4e− j20π z (jevx + evy ) (A/m) c 120π
(3) 电磁波的瞬时值为
. v
E(t)
=
v Re[E
e
jω
t
]
w = evx10−4 cos(ω t − 20π z) + evy10−4 sin(ω t − 20π z) (V/m)
(mV/m) (mA/m)
电磁场与电磁波第六章答案
v
20
则位移电流的瞬时表达式为: J D
a x 5 10 7 cos(6 10 9 t 20z ) 2
3.海水的电导率约为 0.4ms / m ,其相对介电常数为 81。求海水中位移电流密度等于传导 电流密度时的界限频率。 3 解答:
5 1 时的频率为界限频率。则得 f 8.9 10 Hz
6.若空气的磁感应强度如题 2 所示,求磁场强度和电场强度的复数形式、坡印廷矢量的 瞬时值及平均值。
6 解答
1 j 20z H aye
0
,E
1 a x e j 20z , c
1 S EH a z cos 2 (6 109 t 20z ) , 0c
7 解答:由 E j 0 H
得H
0 0 E ym e jkz a x E xm e jkz a y 0 0
瞬时形式为: H
0 0 E ym cos(t kz)a x E xm cos(t kz)a y 0 0
1 1 S av Re E H az 2 2 0 c
(c
3 108 m / s)
7.在空气中,已知电场强度 E Exm cos(t kz)ax E ym cos(t kz)a y 。求坡印廷矢 量的瞬时值 S 及平均值 S av 。
j ( kz 0 )
,其中
0 为常数, k 2 2 0 0 。①求两个波的坡印廷矢量的平均值 S av1 和 S av2 ;②证明空间
中总的 Sav Sav1 Sav2 。 11 解答:1)由 E j 0 H ,得
电磁场与电磁波第6章习题答案
第6章习题答案6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E(3)时间经过μs 1.0之后电场)0,0(E 值在什么地方?(4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω===r cfk )m/s (105.1/8⨯==r p c v ε)m (12==kπλ )Ω(60120πεμπη=rr=(2)∵ 6200210265.02121-⨯===m rm av E E S εεμη∴ (V/m)1000.12-⨯=m E)V/m (1066.83sin)0,0(3-⨯==πm E E(3) 往右移m 15=∆=∆t v z p(4) 在O 点左边m 15处6-8微波炉利用磁控管输出的2.45GHz 频率的微波加热食品,在该频率上,牛排的等效复介电常数)j 3.01(40~-=rε。
求: (1)微波传入牛排的穿透深度δ,在牛排内8mm 处的微波场强是表面处的百分之几?(2)微波炉中盛牛排的盘子是发泡聚苯乙烯制成的,其等效复介电常数=r ε~ )103.0j 1(03.14-⨯-。
说明为何用微波加热时,牛排被烧熟而盘子并没有被毁。
解:(1)20.8mm m 0208.011211212==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+==-ωεσμεωαδ%688.20/8/0===--e e E E z δ(2)发泡聚苯乙烯的穿透深度(m)1028.103.1103.01045.22103212213498⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛===-πμεωεσωμεσαδ可见其穿透深度很大,意味着微波在其中传播的热损耗极小,所以不会被烧毁。
南邮电磁场第6章习题解答-推荐下载
强E 度瞬ez时,式此可波以为写均成匀复平矢面量波E。 传e播y E方0e向 j为kz 。沿该着式 的z 方电向场。幅度为 E0 ,相位和方向均不变,且
E
ez
0
由时间相位t 6π 108t 6π 108
波的频率 f 3 108 Hz
波数 k 2π
H
ez
40 3π
在无界理想介质中,均匀平面波的电场强度为
cos(12π 108t
E
ex E0
8πx) sin 2π
108
t
2πz
V/m
已知介质的 r 1 ,试求其 r ,并写出 H 的表达式。
解:根据电场的瞬时表达式可以得到 2π 108 , k 2π ,而
e
2
1
因此磁场为
H
ey
E0 40π
sin(2π 108t
2πz)
6.4 无界自由空间传播的电磁波,其电场强度复矢量为
E
ex
2
ey
3
e j
π 4
kz
V
/
m
写出磁场强度的复矢量以及平均功率密度。 解:首先判断是均匀平面波。该电场幅度为 13 ,相位和方向均不变,且
Re(E
H *
)
30π 5
ex
0.3
ey
0.4
15π 5
ek
W/m2
E
120π
5
ex
0.4
cos
t
2π
3x
电磁场与电磁波第六章答案
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+=m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v / (4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πη m A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
《电磁场理论》练习题与参考答案(最新版)
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
电磁场与电磁波_章六习题答案
第6章 平面电磁波点评:1、6-8题坡印廷矢量单位,2W m ,这里原答案有误!2、6-13题第四问应为右旋圆极化波。
3、6-19题第三问和第四问,原答案错误。
这里在介质一中,z<0。
4、矢量书写一定引起重视,和标量书写要分清,结果若是确切的数值则单位一定要标清楚。
5、马上期末考试,那些对参考答案借鉴过多的同学务必抓紧时间把每道题目弄懂!本章是考试重点,大家务必弄懂每道题。
6-1、已知正弦电磁场的电场瞬时值为()()88,0.03sin 100.04cos 10 3x x z t t kz t kz V m πππ⎛⎫=-+-- ⎪⎝⎭E e e试求:⑴ 电场的复矢量;⑵ 磁场的复矢量和瞬时值。
解:(1)()8,0.03cos 102x z t t kz ππ⎛⎫=-- ⎪⎝⎭E e +80.04cos 103x t kz ππ⎛⎫-- ⎪⎝⎭e所以电场的复矢量为32()0.030.04jj j kzx z e e e V m ππ---⎡⎤=+⎢⎥⎣⎦E e (2) 由复数形式的麦克斯韦方程,得到磁场的复矢量3200054321()0.030.04 7.610 1.0110j j jkz x y y jj jkzy E j k z e e ej z k e ee A m ππππωμωμωμ--------⎡⎤∂=-∇⨯==+⎢⎥∂⎣⎦⎡⎤=⨯+⨯⎢⎥⎣⎦H E e e e磁场的瞬时值则为()5848(,)7.610s i n 10 1.0110c o s 103y z t k t k z t k z πππ--⎡⎤⎛⎫=⨯-+⨯-- ⎪⎢⎥⎝⎭⎣⎦H e6-2、真空中同时存在两个正弦电磁场,电场强度分别为1110jk z x E e -=E e ,2220jk z y E e -=E e ,试证明总的平均功率流密度等于两个正弦电磁场的平均功率流密度之和。
解:由麦克斯韦方程11111001()jk z xyy E jk E e j zωμ-∂∇⨯==-=-∂E e e H 可得111100jk z yk E e ωμ-=H e故2*11011101Re 22zk E ωμ⎡⎤=⨯=⎢⎥⎣⎦S E H e 同理可得22222002()y jk z xx E jk E e j zωμ-∂∇⨯=-=--=-∂E e e H222200jk z xk E e ωμ-=-H e2*22022201Re 22zk E ωμ⎡⎤=⨯=⎢⎥⎣⎦S E H e 另一方面,因为12=+E E E0y x x y E Ej z zωμ∂∂∇⨯=-+=-∂∂E e e H所以212120100jk z jk z xyk k E e E e ωμωμ--=-+H e e22*110220120011Re 22z k E k E ωμωμ⎛⎫⎡⎤=⨯=+=+ ⎪⎢⎥⎣⎦⎝⎭S E H e S S6-5、已知在自由空间中球面波的电场为0sin cos()E t kr r θθω⎛⎫=- ⎪⎝⎭E e ,求H 和k 。
电磁场理论基础第三版答案柯亨玉
电磁场理论基础第三版答案柯亨玉1.磁感应强度的单位是( ) [单选题] *A)T(正确答案)B)WbC)N/AD)Wb/m2.水的温度从17℃升高到100℃,用热力学温标表示,水温升高了( ) [单选题] *A)83K(正确答案)B)300KC)356KD)373K3.物体沿斜面匀速下滑,在此过程中物体的( ) [单选题] *A)机械能守恒B)机械能增加C)重力势能增加D)重力势能减少(正确答案)4.下列过程中,主要通过做功方式改变物体内能的是( ) [单选题] *A)湿衣服中的水蒸发B)水中的冰融化C)池水在阳光的照射下温度升高D)锤子敲击钉子后钉子变热(正确答案)5.直流电动机通电后,使线圈发生转动的力是( ) [单选题] *A)电场力B)磁场力(正确答案)C)万有引力D)重力6.在国际单位制中,属于基本单位的是 [单选题] *A)牛顿B)米(正确答案)C)特斯拉D) 焦耳7.电场强度的单位是 [单选题] *A) N/C(正确答案)(B) V/C(C) J/CD) T/C8.电子是原子的组成部分,一个电子带有 [单选题] *A) l.6×l0的-19次方C的正电荷(B) l.6×l0的-19次方C的负电荷(正确答案)(C) 9.l×l0的-31次方C的正电荷D) 9.l×l0的-31次方C的负电荷9.气体由无规则运动的分子组成,分子间有相互作用,因此气体的内能 [单选题] *A)仅包含分子动能B)仅包含分子势能C)与分子动能及分子势能无关D)包含分子动能及分子势能(正确答案)10.两个分子从相距很远(分子间作用力可忽略)变到很难靠近的过程中,表现为[单选题] *A)相互吸引B)相互排斥C)先排斥后吸引D)先吸引后排斥(正确答案)11.一杯水含有大量的水分子,若杯中水的温度升高,则( ) [单选题] *A)水分子的平均动能增大(正确答案)B)只有个别水分子动能增大C)抽有水分子的动能都增大D)每个水分子的动能改变量均相同12.下列物理量中,属于标量的是( ) [单选题] *A)功(正确答案)B)位移C)加速度D)电场强度13.静电场的电场线( ) [单选题] *A)可以相交B)是闭合的曲线C)起始于正电荷,终止于负电荷(正确答案)D)是点电荷在电场中运动的轨迹14.a、b和c三个带电小球,c带负电,a和b相互排斥,b和c相互吸引。
电磁场理论习题及答案6解读
1. 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。
当该导线以速度24x y m v e e s=+在磁感应强度22363x y z B e x z e e xz T =+-的磁场中移动时,求感应电动势。
2.长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。
当其在恒定磁场0z B e B =中以角速度ω旋转时,求导体棒中的感应电动势。
3.试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。
4.试由麦克斯韦方程推导出电流连续性方程J tρ∂∇⋅=-∂。
5.设真空中电荷量为q 的点电荷以速度()v vc 向正z 方向匀速运动,在0t =时刻经过坐标原点,计算任一点位移电流密度(不考虑滞后效应)。
R6.已知自由空间的磁场为0cos()/y H e H t kz A m ω=-式中的0H 、ω、k 为常数,试求位移电流密度和电场强度。
7. 由麦克斯韦方程出发,试导出静电场中点电荷的电场强度和泊松方程。
8.由麦克斯韦方程组出发,导出毕奥-萨伐尔定律。
9.如图所示,同轴电缆的内导体半径1a mm =,外导体内半径4b mm =,内、外导体间为空气介质,且电场强度为 8100cos(100.5)/r E e t z V m r=- (1)求磁场强度H 的表达式 (2)求内导体表面的电流密度; (3)计算01Z m ≤≤中的位移电流。
10.试由麦克斯韦方程组中的两个旋度方程和电流连续性方程,导出麦克斯韦方程组中的两个散度方程。
11.如图所示,两种理想介质,介电常数分别为1ε和2ε,分界面上没有自由电荷。
在分界面上,静电场电力线在介质2,1中与分界面法线的夹角分别为1α和2α。
求1α和2α之间的关系。
12.写出在空气和∞=μ的理想磁介质之间分界面上的边界条件。
13.在由理想导电壁)(∞=r 限定的区域a x ≤≤0内存在一个由以下各式表示的电磁场:)cos()cos()sin()sin()()sin()sin()(000t kz axH H t kz a xa k H H t kz a xa H E z x y ωπωππωππμω-=-=-=这个电磁场满足的边界条件如何?导电壁上的电流密度的值如何?14.设电场强度和磁场强度分别为)cos()cos(00m e t H t E ψωψω+=+=证明其坡印廷矢量的平均值为)cos(2100m e av H E S ψψ-⨯=15.一个真空中存在的电磁场为0sin x E e jE kz = 0cos H e E kz ε= 其中2//k c πλω==是波长。
电磁场理论基础课后答案
2-13. (教材 2-19)一个半径为 a 的导体球壳充满密度为
的电荷,已知电场分布为
求球内的电荷密度 解: ρ r ε ·E 球壳内无电场 4πa ρ ρ ρ
内 内
及球壳内外侧面上的面电荷密度 。 · Ar r ε A 3r r · r r ·3 6ε Ar
q 4πε d
q 4πε d q 4πε d q 4πε d q 4πε d
1 4π 1 4πa 1 4πa 1 4πa
1 ∂Φ R ∂n Φ · nds
Φ
∂ 1 ds ∂n R 1 4πa 1 4πa
q 4πε d Φds Φds
1 4π
1 Φ·n R
Φ
1 ds R
· Φdv · Edv
1 4πa
h h ∂f h ∂u
h h
f
1 h h h
h h ∂f h ∂u ,
1-14. (教材 1-18)证明 · 证明: ∂ ∂ ∂ x y z ·r ∂y ∂z ∂x x ∂ ∂x x y z ∂ ∂ ∂y ∂z y z
3
r
0
1-15. 在圆柱坐标系、 圆球坐标系中分别计算拉梅系数, 并写出梯度、 散度、 旋度的表达式。 解: 圆柱坐标系中, x y h h h Φ ·A ρ cos φ ρ sin φ z z cos φ sin φ 1 ρ sin φ ρ cos φ 1 ρ ∂Φ ∂ρ φ ∂Φ ρ ∂φ z ∂Φ ∂z ∂ ρA ∂z 1 ∂ ρA ρ ∂ρ 1 ∂ A ρ ∂φ ∂ A ∂z ρ
6 / 45
中国科学技术大学 电子科学与技术系 电磁场理论
Q
q
√2 2
1 4
2-6.
(教材 2-7)求半径为 a、电量为 Q 的均匀带电球面所产生的电位、电场强度和该系 统的总储能。 解: E r 0 Q E r 4πε r U r U r W a Q 4πε r Q 4πε a a Q 8πε a 的均匀带电球体相距为 d