小升初几何重点考查内容————(五大模型——蝴蝶模型与燕尾模型)

合集下载

小升初奥赛几何五大模型

小升初奥赛几何五大模型

几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =AB×AC AD×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC 的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=AB2:DC2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S ABCD=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小升初奥数几何五大模型

小升初奥数几何五大模型

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b;4、在一组平行线之间的等积变形,如图③所示,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB平行于CD。

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD 的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]:S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]:S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]:S[sub]△ABC[/sub]=S[sub]△ABE[/sub]:(S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC,因此S[sub]△ADE[/sub]:S[sub]△ABC[/sub]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。

[第30讲]小升初几何_(五大模型_蝴蝶模型与燕尾模型).docx

[第30讲]小升初几何_(五大模型_蝴蝶模型与燕尾模型).docx

甘、升初几何重点考查內彖」苗内容提要蝴蝶模型审喩⑴任意四边形中的比例关系:①S : $2 =$4 : 5*3 或者51 XS3 =5*2X54®AO : OC = (S+&) : (&+6)⑵梯形中比例关系(“梯形蝴蝶定理”):(D52=54②S I : ® : & : & :SABCD=a2 : b2'• ah : ab : (q + />)2几何模型常用方法1. 加辅助线构造模型2. 在图上标份数思想3. 选择对称思想如图,长方形ABCD中,BE: EC=2 : 3, DF \ FC=\ : 2,三角形DFG的而积为2平方厘米,求长方形ABCD的面积。

C在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形的面积为1平方厘米,那么正方形ABCD面积是多少平方厘米。

如图,在梯形ABCD中,AD : BE=4 : 3, BE : EC=2 : 3,且△BOE的面积比△AOD的面积小10平方厘米。

梯形ABCD的面积是多少平方厘米?在三角形ABC中,三角形AEO的面枳是1,三角形ABO的面积是2,三角形的面积是3,则四边形DCEO的面积是多少?如图,E 在 AC 上,D 在BC 上,且AE : EC=2 : 3, BD : DC= \ : 2, AD 与BE 交于点F。

四边形DFEC的面积等于22cm2,则三角形ABC的面积是_____________ 。

©/温故知新©1.熟记蝴蝶和燕尾模型的特点2.加辅助线构造模型3.在图上标倍数和份数4.方程是个好方法在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

如图在△ ABC中,DC EA FB 2求的面积的仁~DB~~EC~~FA~3 '求AABC的面积且1-已知长方形ADEF的面积是16,三角形AD3的面积是3, 么三角形ABC的面积是_______________ oA. 2.5三角形ACF的面积是4,那4.5 C. 6.5 D. 8.54 9 1 A.- 3 氏I ,.如图,正方形ABCD 面积为1, M 是AD 边上的中点,求图屮阴影部分的面积。

小升初几何常考五大模型(等积变换、鸟头、蝴蝶、相似、燕尾)

小升初几何常考五大模型(等积变换、鸟头、蝴蝶、相似、燕尾)

小升初几何常考五大模型(等积变换、鸟头、蝴蝶、相似、燕尾)下面给大家整理小升初数学几何常考五大模型(等积变换模型、鸟头定理、蝴蝶定理、相似模型、燕尾定理)(一)等积变换模型性质与应用简介平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。

1.等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于它们的底之比;(3)如右图夹在一组平行线之间的等积变形,S△ACD=S△BCD反之,S△ACD=S△BCD,则可知直线AB∥直线CD等积变换模型例题讲解与课后练习题(一)例题讲解与分析【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE 的面积是1平方厘米,那么三角形ABC的面积是多少?【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4,S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12.【总结】要找准那两个三角形的高相同。

【例2】:如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S△AOB=15所以S△BOC=12。

【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。

事实上,这2次转化的过程就相当于在条件和结论中搭了一座'桥梁',请同学们体会一下。

(二)鸟头定理(共角定理)模型平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。

西安市【小升初】小升初图形专题——五大模型

西安市【小升初】小升初图形专题——五大模型

)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

12::S S a b =)夹在一组平行线之间的等积变形,如下图反之,如果ACD S S =△△)正方形的面积=边长×边长 =对角线×对角线÷2S 正方形=a ×a S 正方形=b×b÷2)三角形面积等于与它等底等高的平行四边形面积的一半;1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1S ②()(12::AO OC S S S =+蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

①2213::S S a b =②21324::::S S S S a b =③梯形S 的对应份数为(金字塔模型 沙漏模型AD AE DE AB AC BC ===2::ADE ABC S S AF =△△△ABG ∶S △AGC =S △BGE ∶S △EGC =△BGA ∶S △BGC =S △AGF ∶S △FGC =△AGC ∶S △BCG =S △ADG ∶S △DG B =典型例题精讲、一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是边延长3倍到F。

如相交于O,若△AOM、△ABO 的面积等于三角BCDCG,HD=DA,求四边形到正方形顶点C、D连成一个三角形,,已知AH=5cm,HF ,求AF∶FB。

边上的四等分点,AD与BG交于M,平方厘米,则△ABC的面积是,CF=2DF,连接BF,,设正方形MGQA的面积∶1,四边形DOEC的面积是2∶3,若三角形ABC的面积是9平方厘米,三角形BOC的面积为25平。

如果三角形BCD的面积等于三角的长度的()倍。

1.6,求梯形ABCD的面积。

FB的长是3。

那么,的面积是多少?。

六年级奥数秋季班-(第10讲)小升初几何重点考查内容-(五大模型-蝴蝶模型与燕尾模型)

六年级奥数秋季班-(第10讲)小升初几何重点考查内容-(五大模型-蝴蝶模型与燕尾模型)

(★★★)
如图,长方形ABCD中,BE∶EC=2∶3,DF∶FC=1∶2,三角形DFG的面积为2平方厘米,求长方形ABCD的面积。

小升初几何重点考查内容
(★★★)
在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是多少平方厘米。

(★★★)
如图,在梯形ABCD中,AD∶BE=4∶3,BE∶EC=2∶3,且△BOE的面积比△AOD的面积小10平方厘米。

梯形ABCD的面积是多少平方厘米?
(★★★)
在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?
(★★★★)
如图,E在AC上,D在BC上,且AE∶EC=2∶3,BD∶DC=1∶2,AD与BE交于点F。

四边形DFEC的面积等于22cm2,则三角形ABC的面积是______。

小升初数学几何五大几何模型

小升初数学几何五大几何模型

.五大几何模型知识框架一、等积模型A BC D①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图S△ACDS△BCD;反之,如果 S△ACD S△BCD,那么可知直线AB 平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.S△ABC : S△ADE(AB AC) : (AD AE)(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系( “蝴蝶定理〞):① S1 :S2S4:S3或者S1S3S2S4②AO:OC1243 S S : S S蝴蝶定理为我们提供了解决不规那么四边形的面积问题的一个途径.通过构造模型,一方面可以使不规那么四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.DA S 1S 2S 4 OS 3B C梯形中比例关系 ( “梯形蝴蝶定理〞):① S1 : S3 a 2 : b2② S1 :S3 :S2 :S4 a 2 : b 2 : ab : ab ;③S的对应份数为 a b 2 .AaDS 1S 2S 4OS 3BbC④四、相似模型(一)金字塔模型(二) 沙漏模型A E F DAD F EB GC BG C① AD AE DE AF ;AB AC BC AG② S△ADE:S△ABC AF2 :AG2.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不管大小怎样改变它们都相似 ),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理〔燕尾定理〕有一条公共边的三角形叫做共边三角形。

平面几何常考五大模型 等积变换 鸟头 蝴蝶 相似 燕尾

平面几何常考五大模型 等积变换 鸟头 蝴蝶 相似 燕尾

平面几何常考五大模型---(解答几何题的五大法宝)等积变换、鸟头、蝴蝶、相似、燕尾思路提示:在求边长之比时常转化为面积之比,求面积之比常转化为边长之比。

模型一:等积变化原理:两个三角形高相等,面积之比等于对应底边之比。

bS 1︰S 2 =a ︰b ;模型一的拓展: 等分点结论(“鸟头定理”):如下图,三角形AED 占三角形ABC 面积的23×14=16模型二:等积变化原理之四边形应用S 4S 3s 2s 1O DC BA141423213S S =S S S S DO OB S S +==+模型三:梯形中比例关系(“梯形蝴蝶定理”)(1)相似图形,面积比等于对应边长比的平方S 1︰S 3=a 2︰b2(2)S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab (3)S 2=S 4 ;(4)141423213S S =S S S S DO OB S S +==+ :模型四:相似三角形性质①a b c hA B C H=== ; ②相似三角形面积之比等于对应连长之比的平方S 1︰S 2=a 2︰A 2hh H cb a CB Aac b HC B模型五:燕尾定理F ED CBAS △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【例1】:如右图,在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积是1平方厘米,那么三角形ABC 的面积是多少?【解答】连接BD,S △ABD 和S △ AED 同高,面积比等于底边比,所以三角形ABD 的面积是4,S △ABD 和S △ABC 同高面积比等于底边比,三角形ABC 的面积是ABD 的3倍,是12. 【总结】要找准那两个三角形的高相同。

小学六年级奥数 五大模型——蝴蝶模型、燕尾模型

小学六年级奥数 五大模型——蝴蝶模型、燕尾模型

1
【例2】(★★★)
如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别 为2、5、8平方厘米,那么余下的四边形OFBC的面积为 ___________平方厘米。
【例3】 (★★★)
如图,ABCD长方形中,阴影部分是直角三角形且面积为54,OD 的长是16,OB的长是9。那么四边形OECD的面积是多少?
五大模型——蝴蝶模型、燕尾模型
1.蝴蝶模型
任意四边形中的比例关系:

S :S =S :S
12
43
或者S1
S 3
=
S 2
S 4
② AO:OC = S +S : S +S






1
2


4
3




BO:OD= S +S : S +S





ቤተ መጻሕፍቲ ባይዱ

2
3


Aa D S1
S2 O S4
S3
B
C
b
二、本讲经典例题 例1,例4,例6,例7,例8
3.燕尾模型 在三角形ABC中,AD,BE,CF相交于同一点O,那么 SABO : SACO BD : DC 。
4
1
4




3.燕尾模型
在三角形ABC中,AD,BE,CF相交于同一点O,那 么SABO : SACO BD : DC 。
2.梯形蝴蝶模型 梯形中比例关系: ① S2=S4 ② S1 : S3 : S2 : S4 a2 : b2 : ab : ab

五大模型——蝴蝶模型、燕尾模型

五大模型——蝴蝶模型、燕尾模型
五大模型——蝴蝶模型、燕尾模型
1.蝴蝶模型
任意四边形中的比例关系:

S :S =S :S
12
43
或者S1
S 3
=
S 2
S 4
② AO:OC = S +S : S +S
1
2
4
3
BO:OD= S +S : S +S
2
3
1
4
3.燕尾模型
在三角形ABC中,AD,BE,CF相交于同一点O,那 么SABO : SACO BD : DC 。

S :S =S :S
12
43
或者S1
S 3
=
S 2
S 4
② AO:OC = S +O:OD= S +S : S +S
2
3
1
4
3
2.梯形蝴蝶模型 梯形中比例关系: ① S2=S4 ② S1 : S3 : S2 : S4 a2 : b2 : ab : ab
2.梯形蝴蝶模型 梯形中比例关系: ① S2=S4 ② S1 : S3 : S2 : S4 a2 : b2 : ab : ab
【例1】 (★★) 如图,在△ABC中,已知M、N分别在边AC、BC上,BM与AN相交于O, 若△AOM、△ABO和△BON的面积分别是3、2、1,则△MNC的面积 是_______。
Aa D S1
S2 O S4
S3
B
C
b
二、本讲经典例题 例1,例4,例6,例7,例8
3.燕尾模型 在三角形ABC中,AD,BE,CF相交于同一点O,那么 SABO : SACO BD : DC 。
4
【例4】(★★★★) 如图,在一个边长为6的正方形中,放入一个边长为2的正方形, 保持与原正方形的边平行,现在分别连接大正方形的一个顶点与 小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的 面积为_________。

小学数学几何必考五大模型

小学数学几何必考五大模型

∵在正方形ABCD中,S△ABG=×AB × AB边上的高,
∴ S△ABG= S□ABCD(三角形面积等于与它等底等高的平行四边形面积的一半)
同理,S△ABG=

S
□EFGB
∴ 正方形ABCD与长方形EFGB面积相等。长方形的宽=8 ×8÷10=6.4(厘米)
【例2】长方形ABCD的面积为36cm2,E 、F、G为各边中点,H为AD边上
任意一点,问阴影部分面积是多少?
【解析】解法一:寻找可利用的条件,连接BH ,HC ,如下图:
解法二:特殊点法.找H的特殊点,把H点与D点重合,那么图形就可变成右图:
这样阴影部分的面积就是△DEF的面积,
根据鸟头定理,则有:
【巩固】
a
如右图
③夹在一组平行线之间的等积变形,如右图
反之,如果
,则可知直线
平行于
等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于
它们的高之比.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D
A
A
D
E
E
B
C
图 ⑴
如图在
上,E在AC上),则
B
图 (2)
C
中,D、E分别是AB、AC上的点如图 ⑴(或D在BA的延长线
三、蝴蝶定理
任意四边形中的比例关系(“蝴蝶定理”):
梯形中比例关系(“梯形蝴蝶定理”):

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

(完整版)小升初几何鸟头、蝴蝶、燕尾模型

(完整版)小升初几何鸟头、蝴蝶、燕尾模型

平面几何图形板块一、经典模型回顾知识点1.共高定理共高定理结论:用途:线段比与面积比之间的相互转化。

鸟头模型结论:用途:根据大面积求小面积。

例1如图,三角形ABC的面积为1,且13 ADAB=,14BE BC=,15CF CA=,则三角形DEF的面积是________。

例2知识点2:蝴蝶模型结论:1.2.S1×S3=S2×S4用途:借助面积比来反求线段比。

例3如图,将四边形ABCD的四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5,则四边形EFGH的面积是。

如图,正方形ABCD的面积是64平方厘米,正方形CEFG的面积是36平方厘米,DF与BG相交于O。

则DBO的面积等于多少平米厘米?知识点3:梯形蝴蝶结论:1.S 2=S 32.S 1×S 4=S 22=S 32 3.4.S 1=a 2份,S 4=b 2份,S 2=S 3=ab 份;S =(a +b )2份 用途:梯形中的面积比例关系。

例4知识点4:燕尾定理 结论:用途:推面积间的比例关系。

如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O ,已知AB =5,CD =3, 且梯形ABCD 的面积为4,求三角形OAB 的面积。

例5【阶段总结1】1.五大模型分别是什么?各有什么妙用? 2.每个模型中都应注意的小技巧有哪些?板块二、综合运用(一) 例6如图,ABC△中BD DA =2,CE EB =2,AF FC =2,那么ABC △的面积是阴影三角形面积的__________倍。

三条边长分别为5、12、13的直角三角形如图所示,将它的短直角边对折到斜边上去,与斜边相重合,问图中阴影部分的面积是多少?例7如图,在△ABC中,△AEO的面积是1,△ABO的面积是2,△BOD的面积是3,则四边形DCEO的面积是多少?例8如图所示,长方形ABCD内部的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO 的面积为______。

小升初几何鸟头、蝴蝶、燕尾模型

小升初几何鸟头、蝴蝶、燕尾模型

小升初几何鸟头、蝴蝶、燕尾模型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小升初几何鸟头、蝴蝶、燕尾模型)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小升初几何鸟头、蝴蝶、燕尾模型的全部内容。

平面几何图形板块一、经典模型回顾知识点1.共高定理共高定理结论:用途:线段比与面积比之间的相互转化.鸟头模型结论:用途:根据大面积求小面积。

例1例2知识点2:蝴蝶模型结论:1.2.S1×S3=S2×S4用途:借助面积比来反求线段比。

例3知识点3:梯形蝴蝶结论:1.S2=S32.S 1×S 4=S 22=S 323.4.S1=a2份,S4=b2份,S2=S3=ab份;S=(a+b)2份用途:梯形中的面积比例关系.例4知识点4:燕尾定理结论:用途:推面积间的比例关系.例5【阶段总结1】1.五大模型分别是什么?各有什么妙用?2.每个模型中都应注意的小技巧有哪些?板块二、综合运用(一)例6例7例8例9板块三、综合运用(二)例10例11例12家庭作业1.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?2。

如图,已知平行四边形的面积为36,三角形的面积为8。

三角形的面积为多少?3。

(2008年小机灵杯决赛)如图,长方形中,厘米,厘米,对角线和交于,四边形的面积是平方厘米,则阴影部分面积的和为 平方厘米。

4. (2009年第七届希望杯五年级一试改编题)如图,三角形的面积是,A B C D AODBOC DA B C D 8A D =5A B =AC BD OO E F G4第12题ABC 12是的中点,点在上,且,与 交于点。

【小升初奥数专题】几何之五大模型(已更新完)

【小升初奥数专题】几何之五大模型(已更新完)

【⼩升初奥数专题】⼏何之五⼤模型(已更新完)在⼩学奥数知识体系中,⼏何五⼤模型是⼏何专题中⾮常重要的⼀块知识点,⽅法性很强,掌握了⼏何的五⼤模型,对于我们解决组合型直图形或者⾮规则图形是⾮常有帮助的,所以⼏何五⼤模型在⼩学⼏何体系中的重中之重!⼏何五⼤模型的难点在于我们要在掌握各个模型适⽤的题型、相应的⽅法、公式的基础上学会灵活运⽤,还有就是有时要根据题意同时运⽤多种模型,从⽽更好的解决问题!接下来e 度徐丽⽼师会针对⼏何五⼤模型进⾏解析,希望能帮助到各位家长,让您的孩⼦在这次⼩升初中⼤战全胜!ps:对于不同题型均会有例题讲解分析以及精选练习题,以供⼤家有针对性学习巩固,相信⼤家对于应⽤题的攻克将不在话下!【⼏何五⼤模型知识点】【⼏何五⼤模型经典例题详解】【⼏何五⼤模型巩固练习】【⼏何五⼤模型巩固练习详解】标签:⼏何 模型 五⼤ ⼩升初 奥数回复 收藏1~3年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】4~5年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】⼩升初奥数天天练汇总,含试题详解【每⽇不断更新中】【徐丽⽼师】⼩升初奥数应⽤题专题汇总【徐丽⽼师】⼩升初奥数⾏程专题汇总【徐丽⽼师】⼩升初奥数⼏何专题汇总【徐丽⽼师】⼩升初奥数数论专题汇总【徐丽⽼师】⼩学数学毕业总复习专题汇总⼏⼏何五⼤模型⼀、五⼤模型简介(1)等积变换模型1、等底等⾼的两个三⾓形⾯积相等;2、两个三⾓形⾼相等,⾯积之⽐等于底之⽐,如图①所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;3、两个三⾓形底相等,⾯积在之⽐等于⾼之⽐,如图②所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;4、在⼀组平⾏线之间的等积变形,如图③所⽰,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB 平⾏于CD 。

小升初-数学-几何-五大几何模型

小升初-数学-几何-五大几何模型

高之比.① 12:S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; 知识框架五大几何模型③ S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型(二)沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:【例 1】 米?【巩固】 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.【例 2】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【巩固】图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?例题精讲【例 3】 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?【巩固】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为平方厘米.二、蝴蝶模型【例 4】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.【巩固】 如图5所示,矩形ABCD 的面积是24平方厘米,、三角形ADM 与三角形BCN 的面积之【例 5】 【巩固】 27.那么【例 6】 【巩固】 CD ,DA()m n +的【例 7】 ,那么平【巩固】 ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.【例 8】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b = 【巩固】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【例 9】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【巩固】 如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 10】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【巩固】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【随练1】BF 、MGQA 的【随练2】【作业1】【作业2】6【作业3】BC 的中【作业4】【作业5】、CD 、DA 的重点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m +n 的值等于__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(★★★)
如图,长方形ABCD 中,BE ∶EC =2∶3,DF ∶FC =1∶2,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积。

(★★★)
在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是多少平方厘米。

(★★★)
如图,在梯形ABCD中,AD∶BE=4∶3,BE∶EC=2∶3,且△BOE的面积比△AOD的面积小10平方厘米。

梯形ABCD的面积是多少平方厘米?
(★★★)
在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?
(★★★★)
如图,E在AC上,D在BC上,且AE∶EC=2∶3,BD∶DC=1∶2,AD与BE交于点F。

四边形DFEC的面积等于22cm2,则三角形ABC的面积是______。

(★★★★★) 如图在△ABC 中,
2
3
DC EA FB DB EC FA ===,求
GHI ABC ∆∆的面积的面积的值。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.已知长方形ADEF 的面积是16,三角形ADB 的面积是3,三角形ACF 的面积是4,那
么三角形ABC 的面积是___________。

A .2.5 B .4.5 C .6.5 D .8.5
E
F
D
C
B
A
2.如图,正方形ABCD 面积为1,M 是AD 边上的中点,求图中阴影部分的面积。

A .
13
B .
34
C .
49
D .
14
3.如图:在边长为1的正方形ABCD 中,BE =2EC ,DF =2FC ;求四边形ABGD 的面积。

A .13
B .34
C .12
D .14
4.如图所示,在ABC △中,12CP CB =,1
3
CQ CA =,BQ 与AP 相交于点X ,若ABC △的
面积为6,则ABX △的面积等于 。

A .2 B .2.4 C .3 D .3.6
X
Q
P
A
B C
5.如图所示,三角形BDF 、三角形CEF 、三角形BCF 的面积分别是2、3、4,问四边形
ADFE 的面积是多少?
A .185
B .215
C .395
D .135
6.如图,三角形ABC 中,AF ∶FB =BD ∶DC =CE ∶AE =3∶2,且三角形GHI 的面积是1,求三角形ABC 的面积。

A .18 B .17 C .20 D .
19。

相关文档
最新文档