中考数学考点达标训练21命题与证明

合集下载

浙江省衢州市2021年中考数学 专题训练二 命题与证明 浙教版

浙江省衢州市2021年中考数学 专题训练二 命题与证明 浙教版

命题与证明一、选择题(共26小题)1.下列命题中,是真命题的是()A.等腰三角形都相似 B.等边三角形都相似C.锐角三角形都相似 D.直角三角形都相似2.下列说法正确的有()①在﹣,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形8.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短9.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等10.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.矩形的对角线互相垂直且平分C.正六边形的内角和是720°D.角平分线上的点到角两边的距离相等11.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个12.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等13.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形14.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直平分的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组邻边相等,并且有一个内角为直角的四边形是正方形15.下列命题中,属于真命题的是()A.同位角相等B.正比例函数是一次函数C.平分弦的直径垂直于弦 D.对角线相等的四边形是矩形16.下列命题中,不正确的是()B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形18.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直19.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等20.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形21.下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等22.下列说法中,正确的有()①等腰三角形两边长为2和5,则它的周长是9或12.②无理数﹣在﹣2和﹣1之间.③六边形的内角和是外角和的2倍.④若a>b,则a﹣b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A.1个B.2个C.3个D.4个23.下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形24.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③B.①④ C.②④ D.②25.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个26.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0二、填空题(共3小题)27.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视、俯视图都是圆;⑤如果一个角的两边与另一个解的两边分别平行,那么这两个角相等,其中是真命题的有(只需填写序号).28.下列命题中正确的个数有个.①如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1;②在反比例函数y=中,y随x的增大而减小;③要了解一批炮弹的杀伤半径,适合用普查方式;④从﹣3,﹣2,2,3四个数中任意取两个数分别作为k,b的值,则直线y=kx+b经过第一、二、三象限的概率是.29.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)三、解答题(共1小题)30.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:浙江省衢州市2016年中考数(浙教版)专题训练(二):命题与证明参考答案与试题解析一、选择题(共26小题)1.下列命题中,是真命题的是()A.等腰三角形都相似 B.等边三角形都相似C.锐角三角形都相似 D.直角三角形都相似【考点】命题与定理;相似三角形的判定.【分析】利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.【点评】本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.2.下列说法正确的有()①在﹣,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据无理数的定义对①进行判断;先写出逆命题,然后根据平方根的定义对②进行判断;根据多边形内角和公式和外角和定理对③进行判断;根据垂径定理的推论对④进行判断.【解答】解:在﹣,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42【考点】命题与定理.【分析】证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.【解答】解:42是偶数,但42不是8的倍数.故选:D.【点评】本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解答】解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【考点】命题与定理.【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.7.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.8.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【考点】命题与定理.【专题】常规题型.【分析】根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.【解答】解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.矩形的对角线互相垂直且平分C.正六边形的内角和是720°D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据确定圆的条件对A进行判断;根据矩形的性质对B进行判断;根据多边形的内角和定理对C 进行判断;根据角平分线的性质对D进行判断.【解答】解:A、不在同一直线上的三点确定一个圆,所以A选项为真命题;B、矩形的对角线互相平分且相等,所以B选项为假命题;C、正六边形的内角和是720°,所以C选项为真命题;D、角平分线上的点到角两边的距离相等,所以D选项为真命题.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个【考点】命题与定理;平行四边形的判定.【专题】常规题型.【分析】分别利用平行四边形的判定方法判断得出即可.【解答】解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.【点评】此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.12.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等【考点】命题与定理.【分析】利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.【解答】解:A、例如3与﹣3,可判断A错误,故A是假命题;B、对角线互相垂直的平行四边形是菱形,错误,故B是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,错误,故C是假命题;D、线段垂直平分线上的点与这条线段两个端点的距离相等,正确,故D是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.13.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直平分的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组邻边相等,并且有一个内角为直角的四边形是正方形【考点】命题与定理.【分析】利用矩形、菱形、平行四边形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线相等的平行四边形才是矩形,故A选项错误;B、对角线互相垂直的平分的四边形是菱形,是真命题,故B选项正确;C、一组对边平行,另一组对边相等的四边形也可能是等腰梯形,是假命题,故C选项错误;D、一组邻边相等,并且有一个内角为直角的四边形也可能是直角梯形,故D选项错误.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形、菱形、平行四边形及正方形的判定定理,属于基础定理,难度不大.15.下列命题中,属于真命题的是()A.同位角相等B.正比例函数是一次函数C.平分弦的直径垂直于弦 D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用平行线的性质、正比例函数的定义、垂径定理及矩形的判定对各个选项逐一判断后即可确定正确的选项.【解答】解:A、两直线平行,同位角才相等,是假命题,故A不符合题意;B、正比例函数是一次函数,是真命题,故B符合题意;C、平分弦的直径垂直于弦,是假命题,故C不符合题意;D、对角线相等的平行四边形才是矩形,是假命题,故D不符合题意.故选:B.【点评】本题考查了命题与定理,解题的关键是了解平行线的性质、正比例函数的定义、垂径定理及矩形的判定等知识,难度较小.16.下列命题中,不正确的是()B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半【考点】命题与定理.【分析】利用多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质逐一判断后即可确定正确的选项.B、两组对边分别相等的四边形是平行四边形,故B选项错误;C、垂直于弦的直径平分弦所对的两条弧,故C选项正确;D、直角三角形斜边上的中线等于斜边的一半,故D选项正确,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质,难度不大.A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形【考点】命题与定理.【专题】常规题型.【分析】根据矩形的判定方法对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据等腰梯形的定义对D进行判断.【解答】解:A、两对角线相等的平行四边形是矩形,故A选项错误;B、两对角线互相平分的四边形是平行四边形,故B选项正确;C、两对角线互相垂直的平行四边形是菱形,故C选项错误;D、两对角线相等的梯形是等腰梯形,故D选项错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直【考点】命题与定理.【专题】常规题型.【分析】根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C 进行判断;根据平行四边形的性质对D进行判断.【解答】解:A、等腰梯形的对角线相等,故A错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.19.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等【考点】命题与定理.【分析】利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.【解答】解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.20.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形【考点】命题与定理.【专题】常规题型.【分析】根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.【解答】解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.21.下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等。

中考数学专题复习卷:命题与证明(含解析)

中考数学专题复习卷:命题与证明(含解析)

命题与证明一、选择题1.以下说法正确的选项是)(A. 真命题的抗命题是真命题B. 原命题是假命题,则它的抗命题也是假命题C. 定理必定有逆定理D. 命题必定有抗命题【答案】D【分析】: A 、真命题的抗命题可能是真命题,也可能是假命题,故 A 不切合题意;B、原命题是假命题,则它的抗命题可能是假命题,也可能是真命题,故 B 不切合题意;C、逆定理必定是真命题,定理不必定有逆定理,故 C 不切合题意;D、随意一个命题都有抗命题;故 D 切合题意;故答案为:D【剖析】依据把一个命题的条件和结论交换就获取它的抗命题,用逻辑方法判断为正确的命题叫定理,任何命题都有抗命题,对各选项逐个判断即可。

2.以下命题为真命题的是()。

A.两条直线被一组平行线所截,所得的对应线段成比率B.相像三角形面积之比等于相像比C.对角线相互垂直的四边形是菱形D. 按序连接矩形各边的中点所得的四边形是正方形【答案】A【分析】: A. 依据平行线分线段成比率定理即可判断正确, A 切合题意;B. 相像三角形面积之比等于相像比的平方,故错误, B 不切合题意;C.对角线相互垂直的平行四边形是菱形,故错误, C 不切合题意;D. 按序连接矩形各边的中点所得的四边形是正菱形,故错误, D 不切合题意;故答案为:A.【剖析】 A. 依据平行线分线段成比率定理即可判断对错;B.依据相像三角形的性质即可判断对错;C.依据菱形的判断即可判断对错;D.依据矩形的性质和三角形中位线定理即可判断对错;3.用反证法证明时,假定结论“点在圆外”不建立,那么点与圆的地点关系只好是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】 D【分析】:点与圆的地点关系只有三种:点在圆内、点在圆上、点在圆外,假如点不在圆外,那么点就有可能在圆上或圆内故答案为 D【剖析】运用反证法证明,第一步就要假定结论不建立,即结论的反面,要考虑到反面全部的状况。

中考数学考点复习第21课命题与证明课件

中考数学考点复习第21课命题与证明课件

【解析】 针对逻辑判断问题逐一分析并做出判断: A 项,若甲对,即只参加一项的人数大于 14 人,等价于等于 15 或 16 或 17 或 18 或 19 或 20 人,则两项都参加的人数为 5 或 4 或 3 或 2 或 1 或 0 人,故乙错; B 项,若乙对,即两项都参加的人数小于 5 人,等价于等于 4 或 3 或 2 或 1 或 0 人,则只参加一项的人数等于 16 或 17 或 18 或 19 或 20 人,故甲对; C 项,若乙错,即两项都参加的人数大于或等于 5 人,则只参加 一项的人数小于或等于 15 人,故甲错; D 项,若甲错,即只参加一项的人数小于或等于 14 人,则两项 都参加的人数大于或等于 6 人,故乙错. 综上所述,四个命题中,其中真命题是“若乙对,则甲对” . 【答案】 B
1.写一个命题的逆命题时,只要把原命题的条件与结论对调即 可,但需注意前提条件,并且适当地组织文字. 2.每一个命题都有逆命题,但每一个定理不一定都有逆定理; 原命题正确,逆命题未必正确;互逆的两个命题的正确与否 是独立的,互不影响.
【典例 1】 (2015· 江苏无锡)命题“全等三角形的面积相等” 的逆命题是________(填“真”或“假”)命题.
特别关注
1.证明的每一步都要有依据.
2.证明一个命题是假命题,只要举一个反例即可,但证明一 个命题是真命题,一定要用推理的方法.
【典例 2】
(2014· 上海)已知:如图 211,
在梯形 ABCD 中,AD∥BC,AB=DC,对 角线 AC,BD 相交于点 F,E 是边 BC 的延 长线上一点,且∠CDE=∠ABD. (1)求证:四边形 ACED 是平行四边形. DG DF (2)连结 AE, 交 BD 于点 G. 求证: GB =DB. 【点评】 本题主要考查全等三角形的判定与性质,平行四边形

初中数学命题与证明的专项训练及答案

初中数学命题与证明的专项训练及答案

初中数学命题与证明的专项训练及答案一、选择题1.卞列各命题的逆命题成立的是()A、全等三角形的对应角相等 B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等 D.如果两个角都是45。

,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45。

,错误.故选C.2."两条直线相交只有一个交点"的题设是()A.两条直线B.相交C.只有一个交点D.两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】"两条直线相交只有一个交点”的题设是两条直线相交.故选D.【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【答案】B【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案. 【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面枳相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【答案】C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意:B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意:C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.5.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A.两点确定一条直线,正确;B.两点之间,线段最短,所以B选项错误:C.等角的余角相等,正确;D.等角的补角相等,正确.故选B考点:定理③相等的角是对顶角;④直角三角形的两个锐角互余:⑤同角或等角的补角相等.其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】【详解】解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.9.下列命题是真命题的是()A.若两个数的平方相等,则这两个数相等B.同位角相等C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A.若两个数的平方相等,则这两个数不一定相等,如22= (-2)2,但2工-2,故A选项错误;B.只有两直线平行的情况下,才有同位角相等,故B选项错误;C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D.相等的角不一定是对顶角,如图,Z1=Z2,但这两个角不符合对顶角的概念,故D选故选c.【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.10.下列命题中,是真命题的是()A.将函数y=^x+l向右平移2个单位后所得函数的解析式为y=|xB.若一个数的平方根等于其本身,则这个数是0和12C.对函数/=-,其函数值y随自变量x的增人而增人xD.直线y=3x+l与直线y=・3x+2 —定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=yx+l向右平移2个单位后所得函数的解析式为y=|x,正确,符合题意;3、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;2C、对函数/=-,其函数值在每个象限内y随自变量x的增大而增人,故错误,是假命x题,不符合题意:D、直线y=3x+l与直线y=-3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:4【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.11•下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦:③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y =£.当k<0时,y随x的增人而增人A. 1B. 2C. 3D. 4x【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果00,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误:③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确:④反比例函数y =巴.当k<0时,在每个彖限内y随x的增大而增人,故原题说法错误;x正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.12.用三个不等式a>b9 ab>0, -中的两个不等式作为题设,余下的一个不等式作a b为结论组成一个命题,组成真命题的个数为()A.0B. 1C. 2D. 3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b, ab>0,则->L假命题:。

初中数学命题与证明专题训练50题含答案

初中数学命题与证明专题训练50题含答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是真命题的是( )A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .菱形的对角线相等且互相垂直2.用反证法证明“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A .a b <B .a b ≤C .a b =D .a b ≥ 3.下列四个命题中,属于真命题的是( )A .同角(或等角)的补角相等B .三角形的一个外角大于任何一个内角C .同旁内角相等,两直线平行D .如果∠1=∠2,那么∠1和∠2是对顶角4.下列语句不是命题的是( )A .画两条相交直线B .互补的两个角之和是180°C .两点之间线段最短D .相等的两个角是对顶角 5.下列定理中,不存在逆定理的是( )A .等边三角形的三个内角都等于60°B .在同一个三角形中,如果两边相等,那么它们所对的角也相等C .同位角相等,两直线平行D .全等三角形的对应角相等6.下列命题:∠相等的两个角是对顶角;∠邻补角互补;∠同位角相等,两直线平行;∠过一点有且只有一条直线与已知直线垂直.其中,真命题的个数是( ) A .4个 B .3个 C .2个 D .1个 7.下列命题中,真命题有( )(1)如果一个数的算术平方根等于它本身,则这个数是1;(2)一个数的立方根等于它本身,则这个数是﹣1,0,1;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直;(4)在同一平面内,垂直于同一直线的两条直线互相平行.8.下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可以是直角;D.直角三角形的两锐角互余.9.下列各命题的逆命题成立的是().A.正方形是轴对称图形B.如果两个角是直角,那么它们相等C.如果两个实数相等,那么它们的平方相等D.同旁内角互补,两直线平行10.已知下列命题:∠抛物线y=3x2+5x-1与两坐标轴交点的个数为2个;∠相等的圆心角所对的弦相等;∠任何正多边形都有且只有一个外接圆;∠三角形的外心到三角形各顶点的距离相等;∠圆内接四边形对角相等;真命题的个数有()A.1个B.2个C.3个D.4个11.关于命题“等角对等边”,下列说法错误的是()A.这个命题是真命题B.条件是“一个三角形有两个角相等”C.结论是“这两个角所对的边也相等”D.可以用“举反例”的方法证明这个命题是真命题12.下列命题的逆命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.两直线平行,内错角相等D.在同一个三角形中,等边对等角13.下列说法正确的是()A.经验、观察或实验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个14.下列句子中,是命题的是()A.延长线段AB到点CB.正数都大于负数C.垂直于同一条直线的两条直线平行吗?D.作线段AB∠CD15.用反证法证明命题“在三角形中,至少有一个内角大于或等于60”时,首先假设这个三角形中()A.三个内角都小于60°B.只有一个内角大于或等于60°C.至少有一个内角小于60°D.每一个内角都小于或等于60°16.下列命题中,假命题是()A .菱形的面积等于两条对角线乘积的一半B .矩形的对角线相等C .对角线互相垂直的平行四边形是矩形D .对角线相等的菱形是正方形17.平面内,下列命题为真命题是( )A .经过半径外端点的直线是圆的切线B .经过半径的直线是圆的切线C .垂直于半径的直线是圆的切线D .经过半径的外端并且垂直于这条半径的直线是圆的切线18.下面给出四个命题:①各边相等的六边形是正六边形;②顶角和底边对应相等的两个等腰三角形全等;③顺次连结一个四边形各边中点所成的四边形是矩形,则原四边形是菱形;④正五边形既是中心对称图形又是轴对称图形其中真命题有( ) A .0个 B .1个 C .2个 D .4个 19.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=45°,∠2=45°C .∠1=60°,∠2=30°D .∠1=50°,∠2=50°20.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个二、填空题21.命题“如果两个角是直角,那么它们相等”的逆命题是 ;逆命题是 命题(填“真”或“假”).22.“互余的两个角相等”的逆命题是______________________________.23.“相等的角是对顶角”是命题.__(判断对错)24.“同位角相等”改写成“如果那么”的形式25.写出命题“对顶角相等”的逆命题:______.(写成“如果…那么…”的形式) 26.用一个平底锅烙饼(每次只能放两张饼),烙热一张饼2分钟(正反面各需一分钟),问烙热3张饼至少需________ 分钟.27.命题“同旁内角互补,两直线平行”的条件是______.28.如果12∠=∠,23∠∠=,那么13∠=∠;该命题的结论是_______.29.“如果1a >1b,那么a<b.”是假命题,举一个反例,其中a=_____,b=_____.30.命题“如果两个角的和为180 ,那么这两个角互补”的逆命题是_______. 31.A、B、C、D、E五名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优”B说:“如果我得优,那么C也得优”C说:“如果我得优,那么D也得优”D说:“如果我得优,那么E也得优”大家都没有说错.如果C得优,那么A、B、D、E中还有________也一定得优(填字母).32.将命题“过一点有且只有一条直线与已知直线垂直”改写“如果……那么……”的形式__________________.33.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是________________.34.用反证法证明命题“在一个三角形中,不能有两个内角为钝角”时,第一步应假设______.35.命题“等腰三角形底边上的高线和中线互相重合”是__________.(填“真命题”或“假命题”)36.写出“两直线平行内错角相等”的逆命题:_______________,此逆命题是__________(填“真”或“假”)命题.37.有下列五个命题:①对顶角相等;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤一个非负实数的绝对值是它本身,其中是真命题的是______.(只填序号)38.把命题“同位角相等”改写成“如果…那么…”的形式是_____,它是_____命题.(填“真”或“假”)39.下列说法中,正确的个数有_____个.(1)三点确定一个圆(2)相等的圆心角所对的弧相等(3)四边形都有一个外接圆(4)三角形有且只有一个外接圆(5)正五边形是轴对称图形.40.命题“两个全等三角形的面积相等”的逆命题是________,该逆命题是______(填真、假)命题.三、解答题41.如图,直线AB,CD被直线AE所截,直线AM,EN被MN所截.请你从以下三个条件:∠AB∠CD;∠AM∠EN;∠∠BAM=∠CEN中选出两个作为已知条件,另一个作为结论,得出一个正确的命题.(1)请按照:“∠ ,;∠ ”的形式,写出所有正确的命题;例如命题1:∠AB∥CD,AM∥EN;∠∠BAM=∠CEN.(2)在(1)所写的命题中选择一个加以证明,写出推理过程.42.如图,已知直线AB CD,直线MN分别交AB、CD于M、N两点,若ME、NF∥.分别是∠AMN、∠DNM的角平分线,试说明:ME NF解:∠AB CD,(已知)∠∠AMN=∠DNM()∠ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∠∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∠∠EMN=∠FNM(等量代换)∥()∠ME NF(1)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.(2)解题过程中是否应用了互逆命题,如果有,请写出来.43.说出下列命题的逆命题.这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.44.把下列命题改写成“如果…那么…”的形式:(1)同旁内角互补,两直线平行;(2)末位数字是0的数,一定能被5整除;(3)直角都相等;(4)同角的余角相等.45.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.46.把下列命题改写成“如果……那么……”的形式.(1)在同一平面内,垂直于同一条直线的两条直线平行;(2)绝对值相等的两个数一定相等;(3)每一个有理数都对应数轴上的一个点.47.“如果a>b,那么ac>bc”是真命题还是假命题?如果是假命题,举一个反例并添加适当的条件使它成为真命题.48.说出下列命题的逆命题,并判断原命题和逆命题的真假.(1)直角三角形斜边上的中线等于斜边的一半.(2)直角三角形只有两个锐角.(3)有一条边和这条边上的中线对应相等的两个三角形全等.49.命题“当n是整数时,两个连续整数的平方差22+-等于这两个连续整数的n n(1)和”正确吗?试着用你学过的知识说明理由.50.如图所示,在∠DE∠BC;∠∠1=∠2;∠∠B=∠C三个条件中,任选两个作题设,另一个作为结论,组成一个命题,并证明.参考答案:1.B【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由菱形的性质得出D是假命题;综上,即可得出答案.【详解】解:A.同旁内角互补,两直线平行,原说法错误,是假命题,不符合题意.B.对角线互相平分的四边形是平行四边形,说法正确,是真命题,符合题意.C.相等的两个角不一定是对顶角,原说法错误,是假命题,不符合题意.D.菱形的对角线互相垂直,但不一定相等,原说法错误,是假命题,不符合题意.故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、菱形的性质;熟练掌握相关性质和定理、定义是解决本题的关键.2.B【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判断即可.【详解】解:用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a >b”,第一步应假设a≤b,故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.A【详解】解:A、同角(或等角)的补角相等,正确,为真命题;B、三角形的一个外角大于任何一个不相邻的内角,原命题错误,为假命题;C、同旁内角互补,两直线平行,原命题错误,为假命题;D、如果∠1=∠2,那么∠1和∠2不一定是对顶角,原命题错误,为假命题,故选A.4.A【分析】根据命题的定义对四个语句分别进行判断即可.【详解】A.画两条相交直线不是对一件事情的判断,不是命题;B.互补的两个角之和是180°是命题;C.两点之间线段最短是命题;D.相等的两个角是对顶角是命题.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D【分析】根据逆命题的定义先写出各选项中原命题的逆命题,再对得到的逆命题判断真假.【详解】A的逆命题:三个内角都是60°,那么这个三角形是等边三角形,正确;B的逆命题:在同一个三角形中,如果两角相等,那么它们所对的边也相等,正确;C的逆命题:两直线平行,同位角相等,正确;D的逆命题:对应角相等,两个三角形全等,错,是相似;故答案为D【点睛】本题考查命题与定理-原命题、逆命题、互逆命题.6.C【分析】根据对顶角、邻补角的定义,平行线的判定定理,垂线的性质逐个分析判断即可求解.【详解】解:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,则相等的角不一定是对顶角,故∠是假命题;两条直线相交后所得的有一个公共顶点且有一条公共边的两个角或两个角有一个公共顶点并且一个角的两条边是另一个叫两条边的反向延长线叫做邻补角,则邻补角互补,故∠是真命题;同位角相等,两直线平行,∠是真命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,∠是假命题,故∠∠是真命题,共2个.故选:C.【点睛】本题考查了判断真假命题,掌握相关定义定理是解题的关键.7.C【分析】利用0的算术平方根为0可对(1)进行判断;利用立方根的定义可对(2)进行判断;根据垂直公理可对(3)进行判断;根据平行线的判定方法可对(4)进行判断.【详解】解:(1)如果一个数的算术平方根等于它本身,那么这个数是0或1,所以(1)为假命题;(2)一个数的立方根等于它本身,则这个数是-1,0,1,所以(2)为真命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,所以(3)为真命题;(4)在同一平面内,垂直于同一直线的两条直线互相平行,所以(4)为真命题.综上,(2)(3)(4)三个正确,故选:C.【点睛】本题考查了命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.C【分析】根据平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质分别判断即可.【详解】解:A. 两直线平行,同旁内角互补,正确;B. 等边三角形的三个内角都相等,正确;C. 由于等腰三角形的两个底角相等,且三角形内角和是180°,故等腰三角形的底角不可以是直角,错误;D. 直角三角形的两锐角互余,正确,故选:C.【点睛】本题考查了平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质,熟练掌握各性质是解题关键.9.D【分析】分别写出各个命题的逆命题,然后判断真假即可.【详解】解:A、命题正方形是轴对称图形的逆命题为:轴对称图形是正方形,该逆命题是假命题,不符合题意;B、命题如果两个角是直角,那么它们相等的逆命题为:如果两个角相等,那么这两个角是直角,该逆命题为假命题,不符合题意;C、命题如果两个实数相等,那么它们的平方相等的逆命题为,如果两个实数的平方相等,那么这两个实数相等,该逆命题是假命题,不符合题意;D、命题同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,该逆命题是真命题,符合题意;故选D.【点睛】本题主要考查了写出一个命题的逆命题,判断命题真假,轴对称图形的定义,实数的性质,平行线的性质与判定,直角的定义等等,正确写出每个命题的逆命题是解题的关键.10.B【分析】分别利用二次函数的性质、圆的性质、多边形的性质及圆内接四边形的性质分别判断后即可确定正确的选项.【详解】解:∠抛物线y=3x2+5x-1与两坐标轴交点的个数为2个,错误,为假命题;∠相等的圆心角所对的弦相等,错误,为假命题;∠任何正多边形都有且只有一个外接圆,正确,为真命题;∠三角形的外心到三角形各顶点的距离相等,正确,为真命题;∠圆内接四边形对角相等,错误,为假命题;故选B.【点睛】本题考查了命题与定理的知识,解题的关键是了解二次函数的性质、圆的性质、多边形的性质及圆内接四边形的性质,难度不大.11.D【分析】分析原命题,找出其条件与结论,然后写成“如果…那么…”形式即可.【详解】解:在三角形中,如果有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”,则选项A、B、C正确,不符合题意,不可以用“举反例”的方法证明这个命题是真命题.故选:D.【点睛】本题考查了命题与定理的知识,正确理解定义是关键.12.A【分析】分别写出逆命题,然后判断真假即可.【详解】解:A.逆命题为:相等的角为对顶角,错误,是假命题;B.逆命题为:同位角相等,两直线平行,正确,是真命题;C.逆命题为:内错角相等,两直线平行,正确,是真命题;D.逆命题为:在同一个三角形中,等角对等边,正确,是真命题,故选:A.【点睛】本题考查了命题与定理的知识,能够写出命题的逆命题是解答本题的关键,难度不大.13.D【详解】试题分析:依次分析各项,判断是否为真命题即可.A、经验、观察或实验完全不一定能判断一个数学结论的正确与否,B、我们每个人都有学习推理的必要,C、对于自然数n,n2+n+37不一定是质数,故错误;D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个,本选项正确.考点:命题与定理点评:此类问题对常识性知识要求较高,贴近生活,在中考中较常见,常以选择题形式出现,属于基础题,难度一般.14.B【分析】根据命题的特点可知,命题是判断一件事情的句子,这个判断可能是正确的也可能是错误的,而不做判断的句子肯定不是命题.【详解】A.延长线段AB到点C不是判断句,没有做出判断,不是命题;B.正数都大于负数,是命题;C.直于同一条直线的两条直线平行吗?不是判断句,没有做出判断,不是命题;D.作线段AB∠CD不是判断句,没有做出判断,不是命题.故选B.【点睛】本题考查了命题的定义:在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,比较简单.15.A【分析】反证法的第一步是假设结论不成立,据此解答即可.【详解】∠要证明命题“在三角形中,至少有一个内角大于或等于60”,∠用反证法证明时,首先假设这个三角形中三个内角都小于60°,故选:A.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案.【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线互相垂直的平行四边形是菱形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.D【分析】利用切线的判定方法逐一判断即可得到答案,也可举出反例进行说明.【详解】解:根据切线的判定定理:“经过半径的外端且垂直于半径的直线是圆的切线”得到D正确,故选D.【点睛】本题考查了命题与定理的知识,牢记这些命题与定理是解决本类问题的关键. 18.B【分析】根据正六边形六条边相等且六个角也相等可对∠进行判断,利用等腰三角形的性质及全等三角形的判定定理可对∠进行判断;利用三角形中位线的性质,根据四边形的对角线不一定互相平分对∠进行判断;根据轴对称图形和中心对称图形的定义对∠进行判断,综上即可得答案.【详解】∠正六边形六条边相等且六个角也相等,∠各边相等的六边形不一定是正六边形,故∠不是真命题,∠等腰三角形的顶角对应相等,∠两个等腰三角形的两个底角对应相等,∠底边对应相等,∠两个等腰三角形全等(ASA),故∠是真命题,∠如图,由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∠FG∠BD,EF∠AC∠HG;∠四边形EFGH是矩形,即EF∠FG,∠AC∠BD.∠四边形ABCD是对角线互相垂直的四边形,不一定是菱形,故∠不是真命题,正五边形是轴对称图形,不是中心对称图形,故∠不是真命题,综上所述:是真命题的有∠,共1个,故选B.【点睛】本题考查了命题的判断,涉及的知识点有正多边形的定义、全等三角形的判定、菱形的判定及轴对称图形和中心对称图形的识别,熟练掌握相关性质与定理是解题关键. 19.B【详解】A . 当∠1=50°,∠2=40°时,∠1+∠2=90°,∠1≠∠2;B . 当∠1=45°,∠2=45°时,∠1+∠2=90°,∠1=∠2,与∠1≠∠2矛盾;C . 当∠1=60°,∠2=30° 时,∠1+∠2=90°,∠1≠∠2;D . ∠1=50°,∠2=50°时,∠1+∠2≠90°.故选B .20.B【分析】根据菱形的判定及性质、一元二次方程的解法、位似图形的性质逐一判断即可.【详解】解:∠的原命题:对角线互相垂直的四边形是菱形.对角线互相垂直的平行四边形才是菱形,如果只有垂直,不能判定为菱形,故∠的原命题为假命题,∠的逆命题:菱形是对角线互相垂直的四边形,这是菱形的性质,故∠的逆命题是真命题,故∠不符合题意; ∠的原命题:若x a =,则20x a b x ab -++=();若x a =,则220x a b x ab a a b a ab -++=-++=()(),故∠的原命题是真命题:∠的逆命题:若 20x a b x ab -++=().则x a =.解方程20x a b x ab -++=(),得:()()0x a x b --=,解得:1x a =,2x b =,故∠的逆命题为假命题;故符合题意;∠的原命题:两个位似图形一定是相似图形,根据位似图形的性质知:(1)两个图形必须是相似形;(2)对应点的连线都经过同一点:(3)对应边平行.故两个位似图形一定是相似图形,故∠的原命题是真命题:∠的逆命题:两个相似图形一定是位似图形.很显然,根据位似图形的性质知其不符合位似图形的性质(2)和(3),故∠的逆命题是假命题,符合题意;∠的原命题:若22x x =,则2x =;解方程22x x =,10x =,22x =.故∠的原命题是假命题;∠的逆命题:若2x =,则22x x =,等式左边224==,等式右边224=⨯=:故当2x =时,22x x =,故∠的逆命题是真命题,故∠不符合题意,满足题意的命题是∠∠,共2个.故答案为:B .【点睛】本题考查了命题的判断,涉及原命题与逆命题、菱形的判定及性质、一元二次方程的解法、位似图形的性质,解题的关键是掌握上述知识点并灵活运用.21.如果两个角相等,那么它们是直角;假.【分析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.22.相等的两个角互余【分析】根据逆命题的定义即可得.【详解】由逆命题的定义得:相等的两个角互余,故答案为:相等的两个角互余.【点睛】本题考查了逆命题,掌握理解定义是解题关键.23.对【分析】根据命题的概念判断即可.【详解】解:判断一件事情的语句,叫做命题,所以相等的角是对顶角是命题,对 故答案为:对.【点睛】本题考查了命题与定理,命题是指可以判断真假的陈述语句,加深对相关概念的理解是解此类问题的关键.24.如果两个角是同位角,那么这两个角相等.【分析】命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.【详解】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为:如果两个角是同位角,那么这两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.25.如果两个角相等,那么这两个角是对顶角.【分析】由题意将原命题写成条件与结论的形式,进而将结论和条件进行互换即可.【详解】解:命题“对顶角相等”写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等;逆命题为:如果两个角相等,那么这两个角是对顶角,为假命题.故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查命题与定理的知识,解决本题的关键是将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,并将结论和条件进行互换.26.3【分析】若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎.【详解】应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只并同时熟,共需3分钟.故答案为3.【点睛】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.27.同旁内角互补【分析】根据命题的概念解答即可.【详解】解:命题“同旁内角互补,两直线平行”的条件是同旁内角互补,故答案为:同旁内角互补.【点睛】本题考查的是命题的概念,命题写成“如果⋯,那么⋯”的形式,这时,“如果”后面接的部分是题设,即条件,“那么”后面解的部分是结论.28.13∠=∠。

初中数学命题与证明的知识点训练及答案

初中数学命题与证明的知识点训练及答案

初中数学命题与证明的知识点训练及答案一、选择题1.下列命题是真命题的是( )A .方程23240x x --=的二次项系数为3,一次项系数为-2B .四个角都是直角的两个四边形一定相似C .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D .对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.2.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A . 若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A 选项错误;B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,故选C.【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.3.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.4.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.5.下列命题中正确的是().A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A、所有等腰三角形不一定都相似,原命题是假命题;B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D、有一个角是100°的两个等腰三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题是真命题的是()A.内错角相等B.平面内,过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D .过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.【详解】A 、内错角相等,是假命题,故此选项不合题意;B 、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;C 、相等的角是对顶角,是假命题,故此选项不合题意;D 、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意; 故选:B .【点睛】此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°. 其中不正确的命题的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .8.下列命题中,是真命题的是( )A .若a b =,则a b =B .若0a b +>,则a ,b 都是正数C .两条直线被第三条直线所截,同位角相等D .垂直于同一条直线的两条直线平行【答案】D【解析】【分析】正确的命题是真命题,根据定义依次判断即可得到答案.【详解】A. 若a b =,则a b =±,故A 错误;B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;C. 两条平行线被第三条直线所截,同位角相等,故C 错误;D. 垂直于同一条直线的两条直线平行正确,故选:D.【点睛】此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.9.下列命题是真命题的是( )A .中位数就是一组数据中最中间的一个数B .一组数据的众数可以不唯一C .一组数据的标准差就是这组数据的方差的平方根D .已知a 、b 、c 是Rt △ABC 的三条边,则a 2+b 2=c 2【答案】B【解析】【分析】正确的命题是真命题,根据定义判断即可.【详解】解:A 、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误; B 、一组数据的众数可以不唯一,故正确;C 、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D 、已知a 、b 、c 是Rt △ABC 的三条边,当∠C =90°时,则a 2+b 2=c 2,故此选项错误; 故选:B .【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.10.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B .【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.12.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.13.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.14.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.15.下列命题中,真命题的是()A.两条直线被第三条直线,同位角相等B.若a⊥b,b⊥c,则a⊥cC.点p(x,y),若y=0,则点P在x轴上D a,则a=﹣l【答案】C【解析】【分析】根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.【详解】A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;D a,则a=0或a=1,所以D选项为假命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.16.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.17.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.18.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( ) A .四边形中至多有一个内角是钝角或直角B .四边形中所有内角都是锐角C .四边形的每一个内角都是钝角或直角D .四边形中所有内角都是直角【答案】B【解析】【分析】先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.19.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.。

2020-2021初中数学命题与证明的经典测试题含答案

2020-2021初中数学命题与证明的经典测试题含答案

2020-2021初中数学命题与证明的经典测试题含答案一、选择题1.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【答案】C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.3.下列命题是真命题的是()A.内错角相等B.平面内,过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.【详解】A、内错角相等,是假命题,故此选项不合题意;B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;C、相等的角是对顶角,是假命题,故此选项不合题意;D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;故选:B.【点睛】此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .5.下列命题正确的是( )A .矩形的对角线互相垂直平分B .一组对角相等,一组对边平行的四边形一定是平行四边形C .正八边形每个内角都是145oD .三角形三边垂直平分线交点到三角形三边距离相等【答案】B【解析】【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.证明:∵//AB CD ,∴180A D +=︒∠∠,∵A C ∠=∠,∴180C D ∠+∠=︒,∴//AD BC ,又∵//AB CD ,∴四边形ABCD 是平行四边形,∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:()180821358︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B .【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.6.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.8.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.3【答案】C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.9.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C .【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.10.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.11.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A 、平行四边形的对角线互相平分,正确;B 、两直线平行,内错角相等,正确;C 、等腰三角形的两个底角相等,正确;D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.12.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是( ) A .在三角形中,至少有一个内角是直角B .在三角形中,至少有两个内角是直角C .在三角形中,没有一个内角是直角D .在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确, ∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.13.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.14.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.15.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A.1个 B.2 个 C.3个 D.4个【答案】A【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.详解:①在同一平面内,互相垂直的两条直线一定相交,正确;②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;③两条平行直线被第三条直线所截,同位角相等,错误;④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;真命题有1个.故选A.点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.16.下列命题中,假命题是()A.平行四边形的对角线互相垂直平分B.矩形的对角线相等C.菱形的面积等于两条对角线乘积的一半D.对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.17.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.18.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.19.下列命题是真命题的是()A.一组对边平行且有一组对角相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且另一组对边相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形【答案】A【解析】【分析】根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.【详解】解:如下图,若四边形ABCD,AD∥BC,∠A=∠C,∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故A正确;B、对角线相等的四边形也可能为等腰梯形,故B错误;C、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C错误;D、对角线互相垂直平分且相等的四边形是正方形,故D错误.故选:A.【点睛】本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.20.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题 D.该命题没有逆命题【答案】B【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选:B.点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.。

考点达标训练21 命题与证明

考点达标训练21 命题与证明

考点达标训练21 命题与证明专题精练A 本P34~P35 命题1.(2016·湖南衡阳)下列命题中,属于假命题...的是(C ) A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径2.有下列命题:①平行四边形的对边相等;②矩形的对角线相等;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是(D )A. 1B. 2C. 3D. 43.下列命题中,是真命题的为(A )A. 若a >b ,则c -a <c -bB. 某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C. 点M (x 1,y 1),N (x 2,y 2)都在反比例函数y =1x的图象上,若x 1<x 2,则y 1>y 2 D. 甲、乙两名射击运动员分别射击10次,他们射击成绩的方差分别为S 甲2=4,S 乙2=9,则乙的发挥比甲稳定【解析】 A .若a >b ,则c -a <c -b 正确,故本选项是真命题.B .某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故本选项是假命题.C .当x 1与x 2同号时,若x 1<x 2,则y 1>y 2 ;当x 1与x 2异号时,若x 1<x 2,则y 1 <y 2,故本选项是假命题.D .方差越小越稳定,故本选项是假命题.4.请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是正数”是假命题,你举的反例是x =-2(答案不唯一)(写出一个x 的值即可).5.“在同一平面内,垂直于同一条直线的两直线平行”这个命题的题设是在同一平面内,两直线垂直于同一条直线,结论是这两条直线平行,它是一个__真__命题.6.(2015·江苏无锡)命题“全等三角形的面积相等”的逆命题是__假__(填“真”或“假”)命题.【解析】 “全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.证明(第7题) 7.(2016·江苏无锡)如图,已知在正方形ABCD 中,E 为BC 边上一点,F 为BA 延长线上一点,且CE =AF .连结DE ,DF .求证:DE =DF .【解析】 ∵四边形ABCD 是正方形,∴AD =CD ,∠DAB =∠C =90°,∴∠F AD =180°-∠DAB =90°.在△DCE 和△DAF 中,∵⎩⎪⎨⎪⎧CD =AD ,∠C =∠DAF ,CE =AF ,∴△DCE ≌△DAF (SAS ),∴DE =DF.(第8题) 8.(2016·江苏宿迁)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC .求证:BE =CF .【解析】 ∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC .∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴BE =DE ,∴BE =CF.(第9题)9.如图,在四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,顺次连结EF ,FG ,GH ,HE .(1)请判断四边形EFGH 的形状,并给予证明.(2)试添加一个条件,使四边形EFGH 是菱形(写出你所添加的条件,不要求证明).【解析】 (1)四边形EFGH 是平行四边形.证明如下:连结AC ,BD .∵E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,∴HG 綊12AC ,EF 綊12AC , ∴HG 綊EF ,∴四边形EFGH 是平行四边形.(2)答案不唯一,如EF =FG 等.反证法10.用反证法证明“若实数a ,b 满足ab =0,则a ,b 中至少有一个是0”时,应先假设(C )A. a ,b 中至多有一个是0B. a ,b 中至多有两个是0C. a ,b 中没有一个是0D. a ,b 都等于011.用反证法证明“如果同位角不相等,那么这两条直线不平行”的第一步应先假设两直线平行.12.用反证法证明:等腰三角形的底角是锐角.【解析】 假设等腰三角形的底角不是锐角,则底角大于或等于90°.根据等腰三角形的两个底角相等,得两个底角的和大于或等于180°,则该三角形的三个内角和一定大于180°,这与三角形的内角和定理相矛盾,∴假设不成立,故等腰三角形的底角是锐角.13.(2015·浙江台州)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5人.”对于甲、乙两人的说法,有下列四个命题,其中是真命题的是(B )A. 若甲对,则乙对B. 若乙对,则甲对C. 若乙错,则甲错D. 若甲错,则乙对【解析】 针对逻辑判断问题逐一分析并做出判断:A 项,若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19或20人,则两项都参加的人数为5或4或3或2或1或0人,故乙错.B 项,若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1或0人,则只参加一项的人数为16或17或18或19或20人,故甲对.C 项,若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲有可能对,有可能错.D 项,若甲错,即只参加一项的人数小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”.14.有下列命题:①一个角的两边分别垂直于另一个角的两边,则这两个角相等;②数据5,2,7,1,2,4的中位数是3,众数是2;③等边三角形既是中心对称图形,又是轴对称图形;④在Rt △ABC 中,∠C =90°,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则AB 边上的中线长为1235.其中正确的命题有(C )A. 0个B. 1个C. 2个D. 3个【解析】 一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补,故①错误.将数据5,2,7,1,2,4按从小到大的顺序排列为:1,2,2,4,5,7,中位数是2+42=3,众数是2,故②正确.等边三角形是轴对称图形,但不是中心对称图形,故③错误.由题意,得a +b =7,ab =7,AB 边上的中线长为12AB =12a 2+b 2=12(a +b )2-2ab =1272-7×2=1235,故④正确.故选C.15.(2016·内蒙古呼和浩特)以下四个命题:①对应角和面积都相等的两个三角形全等;②“若x 2-x =0,则x =0”的逆命题;③若关于x ,y 的方程组⎩⎪⎨⎪⎧-x +y -a =0,bx -y +1=0有无数多组解,则a =b =1;④将多项式5xy +3y -2x 2y 因式分解,其结果为-y (2x +1)(x -3).其中正确的命题的序号为①②③④.【解析】 ①对应角相等的两个三角形相似.又∵面积相等,∴相似比为1,∴两个三角形全等,故本命题正确.②“若x 2-x =0,则x =0”的逆命题为“若x =0,则x 2-x =0”,故本命题正确.③∵关于x ,y 的方程组⎩⎪⎨⎪⎧-x +y -a =0,bx -y +1=0有无数多组解,∴-1b =1-1=-a 1,∴a =b =1,故本命题正确.④5xy +3y -2x 2y =-y (2x 2-5x -3)=-y (2x +1)(x -3),故本命题正确.综上所述,正确的命题的序号为①②③④.(第16题)16.已知D ,E 分别为△ABC 的边AB ,AC 上的点,连结BE ,CD 交于点F .用反证法证明:BE ,CD 不能互相平分.【解析】 假设BE ,CD 互相平分,则BF =EF ,CF =DF .在△BDF 和△ECF 中,∵⎩⎪⎨⎪⎧BF =EF ,∠BFD =∠EFC ,DF =CF ,∴△BDF ≌△ECF (SAS ),∴∠BDF =∠ECF ,∴BD ∥EC .这与△ABC 是三角形相矛盾,∴假设不成立,即BE ,CD 不能互相平分.17.学习了“图形的相似”后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可得到“满足一个锐角对应相等,或两直角边对应成比例,两个直角三角形相似”.(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足斜边和一条直角边对应成比例的两个直角三角形相似”.请结合所给图形,写出已知,并完成说理过程.已知:如图,在Rt △ABC 和Rt △A ′B ′C ′中,∠C =∠C ′=90°,AB A ′B ′=AC A ′C ′. 求证:Rt △ABC ∽Rt △A ′B ′C ′.(第17题) 【解析】 (2)设AB A ′B ′=AC A ′C ′=k ,则AB =kA ′B ′,AC =kA ′C ′. 在Rt △ABC 和Rt △A ′B ′C ′中,∵BC B ′C ′=AB 2-AC 2A ′B ′2-A ′C ′2=k 2A ′B ′2-k 2A ′C ′2A ′B ′2-A ′C ′2=k ,∴AB A ′B ′=AC A ′C ′=BC B ′C ′,∴Rt △ABC ∽Rt △A ′B ′C ′.。

中考数学考点过关培优训练卷:《命题与证明》(附答案)

中考数学考点过关培优训练卷:《命题与证明》(附答案)

中考数学考点过关培优训练卷:《命题与证明》一.选择题(每小题4分,共40分)1.下列说法错误的是()A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点P距离等于1 cm的点的轨迹是以点P为圆心,半径长为1cm的圆C.到直线l距离等于2 cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线D.等腰△ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线2.下列命题中是真命题的有()①直径是圆中最大的弦;②长度相等的弧是等弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④两个圆心角相等,它们所对的弦也相等;⑤等弧所对的圆心角相等.A.1个B.2个C.3个D.4个3.下列各命题中,是真命题的是()A.在Rt△ABC与Rt△DEF中,=,Rt△ABC∽Rt△DEFB.底角都为45°的两个等腰梯形相似C.一组邻边之比为的两个平行四边形相似D.有一个内角为100°的两个等腰三角形相似4.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC 的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.πB.C.2D.5.“若|a|>1,则a>1”是一个假命题,可以用举反例的方法说明它是假命题,下列选项中恰当的反例是()A.a=5B.a=﹣5C.a=1D.a=﹣16.下列命题的逆命题为真命题的是()A.全等三角形的对应角相等B.如果a>b,那么>C.对顶角相等D.如果a=b,那么a2=b27.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有()A.①②③B.①②④C.②③④D.①③④8.给出下列4个命题:①相似三角形的周长之比等于其相似比;②方程x2﹣3x+5=0的两根之积为5;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A.①②④B.①③④C.①④D.①②③④9.已知边长为4的等边△ABC,E,F分别是AB、BC的中点,将△BEF绕点B顺时针旋转α°,AE与CF交于P.当α=60°时,点P运动的路径长是()A.πB.πC.πD.π10.如图,等边△ABC的边长为8.P,Q分别是边AC,BC上的点,连结AQ,BP,交于点O.以下结论:①若AP=CQ,则△BAP≌△ACQ;②若AQ=BP,则∠AOB=120°;③若AP=CQ,BP=7,则PC=5;④若点P和点Q分别从点A和点B同时出发,以相同的速度向点C运动(到达点C就停止),则点O经过的路径长为4.其中正确的()A.①②③B.①④C.①②D.①③④二.填空题(每小题4分,共20分)11.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D 出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为.12.①设二次函数为y=x2+bx+c,当x≤1时,y≥0,当1≤x≤3时,y≤0,那么c的取值范围是c≥3.②已知函数y=,若使y=k成立的x值恰好有2个,则k的值为3.③若实数b,c满足,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1,上述3个命题中,真命题的序号是.13.有以下两个命题:①实数与数轴上的点一一对应;②﹣5没有立方根,其中是假命题的为(填序号).14.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为.15.如图,在平面直角坐标系中,点A(5,0),P(2,0),点B是平面内一点,PB=2,若PB绕点P逆时针旋转90°,连接AB,以AB为边作正方形ABCD,在旋转的过程中,点C运动的路径长为.三.解答题(每题8分,共40分)16.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.17.半径为r的圆在边长为a的等边三角形中随意移动(a≥2r),求圆扫不到的面积.18.如图,假若有两个人造地球卫星,它们的运行轨迹近似于以地球球心为圆心的圆,轨道面与赤道面重合,卫星甲以每小时15°的转速且与地球自转相反的方向绕地球旋转,卫星乙以每小时35°的转速且与地球自转相同的方向绕地球旋转,若2018年1月1日凌晨0点整,它们都恰好分别位于赤道上的某点A的正上方B、C处.当它们第二次又回到点A的正上方分别是什么时候?它们同时回到点A的正上方是什么时候?(注:转速为动点与圆心连结的半径在单位时间内所转的角度)19.如图(1)是一款手机支架,忽略支管的粗细,得到它的简化结构图如图(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE,GF⊥EF,支架可绕点O旋转,OE=20cm,EF=20cm.如图(3)若将支架上部绕O点逆时针旋转,当点G落在直线CD上时,测量得∠EOG =65°.(1)求FG的长度(结果精确到0.1);(2)将支架由图(3)转到图(4)的位置,若此时F、O两点所在的直线恰好于CD垂直,点F的运动路线的长度称为点F的路径长,求点F的路径长.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.73)20.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.参考答案一.选择题1.解:在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线,A正确;到点P距离等于1 cm的点的轨迹是以点P为圆心,半径长为1cm的圆,B正确;到直线l距离等于2 cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线,C正确;等腰△ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线(BC的中点除外),D错误,故选:D.2.解:①直径是圆中最大的弦,①是真命题;②长度相等的弧不一定是等弧,②是假命题;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,③是假命题;④在同圆或等圆中,两个圆心角相等,它们所对的弦也相等,④是假命题;⑤等弧所对的圆心角相等,⑤是真命题;故选:B.3.解:A、在Rt△ABC与Rt△DEF中,=,∠ABC=∠DEF,则Rt△ABC∽Rt△DEF,本说法错误;B、底角都为45°的两个等腰梯形对应边的比不一定相等,则不一定相似,本说法错误;C、一组邻边之比为的两个平行四边形,对应角不一定相等,不一定相似,本说法错误;D、有一个内角为100°的两个等腰三角形相似,本说法正确;故选:D.4.解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=2,∴OC=AB=,OP=AB=,∵∠ACB=90°∴C在⊙O上,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•=π.故选:B.5.解:当a=﹣5时,|﹣5|=5>1,﹣5<1,∴当a=﹣5时,可以说明“若|a|>1,则a>1”是一个假命题,故选:B.6.解:A、全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,是假命题;B、如果a>b,那么>的逆命题是如果>,那么a>b,是真命题;C、对顶角相等的逆命题是相等的角是对顶角,是假命题;D、如果a=b,那么a2=b2的逆命题是如果a2=b2,那么a=b,是假命题;故选:B.7.解:由矩形ABCD可得AD∥BC,∴∠APB=∠HBC,∠BAP=90°,又∵CH⊥BP,垂足为H,∴∠CHB=∠BAP=90°,∴△ABP∽△HCB,故①正确;如图所示,连接AH,AO,HO,则AH+HO≥AO,∴当A,H,O在同一直线上时,AH最短,此时AH=AO﹣HO==,即AH的最小值为,故②正确;③如图所示,在运动过程中,BP扫过的面积=△ABD的面积=AB×AD=,CH扫过的面积=等边△COQ的面积+扇形BOQ的面积=,∴BP扫过的面积不等于CH扫过的面积,故③错误;④在运动过程中,点H的运动路线(轨迹)长为,故④正确;故正确的有①②④.故选:B.8.解:①相似三角形的周长之比等于其相似比,是真命题;②方程x2﹣3x+5=0,△=(﹣3)2﹣4×1×5=﹣11<0,方程无实根,是假命题;③在同一个圆中,同一条弦所对的圆周角相等或互补,是假命题;④圆的内接四边形对角互补,是真命题;故选:C.9.解:如图,作△ABC的外接圆⊙O,OM⊥BC于M交⊙O于N,连接OB,PB.∵△ABC和△EBF是等边三角形,∴AB=BC,BE=BF,∠ABC=∠BAC=∠EBF=60°,∴∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF,∴∠BAE=∠BCP,∴A、B、P、C四点共圆,∴∠BPC+∠BAC=180°,∴∠BPC=120°,∴点P的运动轨迹是,∵等边三角形的边长为4,∴OB=,的长==π,故选:D.10.解:①在三角形△BAP和△ACQ中则△BAP≌△ACQ(SAS),∴①正确②如图1,题中AQ=BP,存在两种情况.在P1的位置,∠AOB=120°;在P2的位置,∠AOB的大小无法确定.∴②错误③本问与AP=CQ这个条件无关,如图1,作PE垂直于BC于点E,设CP=x,∵∠C=60°,∴CE=x,BQ=8﹣x,PQ=x,PB=7,在Rt△PBQ中,根据勾股定理,得PB2=PQ2+BQ2,代入算式解得x=3或5,∴PC=3或5.故③错.图1④由题可得:AP=BQ,由对称性可得(或者证明△ABP和BAQ全等)O的运动轨迹为△ABC中AB边上的中线有AB=8,运动轨迹为4故选:B.二.填空题(共5小题)11.解:如图:,∵动点F,E的速度相同,∴DF=AE,又∵正方形ABCD中,AB=2,∴AD=AB,在△ABE和△DAF中,,∴△ABE≌△DAF,∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠F AD+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,AG=BG=AB=1.在Rt△BCG中,DG===,∵PG=AG=1,∴DP=DG﹣PG=﹣1即线段DP的最小值为﹣1,故答案为:﹣1.12.解:①∵二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴,解得:b≤﹣4,c≥3,∴结论①正确;②解:函数y=的图象如图:根据图象知道当y=3或﹣1时,对应成立的x有恰好有2个,故②错误;③∵实数b、c满足,∴y=x2+bx+c的图象如图所示,∴关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1,故此命题正确.故答案为:①③.13.解:①实数与数轴上的点一一对应,故不符合题意;②﹣5有立方根,故符合题意;故答案为:②.14.解:如图,以OB为斜边在OB的左边作等腰Rt△P′OB,以P′为圆心PB为半径作⊙P′,在优弧OB上取一点H,连接HB,HO,BM,MP.∵PE⊥OB,∴∠PEO=90°,∵点M是内心,∴∠OMP=135°,∵OB=OP,∠MOB=∠MOP,OM=OM,∴△OMB≌△OMP(SAS),∴∠OMB=∠OMP=135°,∵∠H=∠BP′O=45°,∴∠H+∠OMB=180°,∴O,M,B,H四点共圆,∴点M的运动轨迹是,∴内心M所经过的路径长==π,故答案为π.15.解:如图,将线段P A绕点P逆时针旋转90°得到PF,连接CF,AF,AC.∵△ABC,△APF都是等腰直角三角形,∴AC=AB,AF=AP,∠BAC=∠P AF,∴∠CAF=∠BAP,∴=,∴△CAF∽△BAP,∴==,∴CF=PB=2,∴点C的运动轨迹是以F为圆心,2为半径的圆,∴若PB绕点P顺时针旋转90°,点C的运动路径的长==π.故答案为π.三.解答题(共5小题)16.已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D17.解:如图,当圆形纸片运动到与∠A的两边相切时,过圆形纸片的圆心O作∠A两边的垂线,垂足分别为D,E,连接AO,则Rt△ADO中,∠OAD=30°,OD=r,AD=r∴S△ADO=OD•AD=r2∴S四边形ADO E =2S△ADO=r2∵∠DOE=360°﹣90°﹣90°﹣60°=120°∴S扇形DOE=r2∴圆扫不到的面积为:3(r2﹣r2)=(﹣π)r2答:圆扫不到的面积为(﹣π)r2.18.解:地球的自转的速度为360÷24=15度/小时,设卫星甲第二次又回到点A的正上方的时间为x小时,卫星乙第二次又回到点A的正上方的时间为y小时;由题意:(15+15)x=360,(35﹣15)y=360,解得x=12,y=18,∵12,18的最小公倍数为36,∴到第二天12时,18时两个卫星分别回到点A的正上方;到第三天12时,它们同时到达点A是正上方,以后每隔一天后的12时,它们同时回到点A的正上方.19.解:(1)如图,作GM⊥OE于点M,∵FE⊥OE,GF⊥EF,∴四边形EFGM为矩形,设FG=xcm,∴EF=GM=20cm,FG=EM=xcm,∵OE=20cm,∴OM=(20﹣x)cm,在RT△OGM中,∵∠EOG=65°,∴tan∠EOG=,即=tan65°,解得:x≈3.8cm;故FG的长度约为3.8cm.(2)连接OF,OF'在Rt△EFO中,∵EF=20,EO=20,∴FO==40,tan∠EOF===,∴∠EOF=60°,∴∠FOG=∠EOG﹣∠EOF=5°,又∵∠GOF′=90°,∴∠F OF′=85°,∴点F在旋转过程中所形成的弧的长度即路径长为:=cm.20.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。

2020-2021初中数学命题与证明的知识点训练(2)

2020-2021初中数学命题与证明的知识点训练(2)

2020-2021初中数学命题与证明的知识点训练(2) 一、选择题1.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.2.下列各命题的逆命题是真命题的是A.对顶角相等B.全等三角形的对应角相等C .相等的角是同位角D .等边三角形的三个内角都相等【答案】D【解析】【分析】 分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A 、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A 选项错误;B 、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B 选项错误;C 、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C 选项错误;D 、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D 选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.3.下列命题是真命题的个数是( ).①64的平方根是8±;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.4.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选C.5.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.7.以下说法中:(1)多边形的外角和是360 ;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.3【答案】C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.8.下列命题的逆命题成立的是()A.对顶角相等B.全等三角形的对应角相等C.如果两个数相等,那么它们的绝对值相等D.两直线平行,同位角相等【答案】D【解析】【分析】写出各个命题的逆命题,然后判断是否成立即可.【详解】解:A、逆命题为相等的角为对顶角,不成立;B、逆命题为对应角相等的三角形全等,不成立;C、逆命题为绝对值相等的两个数相等,不成立;D、逆命题为同位角相等,两直线平行,成立,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.9.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.10.下列命题中是真命题的是()A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】 根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.11.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个【答案】A【解析】【分析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.12.下列命题正确的是()A.矩形对角线互相垂直x=B.方程214x x=的解为14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.13.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.15.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x 2+y 2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D 选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.下列命题的逆命题不正确...的是( ) A .相等的角是对顶角B .两直线平行,同旁内角互补C .矩形的对角线相等D .平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A 、逆命题是:对顶角相等.正确;B 、逆命题是:同旁内角互补,两直线平行,正确;C 、逆命题是:对角线相等的四边形是矩形,错误;D 、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C .【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.17.下列命题的逆命题成立的有( )①勾股数是三个正整数 ②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个B .2个C .3个D .4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.18.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .20.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.。

2021年全国历年中考数学真题精选汇编:命题与证明

2021年全国历年中考数学真题精选汇编:命题与证明

全国历年中考数学真题精选汇编:命题与证明一、单选题(共27题;共54分)1.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,是的外角.求证:.下列说法正确的是()A. 证法1还需证明其他形状的三角形,该定理的证明才完整B. 证法1用严谨的推理证明了该定理C. 证法2用特殊到一般法证明了该定理D. 证法2只要测量够一百个三角形进行验证,就能证明该定理2.(2020·雅安)下列四个选项中不是命题的是()A. 对顶角相等B. 过直线外一点作直线的平行线C. 三角形任意两边之和大于第三边D. 如果,那么3.(2020·岳阳)下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小4.(2019·常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A. ﹣2B. ﹣C. 0D.5.(2019·岳阳)下列命题是假命题的是( )A. 平行四边形既是轴对称图形,又是中心对称图形B. 同角(或等角)的余角相等C. 线段垂直平分线上的点到线段两端的距离相等D. 正方形的对角线相等,且互相垂直平分6.(2018·百色)给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增大.其中真命题的个数是()A. 2B. 3C. 4D. 57.(2018·台湾)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A. 只使用苹果B. 只使用芭乐C. 使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D. 使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多8.(2018·包头)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A. 4个B. 3个C. 2个D. 1个9.(2018·淄博)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A. 3B. 2C. 1D. 010.(2017·宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形.在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是()A. 3B. 4C. 5D. 611.(2017·通辽)下列命题中,假命题有()①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;⑤若⊙O的弦AB,CD交于点P,则PA•PB=PC•PD.A. 4个B. 3个C. 2个D. 1个12.(2017·包头)已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A. 1个B. 2个C. 3个D. 4个13.(2017·山西)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是()A. 综合法B. 反证法C. 举反例法D. 数学归纳法14.(2013·桂林)下列命题的逆命题不正确的是()A. 平行四边形的对角线互相平分B. 两直线平行,内错角相等C. 等腰三角形的两个底角相等D. 对顶角相等15.(2013·贵港)下列四个命题中,属于真命题的是()A. 若=m,则a=mB. 若a>b,则am>bmC. 两个等腰三角形必定相似D. 位似图形一定是相似图形16.(2014·贵港)下列命题中,属于真命题的是()A. 同位角相等B. 正比例函数是一次函数C. 平分弦的直径垂直于弦D. 对角线相等的四边形是矩形17.(2013·深圳)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A. .1个B. 2个C. 3个D. 4个18.(2014·绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB 之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A. 50秒B. 45秒C. 40秒D. 35秒19.(2012·温州)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A. a=﹣2B. a=﹣1C. a=1D. a=220.(2016·铜仁)下列命题为真命题的是()A. 有公共顶点的两个角是对顶角B. 多项式x2﹣4x因式分解的结果是x(x2﹣4)C. a+a=a2D. 一元二次方程x2﹣x+2=0无实数根21.(2016·防城)下列命题是真命题的是()A. 必然事件发生的概率等于0.5B. 5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D. 要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法22.(2016·梧州)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A. ①②③④B. ①④C. ②④D. ②23.(2016·齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A. 1个B. 2个C. 3个D. 4个24.(2016·安顺)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b 的值可以是()A. b=﹣3B. b=﹣2C. b=﹣1D. b=225.(2016·龙岩)下列命题是假命题的是()A. 若|a|=|b|,则a=bB. 两直线平行,同位角相等C. 对顶角相等D. 若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根26.(2016·衡阳)下列命题是假命题的是()A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径27.(2018·舟山)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁二、填空题(共12题;共12分)28.(2019·泰州)命题“三角形的三个内角中至少有两个锐角”是________(填“真命题”或“假命题”).29.(2018·无锡)命题“四边相等的四边形是菱形”的逆命题是________.30.(2017·百色)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有________(填序号)31.(2017·常德)命题:“如果m是整数,那么它是有理数”,则它的逆命题为:________.32.(2013·泰州)命题“相等的角是对顶角”是________命题(填“真”或“假”).33.(2016·无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题________.34.(2013·柳州)有下列4个命题:①方程x2﹣(+ )x+ =0的根是和.②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD= ,则CD=3.③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在y= 的图象上,则k=﹣1.④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.上述4个命题中,真命题的序号是________.35.(2015·宁波)命题“对角线相等的四边形是矩形”是________命题(填“真”或“假”).36.(2014·温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x=________(写出一个x的值即可).37.(2016·遵义)字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为________.38.(2016·来宾)命题“直径所对的圆周角是直角”的逆命题是________.39.(2016·呼和浩特)以下四个命题:①对应角和面积都相等的两个三角形全等;②“若x2﹣x=0,则x=0”的逆命题;③若关于x、y的方程组有无数多组解,则a=b=1;④将多项式5xy+3y﹣2x2y因式分解,其结果为﹣y(2x+1)(x﹣3).其中正确的命题的序号为________.三、综合题(共1题;共10分)40.(2017·台湾)今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人之得票数内,全村设有四个投开票所,目前第一、第二、第三投开票所已开完所有选票,剩下第四投开票所尚未开票,结果如表所示:(单位:票)请回答下列问题:(1)请分别写出目前甲、乙、丙三名候选人的得票数;(2)承(1),请分别判断甲、乙两名候选人是否还有机会当选村长,并详细解释或完整写出你的解题过程.答案解析部分一、单选题1.【答案】B【解析】【解答】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的符合题意性,用特殊到一般法证明了该定理缺少理论证明过程,C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的符合题意性更高,就能证明该定理还需用理论证明,D不符合题意.故答案为:B.【分析】解题关键:依据定理证明的一般步骤进行分析解答。

中考数学专项练习命题与证明(含解析)

中考数学专项练习命题与证明(含解析)

中考数学专项练习命题与证明(含解析)【一】单项选择题1.以下命题中正确的选项是〔〕A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形2.以下四个命题:⑴数据5、2、﹣3、0的极差是8;⑵方差越大,说明数据就越稳定;⑶不在同一直线上的三点确定一个圆;⑷在半径为5的⊙O中,弦AB∥CD,且AB=6,CD=8,那么AB与CD 之间距离为7其中真命题的个数为〔〕A.4个B.3个C.2个D.1个3.以下定理中,没有逆定理的是〔〕①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A.1个B.2个C.3个D.4个4.以下命题中,是假命题的是〔〕A.平方根等于本身的数是B.如果a,b都是无理数,那么a+b也一定是无理数C.坐标平面内的点与有序实数对一一对应 D.与6 可以合并同类项5.以下命题中,是真命题的是〔〕A.有理数都是有限小数B.同旁内角互补C.函数y= 自变量x的取值范围是x≥3D.假设甲、乙两组数据中各有20个数据,平均数= ,方差S甲2 =1.25,S乙2=0.96,那么说明乙组数据比甲组数据稳定6.下面说法正确的选项是()A.定理一定是命题B.定理一定有逆定理C.命题一定是定理 D.逆命题一定正确7.以下命题是真命题的是〔〕A.不相交的两条直线叫做平行线 B.经过直线外一点,有且只有一条直线与直线平行C.两直线平行,同旁内角相等 D.两条直线被第三条直线所截,同位角相等8.以下命题为真命题的是〔〕A.假设a2=b2 ,那么a=bB.等角的补角相等C.n边形的外角和为〔n﹣2〕•180° D.假设x甲= x乙,S2甲>S2乙,那么甲数据更稳定【二】填空题9.指出以下命题的条件和结论,并改写成〝如果…,那么…〞的形式.〔1〕两直线平行,内错角相等;〔2〕三角形内角和等于180°.10.〝同位角相等〞的逆命题是________.11.请把命题〝对顶角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点达标训练21 命题与证明命题1. 下列命题中,正确的是( ) A. 对角线互相垂直的四边形是菱形B. 一组对边相等,另一组对边平行的四边形是平行四边形C. 对角线互相平分的四边形是矩形D. 对角线互相垂直平分且相等的四边形是正方形 2. 有下列命题:①平行四边形的对边相等. ②矩形的对角线相等.③正方形既是轴对称图形,又是中心对称图形. ④一条对角线平分一组对角的平行四边形是菱形. 其中真命题的个数是( ) A. 1 B. 2 C. 3 D. 43. 下列命题中,是真命题的为( ) A. 若a >b ,则c -a <c -bB. 某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C. 点M (x 1,y 1),N (x 2,y 2)都在反比例函数y =1x的图象上,若x 1<x 2,则y 1>y 2D. 甲、乙两名射击运动员分别射击10次,他们射击成绩的方差分别为S 甲2=4,S 乙2=9,则乙的发挥比甲稳定4.(2015·浙江宁波)命题“对角线相等的四边形是矩形”是________(填“真”或“假”)命题.5. (2014·浙江温州)请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是正数”是假命题,你举的反例是x =________(写出一个x 的值即可).6. “在同一平面内,垂直于同一条直线的两直线平行”这个命题的题设是____________________________,结论是______________________,它是一个________命题.7. “两直线平行,同旁内角互补”的逆命题是_____________________________.证明8. (2014·北京)如图,点B在线段AD上,BC∥DE,AB=DE,BC=BD.求证:∠A=∠E.(第8题)9. (2015·贵州安顺)如图,已知点D在△ABC的BC边上,DE∥AC交AB于点E,DF∥AB交AC 于点F.(第9题)(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.10. 如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,顺次连结EF,FG,GH,HE.(第10题)(1)请判断四边形EFGH的形状,并给予证明.(2)试添加一个条件,使四边形EFGH是菱形(写出你所添加的条件,不要求证明).反证法11. (2014·福建泉州)用反证法证明“一个三角形中不能有两个角是直角”的第一步应假设这个三角形中________________________.12. 用反证法证明“如果同位角不相等,那么这两条直线不平行”的第一步应假设________________________.13. 用反证法证明:等腰三角形的底角是锐角.14. (2014·山东泰安)在△ABC和△A1B1C1中,有下列命题:①若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1.②若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1.③若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1.④若AC∶A1C1=CB∶C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数是( )A. 4B. 3C. 2D. 115. 有下列命题:①一个角的两边分别垂直于另一个角的两边,则这两个角相等;②数据5,2,7,1,2,4的中位数是3,众数是2;③等边三角形既是中心对称图形,又是轴对称图形;④在Rt△ABC 中,∠C =90°,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则AB 边上的中线长为1235.其中正确的命题有( )A. 0个B. 1个C. 2个D. 3个 16. 有下列命题:①方程x 2-(2+3)x +6=0的根是2和 3.②在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AD =4,BD =94,则CD =3.③点P (x ,y )的坐标x ,y 满足x 2+y 2+2x -2y +2=0,若点P 也在y =k x的图象上,则k =-1. ④若实数b ,c 满足1+b +c >0,1-b +c <0,则关于x 的方程x 2+bx +c =0一定有两个不相等的实数根,且较大的实数根x 0满足-1<x 0<1.其中真命题是________(填序号). 17. 如图,点D ,E 分别在AB ,AC 上. (1)已知BD =CE ,CD =BE ,求证:AB =AC .(第17题)(2)将“BD =CE ”记为①,“CD =BE ”记为②,“AB =AC ”记为③.添加条件①③,以②为结论构成命题1;添加条件②③,以①为结论构成命题2. 命题1是________(填“真”或“假”,下同)命题,命题2是________命题.18. 学习了“图形的相似”后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可得到“满足________________,或________________,两个直角三角形相似”.(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足______________的两个直角三角形相似”.请结合所给图形,写出已知,并完成说理过程.已知:如图,______________________________________________________________.求证:Rt△ABC∽Rt△A′B′C′.(第18题)参考答案1.D 2.D 3.A 4.假 5.-2(答案不唯一) 6.同一平面内两直线垂直于同一条直线 这两条直线平行 真 7.同旁内角互补,两直线平行 8.提示:证△ABC ≌△EDB (SAS ). 9.(1) 提示:证四边形AEDF 是平行四边形. (2)四边形AEDF 是菱形,理由略.10.(1)四边形EFGH 是平行四边形,证明略. (2)答案不唯一,如EF =FG 等. 11.有两个角是直角 12.两直线平行 13.假设等腰三角形的底角不是锐角,则底角大于或等于90°.根据等腰三角形的两个底角相等,得两个底角的和大于或等于180°,则该三角形的三个内角和一定大于180°,这与三角形的内角和定理相矛盾,故假设不成立.所以等腰三角形的底角是锐角. 14.B[①若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,能利用“SAS ”判定△ABC ≌△A 1B 1C 1,正确.②若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,为“SSA ”,不能判定△ABC ≌△A 1B 1C 1,错误.③若∠A =∠A 1,∠C =∠C 1,能利用“有两个角对应相等的两个三角形相似”判定△ABC ∽△A 1B 1C 1,正确.④若AC ∶A 1C 1=CB ∶C 1B 1,∠C =∠C 1,能利用“两边对应成比例且夹角相等的两个三角形相似”判定△ABC ∽△A 1B 1C 1,正确.故选B .] 15.C[一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补,故①错误.将数据5,2,7,1,2,4按由小到大的顺序排列为:1,2,2,4,5,7,中位数是2+42=3,众数是2,故②正确.等边三角形是轴对称图形,但不是中心对称图形,故③错误.由题意,得a +b =7,ab =7,AB 边上的中线长为12AB =12a 2+b 2=12(a +b )2-2ab =1272-7×2=1235,故④正确.故选C .](第16题解)16.①②③④[①解方程x 2-(2+3)x +6=0,得x 1=2,x 2=3,故此命题正确.②由题意,得CD 2=AD ·BD ,若AD =4,BD =94,则CD =3.故此命题正确.③∵点P (x ,y )的坐标x ,y 满足x2+y 2+2x -2y +2=0,∴(x +1)2+(y -1)2=0,解得x =-1,y =1.∴xy =-1.∵点P 也在y =k x的图象上,∴k =-1,故此命题正确.④∵实数b ,c 满足1+b +c >0,1-b +c <0,∴y =x 2+bx +c 的大致图象如解图所示,∴关于x 的方程x 2+bx +c =0一定有两个不相等的实数根,且较大的实数根x 0满足-1<x 0<1,故此命题正确.] 17.(1)连结BC .∵BD =CE ,CD =BE ,BC =CB ,∴△DBC ≌△ECB (SSS ).∴∠DBC =∠ECB .∴AB =AC . (2)真 假[对于命题1:∵BD =CE ,AB =AC ,∴AB -BD =AC -CE ,即AD =AE .又∵∠A =∠A ,∴△ABE ≌△ACD (SAS ).∴CD =BE .故命题1是真命题.对于命题2:CD =BE ,AB =AC ,∠A =∠A ,此为“边边角”,不能推出△ABE ≌△ACD ,不能得出BD =CE ,故命题2是假命题.] 18.(1)一个锐角对应相等 两直角边对应成比例 (2)斜边和一条直角边对应成比例 在Rt△ABC 和Rt△A ′B ′C ′中,∠C =∠C ′=90°,AB A ′B ′=ACA ′C ′证明:设AB A ′B ′=AC A ′C ′=k ,则AB =kA ′B ′,AC =kA ′C ′.在Rt△ABC 和Rt△A ′B ′C ′中,BCB ′C ′=AB 2-AC 2A ′B ′2-A ′C ′2=k 2A ′B ′2-k 2A ′C ′2A ′B ′2-A ′C ′2=k ,∴AB A ′B ′=AC A ′C ′=BCB ′C ′,∴Rt△ABC ∽Rt△A ′B ′C ′.。

相关文档
最新文档