抛物线与三角形的面积
探究抛物线中三角形面积求法
★探究抛物线中三角形面积求法OK 1.欢迎指导2、3、4、5、6、7、8、9、10.感谢各位专家和老师11.谢谢指导 12、冲向中考:答案(1)y=-21x 2+25x-2 ;(2)设D(m ,-0.5m 2+2.5m-2),作DH ⊥OX 轴于点H 则①当0≤m ≤1时S △DCA =-m 2+4m(=S △OAC -S △DHC -S 梯形OADH );②当1≤m ≤4时S △DCA =-m 2+4m(=S △OAC -S △DHC +S 梯形OADH );当m=2时S △DCA 最大=4;此时D(2,1) 13、解:由y=2x 及y=x 2-2x+3解得x=1,y=2及x=3,y=6.∴A(1,2),B(3,6)又C(0,3),分别作AH ⊥OX,BM ⊥OX 于H,M 点,S △ABC ==S 梯形OCBM - S 梯形OCAH -S 梯形HABM =227-25-8=314、15、16、Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上。
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。
(2)有一点D坐标为(2,0),点P(m,n)是该抛物线上的一动点(其中m>0,n>0),连接DP交BC与点E。
①当△BDE是等腰三角形时,求此时E点坐标。
(要过程)②又连接CD、CP,△CDP是否有最大面积?若有,求出△CDP的最大面积和此时P点的坐标;若没有,请说明理由;解(1)∵△ABC为Rt△∴∠1+∠2=90°又由ox⊥oy∴∠1+∠3=90°∴∠1=∠3在△AOC △ACB中∠1=∠1,∠2=∠3∴△AOC∽△ACB∴OA:AC=OC:BC=AC:AB∴AC2=5OA又在Rt△AOC中OA2+OC2=AC2∴OA2+4=5OA∴OA2-5OA +4=0∴OA=4或OA=1∵OA<OB∴A(-1,0),B(4,0) ∴OA=1,OB=4。
双曲线抛物线焦点三角形面积公式
双曲线抛物线焦点三角形面积公式1. 概述双曲线和抛物线是数学中常见的曲线类型,它们在几何、物理、工程等领域都有广泛的应用。
而三角形则是几何学中的基本图形之一,研究三角形的性质和面积公式对于理解空间形态和解决实际问题都具有重要意义。
本文将结合双曲线和抛物线的性质,推导出利用焦点和顶点坐标计算三角形面积的公式。
2. 双曲线和抛物线的定义双曲线是平面上满足特定性质的点的集合,它的数学定义是平面上两条直线L1和L2,满足这两条直线的距离的差是一个常数,且常数小于0,那么平面上的点P(x, y)满足L1到P点的距离减去L2到P点的距离等于一个常数。
而抛物线则是平面上满足特定性质的点的集合,它的数学定义是平面上的一个点P(x, y)和一条直线L,使得点P到直线L的距离等于点P到定点F的距离。
其中,定点F称为焦点。
3. 双曲线和抛物线的焦点性质双曲线和抛物线都具有焦点的性质,利用这一性质可以推导出三角形的面积公式。
对于双曲线而言,对于平面上的两点A和B,满足A点到焦点的距离减去B点到焦点的距离等于一个常数。
而对于抛物线而言,对于平面上的三点A、B和C,满足A点到焦点的距离等于B点到焦点的距离等于C点到焦点的距离,并且这个距离等于直线L到焦点的距离。
4. 根据焦点坐标计算三角形面积公式根据双曲线和抛物线的焦点性质,我们可以推导出利用焦点和顶点坐标计算三角形面积的公式。
以双曲线为例,假设A(x1, y1), B(x2, y2)为双曲线上的两个点,F(p, q)为焦点坐标,则三角形FAB的面积可以表示为S = |(x1 - p)(y2 - q) - (x2 - p)(y1 - q)|而以抛物线为例,假设A(x1, y1), B(x2, y2),C(x3, y3)为抛物线上的三个点,F(p, q)为焦点坐标,则三角形ABC的面积可以表示为S = |x1(y2 - y3)+x2(y3 - y1)+x3(y1 - y2)|/25. 应用举例通过以上公式,我们可以快速、准确地计算双曲线和抛物线上任意三角形的面积。
第五讲+抛物线中三角形的面积问题
第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。
⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。
2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。
S△ABC。
若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。
练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。
二次函数与实际问题典型例题
二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。
本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。
首先来看一道抛物线与直角三角形的面积问题。
题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。
求抛物线与三角形ABC 的面积。
解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。
由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。
接下来是抛物线与最值问题。
题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。
解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。
当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。
再来一道抛物线与交点问题。
题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。
解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。
抛物线阿基米德三角形面积
抛物线阿基米德三角形面积在几何学中,抛物线阿基米德三角形是一个有趣的形状,它与抛物线的性质密切相关。
本文将探讨如何计算抛物线阿基米德三角形的面积,以及这个形状的一些特点。
首先,让我们来了解一下什么是抛物线阿基米德三角形。
它由一条抛物线和两条直线组成,具有以下特征:抛物线的焦点位于椭圆的中心,两条直线从焦点出发,分别与抛物线相交于两个不同的点,然后再相交于一个顶点。
这个顶点就是抛物线阿基米德三角形的顶点。
要计算抛物线阿基米德三角形的面积,我们可以使用以下公式:面积=底边长度×高÷2。
底边长度可以通过计算两条直线的交点之间的距离获得,而高则可以通过计算顶点到底边的垂直距离来确定。
为了更好地理解这个公式,让我们通过一个具体的例子来计算抛物线阿基米德三角形的面积。
假设我们有一个抛物线阿基米德三角形,其底边长度为10个单位,高为6个单位。
那么根据公式,面积=10×6÷2=30个单位。
除了计算面积,抛物线阿基米德三角形还具有其他一些有趣的性质。
例如,它的底边和顶点之间的距离是一个常数,这意味着无论抛物线的形状如何变化,这个距离始终保持不变。
此外,抛物线阿基米德三角形也满足相似三角形的性质,即其两个底角之和等于顶角。
总结一下,抛物线阿基米德三角形是一个由抛物线和两条直线组成的形状。
要计算其面积,我们可以使用底边长度乘以高再除以2的公式。
除了面积,抛物线阿基米德三角形还具有其他一些有趣的性质,如底边和顶点之间的距离恒定以及满足相似三角形的性质。
希望本文对您对抛物线阿基米德三角形有所帮助,并且不包含任何会对阅读体验产生负面影响的元素。
保证文章的标题与正文一致,没有广告信息,不涉及版权争议,没有不适宜展示的敏感词或其他不良信息。
文章的正文也不会出现缺失语句、丢失序号或段落不完整的情况。
希望您能对本文的内容感到满意。
抛物线焦点弦三角形的面积(抛物线的弦相关的问题)
抛物线焦点弦三角形的面积本内容主要研究抛物线焦点弦三角形的面积.以抛物线的顶点及其焦点弦的两个端点为顶点的三角形,称为抛物线的焦点弦三角形.给出三种抛物线焦点弦三角形的面积公式,根据已知条件合理选择.例:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B.2 C.322 D.22解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),因为|AF |=3,所以x 1+1=3,x 1=2,代入抛物线方程得122y =,故A (2,22),所以直线AB 的方程为22(1)=-y x ,由22220,4x y y x⎧--=⎪⎨=⎪⎩得2240y --=. 所以122y y +y 1y 2=-4,则22121219||1()[()4]222AB y y y y ⎡⎤=++-=⎢⎥⎣⎦.又可求得圆点O 到直线AB 的距离为223,故△AOB 的面积为1922322222S =⨯⨯=.[一题多解]设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得1323cos cos 3θθ=+⇔=,又 232cos()1cos 2,=+π-⇔===+m m BF m m θθ,△AOB 的面积为113||||sin 1(3)22233S OF AB θ=⨯⨯⨯=⨯⨯+⨯=. 答案:C注意:前法是解决此类问题的通法,一般通过求弦长和点到直线的距离进行求解,后法则有一定的技巧性.整理:B AOF过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A ,B 两点,且11(,)A x y ,22(,)B x y ,O 为坐标原点.则△AOB 的面积为(1)121||||2S OF y y =⨯⨯-=; (2) 1||2=⨯⨯S AB d ,d 为点O 到直线AB 的距离; (3)11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅其中∠AFx =θ(0<θ<π).再看一个例题:例:设F 为抛物线C :y 2=4x 的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0), ∠AFx =60°所以直线AB 的方程为3(1)=-y x ,由23(1),4⎧=-⎪⎨=⎪⎩y x y x得231020-+=x x . 所以12103x x +=,则1216||3AB x x p =++=. 又11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅ ()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅ 故△AOB 的面积为116341=32323∆=⨯⨯⨯OAB S总结:1.根据已知条件合理选择我三种抛物线焦点弦三角形的面积公式.2.掌握抛物线的焦点弦长计算方法.练习:1.已知抛物线C 的顶点在坐标原点O ,焦点为F (1,0),经过点F 的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若△AOB 的面积为4,求|AB |.2. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.943. 已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A.4C.3D.3。
抛物线上动点p的三角形面积-定义说明解析
抛物线上动点p的三角形面积-概述说明以及解释1.引言1.1 概述在数学中,抛物线是一种具有特定形状的曲线,其形状类似于开口向上的U形。
它是由一个定点和一条直线(称为准线或直线段)确定的曲线,其中定点被称为焦点,准线表示为直线段AB。
抛物线是一种非常重要的曲线,广泛应用于物理学、工程学等领域。
本文将围绕着抛物线上的动点P展开讨论。
在抛物线上,动点P具有自由运动的能力,并且可以在曲线上任意选择不同的位置。
我们将重点研究动点P所形成的三角形的面积,并探究如何计算这个面积。
通过研究动点P在抛物线上的运动以及三角形的面积计算方法,我们可以深入理解抛物线曲线的几何特征,并且可以应用这些知识解决实际问题。
同时,对抛物线上动点P的三角形面积的意义和应用也将在文章中进行探讨。
最后,在总结部分我们将对本文的内容进行总结,并展望未来对抛物线相关问题的研究方向。
本文旨在提供一个清晰的抛物线上动点P三角形面积的计算方法,并希望读者通过阅读本文能够对抛物线的几何特性有更深入的了解。
【1.2 文章结构】本文将分为以下几个部分来探讨抛物线上动点P的三角形面积的计算方法。
每个部分的内容如下:(1)引言:在引言部分,我们将概述本文的主题和研究对象,并介绍文章的结构和目的。
同时,我们也将对抛物线的定义和性质进行简要介绍。
(2)正文:在正文部分,我们将分为三个小节来详细阐述抛物线上动点P的三角形面积的计算方法。
首先,我们会介绍抛物线的定义和性质,包括其数学表达和几何特征。
然后,我们会讨论动点P在抛物线上的运动规律,这一部分将包括动点P在不同位置的情况下的三角形面积的变化规律。
最后,我们将介绍具体的计算方法,包括利用向量、坐标和参数方程等不同的方法来计算动点P的三角形面积。
(3)结论:在结论部分,我们将对前面的研究结果进行总结,并探讨抛物线上动点P的三角形面积的一些意义和应用。
同时,我们也会展望未来可能的研究方向和可进一步发展的领域。
通过以上的安排,我们旨在全面而系统地介绍抛物线上动点P的三角形面积的计算方法,并探讨其应用的可能性,为相关领域的研究和实践提供一定的参考和指导。
抛物线内接直角三角形的一个性质及应用
抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。
本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。
首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。
因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。
此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。
抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。
在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。
另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。
综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。
抛物线与三角形面积
抛物线与三角形面积抛物线与三角形面积问题涉及代数、几何知识,有一定难度。
本文通过举例来谈这类题的解法。
一、顶点在抛物线y=ax2+bx+c的三角形面积的一般情况有:(1)以抛物线与x轴的两交点和抛物线的顶点为顶点的三角形,其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线顶点的纵坐标的绝对值。
其面积为:SΔ=|x1-x2|·||=··||(2)以抛物线与x轴、y轴的三个交点为顶点的三角形。
其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线与y轴上的截距(原点与y轴交点构成的线段长)的绝对值。
其面积为SΔ=·|x1-x2|·|c|=··|c|(3)、三角形三个顶点在抛物线其他位置时,应根据图形的具体特征,灵活运用几何和代数的有关知识。
二、1.求内接于抛物线的三角形面积。
例1.已知抛物线的顶点C(2,),它与x轴两交点A、B的横坐标是方程x2-4x+3=0的两根,求ΔABC的面积。
解:由方程x2-4x+3=0,得x1=1, x2=3,∴AB=|x2-x1|=|3-1|=2. ∴SΔABC=×2×=.例2.已知二次函数y=x2+3x+2的图像与x轴交于A、B两点,与y轴交于D点,顶点为C,求四边形ACBD的面积。
解:如图1,S四边形ACBD=SΔABC+SΔABD=××||+××|2|=.例3.如图:已知抛物线y=x2-2x+3与直线y=2x相交于A、B,抛物线与y轴相交于C点,求ΔABC的面积。
解:由得点A的坐标为(1,2),点B的坐标为(3,6);抛物线与y轴交点C的坐标为(0,3)如图2,由A、B、C三点的坐标可知,AB==2,BC==3,AC==。
∵AC2+BC2=AB2,∴ΔABC为直角三角形,并且∠BCA=900,∴SΔABC=AC·BC=××3=3。
抛物线中三角形面积最值问题的七种求解策略
图10的正切函数值,则问题便可逐步解决.解析在上找点£,使= 由外角定理,知•①易知直线S C 解析式为y-6.设 £(m ,m -6),由 fi (6,0),D (2, -8),则 B £2 = (m -6)' + (m -6)2, ED 2 = (m - 2)2 + (m + 2)2.由 B £ = £7),知(;n -6)2 +(m -6)2 = (m -2)2 +(m + 2)2,解得 m =|,即 £(夺,-爭)•又易知 C £>2 + fiC 2 = fi /)2,则乙BCD = 90。
.qi n由 C (0, -6),£(|■,-$),Z )(2, -8),知 CD =2^",C £=^,P J lain^CED = j .②由①②和 A C(?B = 2 A CflD ,则 tan Z _ C(?B =当点<?在点B 左侧时,(),( -8,0).当点<?在点B 右侧时,(?2(8,0).综上,(?( -8,0)或(8,0).从上面题目的解答可以发现:抛物线中角的存在 性问题,一般运用角的特殊性及坐标条件构造基本图形,并运用图形的性质,进行推理得出有关相等线段, 并表示出有关点的坐标,代入二次函数或一次函数的 解析式,或运用勾股定理计算作答.在解答过程中,既 要构造几何图形,根据几何直观和几何性质、定理理性分析、推理,还要运用函数与方程知识进行计算和 数据分析.综合运用几何推理、函数与方程思想等多 方面技能,有较强的综合性及创新探究意识,可以很 好地考查学生的综合素养[2].“问题是数学的心脏”,数学的真正组成部分是问 题和解,在学习过程中,在一定学习范围或主题内,围 绕一定目标或某一中心问题,按照一定的逻辑结构精 心设计一组问题,即为“一题多问”,采用“一题多问” 的方式,用同一道题目将多个知识点表现出来,可以 帮助学生梳理旧知,形成网络,将数学技能及方法得 以综合运用.“一题多问”引导学生从不同角度、不同 方位进行不同层次的思考,提高学生分析问题、解决 问题和提出问题的能力,可以让学生跳出“题海”,提 高解题效益,提升数学素养.参考文献:[1 ]罗峻,段利芳.一次函数与反比例函数图象相交的性质 之证明与运用[J ]•数理化学习(初中版),2018(12) :23 -28.[2]罗峻,段利芳.当完美正方形偶遇美丽的45度角[J ]. 理科考试研究(初中),2019,26(22) :29 -32.(收稿日期:2020 -09 -21 )抛物线中三角形面积最值问题的七种求鮮策略段昆山(易县教育局教研室河北保定074200)摘要:以二次函数为栽体,结合几何图形求面积最值问题具有难度大、综合性强,区分度高的特表.本文以某地初 三上学期期末考试试卷最后一题为例,谈一谈此类问题的七种求解策略.关键词:最值问题;转化;面积;求解策略纵观近年各地中考试卷,以二次函数为载体,结 合几何图形求面积最值问题的题型是各地中考的高 频考点之一.这类试题综合运用多种数学思想方法, 不仅考查了二次函数与三角形面积的相关知识,又为后续学习高中知识奠定了基础.1试题呈现题目如图1,在平面直角坐标系中,抛物线y = <M c 2 +心+2(a #0)与.t 轴交于两点(点4在点B作者简介:段昆山(1976 -),男,河北保定人,本科,中学一级教师,研究方向:数学教育.的左侧),与y 轴交于点C ,抛物线经过点£»(- 2,- 3) 和点£(3,2),点P 是第一象限抛物线上的一个动点.(1) 求抛物线的表达式;(2) 当A B P C 的面积取最大值时,求A fiP C 面积 及点P 的坐标.2试题解析 2. 1第(1)问解析将点A £的坐标代人函数表达式,得丄_ 了,3_r故抛物线的表达式为y +2.2.2第(2)问解析 2. 2. 1分割法三角形面积通常用面积公 式(底乘髙的一半)来求,在平面 直角坐标系中求斜三角形的面 积用这个公式难度大,那如何求 呢?那就需要运用转化的方法 把斜三角形分割成底与高分别 与坐标轴平行的三角形,充分利用定点的横纵坐标来求三角形面积•如图2,过点P 作丄;c 轴于点F ,A fiP C 被分 割成两个三角形,即A //P C 和所以SA B P C =S 娜c + SAW ,过点C 作C Z )丄/^于点Z ),过点B 作BE _L PF 于点 E ,S A H P C =夸PH x CD.解法1如图3,连接S C ,过点P 作W ///y 轴交S C 于点//,将点C ,S 代入一次函数表达式,可得直线的表达式为y = -+ 2.设点 P U ,+如 +2),则点+2).所以 S A P C B =-%2 +4%.f 4a -2b +2 =-3, 19a +36+2=2,解得,根据二次函数性质,利用配方法,当* = 2时, S apm 的最大值为4.故当A B P C 的面积取最大值时,点P (2,3),S A P C B 二 4.2.2.2补形法在平面直角坐标系中求斜 三角形的面积不仅可以运用分 割法,也可以转换思路,用补形 的方法把不规则图形转化成规 则图形,将斜三角形面积转化 成矩形面积减去三角形的面 积,再充分利用定点的横纵坐标,就可以求斜三角形面积了 • 图4如图4,过点P 作轴,垂足为点£,过点5作 fiZ )丄/)£,垂足为点£»,贝丨J 四边形为矩形•所以S APCB = S 酿形OBOE - S A P E (: 一 S APDB _ S a (X b .解法2如图5,过点P 作轴,垂足为点£,过点B 作丄/)£;,垂足为点/),所以四边形 OBD £为矩形.所以 s A PC b 二 S 四边形〇B D e : — S A P E (: - S _ s A 0C B 二(-+ ^-x + 2) x 4 - (- -^-x2 + -^-x ) x x x ~y - (4-x) x (- ~^x2 ++ 2) x -^--4=-x ~+ 4x.根据二次函数性质,利用配方法,当x =2时,^ A P C B的最大值为4.故当A B P C的面积取最大值时,点P(2,3),■5而=4_2.2.3铅垂法如图6,过A P S C的顶点分别作出水平线的垂线, 外侧两条垂线间的距离叫做水平宽.中间的垂线与 S C相交于点£,线段就叫做铅垂高.如图7,因为S apcb=S A peb+S&PCE二y PE x EU +j PE x EF =所以铅垂法本质上也是分割法.,铅垂高I图7解法3如图8,过点P作P//丄;c轴交B C于点//,设点 ,-+ 2),则点 //(x,+ 2)•所以11,312^apcb =^2^~^2X+Y"x+2+y*-2)x4=-x+4x.在直线B C上.根据平行线间的距离相等,所以ABPC 和A B fiC的高相等,底是BC.所以厶B P C和A B//C的面积相等.求A B P C的面积就转化成求A//£C的面积.解法4如图10,过点Z3作户////沉交7轴于点 所以 S&P C B= S A C H B-将点c,B代人一次函数表达式,可得直线C B的表达式为y= - 士;':+ 2.因为W///S C,所以设直线P//的表达式为y根据二次函数性质,利用配方法,当x= 2时,S apos的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.4平行线法如图9,W///B C,点//,P在直线W/上,点5,CH E P设点户(%,- y i2 + y x+ 2),所以-2 =-—x +b,b22+ ~z~x + 2 + ~z~x2,//C=-y^2+2x+2-2TT22x.x2 +2x+PJflll S A P C B = ^H C xOB =-x2-t-4x.利用配方法,当x= 2时,S A P(:iB的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.5相似法如图11,求三角形的面积可以用面积公式足为点D.所以BC= VOC2 + OB2 = 7^5.求三角形的 面积只要求出高就可以了.高如何求呢?我 们仔细观察图形发现丄SO,所以™//y轴.所以 APHC= AOCB•因为P E±B C,所以 APEH=厶COB.所以ABOC w•所以g = I I所以= PH^~° .这样就可以求出高了.解法5如图12,过点P作丄BC,垂足为点 £,PD丄50交 SC 于点 由题意,5C= VOC1+ OB2 = 2/5 ,APEH^ABOC.m i0BPH = BC'因为+ 2x,PE PH x BOBC¥(-士解法6如图13,过点P作P£//fiC,因为将点C,B代入一次函数表达式,同理可得直线C Z?的表达式为;^=-士尤+2.所以设直线的表达式为y=-+ 6.1,j=- y x + b-H i2+3+2y= - ~z~x+ ~zrx+1.1/22整理,得-士尤2 +~|~尤+2=-士a:+ 6 一士丨2 +2% +2-6=0.所以 A =4-4 x(-士)x(2 -6) =8 -26 =0.解得6=4_所以点P(2,3),A P C fi最大值为4 .2.2.7中点法如图14,设直线S C与抛物线交于B,C两点,直线B C的解析式可设为y= ^+ n,抛物线解析式可设为y= m2 +心+ C,求其交点坐标就是联立两解析式’所以 ax2 + + c = n w c + n_ 整理,得[y= mx+ n.ax2+ (b- m)x+ c- n= 0. fffVJs x, + x2 = ——因为直a%2 +2a〇,所以 S A P C fl =^^(-士尤2 +2幻x2V^x士 =-x2 + 4x.利用配方法,当* =2时,S A P efl的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB-4-2.2.6切线法如图13,若使点P在抛物线上,S A P eB最大,则需 使P£//BC,且与抛物线有且只有一个交点才能使心^8最大.因为底B C确定,只要高最大.因为点P 在抛物线上与抛物线有且只有一个交点时,SC 边上的高才最大.线B C平移到与抛物线只有一个交点时,七即& = 也就是%所以过点P作*轴的垂线,垂足M是O S的中点.所以当抛物线被直线 B C所截,P为抛物线上一动点(此时点P为线段SC 与抛物线所组成的封闭图形上抛物线上一点)丄%轴于点m,交s c于点yv,当点yv为b c中点时,s APC8 的面积有最大值.解法7如图15,过点尸作P////S C,所以& = X B+X C^所以点P 坐标为(2,3).所以=S 四边形"W /Y ;+ S APMB ""SA O R Cx (2+ 3) x 2+冬 x 2x 3_4-x 2x 4=4.' 2 2此法适用于填空、选择或验证.3感悟解法这一类以二次函数为载体,结合几何图形求面积最值问题的题型涉及的知识面多、难度大、综合性强, 要想顺利解答此类问题,必须抓住以下几点.(1)立足转化,抓住动点(设动为定).合理构造辅助线,以转化 思想为基本出发点,抓住动点,根据不同思路过动点 作平行,或作垂直等辅助线,把复杂问题转化为简单问题,把未知问题转换为已知问题.(2)数形结合,设 出动点坐标.充分挖掘已知条件与隐含条件,要明确 角边在数量关系变化中哪些是保持不变的量,哪些是 变化的量.哪些是变化的量.这需要在充分理解的基 础上,进行多方位思考、多角度着手、多层次探索m , 利用相似、面积公式、根与系数的关系等知识,表示出相关的数量关系.(3)根据相关的数量关系,把面积表示成一个含有某未知量的二次函数关系式,然后利用 公式法或配方法求出最值.参考文献:[1] 段昆山.构造图形求准确数形结合找临界一•一类“儿何”型新定义压轴题解法浅析[J ].中学数学教学,2020(01) :79 -80.[2]周威.圆锥曲线中几个特殊三角形面积最值问题探究[J ].理科考试研究,2020(09) :25 - 27.(收稿日期:2020 _08-15)指向“深度学习”的教学课壹教学策略李娜沈南山(合肥师范学院数学与统计学院安徽合肥230601)摘要:从认知结构观点来看,“深度学习”是一种理解性的学习,注重学习思维的批利性、学习内容的整合性、知识体系的建构性和知识学习的迁移性.指向深度学习的数学课堂教学需要深入追问学什么、怎么学、学得怎么样三个教 学本源问题,其教学策略应当注重数学知识对象的多重表征、数学学习脚手架的适时搭建、数学学习问题的逻辑引领、 数学学习方法的积极反思等.关键词:初中数学;深度学习;教学策略1 “深度学习”的基本特征“深度学习”(Deep Learning )最早由美国学者 Marlon 等人于1976年提出的一个比较性学习概念, 是相对于孤立记忆和非批判性接受知识的浅层学习 (Surface Learning )而言的.随后国内外学者对“深度 学习”开展理论与实践研究,其基本内涵是在教师引 领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程,并 在这个过程中学生掌握学科的核心知识,理解学习的 过程,把握学科的本质及思想方法,形成积极的内在 学习动机、高级的社会性感情、积极的态度、正确的价 值观等m .“深度学习”的基本特征蕴含理论和实践两个层 面.理论上,从知识结构观点来看,深度学习是基于学基金项目:合肥师范学院研究生创新基金项目“深度学习理念下初中数学课堂问题提出的教学实践研究”(项目编号:2020yjs 033).作者简介:李娜( 1995 -),女,安徽阜阳人,硕士研究生,研究方向:数学教育;沈南山(1964 -),男,安徽六安人,博士,教授,研究方向:数学课程与教学论研究.。
高中数学会考必备的39个公式
高中数学会考必备的39个公式1、勾股定理:三条直线上两个点之间的距离关系,即a2 + b2 = c2。
2、余弦定理:两条相交直线所成的两个直角三角形,c2=a2+b2-2ab×cosC 。
3、正弦定理:两条相交的直线所组成的两个直角三角形, sinA / a = sinB / b = sinC / c 。
4、梯形公式:面积之和,即(a+b)h / 2。
5、圆面积公式:πr2 。
6、三角形面积公式:S=1/2×a×b×sinC 。
7、抛物线面积公式:S=1/3×a×h2 。
8、割线法则:1/y=1/a+1/b 。
9、勾股变形定理:ac=a2+b2−2ab cosC 。
10、余切定理:tanA/a=tanB/b=tanC/c 。
11、海伦公式:三角形内角a+b+c=180°,a2=b2+c2−2bc cosA。
12、同余三角形定理:三角形内角A/a=B/b=C/c 。
13、梯形公式:周长之和,即a+b+(c+d) 。
14、圆周长公式:2πr15、平行线定理:平行线成立的条件为同时垂直于两个垂线。
16、外接圆定理:四边形的外接圆的半径等于对角的中点的距离的一半。
17、锐角定理:三角形内角a+b>c18、直角定理:三角形内角a+b=c19、正方形面积公式:a220、平行四边形面积公式:ab21、直角三角形面积公式:1/2ah22、圆心角公式:mθ=2πr23、梯形周长公式:a+b+c+d24、圆周弧长公式:λ=θr25、余子式:对于系数矩阵A=[aij]n×n,各阶行列式的余子式定义为Ai,…,Ak 。
26、拉格朗日和弦定理:如果一个四边形的角都是锐角,那么它的两个对角线的乘积等于它的四条边的乘积。
27、反余弦定理:ac=a2+b2−2ab×cosC 。
28、反正弦定理: sinA / a = sinB / b = sinC / c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S△BCD=S梯形OBDE-S△OBC-S△DEC
返回
y
D(1,4) C 3
▲BCD
3
o
B
x
S△BCD=S△OCD+S△BOD-S△BOC
返回
y
D(1,4)
C 3
▲BCD
3 x B
o
E
S△BCD=S梯形OEDC+S△BDE-S△OBC
返回
小结
抛物线中面积问题的常用方法:
1.寻找横向或纵向的边为底是计 算三角形面积的基本方法。 2.不能直接求出面积时,用割补 法进行转化(构造横向或纵向的 边为底是常用的方法)
2.△ACD的面积是如何解决呢?
o
B
3
x 3.你能类比求△ACD的面积 的方法解决△BCD吗?
▲BCD 聪明的你还有 其它方法吗?
1 2 3 4
y
D(1,4) C
3
E
▲BCD
3
o
F
B
x
S△BCD=S△BDE+S△CDE
返回
y
E
C 3
D (1,4)
F
▲BCD
o
B
3
x
S△BCD=S矩形OBFE-S△OBC-S△DEC-S△BDF
y
D(1,4)
y
3C
3
D (1,4)
3C
-1
A
o
B
3
x
-1
ቤተ መጻሕፍቲ ባይዱ
A o
B
x
A
o
B
x
▲ABC
▲ABD
▲OCD
在直角坐标系中计算三角形面积的基本方法: 寻找横向或纵向的边为底,再利用面积公式
y
D(1,4) C 3
▲ACD
E
-1
A
o
x
S△ACD=S△ACE+S△CDE
y
C 3
D (1,4)
自主思考
1.△BCD有横向或纵向的边吗?
抛物线中的面积问题 (一)
学习目标
1.掌握计算三角形面积的方法 2.根据题中条件选择适当的方法解题
引题
如图:抛物线 y=-x2+2x+3与 x 轴交于A、 B两点(点A在点B的左侧),与y轴交于点C,点 D是抛物线的顶点。 (1)求点A.B.C.D的坐标。 y
D
C
A
o
B
x
y
(2)求下列图中三角形的面积。
拓展
若点D是抛物线上的一个动点,且始终在直线BC 上方,请问当△BCD的面积最大时,求点D的坐标 和△BCD的最大面积。 D y
提示:若设点D (m,m2-2m+3), 你能用含m的代 数式表示△BCD 的面积吗?
C
A
O
B
x
谈谈大家对这节课的收获和 困惑……