数值分析期末试卷
数值分析试题及答案汇总
![数值分析试题及答案汇总](https://img.taocdn.com/s3/m/5f88714fa5e9856a5712601a.png)
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
数值分析期末考试题
![数值分析期末考试题](https://img.taocdn.com/s3/m/cd4ff5b318e8b8f67c1cfad6195f312b3069eb73.png)
数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。
2. 多项式插值中,牛顿插值多项式可以通过________法来构建。
3. 数值积分中,高斯求积法是一种________方法。
4. 误差传递的估计通常通过________公式来进行。
5. 非线性方程的求解中,二分法是一种________方法。
三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。
2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。
3. 解释插值和拟合的区别,并举例说明各自的应用场景。
4. 阐述数值积分中梯形法则的原理及其误差估计方法。
5. 讨论非线性方程求解中不动点理论和收敛性的关系。
四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。
数值分析试卷
![数值分析试卷](https://img.taocdn.com/s3/m/1e96dcdba58da0116c1749bf.png)
数值分析期末考试试卷一、填空题:(15分)1、为了使计算球体体积时的相对误差不超过1%,测量半径R 的允许相对误差 为2、设矩阵A=⎪⎪⎭⎫ ⎝⎛3.01.05.06.0,则A 是行范数 ,列范数 ,2范数 , F 范数3、要使积分值dx x ⎰-202)-(sinx πβα最小,则a= , β= 4、若矩阵A 是正交阵,则有cond (A )=5、对于矩阵A=⎪⎪⎪⎭⎫ ⎝⎛111a a a a a a ,若A 为正定矩阵则a的范围是 ,若A 只对J 法收敛,则a的范围是二、选择题:(15分)1、设x>0,x 的相对误差为δ,则lnx 的相对误差为()A.ln δB.δ1 C.δ D.2δ 2、以下哪个公式不需要做变换就可以避免有效数字的损失()A.212-x e B.sinx-siny C.arctanx-arctany D.都要做变换 3、计算过程中取有限位数字进行运算而引起的误差称为()A.模型误差B.截断误差C.舍入误差D.观测误差4、Legendre 多项式前五项根的范围是()A.(-1,1)B.(0,+∞)C.(-∞,0)D.(-∞,+∞)5、三、判断题:(15分)1、复化梯形求积公式和复化Simpson 求积公式都是二阶收敛的 ()2、三点Gauss-Legendre 求积公式具有5次代数精度 ()3、如果矩阵A 的按绝对值最大特征值和最小特征值之比很小,则A 是病态的()4、方程组Ax=b 的SOR 法收敛有20<<ω,则20<<ω时,方程组Ax=b 的SOR 法收敛 ()5、映内性既可保证不动点的存在,也可保证其唯一性 ()6、e=2.71828......,x=e ,则A x =2.7有两位有效数字 ()7、若A n n R ⨯∈矩阵,当B=PA PT 且P 为正交阵,则有F F A B = ()8、若矩阵A 为严格对角占优矩阵,则解方程Ax=b 的J 法和GS 法都收敛 ()9、设P n n R ⨯∈且非奇异,X 为R n 上的一种向量范数,则p X 也是R n 上的一种向量范数。
《数值分析》A卷期末考试试题及参考答案
![《数值分析》A卷期末考试试题及参考答案](https://img.taocdn.com/s3/m/1e589cfceff9aef8951e066c.png)
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
数值分析期末试题及答案
![数值分析期末试题及答案](https://img.taocdn.com/s3/m/ea8f58b29f3143323968011ca300a6c30d22f113.png)
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析期末试题及答案
![数值分析期末试题及答案](https://img.taocdn.com/s3/m/9b949659e97101f69e3143323968011ca200f77e.png)
数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案
![数值分析试卷及答案](https://img.taocdn.com/s3/m/777809d4162ded630b1c59eef8c75fbfc77d94ae.png)
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
《数值分析》2017-2018学年第一学期期末试卷
![《数值分析》2017-2018学年第一学期期末试卷](https://img.taocdn.com/s3/m/b54c4f793d1ec5da50e2524de518964bcf84d224.png)
吉林大学《数值分析》2017-2018学年第一学期期末试卷一、 单项选择题(每小题3分,共15分)1. 以下误差限公式不正确的是( ) A .()()(1212)x x x εεε−=−x B. ()()()1212x x x x εεε+=+C .()()()122112x x x x x x εε=+ε D. ()()22x x x εε=2. 步长为的等距节点的插值型求积公式,当h 2n =时的牛顿-科茨求积公式为( ) A .()()()2bahf x dx f a f b ≈+⎡⎤⎣⎦∫B .()()()432bah a b f x dx f a f f b ⎡+⎛⎞≈++⎜⎟⎢⎥⎝⎠⎣⎦∫⎤ C .()()()32bah a b f x dx f a f f b ⎡+⎛⎞≈++⎜⎟⎢⎥⎝⎠⎣⎦∫⎤ D .()()3442bah b a a b f x dx f a f a f f a ⎡−+⎛⎞⎛⎞⎛≈+++++⎜⎟⎜⎟⎜⎢⎥⎝⎠⎝⎠⎝⎣⎦∫4b a −⎤⎞⎟⎠3. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .=0, B . ()00l x ()110l x =()00l x =0,()111l x = C .=1,()00l x ()111l x = D . ()00l x =1,()111l x =4. 用二分法求方程在区间()0f x =[],a b 上的根,若给定误差限ε,则计算二分次数的公式是( ) n ≥ A .ln()ln 1ln 2b a ε−++ B.ln()ln 1ln 2b a ε−+− C. ln()ln 1ln 2b a ε−−+ D.ln()ln 1ln 2b a ε−−− 5. 若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( )A . B.123123123104025261x x x x x x x x x −+=⎧⎪−+=⎨⎪−+=−⎩123123123315226x x x x x x x x x −+=⎧⎪01−−+=⎨⎪++=−⎩ C. D.12312312322526x x x x x x x x x −+=⎧⎪−−+=⎨⎪++=⎩01012312312310402501x x x x x x x x x −+=⎧⎪−+=⎨⎪−+=−⎩二、 填空题(每小题3分,共15分)6. 数x ∗=2.1972246···的六位有效数字的近似数的绝对误差限是 。
数值分析期末考试题及答案
![数值分析期末考试题及答案](https://img.taocdn.com/s3/m/8d5092ab900ef12d2af90242a8956bec0875a579.png)
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析期末考卷
![数值分析期末考卷](https://img.taocdn.com/s3/m/50306443974bcf84b9d528ea81c758f5f61f2989.png)
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
数值分析期末试题
![数值分析期末试题](https://img.taocdn.com/s3/m/b58d574b1eb91a37f1115cf3.png)
数值分析期末试题一、填空题(20102=⨯分)(1)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=283012251A ,则=∞A ______13_______。
(2)对于方程组⎩⎨⎧=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ⎥⎦⎤⎢⎣⎡05.25.20。
(3)3*x 的相对误差约是*x 的相对误差的31倍。
(4)求方程)(x f x =根的牛顿迭代公式是)('1)(1n n n n n x f x f x x x +--=+。
(5)设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 。
(6)设n n ⨯矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi ni λ≤≤1max 。
(7)已知⎥⎦⎤⎢⎣⎡=1021A ,则条件数=∞)(A Cond 9(8)为了提高数值计算精度,当正数x 充分大时,应将)1l n (2--x x 改写为)1ln(2++-x x 。
(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。
(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3131∑==i i x f y 。
二、(10分)证明:方程组⎪⎩⎪⎨⎧=-+=++=+-12112321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。
证明:Jacobi 迭代法的迭代矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=05.05.01015.05.00J BJ B 的特征多项式为)25.1(5.05.0115.05.0)det(2+=---=-λλλλλλj B IJ B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代法不收敛性。
三、(10分)定义内积⎰=1)()(),(dx x g x f g f试在{}x SpanH ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。
数值分析计算方法期末考试(一) +答案
![数值分析计算方法期末考试(一) +答案](https://img.taocdn.com/s3/m/f57fb3ebeff9aef8951e0630.png)
4. 计算积分 1 x dx , 取 4 位有效数字, 用梯形公式计算求得的值为_______,用辛普森 0.5 公式计算求得的值为_____________.
5. 设 f (x) 可微, 求方程 x f (x) 根的牛顿迭代格式是______________________.
=
2
x
3 k
+1 ,
(k
3xk2 − 3
= 0,
1,
2,) ,
计算得
x0 = 2, x1 = 1.8889, x2 = 1.8795, 由 | x2 − x* |≈ 1.148 ×10−4 < 5 ×10−5 ,
所以 x ≈ 1.8795
(2) 用弦截法:
xk +1
= xk
−
f
(
xk
f )
(xk −f
1 x2 式,并用它分别计算 x 1 处的值.
3 2. 求三个不同的节点 x0 , x1, x2 和常数 c ,使求积公式
1
1 f (x) dx c[ f (x0 ) f (x1) f (x2 ) ]
具有尽可能高的代数精确度.
3. 用最小二乘法求下列数据的线性拟合函数 y ax b
xi -2
Lagrange 插值多项式为
f (−1) = 1 , f (0) = 1, f (1) = 1 . 由 此 确 定 的 二 次
2
2
L2 (x)
=
x(x −1) (−1)(−1 −1)
f
(−1) +
(x + 1)(x −1) (0 + 1)(0 −1)
数值分析报告期末考试复习题及其问题详解
![数值分析报告期末考试复习题及其问题详解](https://img.taocdn.com/s3/m/1a2fb4b2192e45361066f59c.png)
数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
数值分析试题及答案汇总
![数值分析试题及答案汇总](https://img.taocdn.com/s3/m/247741f89ec3d5bbfd0a74b4.png)
数值分析试题一、填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
《数值分析》2019-2020学年第一学期期末试卷
![《数值分析》2019-2020学年第一学期期末试卷](https://img.taocdn.com/s3/m/1f0bd337974bcf84b9d528ea81c758f5f61f2924.png)
吉林大学《数值分析》2019-2020学年第一学期期末试卷一、单项选择题(每小题3分,共15分) 1. 已知近似值1x ,2x ,则()12,x x ()=A. ()()2112x x x x +B. ()()12x x +C. ()()1122x x x x +D. ()()12x x2. 已知求积公式()()211211()(6362)f x dx f Af f ≈++∫,则A =( ) A . 16 B. 13 C. 12 D. 233. 已知,则化为2112A ⎡⎤=⎢⎣⎦⎥A 为对角阵的平面旋转变换角θ=( ) A .6πB.4πC.3πD.2π4. 设求方程()0f x =的根的切线法收敛,则它具有( )敛速。
A . 线性 B. 超越性 C. 平方 D. 三次5. 改进欧拉法的局部截断误差为( )A . B. ()5O h ()4O h C. ()3O h D. ()2O h二、填空题(每小题3分,共15分)1. π的近似值3.1428是准确到 近似值。
2. 满足()a a f x x =,()b b x x =,()c f c f x x =的拉格朗日插值余项为 。
3. 用列主元法解方程组时,已知第2列主元为()142a 则()142a = 。
4.乘幂法师求实方阵 的一种迭代方法。
5. 欧拉法的绝对稳定实区间为 。
三、计算题(每小题12分,共60分) 1. 用已知函数表x 0 1 2y 1 2 5求抛物插值多项式,并求1()2f 的近似值。
2. 用紧凑格式解方程组 123410114130141x x x −⎡⎤⎡⎤⎢⎥⎢⎥−−=⎢⎥⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎤⎥3. 已知方程组123210113110121x x x ⎡⎤⎡⎤⎡⎢⎥⎢⎥⎢=−⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎥⎥⎦) (1) 证明高斯-塞德尔法收敛;(2)写出高斯-塞德尔法迭代公式; (3) 取初始值,求出()(00,0,0TX=()1X4. 用复化辛卜公式计算积分4n =1011dx x +∫,并估计误差。
数值分析期末试题及答案
![数值分析期末试题及答案](https://img.taocdn.com/s3/m/b74d7594a8956bec0875e38e.png)
数值分析期末考试试题一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D . ()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B得 分 评卷人二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案()101x L x -=-()212x L x -=⨯-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
重庆大学《数值分析》期末考试真题及答案讲课讲稿
![重庆大学《数值分析》期末考试真题及答案讲课讲稿](https://img.taocdn.com/s3/m/dcb60d87cc7931b764ce1560.png)
重庆大学《数值分析》期末考试真题及答案一.填空题:1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次.2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;.主元素的绝对值太小会发生 误差增大 .3. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.4. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4 阶格式.5. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有n+1 次代数精度.6. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题: 1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 2) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x3) 此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l 2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f (1.5)的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6 -0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2) 求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:1) 试用一次多项式拟合出经验公式bx a y +=;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之: 0006101811.,.ab =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:1)试用一次多项式拟合出经验公式x ba y +=;bX a y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a 解之: 59953043864.,.ba ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为2.6米,试估计此时出水量?67183864462953059.../.=-=y9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤0.2;(0.6,0.8)1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x10 方程x e x-=1) 证明它在(0,1)区间有且只有一个实根; 2) 证明Λ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。
数值分析期末考试复习题及其答案
![数值分析期末考试复习题及其答案](https://img.taocdn.com/s3/m/7eae2022360cba1aa911dad2.png)
数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛 (8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss —Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f (x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x (x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x (x-1)=442++x x 4分9. 求f (x )=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x , k=2x ,计算得: (m ,m)=dx ⎰-111=0 (m,n )=dx x ⎰-11=1 (m,k)=dx x ⎰-112=0(n,k )=dx x ⎰-113=0。
数值分析试题及答案
![数值分析试题及答案](https://img.taocdn.com/s3/m/7e35268df121dd36a32d8241.png)
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i= (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析2006 — 2007学年第学期考试
课程名称:计算方法
A
卷
考试方式:开卷[] 闭卷[V ] 半开卷[]
IV 类
充要条件是a 满足
二、(18分)已知函数表如下
1•设 f(0) = 0,
f (1) =16 , f( 2) =46,则 f [0,1]= ,f[0,1,2]二
2 •设 AJ
<2
-3
-1
,则X
,A :=
A 1
1 j —
3 •计算积分
xdx ,取4位有效数字。
用梯形公式求得的近似值为
"0.5
(辛普森)公式求得的近似值为
,用 Spsn
4•设f (x )二xe x -3,求方程f (x ) =0近似根的牛顿迭代公式是 ,它的收
敛阶是
5 •要使求积公式 1
1
[f (x)dx 拓一(0) + A , f (x 1)具有2次代数精度,则 捲= _________________ ,
0 4
6 •求解线性方程组
x 1 ax 2 = 4 , 12_3 (其中a 为实数)的高斯一赛德尔迭代格式收敛的
10
11 12 13 In x
2.3026
2.3979
2.4849
2.5649
三、(20分)构造如下插值型求积公式,确定其中的待定系数,使其代数精度尽可能高, 并指出所得公式的代数精度。
2
f (x)dx : A o f (0) A f (1) A2f(2)
o
X
2 4 6 8
y
2 11 28
40
五、(14分)为求方程X ’ -X 2 -1 =0在X o =1.5附近的一个根,将方程改写为下列等价 形式,并建立相应的迭代公式:
试问上述两种迭代公式在 x 0 =1.5附近都收敛吗?为什么?说明理由。
(1)X =1 •丄,迭代公式
X
1
X
k 1
= 1
-
X k
(2) X 2二1 ,迭代公式
X —1
2
(X k );
X k 1
六、(8分)给定线性方程组
■12们
253X2 =| 7
_2-23
一M3.丿
(1)分别写出用Jacobi迭代法和Gauss-Siedel迭代法解此方程组的迭代公式的分量形式;
(2)考查用Jacobi迭代法和Gauss-Siedel迭代法解此方程组的收敛性。