1.2.1空间几何体的三视图
教学设计8:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图
1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图知识一中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面. 2.中心投影与平行投影投影 定义特征 分类 中心投影 光由一点向外散射形成的投影 投影线交于一点平行投影 在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影[化解疑难]平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同. 知识二 三 视 图 [导入新知] 三视图 概念规律正视图 光线从几何体的前面向后面正投影得到的投影图 一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图 光线从几何体的左面向右面正投影得到的投影图 俯视图 光线从几何体的上面向下面正投影得到的投影图[化解疑难]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示. 题型一中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③两条相交直线的平行投影是两条相交直线.其中正确的个数为()A.0B.1C.2D.3【答案】B[类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质:①直线或线段的投影仍是直线或线段;②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如图所示,在正方体ABCD A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.【答案】①③题型二画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()【答案】B题型三由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台【答案】C易错易误辨析画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案]A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()【答案】D当堂检测1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()【答案】A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】D3.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.【答案】24.如图甲所示,在正方体ABCD A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.【答案】(1)(2)(3)5.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.6.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.。
空间几何体的三视图
棱台的三视图
俯
侧
正四棱台
圆台的三视图
俯
侧
圆台
概念
1.2空间几何体的三视图和直观图
投影:光线通过物体,向选定的面投射,并 在该面上得到图形的方法.
中心投影: 投射线交于一点的投影
概念
Y X
平行投影:投射线相互平行的投影 可以分为:
正投影(投影线正对投影面):形状大小不变 斜投影:形状大小可能改变
平行斜投影
平行正投影
应用正投影法,能在投影面上反映物体 某些面的真实形状及大小,且与物体到投 影面的距离无关,因而作图方便,故得到 广泛的应用。
1ห้องสมุดไป่ตู้三视图的形成
V
V正立投影面
H水平投影面 W侧立投影面
W V
V正视图
H俯视图
W侧视图
H
正 视 图
侧视图 俯视图
2、三视图有关概念 “视图”是将物体按正投影法向投影面投射时 所得到的投影图. 光线从几何体的前面向后面正投影,所得的 投影图称为“正视图” ,自左向右投影所得的投 影图称为“侧视图”,自上向下投影所得的投影 图称为“俯视图”. 几何体的正视图、侧视图和俯视图统称为几 何体的三视图。
正方体的三视图
俯
左
长方体的三视图
俯
左
长方体
圆柱的三视图
俯
左
圆柱
圆锥的三视图
俯
左
圆锥
球的三视图
俯
侧
球体
3、三视图的特点
长对正 高平齐
宽相等
4、基本几何体三视图
上一节学习的棱柱、棱锥、棱台以及圆台 的三视图是怎样的?
棱柱的三视图
俯
侧
六棱柱
课时作业19:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图
§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标基础过关1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台解析先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.答案 D2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识,知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形,故选A.答案 A3.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()解析正视图中小长方形在左上方,对应俯视图应该在左侧,排除B,D,侧视图中小长方形在右上方,排除A,故选C.答案 C4.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是________(填序号).解析探照灯、车灯、台灯的光线是由光源发出的光线,是中心投影;太阳、月亮距离地球很远,我们认为是平行光线,因此不是中心投影,故答案为①②⑤. 答案①②⑤5.一几何体的直观图如图所示,下列给出的四个俯视图中正确的是________(填序号).解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此填②.答案②6.根据以下三视图想象物体原形,并画出物体的实物草图.解(1)此几何体上面为圆柱,下面为圆台,实物草图如图①.(2)此几何体上面为圆锥,下面为圆柱,实物草图如图②.能力提升7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.23C.22D.2解析由三视图知可把四棱锥放在一个正方体内部,四棱锥为D-BCC1B1,最长棱为DB1=DC2+BC2+BB21=4+4+4=2 3.故选B.答案 B8.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的射影可能是()A.①②③B.②③C.①②④D.②④解析因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在面ABCD、面BCC1B1、面DCC1D1上的射影.四边形BFD1E在面ABCD和面DCC1D1上的射影相同,如图②所示;四边形BFD1E在该正方体的对角面ABC1D1内,它在面BCC1B1上的射影显然是一条线段,如图③所示.故②③正确.答案 B9.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析依题意得三棱锥P-ABC的正视图与侧视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥P-ABC的正视图与侧视图的面积的比值为1.答案 110.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为________.解析由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.答案2 511.画出下列几何体的三视图.解题图①为正六棱柱,可按棱柱的画法画出,其三视图如图a;题图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状,其三视图如图b.创新突破12.一个物体由几块相同的小正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解(1)该物体一共有两层,从正视图和侧视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成.。
1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
2-2:如图,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平 面截去该正方体的上部分,则剩余几何体的正视图为( )
解析:设过点A,E,C1的截面与棱DD1相交于点F,则F是棱DD1的中点,截去 正方体的上部分,剩余几何体的直观图如图所示,则其正视图为C.故选C.
题型三 由三视图还原几何体 【例3-1】 如图所示为一个简单几何体的三视图,则其对应的实物图是 ()
自我检测(教师备用)
1.已知△ABC,选定的投影面与△ABC所在的平面平行,则经过中心投影后
(投影线与投影面相交)所得的三角形与△ABC( B )
(A)全等
(B)相似
(C)不相似
(D)以上均有可能
2.在三棱锥、正方体、长方体、圆柱、圆锥、圆台、球中,正视图、俯视
图、侧视图都相同的几何体有( B )
3-3:某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
(A)1
(B) 2
(C) 3
(D)2
解析:该几何体是底面为正方形,一侧棱垂直于底面的四棱锥,最长棱的 棱长为 12 12 12 = 3 ,故选C.
点击进入 课时作业
解析:根据三种视图的对角线的位置,可以判断A是正确的.故选A.
变式探究:本例中三视图对应的几何体是一个什么样的组合体?
解:因为实物图为A,所以该几何体是由一个直三棱柱和一个四棱锥组成的.
【3-2】 某多面体的三视图如图所示,其中正视图和侧视图都由正方形 和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该 多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )
(A)10 (B)12 (C)14 (D)16
解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形 的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰 长为 2,直三棱柱的高为 2,三棱锥的高为 2,易知该多面体有 2 个面是梯形,这些
空间几何体的三视图
圆柱 圆台 圆柱
热水瓶
由三视图想象实物模型 下面是一个组合图形的三视图,请描述物体形状. 下面是一个组合图形的三视图,请描述物体形状.
手电筒
由三视图想象实物模型 下面是一个组合图形的三视图,请描述物体形状. 下面是一个组合图形的三视图,请描述物体形状.
螺丝钉
甲、乙、丙、丁四人分别面对面坐在一个四边形 桌子旁边,桌上一张纸上写着数字“ , 桌子旁边,桌上一张纸上写着数字“9”,甲说他 看到的是“ ,乙说他看到的是“ 看到的是“6”,乙说他看到的是“ ”,丙说他 看到的是“ 丁说他看到的是“ , 看到的是“ ”,丁说他看到的是“9”,则下 列说法正确的是( ) 列说法正确的是 B A.甲在丁的对面,乙在甲的左边,丙在丁的右边 甲在丁的对面, 甲在丁的对面 乙在甲的左边, B.甲在丁的对面 乙在甲的右边, B.甲在丁的对面,乙在甲的右边,丙在丁的右边 甲在丁的对面, C.甲在乙的对面,甲的右边是丙,左边是丁 甲在乙的对面, 甲在乙的对面 甲的右边是丙, D.丙在乙的对面,丙的左边是甲,右边是乙 丙在乙的对面, 丙在乙的对面 丙的左边是甲,
三棱锥
一个几何体的三视图如下, 一个几何体的三视图如下,则这个几 何体是______ 何体是六棱锥
正视图
主视图
左视图
俯视图
俯视图
画法说明
1、同一张图样中,同类图线的宽度应基本一致。 同一张图样中,同类图线的宽度应基本一致。 2、虚线、点划线相交时,应使两小段相交。 虚线、点划线相交时,应使两小段相交。
主视图
由三视图想象实物模型 下面是一个组合图形的三视图,请描述物体形状. 下面是一个组合图形的三视图,请描述物体形状.
笔筒
由三视图想象实物模型 下面是一个组合图形的三视图,请描述物体形状. 下面是一个组合图形的三视图,请描述物体形状.
1.2.1中心投影和平行投影1.2.2空间几何体三视图
正俯长 正侧高
侧俯宽
三视图的画法规则:
(1)正俯长:俯视图与正视图的长相等 (2)正侧高:正视图和侧视图的高保持平齐 (3)侧俯宽:侧视图与俯视图的宽相等 (4)看不到的棱用虚线表示
球的三视图
问题探讨
圆柱的三视图
问题探讨
圆锥的三视图
问题探讨
例题讲解
例1:画出下列几何体的三视图:
例题讲解
例题讲解
2 1 2
1
书第14页练习3:
引申:该建筑共有
个房间.
小结:
投影:中心投影和平行投影 物体的三视图:
谢谢大家
合作 请同学们观察下列的投影 的现象 , 它们的投影过程 探究:
有何不同?
S
投 射 方 向
绘图05.gsp
概念 中心投影:光由一点向外散射形
成的投影,叫做中心投影 中心投影投射线交于一点
Y X ¹ âÔ´
概念
Y X
平行投影:在一束平行光线照射下 形成的投影,叫做平行投影 正投影、斜投影:在平行投影中, 投影线正对这投影面时,叫正投影, 否则叫做斜投影。
1.2.2空间几何体的三视图
三视图的形成
V正视图
W侧视图
H俯视图
正视图:光线从几何体的前面向后面正 投影,得到的投影图。
侧视图:光线从几何体的左面向右面正投 影,得到的投影图。
俯视图:光线从几何体的上面向下面正投 影,得到的投影图。 几何体的正视图、侧视图、俯视图统称 几何体的三视图
三视图的特点
中心投影和平行投影
本课目标:了解中心投影和平行投影的原理; 掌握简单几何体的三视图,体会数学与生活的 紧密联系,培养空间想象能力. 重点难点 :画出简单几何体和组合体的三视图 和根据三视图找出几何体的性质.
1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
请同学们看一下下面几个常见的自然现象,考虑它们是怎样得 到的?
这种现象我们把它称为投影.
探究点1
中心投影与平行投影
由于光的照射在不透明物体后面的屏幕上可以留下这 个物体的影子,这种现象叫做投影.其中,光线叫做投影 线,留下物体影子的屏幕叫做投影面.
投射线可自一点发出,也可是一束与投影面成一定角度
侧视图
俯视图
Байду номын сангаас
根据长方体的模型,请你画出它的三视图,并观察三 种图形之间有什么关系?
高平齐
正视图 正视图 侧 视 图
侧视图
高度
长对正
长度
宽相等
宽度
俯视图
俯视图
一个几何体的正视图和侧视图的高度一样,俯视图和 正视图的长度一样,侧视图和俯视图的宽度一样.
正侧等高,俯正等 长,侧俯等宽。
柱、锥、台、球的三视图
棱柱的三视图
俯
侧
六棱柱
棱锥的三视图
俯
正四棱锥
棱台的三视图
俯
侧
正四棱台
圆台的三视图
俯
侧
圆台
探究点3
简单组合体的三视图
画出右图所示物体的俯视图.
该物体可以看作是由两个圆台组合
而成的,俯视图有不可见边界轮廓 线(用虚线表示).
遮挡住看不见的线用虚线表示
例1.画出右图所示物体的正视图.
解:该物体可以看作是从长方
图形.
但只有一个平面图形难以把握几何体的全貌,因此我们 需要从多个角度进行投影.
回忆初中已学过的正方体的三视图:
俯
侧
三视图的概念
几何体的正视图、侧视图、俯视图统称为几何体的三视图.
07.11.16高一数学《1.2.1空间几何体的三视图(一)》
课堂小结
三视图 正视图——从正面看到的图 侧视图——从左面看到的图 俯视图——从上面看到的图 画物体的三视图时,要符合如下原则: 位置:正视图 侧视图 俯视图 大小:
课堂小结
三视图 正视图——从正面看到的图 侧视图——从左面看到的图 俯视图——从上面看到的图 画物体的三视图时,要符合如下原则: 位置:正视图 侧视图 俯视图 大小:长对正,高平齐,宽相等.
三视图的作图步骤
俯视图方向
侧视图方向
正视图方向
正视图
侧视图 俯视图
三视图的作图步骤 1. 确定正视图方向;
俯视图方向
侧视图方向
正视图方向
正视图
侧视图 俯视图
三视图的作图步骤 俯视图方向 1. 确定正视图方向; 侧视图方向 2. 布置视图;
正视图方向
正视图
侧视图 俯视图
三视图的作图步骤 俯视图方向 1. 确定正视图方向; 侧视图方向 2. 布置视图; 3. 先画出能反映物体 真实形状的一个视图 (一般为正视图); 正视图方向
下面各图中物体形状分别可以看成什么样的 几何体?
球 圆柱 圆锥 从正面、侧面、上面看这些几何体,它们 的形状各是什么样的? 正面看: 长方形 等腰三角形 圆 侧面看: 长方形 等腰三角形 圆 上面看:
下面各图中物体形状分别可以看成什么样的 几何体?
球 圆柱 圆锥 从正面、侧面、上面看这些几何体,它们 的形状各是什么样的? 正面看: 长方形 等腰三角形 圆 侧面看: 长方形 等腰三角
简单组合体的三视图
正视图 侧视图
简单组合体的三视图
正视图 侧视图
俯视图
简单组合体的三视图
正视图 侧视图
俯视图
注意:不可见的轮廓线,用虚线画出.
高中数学 必修二 同步练习 专题1.2.1中心投影与平行投影、空间几何体的三视图(解析版)
一、选择题1.以下关于投影的叙述不正确的是A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直【答案】C【解析】平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.下列哪个实例不是中心投影A.工程图纸B.小孔成像C.相片D.人的视觉【答案】A3.一个几何体的三视图的形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱锥C.正方体D.圆柱【答案】D【解析】球的三视图均为圆,且大小均相等;对于三棱锥O−ABC,当OA,OB,OC两两垂直且OA=OB=OC 时,其三视图的形状可以都相同,大小均相等;正方体的三视图是三个大小均相等的正方形;圆柱的三视图中必有一个为圆,其他两个为矩形,故一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是圆柱,故选D.4.以下关于几何体的三视图的论述中,正确的是A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆 【答案】A【解析】球的三视图总是三个全等的圆.5.小周过生日,公司为她预订的生日蛋糕(示意图)如下图所示,则它的正视图应该是【答案】B6.如图,在正方体1111ABCD A B C D -中,P 是线段CD 的中点,则三棱锥11P A B A -的侧视图为A .B .C .D .【答案】D【解析】由直观图可知,三棱锥11P A B A -的侧视图中线段11A B 的投影是线段11C D ,线段1B A 的投影是线段1C D ,是实线;而线段1A P 的投影是线段1D P ,是虚线. 故选D.7.如图是一个几何体的三视图,则此几何体的直观图是A .B .C .D .【答案】D【解析】由已知可得原几何体是一个圆锥和一个圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:.故选D.8.若沿一个正方体三个面的对角线截得的几何体如图所示,则下列说法正确的是A .正视图与侧视图一样B .正视图与俯视图一样C .侧视图与俯视图一样D .正视图、侧视图、俯视图都不一样【答案】C9.如图,在正方体1111ABCD A B C D 中, M N 、分别是1BB 、BC 的中点,则图中阴影部分在平面11ADD A 上的投影为图中的A.B.C.D.【答案】A10.一个几何体的三视图如下图所示,这个几何体可能是一个A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥【答案】C【解析】根据三视图可知,该几何体是一个倒放的三棱柱.11.如图是一个几何体的三视图,则该几何体的所有棱中,最大值是A.2B.3C.32D.10【答案】C12.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的图象可能是【答案】B【解析】由容器的三视图可知容器是由圆柱和圆台构成.由于水是匀速注入的,故水面的高度随着时间t的变化先是均匀增加,然后逐渐加快,故选B.二、填空题13.夜晚,人在路灯下的影子是________投影,人在月光下的影子是________投影.【答案】中心平行【解析】路灯的光是从一点发出的,故影子是中心投影;而月光可以近似看作平行的,月光下的影子是平行投影.14.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【答案】①②③⑤15.一物体及其正视图如图:则它的侧视图与俯视图分别是图形中的________.【答案】③②【解析】侧视图是矩形中间有条实线,应选③;俯视图为矩形中间两条实线,且为上下方向,应选②. 16.如图,直三棱柱ABC-A1B1C1的侧棱长为2,底面是边长为2的正三角形,正视图是边长为2的正方形,则其侧视图的面积为________.【答案】2 317.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(写出所有可能的序号).【答案】①②③【解析】要画出四边形D′OEF在该正方体的各个面上的投影,只需画出四个顶点D′,O,E,F在每个面上的投影,再顺次连接就可得到在该面上的投影.空间四边形D′OEF在正方体的面DCC′D′上的正投影是①;在面BCC′B′上的正投影是②;在面ABCD上的正投影是③.故填①②③.三、解答题18.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.【答案】(1)是棱柱;(2)见解析.【解析】(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如下图:19.用数个小正方体组成一个几何体,使它的正视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置的小正方体的个数.(1)你能确定哪些字母表示的数?(2)该几何体可能有多少种不同的形状?【答案】见解析.(2)当d,e,f中有一个是2时,有3种不同的形状;当d,e,f中有两个是2时,有3种不同的形状;当d,e,f都是2时,有1种形状. 所以该几何体可能有7种不同的形状.。
学案10:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图
1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图1.投影的概念及分类思考:画三视图时一定要求光线与投射面垂直吗?初试身手1.哪个实例不是中心投影()A.工程图纸B.小孔成像C.相片D.人的视觉2.如图,小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()A B C D3.有一个几何体的三视图如图所示,这个几何体应是一个________.4.水平放置的下列几何体,正视图是长方形的是________.(填序号)①②③④合作探究A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段的中点的平行投影仍是这条线段投影的中点(2)如图所示,在正方体ABCDA1B1C1D1中,M、N分别是BB1、BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()A B C D【规律方法】判断几何体投影形状的方法及画投影的方法:(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得出此图形在该平面上的投影.跟踪训练1.已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC()A.全等B.相似C.不相似D.以上都不对()(2)画出如图所示几何体的三视图:①②【规律方法】1.画组合体三视图的“四个步骤”(1)析:分析组合体的组成形式;(2)分:把组合体分解成简单几何体;(3)画:画分解后的简单几何体的三视图;(4)拼:将各个三视图拼合成组合体的三视图.2.画三视图时要注意的“两个问题”(1)务必做到“正侧一样高,正俯一样长,俯侧一样宽”.(2)把可见轮廓线画成实线,不可见轮廓线要画成虚线,重合的线只画一条.跟踪训练2.螺栓是棱柱和圆柱构成的组合体,如图,画出它的三视图.1.如何由三视图确定几何体的长、宽、高?2.如图所示的三视图,其几何体是什么?其正视图、侧视图中的三角形的腰是几何体的侧棱长吗?例3(1)若一个几何体的正视图和侧视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是()A.圆柱B.三棱柱C.圆锥D.球体(2)若某几何体的三视图如图所示,则这个几何体的直观图可以是()A B C D【规律方法】由三视图确定几何体一般分两步:第一步:通过正视图和侧视图确定是柱体、锥体还是台体.若正视图和侧视图为矩形,则原几何体为柱体;若正视图和侧视图为等腰三角形,则原几何体为锥体;若正视图和侧视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.跟踪训练3.根据下列图中所给出的几何体的三视图,试画出它们的形状.①②课堂小结1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.画组合体的三视图的步骤特别提醒:画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.当堂达标1.中心投影的投影线()A.相互平行B.交于一点C.是异面直线D.在同一平面内2.如图网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱3.一个正三棱柱(俯视图为正三角形)的三视图如图所示,则这个三棱柱的高和底面边长分别为________.4.画出如图所示的几何体的三视图.参考答案新知初探1.影子投影线投影面一点一点平行平行正对2.思考:[提示]正确.由画三视图的规则要求可知正确.初试身手1.【答案】A【解析】根据中心投影的概念可知A不是中心投影.2.【答案】A【解析】矩形的投影可以是线段,矩形,平行四边形,但不会是梯形.3.【答案】棱台【解析】从俯视图来看,上、下底面都是正方形,但大小不一样,可以判断是棱台.4.【答案】③④【解析】①③④的正视图均是长方形,②是等腰三角形.合作探究【解析】矩形的平行投影可能是线段、平行四边形或矩形,梯形的平行投影可能是线段或梯形,两条相交直线的投影还是相交直线.因此A、B、C均错,故D正确.(2)【答案】A【解析】由正投影的定义知,点M、N在平面ADD1A1上的正投影分别是AA1、DA的中点,D在平面ADD1A1上的投影还是D,因此A正确.跟踪训练1.【答案】B【解析】本题主要考查对中心投影的理解.根据题意画出图形,如图所示.由图易得OAOA′=ABA′B′=OBOB′=BCB′C′=OCOC′=ACA′C′,则△ABC∽△A′B′C′.【解析】依题意,侧视图中棱的方向是从左上角到右下角.故选B.(2) [解]①此几何体的三视图如图③所示;②此几何体的三视图如图④所示.①④跟踪训练2.[解]它的三视图如图所示.类型3由三视图还原几何体1.[提示]由正视图可确定几何体的长、高;由俯视图可确定几何体的宽.2.[提示]由三视图可知,该几何体为正四棱锥,如图所示.正视图、侧视图中三角形的腰长不是四棱柱的侧棱长,应为四棱椎的侧面高线.【例3】【答案】(1) C【解析】正视图和侧视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.(2)【答案】D【解析】对于选项A,B,正视图均不符合要求;对于选项C,俯视图显然不符合要求.只有D符合要求.跟踪训练3.[解]由三视图的特征,结合柱、锥、台、球及简单组合体的三视图逆推.图①对应的几何体是一个正六棱锥,图②对应的几何体是一个三棱柱,则所对应的空间几何体的图形分别如下:当堂达标1.【答案】B【解析】由中心投影的定义知,中心投影的投影线交于一点,故选B.2.【答案】B【解析】由题意知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱.3.【答案】2,4【解析】由正三棱柱三视图中的数据,知三棱柱的高为2,底面边长为23×23=4.4.[解]该几何体的三视图如图所示.。
课时作业15:1.2.1 中心投影与平行投影~1.2.2 空间几何体的三视图
§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台解析先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.答案 D2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识,知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形,故选A.答案 A3.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()解析正视图中小长方形在左上方,对应俯视图应该在左侧,排除B,D,侧视图中小长方形在右上方,排除A,故选C.答案 C4.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是________(填序号).解析探照灯、车灯、台灯的光线是由光源发出的光线,是中心投影;太阳、月亮距离地球很远,我们认为是平行光线,因此不是中心投影,故答案为①②⑤. 答案①②⑤5.一几何体的直观图如图所示,下列给出的四个俯视图中正确的是________(填序号).解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此填②.答案②6.根据以下三视图想象物体原形,并画出物体的实物草图.解(1)此几何体上面为圆柱,下面为圆台,实物草图如图①.(2)此几何体上面为圆锥,下面为圆柱,实物草图如图②.能力提升7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.23C.22D.2解析由三视图知可把四棱锥放在一个正方体内部,四棱锥为D-BCC1B1,最长棱为DB1=DC2+BC2+BB21=4+4+4=2 3.故选B.答案 B8.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的射影可能是()A.①②③B.②③C.①②④D.②④解析因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在面ABCD、面BCC1B1、面DCC1D1上的射影.四边形BFD1E在面ABCD和面DCC1D1上的射影相同,如图②所示;四边形BFD1E在该正方体的对角面ABC1D1内,它在面BCC1B1上的射影显然是一条线段,如图③所示.故②③正确.答案 B9.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析依题意得三棱锥P-ABC的正视图与侧视图分别是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都等于正方体的棱长,因此三棱锥P-ABC的正视图与侧视图的面积的比值为1.答案 110.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于________.解析由图可得该几何体为三棱柱,因为正视图、侧视图、俯视图的内切圆最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图中直角三角形的内切圆的半径r.由题意,得8-r+6-r=82+62.解得r=2.答案 211.画出下列几何体的三视图.解题图①为正六棱柱,可按棱柱的画法画出,其三视图如图a;题图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状,其三视图如图b.12.(选做题)一个物体由几块相同的小正方体组成,其三视图如图所示,试据图回答下列问题:(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解(1)该物体一共有两层,从正视图和侧视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个.该物体一共由7个小正方体构成.。
1.2.1与1.2.2中心投影与平行投影和空间几何体的三视图
正视图
侧视图
俯视图
课堂小结
空间几何体的三视图:正视图、侧视图、 1.空间几何体的三视图:正视图、侧视图、 俯视图; 俯视图; 三视图的特点: 2.三视图的特点:一个几何体的侧视图和正 视图高度一样,俯视图和正视图长度一样, 视图高度一样,俯视图和正视图长度一样, 侧视图和俯视图宽度一样; 侧视图和俯视图宽度一样; 3.三视图的应用及与原实物图的相互转化.
探析新知长方体的三视图 都是长方形. 都是长方形.正视图 和侧视图、 和侧视图、侧视图和 俯视图、 俯视图、俯视图和正 视图都各有一条边长 相等. 相等.
探析新知
画三视图的几点说明
1、首先选择正视的方向,然后以正视的方向为参 、首先选择正视的方向, 确定俯视和侧视的方向. 考,确定俯视和侧视的方向 2、一般地,一个几何体的侧视图和正视图的高度 、一般地, 一样,俯视图与正视图长度一样, 一样,俯视图与正视图长度一样,侧视图与俯视图 的宽度一样. 的宽度一样 3、看得见的轮廓线和棱用实线表示, 、看得见的轮廓线和棱用实线表示, 不能看见的轮廓线和棱用虚线表示. 不能看见的轮廓线和棱用虚线表示
正视图
侧视图
俯视图
探析新知 三、简单组合体的三视图
对于简单几何体的组合体,一定要认真 对于简单几何体的组合体, 观察,先认识它的基本结构, 观察,先认识它的基本结构,然后再画它的 三视图 想一想:左图所示的简单组 想一想: 合体的基本结构是什么? 合体的基本结构是什么?如 何画它的三视图呢? 何画它的三视图呢?
探析新知
这个组合体从上往下分别 是圆锥、圆柱、圆台. 是圆锥、圆柱、圆台.
正视图
侧视图
俯视图
探析新知
例5 画出下面几何体的三视图. 出下面几何体的三视图.
1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
方体求解.
新知探究 题型探究 感悟提升
解析
由正视图和俯视图可知几何体
是正方体切割后的一部分(四棱锥 C1ABCD),还原在正方体中,如图所 示.
多面体最长的一条棱即为正方体的体对角线,由正方体棱 长 AB=2 知最长棱的长为 2 3.
答案 2 3
[规律方法]
(1)由三视图想象出几何体是关键.(2)由几何体
新知探究
题型探究
感悟提升
4.如图是一个几何体的三视图,则可以判断此几何体是
________.
解析
由三视图可知,此几何体为一个四棱锥.
答案
四棱锥
新知探究 题型探究 感悟提升
5.说出下面的三视图表示的几何体的结构特征.
解
几何体为三棱台,结构特征如下图:
新知探究
题型探究
感悟提升
课堂小结
(1)画三视图时要注意正侧等高,正俯等长,侧俯等宽.画
答案
2
6
新知探究
题型探究
感悟提升
方法技巧
三视图间的推断问题
利用正、俯视图长相等,正、侧视图宽相等,俯、侧视图高相 等进行推断三视图之间的推断,是高考对视图考查的新热点. 的俯视图不可能是 ( ).
【示例】 某几何体的正视图和侧视图均如图所示,则该几何体
新知探究
题型探究
感悟提升
[思路分析] 解析
由正视图、侧视图相同按其上、下部分分别考
观察,先认识它的基本结构,然后再画它的三视图. (2)画简单组合体的三视图应注意两个问题:首先,确定正 视、侧视、俯视的方向,同一物体放置的位置不同,所画的 三视图就可能不同;其次,简单组合体是由哪几个基本几何
体构成的,并注意它们的构成方式 ,特别是它们的交线位
必修2课件:1.2.1 空间几何体的三视图
三视图的形成
V
三视图的形成
W V
V正视图 H俯视图 W侧视图
H
三视图的形成
正 视 图
侧视图 俯视图
三视图的特点
长对正 高平齐 宽相等
三视图的对应规律
作三视图的原则: “长对正、高平齐、宽相等” 它是指:正视图和俯视图一样长:正视图和侧 视图一样高:俯视图和侧视图一样宽
对于基本几何体棱柱、棱锥、 对于基本几何体棱柱、棱锥、棱台以及圆 台的三视图是怎样的? 台的三视图是怎样的?
棱柱的三视图
俯
左
六棱柱
棱锥的三视图
俯
左
主
正三棱锥
棱锥的三视图
俯
左
正四棱锥
棱台的三视图
俯
左
正四棱台
圆台的三视图
俯
左
圆台
圆台的三视图
俯
左
圆台
由三视图想象几何体 下面是一些立体图形的三视图, 下面是一些立体图形的三视图,请根据视 图说出立体图形的名称: 图说出立体图形的名称:
1.2.1 空间几何体的三视图
-基本几何体的三视图
平行投影 斜投影
中心投影
A
B C
D
正投影 长方体投影图
中心投影 投影线交于一点 投影 平行投影 投影线平行 正视图 侧视图 俯视图 斜投影 正投影
}
三视图
视图 直观图
斜二测画法
三视图有关概念 “视图”是将物体按正投影法向投影面投射 视图” 视图 时所得到的投影图. 时所得到的投影图. 光线自物体的前面向后正投影所得的投影 图称为“正视图” 图称为“正视图” ,自左向右正投影所得的投 影图称为“侧视图” 影图称为“侧视图”,自上向下正投影所得的 投影图称为“俯视图” 投影图称为“俯视图”. 用这三种视图即可刻划空间物体的几何结 这种图称之为“三视图” 构,这种图称之为“三视图”.即向三个互相 垂直的投影面分别正投影, 垂直的投影面分别正投影,所得到的三个图形 三视图. 摊平在一个平面上,则就是三视图 摊平在一个平面上,则就是三视图.
1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图
2.根据图中的物体的三视图, 画出物体的形状.
【解题探究】1.典例1中如何排除选项中的几何体?
提示:可以根据三视图中的对角线进行排除.
2.典例2中如何由三视图确定几何体?
提示:通过正视图和侧视图判断是柱体、锥体还是台体 ,
通过俯视图判断是多面体还是旋转体.
【解析】1.选A.根据俯视图先排除B, C两个选项, 根
3.一个与投影面不平行的平面图形, 在正投影和斜投 影下的形状、大小发生变化吗?
提示:发生变化.与投影面不平行的平面图形, 在正投
影和斜投影下形状、大小会发生变化.
【归纳总结】 1.中心投影和平行投影的区别和用途
(1)中心投影形成的直观图能非常逼真地反映原来的物
体, 主要用于绘画领域. (2)平行投影形成的直观图能比较精确地反映原来物体 的形状和特征, 因此更多应用于工程制图和技术图样.
(
)
A.L, K C.K
B.C D.L, K, C
2.下列说法: ①平行投影的投影线互相平行, 中心投影的投影线相
交于一点;
②空间图形经过中心投影后, 直线变成直线, 但平行 线可能变成了相交的直线;
③几何体在平行投影与中心投影下有不同的表现形式.
其中正确说法的个数为
A.0 B.1
(
C.2
)
D.3
【解析】图中几何体实际为组合体, 下部是三个正方
体, 上部是一个圆柱, 按正方体和圆柱的三视图画法
画出该组合体的三视图, 如图所示.
【方法技巧】画组合体的三视图的步骤
特别提醒:画几何体的三视图时, 能看见的轮廓线和棱
用实线表示, 看不见的轮廓线和棱用虚线表示.
【变式训练】画出如图所示几何体的三视图.
人教A版数学必修2课件:1.2.1空间几何体的三视图
俯视图
注意:不可见的轮廓线,用虚线画出.
简单组合体的三视图
正视图 侧视图
俯视图
简单组合体的三视图 正视图
侧视图
俯视图
思考
下图中的三视图表示下面哪个几何体?
正视图
侧视图
A
B
俯视图
C
D
还原成实物图:
刚才所作的三视图, 你能将其还原成实物模型吗?
例1:由5个小立方块搭成的几何体,其三 视图分别如下,请画出这个几何体. (正视图) (俯视图) (侧视图)
2.什么是空间图形的三视图呢?
正视图
c(高) b(宽) a(长)
侧 视 图
长 方 体 的 三 视 图
俯视图
我们从不同的方向观察同一物体时,
可能看到不同的图形。 从正面看到的图叫做正视图,
三 视 图
从左面看到的图叫做侧视图,
从上面看到的图叫做俯视图。
那怎样画一个空间几何体的三视图呢? 请同学们看下图的三视图.
能看见的轮廓和棱用实线表示, 不能看见的轮廓和棱用虚线表示。
(2)长对正, 高平齐, 宽相等。
第二课时
除了会画如正方体、长方体、圆柱、圆锥、 球等基本几何体的三视图外,我们还将学 习画出由一些简单几何体组成的组合体的 三视图。
请同学们试试画出立白 洗洁精塑料瓶的三视图
正视图
侧视图
俯视图
简单组合体的三视图 正视图 侧视图
从上面看到的图 正视图 从左边看到的图 侧视图 俯视图 从正面看到的图
3.三视图的作图步骤:
(1)确定三视图方向; (2)布置视图位置: 正视图,侧视图,俯视图
俯视图方向
侧视图方向
要求:俯视图安排在正视图的 正视图方向 正下方,侧视图安排在正视图 的正右方。 正视图 侧视图 俯视图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 2.1空间几何体的三视图【教学目标】1、理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2、能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.【教学重难点】教学重点:画出简单组合体的三视图教学难点:识别三视图所表示的空间几何体【教学过程】(一)情景导入“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)展示目标这也是我们今天要学习的主要内容:1理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2.能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.(三)检查预习1.空间几何体的三视图是指正视图、侧视图、俯视图。
2.三视图的排列规则是俯视图放在正视图的下方,长度与正视图一样,侧视图放在正视图右边,宽度与俯视图的宽度一样。
3.三视图的正视图、俯视图、侧视图分别是从前、右、上观察同一个几何体,画出的空间几何体的图形。
4.三视图对于认识空间几何体有何作用?你有何体会?略(四)合作探究1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
(五)交流展示略(六)精讲精练例1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的 。
分析:在面ABCD 和面1111D C B A 上的投影是图乙(1);在面11A ADD 和面11B BCC 上的投影是图乙(2);在面11A ABB 和面11D DCC 上的投影是图乙(3)。
答案:(1)(2)(3)点评1:本题主要考查平行投影和空间想象能力。
画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影。
如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间相象来完成。
变式训练:如图(1)所示,E 、F 分别为正方体面A D AD ''、面B C BC ''的中心,则四边形E D BF '在该正方体的各个面上的投影可能是图(2)的 。
分析:四边形E D BF '在正方体D C B A ABCD ''''-的面A D AD ''、面B C BC ''上的投影是C ;在面D C DC ''上的投影是B ;同理,在面A B AB ''、面ABCD 、面D C B A ''''上的投影也全是B 。
答案:B C例2.右图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状。
分析:由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体是上面一个圆柱,下面是一个四棱柱拼接成的组合体。
答案:上面一个圆柱,下面是一个四棱柱拼接成的组合体,该几何体的形状如图所示。
变式训练2:某几何体的三视图如图所示,那么这个几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台 分析:由所给三视图可以判定对应的几何体是四棱锥。
答案:B(七)反馈测评1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线2.如图所示,空心圆柱体的正视图是( )3.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④4.三棱柱111C B A ABC ,如图所示,以11B BCC 的前面为正前方画出的三视图正确的是( )5.如图所示是一个几何体,则其几何体俯视图是( )6.下列物体的正视图和俯视图中有错误的一项是( )【板书设计】一、指数函数1.定义2. 图像3. 性质二、例题例1变式1例2变式2【作业布置】导学案课后练习与提高1.2.1空间几何体的三视图课前预习学案一、预习目标预习空间几何体的三视图, 识别并说出它所表示的空间图形。
二、预习内容1.空间几何体的三视图是指 、 、 。
2.三视图的排列规则是 放在正视图的下方,长度与正视图一样, 放在正视图右边,宽度与俯视图的宽度一样。
3.三视图的正视图、俯视图、侧视图分别是从 、 、 观察同一个几何体,画出的空间几何体的图形。
4.三视图对于认识空间几何体有何作用?你有何体会?三、提出疑惑1.下列命题正确的是( )A .一个点在一个平面内的投影仍是一个点B .一条线段在一个平面内的投影仍是线段C .一条直线在一个平面内的投影仍是一条直线D .一个三角形在一个平面内的投影仍是三角形2.一个圆柱的三视图中,一定没有的图形是( )A .正方形B .长方形C .三角形D .圆 3.一个正方形的平行投影的形状可能是 。
4.一个几何体的三视图如下图。
则这个几何体的名称是 。
课内探究学案一、学习目标1.了解平行投影与中心投影的概念和简单性质。
2 理解三视图的含义,能画出简单几何体的三视图,掌握画法规则。
3.能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形。
学习重点:画出简单组合体的三视图学习难点:识别三视图所表示的空间几何体二、学习过程(一) 画出简单几何体的三视图探究一:怎样画出简单几何体的三视图在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(1)讲台上放球、长方体实物,画出它们的三视图(2)画出球放在长方体上的三视图(3)画出矿泉水瓶(实物放在桌面上)的三视图(4)画完后,可把自己的作品展示并与同学交流,总结自己的作图心得总结:作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
探究二:识别三视图所表示的空间几何体投影出示图片(课本P10,图1.2-3)请思考图中的三视图表示的几何体是什么?(二)精讲点拨、有效训练例1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的 。
点评:本题主要考查平行投影和空间想象能力。
画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影。
如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间相象来完成。
变式训练1:如图(1)所示,E 、F 分别为正方体面A D AD ''、面B C BC ''的中心,则四边形E D BF '在该正方体的各个面上的投影可能是图(2)的。
例2.右图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状。
变式训练2:某几何体的三视图如图所示,那么这个几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台 三、反思总结作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
四、当堂检测1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线2.如图所示,空心圆柱体的正视图是( )3.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④4.三棱柱111C B A ABC ,如图所示,以11B BCC 的前面为正前方画出的三视图正确的是( )5.如图所示是一个几何体,则其几何体俯视图是( )6.下列物体的正视图和俯视图中有错误的一项是( )课后练习与提高1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .53.下列各图,是正六棱柱的三视图,其中画法正确的是( )4.如图,图(1)、(2)、(3)是图(4)所表示的几何体的三视图,其中图(1)是 ,图(2)是 ,图(3)是 。
(说出视图名称)5.如图,E 、F 分别是正方体1AC 的面11A ADD 和面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的正投影(投射线垂直于投影面的投影)可能是图中 (把所有可能图形的序号都填上)。
6.根据图中的三视图想象物体原形,并分别画出物体的实物图。
参考答案: 1.D 2.C 3.B 4.正视图侧视图俯视图 5.(2)、(3)6.略。