王镜岩版生化讲义第六章 核酸
6 王镜岩生化第三版 第6章 蛋白质的功能与进化
一.蛋白质功能的多样性 二.血红蛋白的结构 三.血红蛋白的功能:转运氧 四.血红蛋白分子病 五.免疫球蛋白 六.氨基酸序列与生物学功能
一.蛋白质功能的多样性
一.催化
二.调节
三.转运 四.储存 五.运动 六.结构成分 七.支架作用 八.防御与进攻
二.血红蛋白的结构
血红蛋白的结构与功能
肌红蛋白(Mb)和血红蛋白(Hb)的氧解离曲线
* 协同效应(cooperativity) 一个寡聚体蛋白质的一个亚基与其配体结合 后,能影响此寡聚体中另一个亚基与配体结合能
力的现象,称为协同效应。
如果是促进作用则称为正协同效应 (positive cooperativity) 如果是抑制作用则称为负协同效应 (negative cooperativity)
分子基础:在血红蛋白分子的四条肽的574个氨基酸残
基中,只有两条β链 中的两个谷氨酸残基分别被两个缬氨 酸残基所代替,即能引起严重的病态。
HbA H2N Val-His-Leu-Thr-Pro-Glu-Glu-Lys
HbS H2N Val-His-Leu-Thr-Pro-Val-Glu-Lys
β链 1 2 3 4 5 6 7 8
HbA β 肽 链 N-val · his · leu · thr · pro · glu · glu · · · · ·C(146)
HbS β 肽链 N-val · his · leu · thr · pro · val · glu · · · · ·C(146)
这种由蛋白质分子发生变异所导致的疾病, 称为“分子病”。
变构效应
• 当血红蛋白的一个α 亚基与氧分子结合 以后,可引起其他亚基的构象发生改变, 对氧的亲和力增加,从而导致整个分子 的氧结合力迅速增高,使血红蛋白的氧 饱和曲线呈“S”形。这种由于蛋白质分 子构象改变而导致蛋白质分子功能发生 改变的现象称为变构效应。
生物化学习题及答案(王镜岩编著版)
第一章核酸(一)名词解释1.单核苷酸:核苷与磷酸缩合生成的磷酸酯称为单核苷酸。
2.磷酸二酯键:单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。
3.不对称比率:不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。
4.碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。
5.反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。
反密码子与密码子的方向相反。
6.顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。
7.核酸的变性与复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。
这个DNA螺旋的重组过程称为“复性”。
8.退火:当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。
9.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。
10.减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
11.噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。
也叫细菌的病毒。
12.发夹结构:RNA是单链线形分子,只有局部区域为双链结构。
这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。
13.DNA的熔解温度:引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。
[王镜岩生物化学第三版笔记]第六章 核酸
第六章 核酸核酸是遗传物质1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coliDNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸核苷酸组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)P330 表5-1 两类核酸的基本化学组成一、 碱基1. 嘌呤碱:腺嘌呤鸟嘌呤2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶P331 结构式3. 修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、 核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷DNA 的戊糖是:脱氧核糖RNA 的戊糖是:核糖三、 核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸P333表5-32、细胞内游离核苷酸及其衍生物①核苷5’-多磷酸化合物A TP、GTP、CTP、ppppA、ppppG在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸cAMP(3’,5’-cAMP) cGMP(3’,5’-cGMP)它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物ppGpp pppGpp ppApp④核苷酸衍生物HSCoA、 NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第六章 核酸--王镜岩《生物化学》第三版笔记(完美打印版)
第六章核酸提要一.概述核酸分类分布与功能二.核苷酸碱基嘌呤与嘧啶 DNA与RNA中的核苷与核苷酸多磷酸核苷酸环核苷酸三.DNA的结构磷酸二酯键 DNA的一级结构 DNA的二级结构 DNA的三级结构 DNA的拓扑结构四.RNA的结构DNA与RNA的区别 RNA的种类与功能 tRNA的结构特点 mRNA的结构特点五.核酸的理化性质紫外吸收 DNA的变性与复性限制性内切酶第一节概述一发现核酸占细胞干重的5-15%,1868年被瑞士医生Miescher发现,称为"核素"。
在很长时间内,流行"四核苷酸假说",认为核酸是由等量的四种核苷酸构成的,不可能有什么重要功能。
1944年Oswald Avery通过肺炎双球菌的转化实验首次证明DNA是遗传物质。
正常肺炎双球菌有一层粘性发光的多糖荚膜,有致病性,称为光滑型(S型);一种突变型称为粗糙型(R型),无荚膜,没有致病能力(缺乏UDP-葡萄糖脱氢酶)。
1928年,格里菲斯发现肺炎双球菌的转化现象,即将活的粗糙型菌和加热杀死的光滑型菌混合液注射小鼠,可致病,而二者单独注射都无致病性。
这说明加热杀死的光滑型菌体内有一种物质使粗糙型菌转化为光滑型菌。
艾弗里将加热杀死的光滑型菌的无细胞抽提液分级分离,然后测定各组分的转化活性,于1944年发表论文指出"脱氧核糖型的核酸是型肺炎球菌转化要素的基本单位"。
其实验证据如下:1.纯化的、有高度活性的转化要素的化学元素分析与计算出来的DNA组成非常接近。
2.纯化的转化要素在光学、超速离心、扩散和电泳性质上与DNA的相似。
3.其转化活性不因抽取去除蛋白质或脂类而损失。
4.用胰蛋白酶和糜蛋白酶处理不影响其转化活性。
5.用RNA酶处理也不不影响其转化活性。
6. DNA酶可使其转化活性丧失。
艾弗里的论文发表后,有些人仍然坚持蛋白质是遗传物质,认为他的分离不彻底,是混杂的微量的蛋白质引起的转化。
生物化学(王镜岩版)第六章 糖代谢(双语)
to lactate
(eg. in muscle)
to ethanol
(alcoholic fermentation in yeast)
G'o = –2840 kJ/mole
2. 产生NADPH 和 ribose-5-P 。 3. 可以以多糖 (glycogen or starch) 或转
化为fat 进行长期储存。 4. 合成其他生物分子(amino acids,
nucleotides, fatty acids, coenzymes and other metabolic intermediates.)
Chapter 6 Metabolism of Carbohydrate
***概述(Generalization)
Carbohydrates 是四大类生物分子之一。
它们是多羟基的醛或多羟基的酮。
***糖的生理功能 (The Functions of Carbohydrates)
1. 大多数机体的能源物质,彻底氧化:
- by phosphoglycerate mutase - reversible shift of
phosphoryl group between C3 & C2
Payoff phase
9. Dehydration of 2-phosphoglycerate to phosphoenolpyruvate - by enolase - dehydration of 2-phosphoglycerate redistributes energy within molecule -large difference in G’° of hydrolysis of 2-phosphoglycerate: --4.2 Kcal/mol ----- 14.8 Kcal/mol
王镜岩生物化学讲义47页
第一章绪论一、生物化学的定义二、生物化学研究的主要内容三、生物化学在生命科学中的地位及其它学科中的作用:强调生化课的重要性四、生物化学的学习方法五、生物化学发展简史六、生物化学的现状及其发展七、相关基础知识简介(生命的构成)第二章氨基酸与蛋白质的一级结构一.蛋白质是生命的表征,哪里有生命活动哪里就有蛋白质1.酶:作为酶的化学本质,温和、快速、专一,任何生命活动之必须,酶的另一化学本质是RNA,不过它比蛋白质差远了,种类、速度、数量。
2.免疫系统:防御系统,抗原(进入“体内”的生物大分子和有机体),发炎。
细胞免疫:T细胞本身,分化,脓细胞。
体液免疫:B细胞,释放抗体,导弹,免疫球蛋白(Ig)。
3.肌肉:肌肉的伸张和收缩靠的是肌动蛋白和肌球蛋白互动的结果,体育生化。
4.运输和储存氧气:Hb和Mb。
5.激素:含氮类激素,固醇类激素。
6.基因表达调节:操纵子学说,阻遏蛋白。
7.生长因子:EGF(表皮生长因子),NGF(神经生长因子),促使细胞分裂。
8.信息接收:激素的受体,糖蛋白,G蛋白。
9.结构成分:胶原蛋白(肌腱、筋),角蛋白(头发、指甲),膜蛋白等。
生物体就是蛋白质堆积而成,人的长相也是由蛋白质决定的。
10.精神、意识方面:记忆、痛苦、感情靠的是蛋白质的构象变化,蛋白质的构象分类是目前热门课题。
11.蛋白质是遗传物质?只有不确切的少量证据。
如库鲁病毒,怕蛋白酶而不怕核酸酶。
二.构成蛋白质的元素1.共有的元素有C、H、O、N,其次S、稀有P等2.其中N元素的含量很稳定,16%,因此,测N量就能算出蛋白质的量。
(凯氏定氮法)三.结构层次1.一级结构:AA顺序2.二级结构:主干的空间走向3.三级结构:肽链在空间的折叠和卷曲形成的形状,所有原子在空间的排布。
4.四级结构:多条肽链之间的作用。
§1.氨基酸蛋白质的结构单位、水解产物一.氨基酸的结构通式:α-碳原子,α-羧基,α-氨基氨基酸的构型:自然选择L型,D型氨基酸没有营养价值,仅存在于缬氨霉素、短杆菌肽等极少数寡肽之中,没有在蛋白质中发现。
最新王镜岩生化第三版考研课件 核酸的降解和核苷酸代谢-精品课件
课件
一、核酸和核苷酸的分解代谢 二、核苷酸的生物合成 三、辅酶核苷酸的生物合成
提要
人--尿酸, 家畜--尿囊素 硬骨鱼--尿囊酸, 两栖类--尿素, 低等生物--NH3。
二、核苷酸的生物合成
• (一)嘌呤核糖核苷酸的合成 • (二)嘧啶核糖核苷酸的合成 • (三)脱氧核糖核苷酸的合成
(一)烟酰胺核苷酸的合成 (二)黄素核苷酸的合成 (三)辅酶A的合成
(二)黄素核苷酸的合成
• 1)FMN的生成:黄素激酶 • 核黄素+ ATP----FMN+ ADP • 2)FAD生成:FAD焦磷酸化酶 • FMN+ ATP---FAD+ Ppi
(三)辅酶A的合成
• 1)在泛酸激酶催化下 • 泛酸+ ATP---4-P-泛酸+ADP • 2)在合成酶催化下 • 4-P-泛酸+Cys---4-P-泛酰半胱氨酸 • 3)脱羧酶脱去羧基 • 4-P-泛酰半胱氨酸---4-P-泛酰巯基乙胺 • 4)焦磷酸化酶催化 • 4-P-泛酰巯基乙胺+ATP---CoA-SH + PPi
• 5-P-R-PPi +Gln
5-P-核糖胺+
Glu
H2O
PPi
• 5、在氨基咪唑核苷酸合成酶催化,
• 甲酰甘氨咪核苷酸闭环生成5-N-咪唑核苷酸
• 甲酰甘氨酰胺核苷酸
5-N-咪唑核苷酸
ATP
ADP+Pi
2、腺嘌呤核苷酸的合成
• 在次黄嘌呤核苷酸的基础上,很快就形 成AMP。在合成过程中,抗菌素羽田杀 菌素能竞争性抑制腺苷琥珀酸合成酶。 因为羽田杀菌素的结构与Asp相似。理 论上有抗癌作用,但也因其毒性未能使 用。
从次黄嘌呤合成腺嘌呤
生物化学王镜岩(第三版)上下册课后习题解答.doc
第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。
糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。
多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。
糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。
同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。
糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。
单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。
因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。
任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。
单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。
许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。
这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。
成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。
在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。
《生物化学》精要速讲 王镜岩版
1《生物化学》(第三版)精要速览第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为Lα氨基酸。
2.分类:根据氨基酸的R 基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8 种);②极性中性氨基酸(7 种);③酸性氨基酸(Glu 和Asp);④碱性氨基酸(Lys、Arg 和His)。
生物化学笔记(王镜岩)
赤藓糖葡萄糖甘油醛核糖甘露糖半乳糖(Gal)((Gal)二羟基丙酮核酮糖果糖讲一生物大分子:糖、脂、蛋白质(酶)、核酸、维生素、激素生物化学之父:费舍尔讲二地球上数量最多的一类有机化合物:糖类α和β吡喃葡萄糖(羟基在下为α型,在上为β型)糖原高度分支的生理意义:第三章、蛋白质20种氨基酸英文名等电点掌握氨基酸的用途、现象DNFB法PITCCys半胱氨酸Ellman反应,DTNB,二硫硝基苯甲酸Ellman反应(二硫硝基苯甲酸,DTNB)Cys与二硫硝基苯甲酸(DTNB) 或称Ellman 试剂发生硫醇-二硫化物交换反应。
反应中1 分子的Cys引起1分子的硫硝基苯甲酸的释放。
它在pH 8.0 时, 在412nm 波长处有强烈的光吸收, 因此可利用分光光度法定量测定-SH。
肽平面(酰胺平面)——由肽键周围的6个原子组成的刚性平面3.6蛋白质的纯化注:用尽可能少的步骤、尽可能短的时间。
1.前处理阶段物理法——冻融法,超声波法,均浆法,研磨法等。
酶裂解法——就是利用水解酶将细胞壁和细胞膜消化的方法,常用的水解酶有溶菌酶、葡聚糖酶、蛋白酶、糖苷酶、壳多糖酶、细胞壁溶解酶等。
其中溶菌酶主要对细菌类有作用,其他酶对酵母作用显著。
2.粗分级/粗分离根据蛋白质的①溶解性质、②大小不同、③带电状态不同/电荷多少④净化方法根据与其他化合物相互作用的蛋白质(部分蛋白质对..有特定的..)②:凝胶过滤层析常用凝胶过滤介质Sephadex:交联葡聚糖,是采用环氧氯丙烷作交联剂将右旋葡聚糖交联而成。
干粉容易膨胀,在水、盐溶液、有机溶液、碱和弱酸中化学性质稳定,可高压灭菌。
高交联度的Sephadex,其颗粒坚硬,适于高流速下操作。
Sephacryl : 烯丙基葡聚糖同N、Nˊ—甲叉双丙烯酰胺共价交联而成。
颗粒坚硬,性质比Sephadex更为稳定,可高压灭菌,在pH3~11条件下稳定,可用有机溶剂洗脱,也可用SDS、尿素及盐酸胍洗脱。
王镜岩生物化学大纲
一、课程性质、目的和要求《生物化学》是生物科学、生物技术、生物工程三个本科专业的必修课,是生命科学学科体系中重要的专业基础课。
本课程的任务是使学生学习生物体基本的化学组成,从整体上掌握生物体内物质的代谢过程及代谢规律。
结合课程教学培养学生的专业兴趣,巩固专业思想,提高专业素质,从而为后续课程的学习奠定基础。
二、教学内容、要点和课时安排《生物化学》授课课时分配表本课程的教学内容共分11章。
第一章:绪论绪论部分主要解决为什么学、学什么、如何学的问题。
主要内容有生物化学的概念、研究对象、研究内容、发展简史,以及本课程的地位、要求和学习方法。
重点、难点:生物化学的概念、研究内容。
第二章:蛋白质化学主要内容:了解:三四级结构了解蛋白质的功能和分类;蛋白质的结构及其与功能的关系;掌握:蛋白质基本的组成单位—氨基酸的分类、结构和性质;掌握蛋白质的一、二级结构,蛋白质的理化性质与分离纯化的方法;蛋白质测序方法重点、难点:氨基酸的分类、结构和性质;蛋白质的理化性质、加蛋白质测序方法(两学时)第三章核酸化学主要内容:了解:了解序列测定的方法掌握:核酸种类、分布、功能;核酸的三级结构(DNA的三级、四级结构);mRNA? rRNA 的空间结构;核酸的化学组成;RNA的种类及作用;DNA双螺旋模型的要点、核酸的性质重点、难点:DNA双螺旋模型的要点、RNA的种类及作用第四章维生素与辅酶主要内容:了解:维生素的概念、分类和重要的脂溶性维生素;掌握:作为辅酶的9种水溶性维生素的名称、{加某些重要维生素的结构如(Vb2、辅酶A、Q、烟酸、Vb6、叶酸)}活性形式、功能及其催化的反应。
了解缺乏症重点:9种水溶性维生素的名称、功能、某些维生素的结构、活性形式及其催化的反应。
第五章生物膜的组成与结构了解:生物膜的组成和性质:膜脂、膜蛋白和糖类;掌握:生物膜的分子结构:生物膜中分子间的作用力、生物膜结构的几个主要特征、生物膜的分子结构模型:流体镶嵌模型及其发展,生物膜的功能重点与难点:生物膜的结构与功能第六章酶化学主要内容:了解:酶的概念、作用特点、分类与命名;酶分子结构与功能的关系;双底物酶促反应动力学特点;理解酶的作用机制;酶的制备、应用、活力测定和酶工程。
【考研必备】王镜岩生物化学笔记 第六章 核酸
第六章核酸核酸是遗传物质1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coliDNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸核苷酸组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)P330 表5-1 两类核酸的基本化学组成一、碱基1. 嘌呤碱:腺嘌呤鸟嘌呤2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶P331 结构式3. 修饰碱基植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、核苷核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷DNA 的戊糖是:脱氧核糖RNA 的戊糖是:核糖三、核苷酸核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸P333表5-32、细胞内游离核苷酸及其衍生物①核苷5’-多磷酸化合物A TP、GTP、CTP、ppppA、ppppG在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸cAMP(3’,5’-cAMP)cGMP(3’,5’-cGMP)它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物ppGpp pppGpp ppApp④核苷酸衍生物HSCoA、NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
王镜岩生物化学知识点整理版
教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类第一节蛋白质的分子组成一、蛋白质的元素(化学)组成主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。
有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。
各种蛋白质的含氮量很接近,平均为16%。
因此,可以用定氮法来推算样品中蛋白质的大致含量。
每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)二、蛋白质的基本组成单位——氨基酸蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。
存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。
(三)氨基酸的重要理化性质1.一般物理性质α-氨基酸为无色晶体,熔点一般在200 oC以上。
各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。
一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。
芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp的吸收峰在280nm,Phe在265 nm。
由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便的方法。
2.两性解离和等电点(isoelectric point, pI)氨基酸在水溶液或晶体状态时以两性离子的形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,是两性电解质,其解离度与溶液的pH有关。
王镜岩生物化学精要及课后习题答案
生物化学(第三版)精要以及课后习题详细解答第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。
蛋白质中的氨基酸都是L型的。
但碱水解得到的氨基酸是D型和L型的消旋混合物。
参与蛋白质组成的基本氨基酸只有20种。
此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。
除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。
在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。
某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI 表示。
所有的α-氨基酸都能与茚三酮发生颜色反应。
α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。
胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。
半胱氨酸的SH基在空气中氧化则成二硫键。
这几个反应在氨基酸荷蛋白质化学中占有重要地位。
除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。
比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。
参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。
核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。
氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。
常用方法有离子交换柱层析、高效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。
第6章核酸的化学ppt课件
常见的核苷酸
核糖核酸(在RNA中)
脱氧核糖核酸(在DNA中)
全称
简称 代号
全称
简称 代号
腺嘌呤核苷酸 腺苷酸 AMP 腺嘌呤脱氧核苷酸 脱氧腺苷酸 dAMP 鸟嘌呤核苷酸 鸟苷酸 GMP 鸟嘌呤脱氧核苷酸 脱氧鸟苷酸 dGMP 胞嘧啶核苷酸 胞苷酸 CMP 胞嘧啶脱氧核苷酸 脱氧胞苷酸 dCMP 尿嘧啶核苷酸 尿苷酸 UMP 胸腺嘧啶脱氧核苷酸 脱氧胸苷酸 dTMP
尿嘧啶 尿嘧啶核苷 尿苷 U
-
-
-
胸腺嘧啶
-
- - 胸腺嘧啶脱氧核苷 脱氧胸苷 dT
2.核苷酸〔nucleotide〕
❖ 核苷酸:是核苷中戊糖环上的羟基与磷酸脱水生成的核苷磷 酸酯。
❖ 类型:核糖核苷酸和脱氧核糖核苷酸,它们是RNA和DNA 的根本组成单位。
❖ 核苷酸:核苷+磷酸,戊糖+碱基+磷酸
5´ p
p
p
p
OH 3´
5´ 3´
线条式
5´ ACTGCATAGCTCGA 3´
字母式
构造式
〔二〕DNA的一级构造
❖ 概念:是指DNA分子中脱氧核苷酸的陈列顺序。由于不同 的脱氧核苷酸只是碱基的不同,所以DNA的一级构造也是 指脱氧核苷酸中碱基的陈列顺序。
❖ DNA碱基组成所遵照的规律:〔查加夫规律〕 ❖ A.具有生物物种的特异性。即不同物种的DNA有其特有的
呤碱的第9位N原子或嘧啶碱的第1位N原子经过N-糖苷键相 连,这种糖与碱基之间的连键是C-N糖苷键。
1.核苷
NH2
OH
N
NN
N
NH2 N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旗开得胜
第六章核酸
核酸是遗传物质
1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli
用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coli
DNA、RNA的分布(DNA在核内,RNA在核外)。
第一节核酸的化学组成
核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次:核酸
核苷酸
磷酸核苷
戊糖碱基
组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)
P330 表5-1 两类核酸的基本化学组成
一、碱基
1. 嘌呤碱:腺嘌呤鸟嘌呤
2. 嘧啶碱:胞嘧啶尿嘧啶胸腺嘧啶
旗开得胜P331 结构式
3. 修饰碱基
植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、核苷
核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷
P332 结构式腺嘌呤核苷胞嘧啶脱氧核苷
DNA 的戊糖是:脱氧核糖
RNA 的戊糖是:核糖
三、核苷酸
核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、构成DNA、RNA的核苷酸
P333表5-3
旗开得胜
2、细胞内游离核苷酸及其衍生物
①核苷5’-多磷酸化合物
ATP、GTP、CTP、ppppA、ppppG
在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸
cAMP(3’,5’-cAMP)cGMP(3’,5’-cGMP)
它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物
ppGpp pppGpp ppApp
④核苷酸衍生物
HSCoA、NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第二节DNA的结构
一级:脱氧核苷酸分子间连接方式及排列顺序。
二级:DNA的两条多聚核苷酸链间通过氢键形成的双螺旋结构。
三级:DNA双链进一步折叠卷曲形成的构象。
一、DNA的一级结构
DNA的一级结构是4种脱氧核苷酸(dAMP、dGMP、dCMP、dTMP)通过3/、5/-磷酸二酯键连接起来的线形多聚体。
3/、5/-磷酸二酯键是DNA、RNA的主链结构。
P334 图5-1。