水平井钻井技术概述
定向井(水平井)钻井技术概述
测量方式
氢氟酸测斜仪,机械式罗盘的电测井方法。
多种引进的有线随钻测斜系统投入工业使用和发展了电子测量系统及陀螺测量系统
发展了无线随钻测斜系统,引进了带地质参数的MWD系统
定向井钻井水平
简单的单口定向井、水平井位移小,精度低
钻成大量高难度定向井、大组丛式井、多目标井、套管定向开窗井、水平井也从大半径水平井发展到了中半径水平井
定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。
钻成位移过万米的大位移井
径向水平井可在0.3米之内完成增斜过程
我国定向井钻井技术发展情况
(表二)
年代
内容
60年代
80年代
90年代
剖面设计及轨
迹计算方法
设计采用查表法、图解法等精度不高的方法
发展了曲率半径法,最小曲率半径法等多种更为精确的轨迹计算和设计方法,编制了能进行轨迹预测和防碰扫描的计算机软件包。
第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。
目前最深的定向井由BP勘探公司钻成,井深达10,654米;
水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm油田钻成的M11井,水平位移高达1,0114米。
钻井的概述
钻井的概述钻井是石油勘探和开发最主要的手段之一。
通过钻井才能证实勘探地区是否含油以及含油量多少;通过钻井才能将地下的油气开采出来。
钻井技术水平不仅直接影响到勘探的效果和油气的产量,而且关系到油田开发总成本的高低。
因此,提高钻井技术水平和钻井效率,降低钻井成本,对油气田开发具有十分重要的意义。
石油钻井,按钻井的目的,分为勘探井和生产并;按井身轴向角度,分为垂直并和定向井,定向井包括斜直井和水平井:按钻井的环境条件,分为陆地钻井、沙漠钻井和海洋钻井海洋钻井又按钻井装置分为固定钻井和浮式钻井等。
钻机是实现钻井工作的套综合性机组。
钻井技术水平的高低很大程度上取决于钻井设备的装备水平,无论是何种类型的钻井工艺,对钻井设备都有下列基本要求:(1)为了有效破碎岩石、形成井眼,钻具要有旋转钻进的能力。
因此要求机械设备必须给钻具提供足够的转矩和转速,并维持一…定的钻压;(2)为了满足钻具送进、起下钻具、可换钻头、下套管和处理井下事故的需要,机械设备应冇一定的起重能力及提升速度:(3)为了清洗井底、排出岩屑,要求机械设备能够提供钻井液,并产生足够的泵压和排量。
在满足这些基本要求的基础上,适应于不同钻井类型,形成了品种繁多、规格各异的钻井设备系列。
目前的钻井作业一般采用旋转式钻井法,就是将许多根长9m或12m的钻杆经螺纹连接起来,在儿端部装上钻头,由转盘给钻头一个旋转力进行钻井。
随着钻井技术的发展,钻井的深度越来越深,超深钻片的深度已达15000m以上。
钻井工艺也在不断提高,由原来的单孔重直钻井发展到钻定向斜片、水平井和丛式钻井。
新的钻井工艺对钻井机械提出越来越高的要求。
普通的以柴油机为动力的直接钻井方式,已满足不了现代钻井工艺的要求,先进的电驱动系统采用品闸管供电的直流电动机驱动或以变频装置供电的交流变频电动机驱动,方便灵活,控制性能好,得到了迅速的发展。
随着钻井工艺技术和钻井方法的不断改进与提高,各种新型钻井技术和设备,如顶部驱动钻机系统、随钻测量系统、钻井智能专家系统等,必将得到更广泛的应用。
水平井侧钻水平井技术
水平井侧钻水平井技术
长城工程技术研究院 2011.6
长城钻探公司辽河工程技术研究院
中国石油
提
纲
一 水平井钻井技术
二 侧钻水平井技术
长城钻探公司辽河工程技术研究院
中国石油
一、水平井钻井技术
长城钻探公司辽河工程技术研究院
1.1 概述
中国石油
定向井/水平井/大斜度井就钻井工艺而言属同一范畴,即都是从一定的
长城钻探公司辽河工程技术研究院
中国石油
Ⅱ 井下动力钻具
具代表意义的井下动力钻具的发展是井下动力马达。
近5年来,井下动力马达的发展取得了长足的进步,其主要 进步包括:大功率的串联马达及加长马达,转弯灵活的铰 接式马达,以及用于地质导向钻井的仪表化马达。 其它进步方面包括:为满足所有导向钻具和中曲率半 径造斜钻具的要求,用可调角度的马达弯外壳取代了原来 的固定弯外壳;为使马达获得更大弯曲度,在可调角度的 弯外壳和定子之间使用了被-铜柔性衬里;为了获得更好的 不定向测量,用非磁性马达取代了磁性马达。
能独立制造不同规格、
级数的单弯和双弯马达 (100-200小时到200小时
长城钻探公司辽河工程技术研究院
Ⅲ 导向钻井及轨迹实时控制
中国石油
水平井钻井工具最重要发展趋势之一就是水平井
钻井进入旋转导向钻井方式。井下钻井马达为水平井
钻井提供了基本能力,可转向井下钻井马达应用提高 了井眼轨迹控制能力,减少了起下钻次数。 旋转导向钻井系统分两类:一是使用自动定向机 构系统,另一类是靠人工进行定向的系统。两类都靠
• 区块剩余油分布规律研究与井位优化部署
• • • • • • • • •
井眼轨迹优化设计与完井方式优选技术 钻具组合优选与井下动力钻具合理应用技术 井眼轨迹控制与三维绕障防碰技术 随钻测量与数据实时处理技术 现场地质跟踪导向与待钻井眼轨迹预测技术 防卡、防漏、保护油层的钻完井液技术 热采稠油和高凝油藏筛管完井技术 水平段固井或上部套管固井下筛管完井技术 安全钻进技术
水平井钻井技术
xx油田泊松比计算结果
4.大位移井井壁稳定技术研究
计算结果
40
内摩擦角(度)
38 36 34 32 30 900 1000 1100 1200 1300 井深(m) 1400 1500 1600
xx油田内摩擦角计算结果
大位移井井壁稳定技术
计算结果
10 8
粘聚力
6 4 2 0 900
1000
1100
L1和L3由用户根据需要给定, 可以同时为0
空间多点约束设计的理论模型
A点与其切线方向构成的直线为:
AS1 A L S1
在直线AS1上取点M ,在直线DE上取点N后,连接 MN,则MN与AS1构成平面1,MN与DE构成平面2 。 在1与2上分别取点用斜平面法采用圆弧过渡进行 设计。
4.大位移井井壁稳定技术研究
计算结果
XX井安全泥浆密度窗口
轨迹设计技术
轨迹设计方法
常规井身剖面设计
空间斜平面内的直线加园弧
空间斜平面内园弧加直线
空间多点约束轨迹设计
非常规井身剖面设计
悬链线剖面 修正悬链线剖面 拟悬链线剖面
设计方式-空间多点约束轨迹设计
起点
L1:用户给定
大位移井井壁稳定技术
分层地应力的计算模型
垂直应力
H v 0 hgdh
最大、最小主应力(模型A)
s h r ( z Pp ) Pp 1 s
H
s 1 ( z Pp ) Pp s
由于水平井的泻油长度远远大于垂直井的泻油长度因而水平井井泻油长度远远大于垂直井的泻油长度因而水平井井壁附近的流体流速远远小于直井井壁附近的流体流速壁附近的流体流速远远小于直井井壁附近的流体流速大位移井的井周应力分析大位移井的井周应力分析钻井液安全密度窗口计算钻井液安全密度窗口计算分层地应力的计算模型分层地应力的计算模型泥页岩强度和力学参数的确定泥页岩强度和力学参数的确定力学化学耦合计算模式及水化力学化学耦合计算模式及水化对井壁稳定的影响研究对井壁稳定的影响研究大位移井井壁稳定计算结果大位移井井壁稳定计算结果小结小结大位移井的井周应力分析大位移井的井周应力分析井壁处的主应力井壁处的主应力坍塌压力计算岩石剪切破坏坍塌压力计算岩石剪切破坏破裂压力计算拉伸破坏破裂压力计算拉伸破坏分层地应力的计算模型分层地应力的计算模型垂直应力垂直应力最大最小主应力最大最小主应力模型模型a分层地应力的计算模型分层地应力的计算模型最大最小主应力最大最小主应力模型模型b岩石力学参数的确定岩石力学参数的确定内聚力内聚力cc内摩擦角内摩擦角动静态的弹性模量和泊松比动静态的弹性模量和泊松比岩石抗拉强度岩石抗拉强度有效应力系数有效应力系数力学化学耦合计算模式及水化对井壁稳定的影响研力学化学耦合计算模式及水化对井壁稳定的影响研r处时间为处时间为tt时的吸附水重量百分比时的吸附水重量百分比水化耦合计算模型水化耦合计算模型计算结果计算结果259001000110012001300140015001600最小应力上覆应力最大应力xx油田地应力分析结果计算结果计算结果01020304059001000110012001300140015001600静态posion比动态posion比xx油田泊松比计算结果计算结果计算结果3032343638409001000110012001300140015001600计算结果计算结果109001000110012001300140015001600计算结果计算结果xx油田抗拉强度计算结果020406089001000110012001300140015001600计算结果计算结果xx井安全泥浆密度窗口随井斜角地变化102030405060708090井斜角度坍塌压力破裂压力计算结果计算结果xx井安全泥浆密度窗口计算结果计算结果xx油田xx层位泥页岩坍塌压力随钻井时间的变化计算结果计算结果xx井安全泥浆密度窗口常规井身剖面设
定向及水平井简介
对钻井设备和技术的要求较高 ,需要专业的定向井工程师团
队。
在某些情况下,可能存在井眼 轨迹控制难度大、油层污染等
问题。
水平井的优缺点
优点 可以实现长水平段穿越油层,提高油藏的开采效率。
对于薄油层和复杂油藏的开采具有重要意义。
水平井的优缺点
• 可以有效利用地层自然裂缝,提高油藏的开采效 率。
水平井的优缺点
01
缺点
02
钻井过程中需要控制好水平段的稳定性, 避免出现卡钻等事故。
03
对钻井设备和技术的要求较高,需要专业 的水平井工程师团队。
04
在某些情况下,可能存在水平段稳定性差 、油层污染等问题。
定向井与水平井的适用范围及选择依据
适用范围
定向井适用于需要大范围水平位移的油藏开采,如海上油田、复杂断块 油田等。
岩屑携带
定向钻井过程中,岩屑容易堆积在井 底,影响钻进效率。可以采用高压喷 射钻头、空气钻头等新型钻头,提高 岩屑携带能力。
地层适应性
不同地层对钻头、钻具和工艺有不同 的要求,需要根据地层特点选择合适 的钻头、钻具和工艺。
03
水平井钻井技术
水平井钻井设备及工具
01
02
03
04
钻机
用于钻进水平井的钻机,通常 采用顶部驱动钻井系统。
岩屑携带
水平井钻进过程中,岩屑容易堆积在井底,影响钻进效率 。可以采用高压喷射钻井技术来解决这一问题。
井壁稳定
水平井钻进过程中,容易发生井壁失稳现象,可以采用合 理的钻井液体系和稳定剂来解决这一问题。
完井作业
水平井完井作业过程中,需要采用特殊的完井技术,以确 保水平段的密封性和稳定性。可以采用先进的完井技术和 工具来解决这一问题。
水平井技术
无限制
短半径水平井
90°~ 300°/30米 19.1 ~ 5.73米 6 1/4″~ 4 3/4″ 铰接马达或转盘钻柔性组合
2 7/8″钻杆 要求测斜仪器具有柔性
需要配备顶部驱动系统或动 力水龙头 只限于裸眼或割缝管
长半径水平井特点
1.
优点
2. 1.穿透油层段最长(可以>1000米)
水平井技术
水平井概述
一、水平井的定义 二、水平井开发的技术优势 三、 适合水平井开发的油藏类型 四、水平井的分类及特点 五、水平井钻井的主要困难
20世纪石油工业十项顶尖技术
水平井定义
API没有明确的定义。
A good definition would be “Any well put in a reservoir designed to expose as much porosity and permeability, and contact as many sweet spots as possible”
位移比最小
中半径水平井特点
1.
优点
缺点
2. 1. 进入油层时无效井段较短
1.要求使用MWD测量系统
3. 2. 使用的井下工具接近常规工具 2.要求使用抗压缩钻杆
4. 3. 使用动力钻具或导向钻井系统
5. 4. 离构造控制点较近
6. 5. 可使用常规的套购及完井方法
7. 6. 井下扭矩及阻力较小
8. 7. 较高及较稳定的造率
随着技术的进步和经验的增加,水平井成本已大幅度降 低,周期明显缩短。自1987年至今奥斯汀白垩系地层水 平 钻井(平均测量井深3000多米)有如下特点:
平均钻井周期由原来的40天/井降至10天/井; 油层井眼直径由原来的8-1/2英寸降至4-1/2英寸; 造斜率由原来的10-12度/30米增至20度/30米; 用清水加聚合物作泥浆(最大比重1.3)并配备有完
水平井钻井技术ppt
-
4.1 国外水平井技术发展概况
Sperry Sun公司使用8-3/4″牙轮钻头、旋转导向系统和磁 测距技术,在加拿大不列颠哥伦比亚省Jedney油田创出了 将两口井距3104m的井底部相交的纪录;测量深度为 5864m,总垂深1545m。
-
阶梯式水平井
4、水平井的发展状况
4.1 国外水平井技术发展概况
上世纪80年代水平井技术呈大规模、加速发展趋势,至1985 年底全世界共钻水平井100口,至1995年一年为1500口; 1996年一年即钻水平井2700口。目前已经成为成熟技术。
Sperry-Sun公司在卡塔尔海上所钻ALS-8B井,水平段最长 5004m。
Mobil公司在德国钻成的R—308井(4 ¾ ”井眼),创短半 径水平井水平段最长600m的世界记录。
美国Bechtel公司采用高压水射流技术开发的超短半径水平 井系统,在 4 ¾ ”井眼中同一深度半径方向钻24个辐射状 的水平井眼,水平段长30 60m,曲率半径0.3m。
-
4.2 国内水平井技术发展情况
专题讲座之一:
水平井钻井技术
-
水平井技术为提高勘探效果、单井产量和油 藏采收率开辟了一条崭新途径,给石油工业发 展带来了一场新的革命,已列为当今石油工业 最重要的关键技术之一。
-
主要内容
一、水平井技术概述 二、水平井的主要技术问题 三、水平井轨迹控制技术
-
一、水平井技术概述
1、水平井的基本概念 2、水平井的基本类型 3、水平井的用途 4、水平井的发展状况
水平井钻井工艺技术
水平井钻井工艺技术引言水平井钻井工艺技术是一种在油气勘探开发中应用广泛的技术,它通过在地层中钻探水平井段,能够有效地提高油气井的产能和采收率。
本文将介绍水平井钻井的一般工艺流程、钻井液的选择和使用、钻头的选择以及井底工具的应用等方面的内容。
一、水平井钻井工艺流程水平井钻井工艺流程是指从井眼设计到井下实施的一系列步骤,下面将介绍水平井钻井的一般工艺流程。
1.井眼设计:根据地层特征和油气开发需求,确定水平段的位置、井眼直径以及水平段的长短等参数。
2.井口施工:进行井口设备安装,包括井口套管的安装、井口井口防喷器的安装等工作。
3.钻井液工艺设计:根据地层特征和钻井液性能要求,确定钻井液的配方和使用方案。
4.钻探井段:根据设计参数,进行钻井液的循环、钻头的下钻、钻进、切换水平井段、控制钻头方位等工作。
5.装备井下工具:根据后续作业需要,部署井下工具,如测斜仪、导向器等。
6.钻进水平段:通过使用导向技术和井下工具,控制钻头沿设计轨迹钻进水平井段。
7.钻井结束:到达设定的钻井参数或达到设计钻井目标时,钻井工作结束,开始下一步的工作。
二、钻井液的选择和使用钻井液在水平井钻井过程中起到冷却、润滑、悬浮废屑和井壁稳定等重要作用。
选择合适的钻井液并正确使用是确保钻井过程顺利进行的关键。
1.钻井液的类型:常见的钻井液类型包括水基钻井液、油基钻井液和气体钻井液等。
根据地层特征、环境要求和工程经济等因素,选择适合的钻井液类型。
2.钻井液的性能:钻井液的性能包括流变性、密度、滤失性、PH值等。
根据地层特征和钻井目标,确定钻井液的性能指标,并进行钻井液调配。
3.钻井液的处理:钻井液采用循环使用,需要定期对钻井液进行处理,包括固相控制、饱和度调整和污染物去除等。
三、钻头的选择钻头是在钻井过程中切削地层的关键工具,选择合适的钻头能够提高钻进速度和钻头寿命。
1.钻头的类型:常见的钻头类型包括三刃钻头、平头钻头、带牙钻头等。
根据地层特征和钻井目标,选择适合的钻头类型。
水平井钻井技术概述完整版
水平井钻井技术概述完整版水平井是一种井底部分或全部在地下水平方向延伸的钻井。
与传统的垂直井相比,水平井具有以下几个主要优点:首先,它可以增加井底与油气储层接触长度,从而扩大产能;其次,水平井可以改善油气的流动性,减少产量损失;此外,水平井还可以降低井底压力,减少地层综合损害,提高采收率。
水平井钻井技术主要包括以下几个步骤:首先,选择合适的位置进行水平井的定位。
选择水平段的位置通常是根据油气储层的特征进行确定,根据地质勘探资料和地质模型,选择对应的位置进行钻井。
其次,进行导向钻井。
导向钻井是将钻铤送到地下指定的位置,通过调整钻井方向控制井眼的走向。
导向钻井可以利用地磁、地震等物理方法,也可以借助于惯性导航系统和全站仪等工具进行。
第三,进行水平段钻井。
在导向钻井的基础上,继续在水平方向进行钻井。
水平段钻井通常使用高转速、低推力的钻机,采用连续循环钻井方法进行。
第四,完成井筒完井和测试。
在完成钻井后,需要进行井筒完井操作,包括套管下入、固井、开除砂器等,最后进行井筒测试,评估井筒和储层的产能。
水平井钻井技术在实际应用中有许多变种。
例如,曲线水平井是一种在导向钻井中添加一个弯曲部分的水平井形式,可以更好地适应地层的特点;多段水平井是在一个井筒中钻探多个水平段,以更好地发挥地层的产能;水平侧向井是一种特殊的水平井形式,可以在地层的侧向进行钻井;而水平井注水技术则是将水平井与注水技术结合起来,用于增强油气储层的压力,提高采收率。
总的来说,水平井钻井技术是一种现代油气开采中非常重要的技术,它可以改善油气的流动性,提高产能,减少开采成本。
随着油气资源的逐渐减少,水平井钻井技术将会得到更广泛的应用,并进一步改进和完善。
水平井技术课件
水平井完井液
钻井液
在钻进过程中使用的液体,具有携带岩屑、平衡 地层压力等功能。
完井液
在钻达目的层后,用于保护油气层的钻井液,具 有低渗透性、稳定性等特点。
油气分离液
用于将钻采出的油气进行分离的液体,具有高效 分离和低伤害性。
水平井完井工艺
钻进工艺
采用定向钻井技术,控制钻头 沿着设计轨迹钻进,形成水平
05
水平井技术案例分析
案例一:某油田的水平井钻井实践
总结词:成功应用
详细描述:某油田在钻井过程中采用了水平井技术,通过精心设计和施工,成功 地完成了钻井作业。该案例展示了水平井技术在提高油田采收率方面的应用效果 。
案例二:某气田的水平井完井实践
总结词:高效益
详细描述:某气田在完井过程中采用了水平井技术,有效提高了单井产能和采收率。该案例证明了水平井技术在气田开发中 的高效益,为类似气田的开发提供了借鉴。
案例三:某油田的水平井增产实践
总结词:显著增产
详细描述:某油田通过采用水平井技术,实现了单井产量的显著提升。该案例进一步证实了水平井技 术在油田增产方面的优势,为其他油田提供了可复制的成功经验。
THANKS FOR WATCHING
感谢您的观看
完井工艺
钻达目的层后,进行完井作业, 包括固井、射孔、酸化等,以实 现油气资源的有效开发。
03
水平井完井技术
水平井完井设备
水平井钻机
用于钻凿水平井段的钻机,具备大扭矩和稳定性的特 点。
井下测量仪器
用于监测钻进过程中的井斜、方位角等参数,确保井 眼轨迹的准确性。
井口装置
包括防喷器、采油树等设备,用于控制井口压力和油 气流动。
水平井技术的发展历程
水平井(平台井)钻井知识及钻井新技术(20140527)
内
容
一、水平井技术简介及工程设计 二、水平井钻井技术
三、水平井测量技术
四、鱼骨水平井钻井技术
五、分支水平井钻井技术
六、超短半径径向水平井技术
七、大位移水平井钻井技术
八、“工厂化”水平井高效钻井技 术
一、水平井技术简介及工程设计 水平井
井斜角大于或等于86°,并保持这种角度钻完一定 长度水平段的定向井
一、水平井技术简介及工程设计
钻 具 组 合 优 选 的 原 则
a. 钻柱摩阻最佳
b. 优先选用成熟的钻具组合
c. 满足强度要求 d. 有利于减少起下钻次数 e. 必须有较大的可靠性及实用性 f. 根据井身剖面选择钻具组合
一、水平井技术简介及工程设计
制定原则 钻 井 液 方 案 的 制 定 润滑防卡 井壁稳定
一、水平井技术简介及工程设计
水平井综合设计 设计步骤: 第一步:提出候选目标油气藏。由作业公司提出候选目 标油气藏。 第二步:地质评价。审查油气藏条件是否适合钻水平井 。是否有法律争议,是否符合公司经营战略。 第三步:初步油气藏筛选初步进行产量递减和现值研究 ,储量分析。 第四步:经济效益分析,初步经济分析和初步成本预测 。是否受土地租赁和规划条例限制。
井口
KOP 第一增斜段 稳斜调整段 第二增斜段 水平段
一、水平井技术简介及工程设计
水平井井身轨迹类型
“L”型剖面 又称“直—增—稳—增—降 —水平”剖面,由直井段、第一 增斜段、稳斜段、第二增斜段、 降斜段和水平段组成,突出特点 是在第二增斜段与水平段之间设 计了一个降斜段,使水平段垂深 比控制点(井段)垂深小。这种 剖面是辽河油田杜84块开发馆陶 组水平井比较普遍采用的一种井 身轨迹类型。
水平井钻井技术
无底水、无气顶油藏,水平段宜于油层中部; 有底水或气
顶油藏,水平段应尽量远离油、气、水界面;重油油藏,水平 段应在油层下部,使密度较大的稠油借助重力流入井眼。
H 90
三、水平井靶区参数设计
4、水平井靶体设计 水平井靶体设计实质:确定水平段位置的允许偏差范围, 允许偏差限制过严会加大井眼控制难度与钻井成本。 靶体垂向允许偏差必须等于或小于油层厚度。靶体上下边 界对称于水平段设计位置,但也可以不对称。 靶体横向允许偏差一般是垂向允许偏差的几倍(多为5倍) 加大靶窗宽度, 有利于降低着陆控 制难度。减少水平 钻进时纠方位的麻 烦。
第一节水平井设计中的几个问题
三、水平井靶区参数设计 水平井的靶区:一般是一个包含水平段的长
方体或拟柱体。
靶区参数:主要包括水平井段井径、方位、 长度,水平段井斜角、水平段的垂向位置,水平 井靶区形状尺寸及允许偏差范围。
H 90
三、水平井靶区参数设计
1、水平段长度设计
设计方法:根据油井产量要求,计算最佳水平段长度,综 合考虑钻柱摩阻、钻机能力、井眼稳定周期等因素的限制。 2、水平段井斜角确定 水平段井斜角应综合考虑地层倾角、地层走向、油层厚 度等因素。我国的石油水平井段的井斜角一般是不小于86º 。 在通常情况下,水平段与油层面平行,其井斜角为:
H 90
四、水平井剖面设计
(1)单弧剖面 又称“直—增—水平” 剖面,由直井段、增斜段 和水平段组成。突出特点 是用一种造斜率使井身由 0º 增至最大井斜角αH 。 这种剖面适用于目的层顶 界与工具造斜率都十分确 定条件下的水平井剖面设 计。常用于短半径水平井。
第二节 水平井的经济效益与应用前景
江汉油田潜江凹陷水平井钻井技术
环境保护与可持续发展要求
减少环境污染
研发环保型钻井液和钻井技术,降低钻井过程中的环境污染。
资源高效利用
优化钻井参数和钻井工艺,降低能源消耗和资源浪费。
废弃物处理与再利用
对钻井废弃物进行无害化处理和资源化再利用,降低对环境的影响。
感谢您的观看
THANKS
油气储层特征
01
潜江凹陷的油气储层具有低孔、低渗、低饱和度的 特点,储层物性较差。
02
油气储层的孔隙类型以粒间孔和溶蚀孔为主,其中 粒间孔是主要的储油空间。
03
油气储层的渗透率一般在1-50毫达西范围内,属于 低渗透储层。
地层压力与温度
潜江凹陷地层压力系统复杂,纵向上 存在多个压力层系,各层系之间的压 力差异较大。
钻井液处理剂
研究和应用适合江汉油田潜江凹陷的钻井液处理剂,以提 高钻井液的稳定性和润滑性,降低钻井过程中的阻力和磨 损。
钻具组合与钻井参数优化
钻具组合设计
钻具维护与管理
根据江汉油田潜江凹陷的地质条件和 钻井工程要求,设计合理的钻具组合, 以提高钻井过程中的稳定性和安全性。
加强钻具的维护和管理工作,定期检 查和维修钻具,确保钻具在良好的状 态下工作,延长钻具使用寿命。
智能化钻井技术的应用前景
自动化钻井系统
集成钻井设备、传感器、控制系统等,实现钻井过程的自动化和 智能化。
远程监控与决策支持
通过实时数据传输和远程监控系统,为钻井工程师提供决策支持, 提高钻井决策的准确性和及时性。
人工智能与机器学习
利用人工智能和机器学习技术对钻井数据进行处理和分析,预测 钻井风险和优化钻井参数。
钻井过程与难点解析
钻井过程
采用常规钻井技术进行钻进,根据实 际情况调整钻井参数,确保钻井效率 与安全。
水井钻井知识点归纳总结
水井钻井知识点归纳总结一、水井钻井概述水井钻井是指为了开采地下水资源,通过利用钻井设备将地下水层中的水抽取到地表的工程活动。
通常情况下,水井钻井是为了获得地下水资源供应农田灌溉、城市供水、工业用水等各种需要。
水井钻井是一项复杂的工程活动,需要经过合理的规划、设计和施工,才能获取理想的地下水资源。
本文将对水井钻井的相关知识点进行归纳总结,以供参考。
二、水井钻井的类型1. 直井直井是最常见的一种水井类型,它是通过钻井设备从地表垂直地向地下水层中钻井的方式获取地下水资源。
直井的优点是结构简单、施工方便,适用于大部分地质条件。
2. 斜井斜井是指在井筒向下钻井的同时,井筒还有一定的倾斜度,通常是30度到45度。
斜井的优点是可以更好地利用地下水层的水源,减少井口的占地面积,适用于受限区域。
3. 水平井水平井是指在地表上开采,在地下进行方向开采,再穿越绝对层成为一种特殊的钻井。
水平井的优点是可以最大限度地获取地下水资源,适用于水资源极度紧缺地区。
4. 起爆井起爆井是一种特殊的水井钻井方式,通过使用爆破方式来开采地下水资源。
通常情况下,起爆井是在地下水层中存在水泵不通畅时采用的一种方式。
三、水井钻井的流程1. 案例调查水井钻井的第一步是进行案例调查,通过调查钻井场地的地质条件、地下水位和水质状况等情况,做到心中有数,才能确保后续的施工计划。
2. 勘探设计在进行案例调查的基础上,需要进行勘探设计,包括确定钻井的位置、井筒的直径和深度、井口的设置等。
3. 安全措施在进行水井钻井之前,需要做好安全措施的准备工作,包括人员防护、设备检修和安全教育等。
4. 钻井施工进行钻井施工是整个水井钻井流程的关键步骤,需要通过适当的钻井设备、工具和材料来保证施工的效率和质量。
5. 地下水抽取钻井完成后,需要进行地下水抽取工作,一般可以通过水泵或者抽水机来将地下水抽取到地表,进行利用。
6. 井筒封堵在地下水抽取结束后,需要进行井筒封堵来保护地下水资源,防止受到污染和浪费。
水平井钻井工艺技术
水平井钻井工艺技术水平井钻井是现代石油工业中的重要技术之一,它能够在地下开采更多的油气资源。
水平井钻井工艺技术是指在垂直井眼中转向至水平方向并进行钻井的一套技术方案。
水平井钻井的工艺技术主要分为三个阶段:井底转向、钻进和完井。
井底转向是水平井钻井的第一步。
在垂直钻井过程中,利用测斜工具等设备来监测井眼的方位与倾角,并在需要转向为水平井的位置进行操作。
常用的方法有水泥跳变和电动驱动器等。
通过这些操作,使钻头转向至水平方向。
钻进是水平井钻井的核心环节。
在转向完成后,钻井作业人员会选择一种适合当前条件的钻具工艺,如常规钻头、定向钻头等。
在钻进的过程中,需要经常监测井眼的倾角和方位,以保证井眼一直保持在水平方向。
此外,还需要能够及时处理各种可能出现的问题,如井眼偏斜、井眼垮塌等。
完井是水平井钻井的最后一步。
在钻进完成后,会进行完井作业,包括安装套管、射孔和压裂等。
这些作业是为了确保井眼的完整性和油气的产出。
完井工艺可以根据不同的地质情况和开采要求进行优化设计,以提高井眼的完整性和产能。
水平井钻井工艺技术的发展为石油工业带来了巨大的进步。
水平井能够在相同的储量条件下提高油气的采收率,降低开采成本,并延长油田的寿命。
目前,水平井钻井技术已广泛应用于世界各地的油田,成为石油工程中不可或缺的技术之一。
总之,水平井钻井工艺技术是利用转向和钻进等操作在垂直井眼中开展水平井钻井的一套技术方案。
通过井底转向、钻进和完井等环节的有序操作,能够实现水平井的钻井与开采。
这一技术的应用使得油气资源能够更有效地被开发利用,为石油工业的进一步发展提供了有力支持。
随着水平井钻井技术的进一步发展,人们对该技术的应用范围和效果有了更深入的认识。
水平井钻井的主要优势在于其能够沿着油层产层延伸,与垂直井相比,可以最大限度地提高油气的采收率。
下面我们将就水平井钻井工艺技术的相关内容进行更详细的讨论。
首先,钻井工艺技术的不断优化,使得水平井钻井变得更加高效和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章定向井(水平井)钻井技术概述第一节定向井、水平井的基本概念1.定向井丛式井发展简史定向井钻井被(英)T .A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。
”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。
定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。
定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。
当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。
并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。
最早采用定向井钻井技术是在井下落物无法处理后的侧钻。
早在1895年美国就使用了特殊的工具和技术达到了这一目的。
有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。
第一口救援井是1934年在东德克萨斯康罗油田钻成的。
救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。
目前最深的定向井由BP勘探公司钻成,井深达10,654米;水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的Rytch Farm 油田钻成的M11井,水平位移高达1,0114米。
垂深水平位移比最高的是Statoil 公司钻成的的33/9—C2达到了1:3.14;丛式井口数最多,海上平台:96口;人工岛:170口;我国定向井钻井技术发展情况我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。
我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平位移最大的大位移井是大港定向井公司完成的井,水平位移达到2666米,最大的丛式井组是胜利石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。
2.定向井的分类按定向井的用途分类可以分为以下几种类型:普通定向井多目标定向井定向井丛式定向井救援定向井水平井多分枝井(多底井)国外定向井发展简况我国定向井钻井技术发展情况第二节水平井钻井技术简介所谓水平井,是指一种井斜角大于或等于86°,并保持这种角度钻完一定长度水平段的定向井。
1.水平井钻井技术发展概况1863年,瑞士工程师首先提出钻水平井的建议;1870年,俄国工程师在勃良斯克市钻成井斜角达60°的井;瑞典和美国研制出测量井眼空间位置的仪器,1888年俄国也设计出了测斜仪器;1929年,美国国加利福尼亚州钻成了几米长的水平分支井筒;30年代,美国开始用挠性钻具组合在垂直井内钻曲率半径小的水平井分支井眼;1954年苏联钻成第一口水平位移;1964年—1965年我国钻成两口水平井,磨—3井、巴—24井;自来80年代以来,随着先进的测量仪器、长寿命马达和新型PDC钻头等技术的发展,水平井钻井大规模高速度的发展起来。
我国水平井钻井在90年代以来也取得了很大发展,胜利油田已完成各种类型水平井百余口,水平井钻井水平和速度不断提高。
水平井的类型及各种类型水平井的特点1).水平井的类型:根据水平井曲率半径的大小分为:长曲率半径水平井(小曲率水平井);中曲率半径水平井(中曲率水平井);短曲率半径水平井(大曲率水平井)。
2).不同曲率水平井的基本特征及优缺点(1).不同曲率水平井的基本特征表(2).长曲率半径水平井的优缺点优点缺点1.穿透油层段最长(可以>1000米)1.井眼轨道控制段最长2.使用标准的钻具及套管2.全井斜深增加最多3.“狗腿严重度”最小3.钻井费用增加4.使用常规钻井设备4.各种下部钻具组合较长5.可使用多种完井方法5.不适合薄油层和浅油层6.可采用多种举升采油工艺6.转盘扭矩较大7.测井及取芯方便7.套管用量最大8.井眼及工具尺寸不受限制8.穿过油层长度与总水平位移比最小(3).中曲率半径水平井的优缺点优点缺点1.进入油层时无效井段较短1.要求使用MWD测量系统2.使用的井下工具接近常规工具2.要求使用加重钻杆或抗压缩钻杆3.使用动力钻具或导向钻井系统4.离构造控制点较近5.可使用常规的套购及完井方法6.井下扭矩及阻力较小7.较高及较稳定的造率8.井眼轨迹控制井段较短9.穿透油层段较长(1000米)10.井眼尺寸不受限制11.可以测井及取芯12.从一口直井可以钻多口水平分枝井13.可实现有选择的完井方案(4).短曲率半径水平井的优缺点优点缺点1.井眼曲线段最短1.非常规的井下工具2.侧钻容易2.非常规的完井方法3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制5.直井段与油层距离最小5.起下钻次数多6.可用于浅油层6.要求使用顶部驱动系或动力水龙头7.全井斜深最小7.井眼方位控制受到限制8.不受地表条件的影响8.目前还不能进行电测第三节定向井的基本术语解释1)井深:指井口(转盘面)至测点的井眼实际长度,人们常称为斜深。
国外称为测量深度(Measure Depth)。
2)测深:测点的井深,是以测量装置(Angle Unit)的中点所在井深为准。
3)井斜角:该测点处的井眼方向线与重力线之间的夹角(见图1.2)。
•井斜角常以希腊字母α表示,单位为度。
4•)井斜方位角:是指以正比方位线为始边,顺时针旋转至井斜方位线所转过的角度(见图1.3)。
•井斜方位角常以希腊字母Φ表示,单位为度。
实际应用过程中常常简称为方位角。
• A5)磁方位角:磁力测斜仪测得的井斜方位角是以地球磁北方位线为准的,称磁方位角。
井口B 图1.2 井斜角示意图图1.3 井斜方位角示意图6)磁偏角:磁北方位线与真北方位线并不重合,两者之间有一个夹角,这个夹角称为磁偏角。
磁偏角又有东磁偏和西磁偏角之分,当磁北方位线在正北方位线以东时,称为东偏角;当磁北方位线在正北方位线以西时称为西偏磁偏角。
•进行磁偏角校正时按以下公式计算:真方位角=磁方位角+东偏磁偏角真方位角=磁方位角-西偏磁偏角7•)井斜变化率:是指井斜角随井深变化的快慢程度,常以Kα表示,•精确的讲井斜变化率是井斜角度(α)对井深(L•)的一阶导数。
dαKα=───dL井斜变化率的单位常以每100米度表示。
8)井深方位变化率:实际应用中简称方位变化率,•是指井斜方位角随井深变化的快慢程度,常用KΦ表示。
计算公式如下:dΦKΦ=───dL井斜方位变化率的单位常以每100米度进行表示。
9)全角变化率(狗腿严重或井眼曲率):从井眼内的一个点到另一个点,井眼前进方向变化的角度(两点处井眼前进方向线之间的夹角),•该角度既反映了井斜角度的变化又反映了方位角度的变化,通常称为全角变化值。
•两点间的全角变化值γ相对与两点间井眼长度ΔL变化的快慢及为全角变化率。
用化式表达如下:γK=───ΔL实际钻井中,井眼曲率的计算方法:目前计算井眼曲率的方法有很多。
有公式法、查表法、图解法、查图法和尺算法五种。
后四种办法皆来源于公式法。
计算井眼,曲率的公式计有三套:第一套公式:对于一个测点:K=SQR(Kα2+KΦ2sin2α)2L)2SIN2αc)Δa图1.4第一套公式的图解法第一套公式的图解法(参见图1.4):(1).作水平射线OA;(2).作∠BOA=αc(两测点平均角);(3). 以一定长度代表单位角度,量OB=ΔΦ(两测点方位角差);(4).自B点向OA作垂线,垂足为C点;(5).按步骤(3)中的比例,量CA=Δα;(6).连接A、B,并量AB长度,按步骤(3)比例换算成角度,此角度及狗腿角γ。
第二套公式:(由于误差较大,现场使用少略)第三套公式:γ=SQR(α12+α22-2α1α2COSΔΦ)图1.5第三套公式的图解法第三套公式图解法(参见图1.5):(1).选取一定比例,经一定长度代表单位角度,作线段OA,使其长度代表α1;(2).作OB线段,使∠BOA=ΔΦ;(3).按步骤(1)的比例,量OB=α2;(4).连接A、B,并量邓AB的长度,按步骤(1)的比例换算成角度,既为γ.10)垂深(垂直井深):即某测点的垂直深度,以H表示。
•是指井身任意一点至转盘面所在平面的距离。
11)水平投影长度:是指自井口至测点的井眼长度在水平面上的投影长度。
以S•表示。
12)水平位移:简称平移,是指测点到井口垂线的距离。
在国外又称为闭合距(Closure Distance)。
13)平移方位角:又称为闭合方位角(Closure Azimuth),常用θ表示,•是指以正北方位线为始边顺针方向转至平移方位线上所转过的角度。
14)视平移:又称为投影位移,井身上的某点在垂直投影面上的水平位移。
在实际定向井钻井过程中,这个投影面选在设计方位线上。
所以视不移也可以定义为水平位移在设计线上的投影。
15)高边:在斜井段用一个垂直于井眼轴线的平面于井眼(这时的井眼不能理解为一条线,而是一个具有一定直径的圆)相交,由于井眼是倾斜的故井眼在该平面上有一个最高点,最高点与井眼圆心所形成的直线及为井眼的高边。
16)工具面:工具面就是造斜工具弯曲方向的平面。
17)磁性工具面角:造斜工具弯曲的平面与正北方位所在平面的夹角。
18)高边工具面角:造斜工具弯曲方向的平面与井斜方位角所在平面的夹角。
19)装置角:造斜工具弯曲方向的平面与原井斜方向所在平面的来夹角,通常用ω•表示。
20)反扭矩:在用井底动力钻具钻进时,都存在一个与钻头转动方向相反的扭矩,该扭矩被称为反扭矩。
21)反扭角:使用井底动力钻具钻进时,都存在一个与钻头转动方向相反的扭矩,由于该扭矩的作用,使得井底钻具外壳向逆时针方向转动一个角度,该角度被称为反扭角。
22) 贮层顶部:水平井段控制油层的顶部23)贮层顶部:水平井段控制油层的底部24)设计入口角度:进入储层顶部的井斜角度25)着陆点:井眼轨迹中井斜角达到90°的点26)入口窗口高度:入靶点垂直方向上下误差之和27)入口窗口宽度:入靶点水平方向左右误差之和28)出口窗口高度:出靶点垂直方向上下误差之和29)出口窗口宽度:出靶点水平方向左右误差之和30)着陆点允许水平偏差:着陆点允许水平方向前后的误差31)单弯动力钻具:动力钻具壳体上具有一个弯曲角度的动力钻具,特点是造斜率较弯接头组合高,钻头偏移较小32)双弯动力钻具:同向双弯,动力钻具壳体上具有两个弯曲方向相同的弯曲角度的动力钻具,具有比单弯动力钻具更高的造斜率33) DTU动力钻具(异向双弯):动力钻具壳体上具有两个弯曲方向相反的弯曲角度的动力钻具,钻头偏移最小,不仅可以导向钻进,而且可以配合转盘钻进;附:常用单弯动力钻具、双弯动力钻具、DTU(异向双弯)造斜率表。