整式的加减导学案
人教版七年级数学上册《整式的加减》导学案
《整式的加减(1)》导学案 班级: 姓名:
课题 2.2整式的加减(1)
课型 新授课 主备 审核
数学组
学习目标 1.理解同类项概念,掌握合并同类项法则;
2. 能利用合并同类项化简多项式.
导学过程
一、复习导入
运用运算律计算: 622482⨯+⨯= ;
62(2)48(2)⨯-+⨯-= .
二、新知导学
1.类比上题中的方法完成下面多项式的化简,并说明其中的道理.
6248a a +=
=
2.类比1题的方法,化简下列式子:
(1)6248a a - 22(2)32x x + 22(3)34ab ab -
= = =
= = =
归纳:(1)同类项:所含 相同,并且 也相同的项叫做同类项. 几个 也是同类项. “两相同,两无关”
(2)合并同类项:把多项式中的 合并成一项,叫做合并同类项.
(3)法则:合并同类项时,把同类项的 相加,且字母连同它的指数 。
三、新知应用
挑战一:(小试牛刀,你能行!)
例:找出多项式 中的同类项,并进行合并.
283724x _
22x x x -+++
(2)求多项式 22113333a abc c a c +--+的值,其中 1,2,36
a b c =-==-.
挑战四:(联系实际,我来解决!)
某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
四、我思我进步!。
七年级数学《整式的加减》导学案
第二章整式的加减
【知识脉络】
【学习目标】
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
【要点检索】
理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行去括号与同类项的合并。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
【中考翘望】
整式的概念和简单的运算,是中考必考内容,要求学生能用代数式表示简单的数量关系,能解释一些简单的代数式的实际背景或几何意义,能根据题意求代数式的值。
这部分的题目多以选择题、填空题为主,主要考察同类项、整式的运算、找规律列代数式等,也有可能渗透到综合题中。
《整式的加减》导学案
解:(1)在甲市乘坐出租车S(S>3)千米的价钱为[6+1.5(S-3)]元,在 乙市乘坐出租车S(S>3)千米的价钱为[10+1.2(S-3)]元,故甲、乙两市的 价差是:[6+1.5(S-3)]-[10+1.2(S-3)]
=(0.3S-4.9)元; (2)当S=10时,0.3S-4.9=-1.9,所以乙市的收费标准高些,高1.9元.
(1)①第一束花的价格是 (3x+y+元2z,第) 二束花
的价格是
(元2x,第+3三y+束2z花) 的价格是
元;
(4x+2y+3z)
②怎样计算这三束鲜花的总价格?
解:(3x+y+2z)+(2x+3y+2z)+(4x+2y+3z)=9x+6y+7z.
(2)你还有其他方法求解本题吗? 解:分类计算.结果仍为9x+6y+7z.
括号就先 去括,然号后再
合并. 同类项
【预习自测】 计算:(1)(9x-6y)-(5x-4y);(2)3-(1-x)+(1-x+x2).
解:(1)原式=4x-2y; (2)原式=3+x2.
问题探究二
某花店一支黄色康乃馨的价格是x元,一支白色 百合的价格是y元,一支红色玫瑰的价格是z元,下面 三束鲜花的总价格是多少?
解:原式=12a-12b. 2.求多项式2x-3y和5x+4y的差. (1)应列式为 (2x-3y)-(5;x+4y) (2)化简(1)中所列整式.
解:原式=-3x-7y.
【归纳】1.求整式的和或差时,应先用 括号将每一个整
整式的加减导学案1
整式的加减导学案(第一课时)学习目标:1.知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.学习方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
学习重点、难点:根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
学习过程:一、引入:1、 运用有理数的运算律计算:100×2+252×2=_100×(-2)+252×(-2)= _2、根据(1)中的方法完成下面的运算,并说明其中的道理:100t +252t = _3、下列三个多项式由哪些单项式组成?.每个多项式中的单项式有什么共同特点?(1)3x 2+2x 2 (2)3ab 2-4ab 2 (3)100t-252t二、讲授新课:1.同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
特别指出:几个常数项也是同类项。
2.例题:例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )(3)3x 2y 与-31yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( )(5)23与32是同类项。
( ) (6)3(s -t)2与-8(t -s)2是同类项。
初中七年级数学《整式的加减》教案3篇
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
整式的加减教案【精选7篇】
整式的加减教案【精选7篇】《整式的加减》教学设计篇一一、情境诱导前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:在西宁到拉萨路段,列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度是120km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要th,你能用含t的式子表示这段铁路的全长吗?(请列出算式)得到:100t+120×2.1t即:100t+252t对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。
)探究提纲:1、填空:(1)2t+52t=()t(2)3x2+2x2=()x2(3)3ab2-5ab2=()ab2(4)4xy+6xy=2、如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?3、仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳1、抽有问题的学生逐题汇报,学生说教师板书。
2、发动学生进行评价、补充、完善,学生说老师改写,3、教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。
)1、说出两组同类项2、下列各组是同类项的是A2x3与3x2B12ax与8bxCx4与a4Dπ与-33、下列各题计算的结果对不对?如果不对,指出错在哪里?(1)3a+2b=5ab(2)5y2-2y2=3(3)2ab-2ba=0(4)3x2y-5xy2=-2x2y4、–xmy与45x3yn是同类项,则m=,n=。
整式加减导学案
课题:整式的加减(1)导学案 一.导入新课:2 二.学习目标:21.整式的加减实际上就是去括号、合并同类项这两个知识的综合。
2.整式的加减的一般步骤:①如果有括号,那么先算括号。
②如果有同类项,则合并同类项。
3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便 三.自主学习 反馈交流10 (一)根据课题预示学习目标 1.本节课我要熟练运用去括号法则 .2.我要会运用合并同类项及去括号法则 . (二)温故知新 1.化简下式计算:(1)(2x-3y )+(5x+4y ) (2)(8a-7b )-(4a-5b ).2.去括号(1)a + (-b+c-d) (2) a-(-b+c-d) (3) a+(b-c) (4) a-(-b+c) (5) (a+b)+(c+d)(6) –(a+b)-(-c+d) (7) (a-b)-(-c+d) (8) –(a-b)+(-c-d) (9))2(2c b a a +--四合作探究,展示交流151.一种笔记本的单价是x (元),圆珠笔的单价是y (元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?2.做大小两个长方体纸盒,尺寸如下(单位:厘米). (1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?(学生小组导学,讨论解题方法.)学法指导:思路点拨:让学生自己归纳整式加减运算法则,发展归纳、表达能力.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.)3.求12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=-2,y=23. (思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,去括号时,特别注意符号问题。
)长宽高小纸盒abc大纸盒1.5a2b2c五.教师点拨,指点迷津3 六.学生总结3 七.自我检测:91.如果a-b=12,那么-3(b-a )的值是( ). A .-35 B .23 C .32 D .162.一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( ).A .x 2-5x+3 B .-x 2+x-1 C .-x 2+5x-3 D .x 2-5x-13 3.先化简再求值:4x 2y-[6xy-3(4xy-2)-x 2y]+1,其中x=2,y=-12;4.已知223,1xx B x x x A +=+++=, 计算:①A+B ② B+A ③ A - B ④ B - A5.一个多项式加上432352x x x---得35334--x x , 求这个多项式6.一个长方形的一边等于2a+3b ,另一边比它小b-a ,计算长方形的周长.7.某轮船顺流航行3小时,逆流航行1.5小时,已知轮船速度为每小时a 千米,水流速度为每小时b 千米,轮船共航行多少千米?八.检测评价,教学反思2课题:整式加减(2)综合运用导学案 一.导入新课:2 二.学习目标:2三.自主学习 反馈交流10 (一)知识点回顾1.整式加减实质就是有括号时先 在合并同类项.2.几个单项式中所含字母 相同的字母 的项叫同类项.3. 请写出三个含有a,b 字母的同类项 .4.已知3a 2b n+1与-2a m b 4是同类项则n= m=5. 去括号并化简-3 (a-2b)+2(3a-4b)-(-a-2b)= = (二)基本知识回顾 1.合并下列各式的同类项 (1)2234ab ab +- (2)333x x + (3)2251xy xy - (42233bab a +-(5)283732422--++-+x y xy y x (6) 26358422-+-+-x x x x2.(1)21,23452222=--++-x x x x x x 其中 (2)22313313c a c abc a +--+其中3,2,61-==-=c b a(3) 211,15.4535.053332332==-+-+-b a b a ab ab b a ab ab 其中3.化简下列各式 1.)635()745(a b c b c a --+++ (2.))8()8(2222xy y x y x xy +--+-(3))2()23(2222a ab b ab b a --+-- (4) 2)()()(+-+-+-x z z y y x(5) )(2)211(2323x x x x -+- (6) )21(4)3212(22+--+-x x x x(7))143()2(32323b b a b b a-++- (8) []222)34(73x x x x ----四合作探究,展示交流151.a 表示十位上的数,b 表示个位上的数,用代数式表示这个两位数;再把这个两位数的十位上的数与个位上的数交换位置,用代数式表示此新两位数。
整式的加减数学教案优秀5篇
整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
6.整式加减导学案
6.整式的加减导学案【学习目标】:1.会进行整式加减的运算,并能说明其中的算理2.会运用整式的加减化简求值【导学流程】: 【课前学习任务单】一、自学质疑(一)(温故知新)1.已知324b a 与12-n m ba 是同类项,则m= ,n= 。
2.计算1)22222)6(4121x y y x yx xy ---- 2))21()21(22x x x x x -+-++--(二自学课本102-103页内容,明确本节课的学习内容,用红笔勾画出疑惑点观看微课解惑(点击微课视频,可多遍观看,观看时可暂停,思考与观看相结合).(四)自学检测(在微课的帮助下完成,记录你完成检测的时间)1.苹果每公斤a 元,香蕉每公斤b 元,小明买了3公斤苹果和2公斤香蕉,共花了 元,小华买了2公斤苹果和3公斤香蕉共花了 元,小明和小华共花了 元,小明比小华多花了 元。
2.设一个三位数的百位数字是a ,十位数字是b ,个位数字是c ,则这个三位数可表示为 ,交换它的百位数字和个位数字所得新三位数为 ,它们的差是 。
3.单项式y x 25,22xy -,23xy -,y x 24的和是 。
4.计算1)求2225xy y x -与y x xy 2242+-的差。
2)已知一个多项式与xy x -2的和是2232y xy x ++,求这个多项式。
【课中学习任务单】二、训练展示(一) 合作解惑微课学习总结1、整式加减的步骤:2.你觉得进行整式加减应注意哪些问题?1、4x+2与3x-9的差是 。
2、(3b 2-4ab+6)- =5b 2+7ab-3(二)疑难展示例2.计算(先独立思考,然后小组交流)1)7(p 3+p 2-p-1)-2(p 3+p)注意:去括号的实质是乘法分配律,带着符号乘遍每一项。
尝试归纳:解决此类问题时,易错点是什么?如何处理?你有几种算法? 探究新知跟踪练习)23231(32)331(31).23232m n m m n m ---++-巩固练习一:★例3.求代数式 的值,其中巩固练习二:化简求值1)5(3a 2b-ab 2)-4(-ab 2+3a 2b),其中a= -2,b=32)4y 2-(x 2+y)+(x 2-4y 2),其中x=-28,y=18 ★3)3x 2-[x 2-2(3x-x 2)],其中x=-7)23(25)38).(122x xy xy x xy ----)53(2)3(5).222+---x x )42(21)2842(41).32323k k k k k +-+-+-)22(3)6421(31b c c b a a +-+---2012,51,12==-=c b a1、本节课你学会了哪些知识?2、你体会了哪些数学思想和方法?3、你觉得进行整式加减应注意哪些问题?课堂检测1、有8人去红山公园玩,成人有x个人,则儿童有人,若每张成人票5元,每张儿童票3元,儿童票共需元,成人票共需元,这8人应付门票费元。
整式的加减(导学案)-【上好课】七年级数学上册同步备课系列(人教版)
2.2.3 整式的加减 导学案一、学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系. 重点:熟练进行整式的加减运算.难点:根据实际问题中的数量关系列出算式,并求出结果.二、学习过程: 复习回顾1.合并同类项的法则是什么?2.去括号的法则是什么?3.化简下列各式:(1)−5a −2−(3a −7) ;(2)(3a 2+2a )+2(a 2−a +2) ; (3)2(5a 2−6)−4(3−2a 2).考点解析考点1:整式的加减运算括号化简的应用★★★例1.小红和小明各自在纸上写了一个式子:小红:2x-3y ;小明:5x+4y. (1)求两个式子的和;(2)求小明写的式子与小红写的式子的差.【总结提升】1.几个整式相加减,通常用括号把每一个整式括起来,再用加、减连接,然后进行运算.2.整式加减实际上就是:__________、______________.3.运算结果,常将多项式的某个字母(如x )的______(______)排列.整式加减的一般步骤: (1)________________________________________; (2)________________________________________;(3)________________________________________;(4)_________________________________________. 【迁移应用】 1.化简5(2x-3)-3(1+2x ),结果正确的是( )A.4x-18B.7x+16C.8x+12D.16x-6 2.一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( )A.x 2-5x+3 B.-x 2+x-1 C.-x 2+5x-3 D.x 2-5x-13 3.计算:(1)a-(3a-2b)+2(a-b); (2)(x 2-5x+4)-(3x 2+2x-1); (3)3x 2+[2x-(-5x 2+4x)+2].考点2:整式的化简求值★★★例2.先化简,再求值:3x 2-[8x-2(4x-3)-2x 2],其中x=-3.【迁移应用】1.若m ,n 互为相反数,则(8m-2n)-2(2m-3n+1)的值为( ) A.-2 B.3 C.1 D.42.先化简,再求值: 2ab 2-[a 3b+2(ab 2-12a 3b)-5a 3b],其中a=-2,b=15.考点3:整式加减的实际应用★★★★例3.一辆大客车上原有乘客(3m-n)人,中途一半的乘客下车,又上来若干乘客,此时车上共有乘客(8m-5n)人,则中途上车的乘客有多少人?当m=10,n=8时,中途上车的乘客有多少人?【迁移应用】某产品前年的产量是n 件,去年的产量是前年产量的4倍,今年的产量比前年产量的2倍少5件.(1)该产品三年的总产量是多少件?(2)今年的产量比去年的产量少多少件?考点4:利用整式的加减比较大小★★★★ 例4.已知M=3x 2-2x+4,N=x 2-2x+3,试比较M ,N 的大小.【迁移应用】 1.设A=x 2-4x-3,B=2x 2-4x-1.若x 取任意有理数,则A 与B 的大小关系为( ) A.A <B B.A=B C.A >B D.无法比较2.已知M=x2-2x-1,N=x2+4x+3,试判断2M+N的值是一个正数还是个负数.考点5:整式加减中的看错问题★★★★例5.已知多项式A,B,其中A=x2-2x+1,小马在计算A+B时,由于粗心把A+B看成了A-B,求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.【迁移应用】小玲做一道题:“已知两个多项式A,B,其中A=x2+3x-5,计算A-2B.”她误将“A-2B”写成了“2A-B”,结果答案是x2+8x-7.请帮她求出A-2B的正确答案.考点6:整式的加减在几何问题中的应用★★★★★例6.为建设美丽乡村某村规划修建一个小广场(平面图形如图所示).(1)求该广场的周长C;(用含m,n的式子表示)(2)当m=8m,n=5m时,计算出小广场的面积(图中阴影部分).【迁移应用】由某小区有一块长为40m、宽为30m的长方形空地,现要美化这块空地,在上面修建如图所示的十字形花圃,在花圃内种花,其余部分(阴影部分)种草. (1)求花圃的面积;(2)若种花的费用为每平方米100元,种草的费用为每平方米50元,则种植花和草共需多少元?考点7:整式的加减与数轴、绝对值的综合应用★★★★★例7.【数形结合思想】已知a,b,c在数轴上的对应点的位置如图所示,化简:|a+b|-3|b+c|+2|a-b|-|c-b|.【迁移应用】1.已知a,b两数在数轴上的对应点的位置如图所示,则化简式子|a-b|+|a-2|-|b+1|的结果是( )A.3B.2a-1C.-2b+1D.-12.如图,数轴上点A,B,C分别表示有理数a,b,c.(1)试判断b+c,b-a,a-c的符号;(2)化简:|b+c|-|b-a|-|a-c|.。
整式的加法和减法导学案
整式的加法和减法(第1课时导学案)学习目标1 理解同类项的概念,会识别同类项。
2 理解合并同类项的理论依据是三个运算定律(即加法交换律、加法结合律、乘法对加法的分配律)的使用。
3 会把一个多项式中的同类项合并。
重点、难点:重点:识别同类项及合并同类项; 难点:合并同类项学习过程一、知识链接(回顾旧知)1. 请用字母表示加法交换律、结合律以及乘法对加法的分配律。
2.苹果的单价为3x 元/斤,小明买了2y 斤,需付多少钱?小华买了4y 斤,需付多少钱?两人共需付多少钱?二、自主探究新知阅读教材第70、71页的内容,并自主探究下列问题:1. 教材第70页“动脑筋”中剩余草地的面积是怎样计算的?2. 这个实例中整个长方形草地的面积是多少?中间长方形水池的面积是多少?表示这两个面积的代数式有什么共同特点?你能根据它们的共同特点说说什么是同类项吗?像多项式xy — xy 中的项xy 和 xy ,它们含有 字母,并且相同字母的 也分别相同,称它们为 。
3. 考考你:(1) 下面有几组是同类项吗? 用“√”或“×”表示①324x y 与323x y -; ②234x y 与323x y -; ③22m n 与2m p ; ④2和-3。
(2)把222222247859xy x y xy x y xy x y --+-+中的同类项用不同的记号表示出来。
三、合作交流1. 探讨教材P70“议一议”:多项式 中的同类项有哪些?你们认为同类项可以合并吗?2. 如果这个多项式中的同类项可以合并,那么在合并的过程中会利用到哪些定律?你能根据它的合并过程和你阅读得到的信息说说什么是合并同类项吗?3. 思考:(1)2x+3y=5xy 吗?(2)什么样的式子才可以合并?怎样合并?运用加法的交换律、结合律以及乘法对加法的分配律,把多项式中的______ _可以合并成一项,叫做 。
在合并同类项时,只.要把它们的___ _ _相加,_______ _ ____不变。
2.2整式的加减(第一课时)导学案
1 / 1
2.2整式的加减(第一课时)
【学习目标】
1.理解同类项和合并同类项的概念(重点) 2.运用合并同类项法则进行整式加减运算(难点) 【自主预习 梳理知识 】
1.观察单项式-3x 2y 与7x 2y 所含字母以及相同字母的指数有什么特点?
2.像-3x 2y 与7x 2y 所含字母相同,并且相同字母的指数也 的项叫做 。
几个 也是同类项。
3.指出下列各组代数式是否是同类项
(1)a 2b 与-ab 2( ) (2)xy 2与3y 2x( ) (3)14与-3
2 ( ) 4.在多项式中遇到同类项,可以运用运算律合并,如: 4a 2+2b-1-3a 2+2b-2 =4a 2
-3a 2
+2b+2b-1-2
=(4-3)a 2
+(2+2)b+(-1-2) 像这样,把多项式中同类项合并成 =a 2+4b-3 一项叫做合并同类项 5.归纳合并同类项的法测:
【展示交流 合作探究】 一、展示自学成果
1.下列各题中的两项是否是同类项
①5xyz 与-7
2xy ②πab 与2ab ③7a 2bc 与-13ba 2c
2.若3x m y 2与-2
1x 3y n 是同类项,则m-n=
二、探究问题
1.合并下题中的同类项 4x 2+3y 2-4xy+3x 2-4y 2
2.化简求值:
2x 2-3x+x 2 +4x-2 其中x=-2
1
三、生成问题(我的困惑)
【当堂检测】
P 71练习第1.2.3.4题 【课后作业】
课堂作业:习题2.2的1.2.3题 家庭作业:基础训练同步。
人教版七年级上册数学第二章《整式的加减》全章导学案
第一章整式的加减全章导学案【知识点】一、单项式:(1)由数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;(2)单项式中的数字因数叫做这个单项式的系数;(3)单项式中,所有字母的指数的和叫做这个单项式的次数.【典型例题】疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同【巩固练习】1、下列代数式符合书写要求的是()A.7xy B.ab×9C.D.1÷a2、下列关于单项式﹣的说法正确的是()A.系数是1B.系数是C.系数是﹣1D.系数是﹣3、整式﹣0.3x2y,0,,﹣22abc2,,,ab2﹣a2b中单项式的个数有()A.6个B.5个C.4个D.3个4、单项式﹣5πa2b的系数是.5、如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a,宽为2a,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为.(用含a的代数式表示,将结果化为最简)【知识点】二、多项式:(1)几个单项式的和叫做多项式;(2)多项式中每个单项式叫做多项式的项,不含字母的项叫做常数项;(3)多项式里次数:最高项的次数,叫做多项式的次数.3、整式:单项式和多项式统称为整式.在多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.注意:(1)判断几个单项式(或多项式中的项)是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相同,同时具备这两个条件者是同类项,二者缺一不可.(2)同类项与系数无关,与字母的排列无关.(3)常数项都是同类项.【典型例题】如图,阴影部分是一个长方形截去两个四分之一的圆后剩余的部分,则它的面积是(其中a>2b)()A.ab﹣B.ab﹣C.ab﹣D.ab﹣【巩固练习】1、小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,公交车的速度为45千米每小时,小明先步行x分钟,再乘车y分钟,则小明家离书店的路程是()千米.A.45x+4y B.4x+45y C.4x+y D.x+y2、在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有()A.4个B.5个C.6个D.7个3、若代数式2x2﹣3x的值是6,则代数式1+x﹣x2的值是()A.﹣2B.4C.﹣4D.84、如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a,b来表示未被覆盖的阴影部分面积与空白部分面积的差为()A.4ab﹣3b2B.2a2﹣b2C.3a2﹣2ab D.4ab﹣a2﹣b25、把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.6、已知(x2﹣x+1)6=a12x12+a11x11+a10x10+…+a1x+a0,则a11+a9+a7+…+a1+a0的值为.【知识点】三、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为结果的系数,字母和字母的指数不变.注意:①只能把同类项合并成一项,不是同类项不能合并;②如果两个同类项的系数互为相反数,合并同类项后,结果为0;③只要不再有同类项,就是最后结果,结果可能是单项式,也可能是多项式.【典型例题】张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b).根据市场行情,他将这两种小商品都以元的价格出售.在这次买卖中,张师傅的盈亏状况为()A.赚了(25a+25b)元B.亏了(20a+30b)元C.赚了(5a﹣5b)元D.亏了(5a﹣5b)元【巩固练习】1、若2x+y=1,﹣y+2z=﹣3,则x+y﹣z的值是()A.1B.2C.3D.42、若多项式3x2﹣kxy﹣5与12xy﹣y2+3的和中不含xy项,则k的值是.3、若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.4、若关于x,y的多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x所取的值无关,则代数式a2﹣2b2﹣(a3﹣3b2)=.【知识点】四、去括号1、如果括号外的因数是正数,去括号后原括号内每一项的符号与原来的符号相同.2、如果括号外的因数是负数,去括号后原括号内每一项的符号与原来的符号相反.3、(1)a+(b+c)= a+b+c;(2)a(b+c)=ab+ac.4、去多重括号含有多重括号的多项式,去括号的一般方法是由内到外,即依次去掉小、中、大括号.也可由外到内去括号:去大括号时,把中括号看成一项;去中括号时,把小括号看成一项;最后去小括号.不论用哪种方法,都要边去括号边合并同类项.注意问题:1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.5、遇到多层括号一般由里到外,逐层去括号,也可由外到里.数符号"-"的个数确定结果的符号.6、乘除法去括号法则的依据实际是乘法分配律中的一种.【典型例题】计算:(1)7﹣(﹣2)+4+(﹣3);(2)﹣13+(﹣2)÷(﹣)﹣|﹣5|;(3)x2y﹣x2y;(4)(3a﹣2)﹣3(a﹣5).【巩固练习】1、已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣52、若|a﹣2|+(b+3)2=0,则式子(a+5b)﹣(3b﹣2a)﹣1的值为()A.﹣11B.﹣1C.11D.13、某同学在做计算A+B时,误将A+B看成了A﹣B,求得的结果是8x2+3x﹣5,已知B=﹣3x2+2x+4,则A+B=.4、如果多项式2a2﹣6ab与﹣a2﹣2mab+b2的差不含ab项,则m的值为.5、如果一个多项式与另一多项式m2﹣2m+3的和是多项式3m2+m﹣1,则这个多项式是.【知识点】五、整式加减计算整式的运算顺序是先去括号,再合并同类项.1、整式的加减,实质上就是去括号和合并同类项.整式加减运算的一般步骤是:(1)根据去括号法则去掉括号;(2)准确找出同类项,按照合并同类项法则合并同类项.2、求多项式的值时,一般先合并同类项,再求值.3、需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数.4、数学思想方法(1)整体思想:整体的思想方法就是将一些相互联系的量作为整体来处理的思维方法。
《整式的加减》教案(五篇范文)
《整式的加减》教案(五篇范文)第一篇:《整式的加减》教案整式的加减(一)教学目标1使学生掌握整式的加减运算,进一步巩固前面所学的去括号、合并同类项的方法;2使学生进一步增强运算能力教学重点和难点重点:整式的加减运算课堂教学过程设计一、复习提问1什么是同类项?怎样合并同类项? 2去括号法则如何叙述? 学生口答,订正无误后,指出,在学习“去括号”、“合并同类项”的基础上,今天我们学习整式的加减运算二、新知识的学习先看以下各题例1 求和与求差:(1)求100t,-252t的和;22(2)求3x-6x+5与4x+7x-6的和;2222(3)求2x+xy+3y与-x-xy+2y的差分析第(1)小题:请同学们想想,什么叫求几个数的和?至学生答出“把这几个数相加”之后,接着追问,那么什么叫求几个单项式的和?以使学生明确所谓求几单项式的和就是先用加号将这几个单项式连接,而后再合并同类项2222解:(1)5xy+(-2xy)+2xy+(-4xy)2222 =5xy-2xy+2xy-4xy 22 =-xy+2xy;分析第(2)(3)小题:同学们想想看,求多项式的和或差,一定要注意什么?使学生明确在列式时应首先用括号把多项式括起来,而后,再去括号、合并同类项.22解:(2)(3x-6x+5)+(4x+7x-6)22 =3x-6x+5+4x+7x-6 2 =7x+x-1;2222解:(3)(2x+xy+3y)-(-x-xy+2y)2222 =2x+xy+3y+x+xy-2y =3x+2x+y.同学们想想,通过此题大家发现整式的加减实际上就是运算什么?引导学生得出“整式的加减就是去括号、合并同类项”的结论.再看几个题11例2 化简3a-(2a-4b-6c)+3(-2c+2b)11解:原式=3a-2a+4b+6c-6c+6b 1 =-6a+10b.1131222例3 化简、求值2x-2(x-3y)+(-2x+3y),其中x=-2,y=-3.分析:整式的化简、求值,就是先通过去括号、合并同类项将整式化简,再将字母的值代入,计算出结果11312 2解2x-2(x-3y)+(-2x+3y)123122 =2x-2x+3y-2x+3y=-3x+y 22当x=-2,y=3时,22原式=-3×(-2)+(3)44 =6+9=69.三、课堂练习1求出下列单项式的和:1322222(1)-3x,-2x,-5x,5x;(2)-2n,5n,-5n2说出下列第一式减去第二式的差:2222(1)3ab,-2ab;(2)-4x,3x;(3)-5ax,-4xa3计算:2222(1)(-x+2x+5)+(-3+4x-6x);(6)(3a-ab+7)-(-4a+6ab+7).4.化简,求值:13⎛3223⎫121x--x-x⎪-x+(4x+6)-5x3⎭2⎝2(1)3,其中x=-12;12(2)2x-2⎛212⎫3⎛2212⎫4 x-y⎪--x+y⎪3⎭2⎝33⎭,其中x=-2,y=-3⎝四、小结今天我们学习了整式的加减,同学们回乙一下,整式的加减运算,其步骤是什么?待学生回答无误后,教师板书.整式的加减法:1有括号,先去括号;2合并同类项五、作业 1计算:23⎛3⎫ab+a2b+ab+-a2b⎪-1.3334⎝4⎭(1)(1)4x-(-6x)(-9x);(2)-32.计算:11222222(1)(8xy-x+y)+(-y+x-8xy);(2)(2x-2+3x)-4(x-x+2);(3)3x-[7x-(4x-3)-2x].3化简、求值:233(1)(-x+5+4x)+(-x+5x-4),其中x=-2;23332233(2)2(ab+2b-ab)+3a-(2ba-3ab+3a)-4b,其中a=-3,b=2课堂教学设计说明1整式的加减内容既是本节的重点,也是全章的重点,本节的核心内容是计算,因此,在教学中,应注意讲、练结合,本教学设计中,除了安排一定量的例题外,还安排了相当数量的练习,以使学生更好地落实计算的要求2因为整式的加减就是去括号、合并同类项,因此,本节所学的知识实际上是对前面所学知识的一个巩固、一个深化,所以,本节没有教学难点 22第二篇:整式加减教案§ 4.4整式的加减万国栋※ 学习目标:1、知识与技能:让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减(1)【学习目标】1.能应用运算律探究去括号法则,并且利用去括号法则将整式化简.2.培养观察分析,归纳能力及主动探究合作交流的意识.【学习重点,难点】重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【知识链接】在格尔木到拉萨路段,如果列车通过冻土地段要 t 小时,那么通过非冻土地段的时间多用0.5小时,即_____小时,于是冻土地段的路程为______千米,非冻土地段的路程为___________千米,因此这段跌路全长为___________千米①,冻土地段与非冻土地段相差___________千米②.式子① 100t+120(t-0.5) 式子②100t-120(t-0.5)都带有括号,如何化简呢?这节课我们继续学习整式的加减【学习过程】一、自主学习(要求静思独做.)1.忆一亿:乘法的分配律:a(b+c)=____________2.算一算:(要求应用乘法的分配律)(1)120×(10-0.5)(2)-120×(10-0.5)(3)120×(t-0.5)(4)-120×(t-0.5)二、问题探究计算:(1)2(50-a)(2)-3(a2-2b)比较上面两式,你能发现去括号的规律吗?如果括号外的因数是正数,去括号后_____________________ ;如果括号外的因数是负数,去括号后______________________ 特别地 +(a-8), -(a-8) 可以分别看1×(a-8), -1×(a-8) 利用分配律,可以将式子中的括号去掉得 +(a-8)=a-8, -(a-8)=-a+8,这也符合以上发现的去括号规律三、合作交流1.对上述问题中不懂的地方,小组交流解决.2.化简下列各式(模仿课本例4,可上台展示)(1)10m+8n+(7m-3n) (2)(7x-5y)-2(x2-3y)思路点拨:(1)先判断是哪种类型的去括号,其次去括号后,括号内各项的符号要不要变号.(2)易错警示:括号外的系数不要漏乘括号里的每一项.括号前是“-”号,去括号时,注意括号里的各项符号都要变号.四、精讲点拨(约5分)1.去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变,要不变,则各项符号都不要变.2.括号内原有几项去掉括号后仍有几项.3.有多层括号时,要从里向外逐步去括号.五、能力提升(约5分)细读课本例5,完成下题.飞机的无风航速为a 千米/时 ,风速为 20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?思路导航:(1)飞机的航速有如下关系:顺风航速=无风航速+风速,逆风航速=无风航速-风速.因此飞机顺风航速为__________千米/时,顺风飞行4小时的行程是_______千米.飞机逆风航速为_________,逆风飞行3小时的行程是___________千米.两个行程相差________千米.解答过程:【课堂小结】:(约3分)1. 去括号是代数式变形的一种常用方法,去括号的法则是:____________________________________________________________________________________________________2. 去括号规律可以简单记为“-”变“+”不变,要变全部变,当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.【达标测评】(约10分)1. 化简:(1)31(9y-3)+2(y+1) (2)-5a+(3a-2)-(3a-7)2.2x 3y m 与-3x n y 2是同类项,则m+n=_____3.化简m+n-(m-n)的结果为( ) A.2m B.-2m C.2n D.-2n4.已知3x 2-4x+6的值为9,则x 2-34x+6 的值为( ). A.7 B.18 C.12 D.9 5.如果关于x 的多项式ax 4+4x 2-21与 3x b +5是同次多项式,求21b 3-2b 2+3b-4 的值.6.选做题:〔创新思维〕 规定一种新运算:a*b=a+b,a#b=a-b 其中a 、b 为有理数, 则化简a 2b*3ab+5a 2b#4ab 并求出当a=5,b=3时的值是多少?整式的加减(2)学习目标:1.初步掌握添括号法则。
2.会运用添括号法则进行多项式变项。
3.理解“去括号”与“添括号”的辩证关系。
学习重点和难点:重点:添括号法则;法则的应用。
难点:添上“―”号和括号,括到括号里的各项全变号。
学习方法:类比、归纳、总结、练习相结合。
学习过程:一、回顾导入(1)(2x―3y)+(5x+4y) (2)(8a―7b)―(4a―5b)(3)a―(2a+b)+2(a―2b) (4)3(5x+4)―(3x―5)二、自主探究:1.添括号的法则:①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?随着括号的添加,括号内各项的符号有什么变化规律?②通过观察与分析,可以得到添括号法则:所添括号前面是“+”号,括到括号里的各项都_______符号;所添括号前面是“-”号,括到括号里的各项都_______符号。
2.例题:例1:做一做:在括号内填入适当的项:(提示:可用乘法法则检验)(1)x2―x+1= x2―(__________); (2) 2x2―3x―1= 2x2+(__________);(3)(a-b)―(c―d)=a-(________________)。
(4)(a+b―c)(a―b+c)=[a+( )][a―( )]例2:用简便方法计算:(1)214a+47a+53a; (2)214a-39a-61a.注意事项:1、学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变。
2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。
法则顺口溜:添括号,看符号:是“+”号,不变号;是“―”号,全变号。
三、合作学习例3:按要求,将多项式3a―2b+c添上括号:(1)把它放在前面带有“+”号的括号里; (2)把它放在前面带有“―”号的括号里如何检查添括号对不对呢?观察、分析,说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查例4:按下列要求,将多项式x3―5x2―4x+9的后两项用( )括起来:(1)括号前面带有“+”号; (2)括号前面带有“―”号说明:①解此题时,首先要确认x3―5x2―4x+9的后两项是什么——是―4x、+9,要特别注意每一项都包括前面的符号。
②再次强调添的是什么——是( )及它前面的“+”或“―”。
例5:按要求将2x2+3x―6:(1)写成一个单项式与一个二项式的和; (2)写成一个单项式与一个二项式的差。
四、课堂检测:1、添括号法则:添上“+”号和括号,括到括号里的各项都;添上“-”号和括号,括到括号里的各项都.2、根据添括号法则,在______上填上“+”号或“-”号:(1)a______(-b+c)=a-b+c;(2)a______(b-c-d)=a-b+c+d;(3)______(a-b)______(c+d)=c+d-a+b.整式的加减(3)【学法指导】 整式加减运算时,注意把每个多项式作为一个整体括起来,体会数学的整体思想,要注重数学思想在数学学习过程中的应用。
【学习目标】知道整式加减运算的法则,熟练进行整式的加减运算。
能在实际背景中体会进行整式加减的必要性,能用整式加减运算解决实际问题。
【学习重点、难点】整式的加减运算。
【知识链接】回忆去括号,合并同类项的法则,化简:-7a+2(a-2)-3(1-a)【学习过程】一、 自主学习独立做课本67页、68页中的例6、例7,完成下题.例7中,为了求出小明比小红多花多少钱?列式如下:4x+3y-3x+2y 你认为是正确吗?答: ________ 若正确,请计算出结果,若不正确,请你简述原因,并写出完整的解题过程.解:问题探究(出示例8)①、做一个纸盒用料多少,实际上就是求长方体纸盒的_______.大纸盒和小纸盒用料分别是______平方厘米和______平方厘米.②、第一问:做两个纸盒共用料多少平方厘米和第二问:大纸盒比小纸盒多用料多少平方厘米?实际上就是求两个整式的__________.③、列式并计算:解:例9:求 )()31(223123221y x y x x +-+--的值,其中32,2=-=y x 解:二、 合作交流1、和你的伙伴交流一下,应该怎样进行整式的加减运算?总结整式加减运算的法则。
2、由自主学习和例8谈谈整式加减列式时必须注意哪些问题? ③、由例9思考:求代数式的值时,直接代数好吗?3、 精讲点拨整式加减的法则:一般地,几个整式相加减,如果有括号就先 ______________,然后再__________ 。
多项式进行加减运算时,应该把多项式作为一个整体,先加上__________,然后再加减。
3、式子求值时,一般的,要先对多项式进行__________,然后再代入求值。
三、课堂测评1、(2009,嘉兴)下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2、化简)23(4)32(5x x ---,结果是( )A .2x -27B .8x -15C .12x -15D .18x -273、孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花_________元.4、汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了__________天(用含a 的代数式表示).5、多项式2m 2+3mn-n 2与 __________ 的差等于m 2-5mn+n 2.6、已知A=x 2-3y 2,B=x 2-y 2,则2A-B=____________________.7、已知33-=-y x ,则y x 35+-的值是( )A .0B .2C .5整式的加减(复习课)【学法指导】 掌握概念,不要死记硬背,要抓住概念的几个点,在辨析易混淆的概念上下点功夫。