九年级第一次模拟考试数学试卷

合集下载

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.抛物线y=x2﹣1的顶点坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(4分)2.若,则等于()A.B.C.D.3.(4分)3.下列各组线段(单位:cm)中,是成比例线段的是()A.3,5,7,9B.2,5,6,8C.1,3,4,7D.3,6,9,18 4.(4分)4.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为()A.4﹣4B.8+8C.8﹣8D.4+45.(4分)5.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.B.C.4D.66.(4分)6.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A.a<0,b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5,x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<57.(4分)7.如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,AF⊥CD于点E,交BC边于点F,连接DF,则图中与△ACE相似的三角形共有()A.2个B.3个C.4个D.5个8.(4分)8.如图,点A在反比例函数y=−4x(x<0)的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.3第8题图第9题图第10题图9.9.(4分)已知反比例函数y=的图象如图所示,则二次函数y=bx2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共计4小题,总分25分)11.(8分)11.线段a=2cm,线段b=8cm,则线段a、b的比例中项是cm.12.(8分)12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)第12题图13.(5分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.14.(4分)14.如图,在△ABC中,∠A=90°,∠BCD=∠BCA,BD⊥DC于点D,DC交AB于点E,请完成下列探究.(1)若∠BCD=n°,那么∠EBD=°;(结果用含n的代数式表示)(2)若=m,那么=.(结果用含m的代数式表示)三、解答题(本题共计9小题,总分90分)15.(8分)15.已知==,且x+2y+3z=﹣46,求x,y,z的值.16.(8分)16.如图,已知DE∥BC,FE∥CD,AF=3,AD=5,AE=4.(1)求CE的长;(2)求AB的长.17.(8分)17.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.18.(8分)18.如图,已知一次函数y=ax+b与反比例函数的图象相交于点A(1,3)和B(m,1).(1)求反比例函数与一次函数的解析式;(2)当反比例函数的值小于一次函数的值时,请直接写出实数x的取值范围;(3)求△OAB 的面积.19.(10分)19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,2BP =3CD ,BP =1. (1)求证△ABP ∽△PCD ; (2)求△ABC 的边长.20.(10分)20.如图,在四边形ABCD 中,AC ,BD 相交于点E ,点F 在BD 上,且∠BAF =∠DBC ,.(1)求证:△ABC ∽△AFD ; (2)若AD =2,BC =5,求AE BE的值.21.(12分)21.如图,AC 为平行四边形ABCD 的对角线,∠ABE =∠ACB ,BE 交边AD 于点E ,交AC 于点F . (1)求证:AE 2=EF •BE ;(2)若EF =1,E 是边AD 的中点,求边BC 的长.22.(12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,并求出最大利润.23.(14分)23.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.(1)设△APQ的面积为S,求S与t的函数关系式;(2)当t为何值时,△APQ与△ABC相似?(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能,直接写出t的值,如不能,说明理由.答案一、 单选题 (本题共计10小题,总分40分)1.(4分)B2.(4分)A3.(4分)D4.(4分)A5.(4分)A6.(4分)D7.(4分)B8.(4分)C 9.(4分)C10.(4分)C二、 填空题 (本题共计4小题,总分25分)11.(8分)11. 4,12.(8分)12. 答案不唯一, 略,13.(5分)13. 12,14.(4分) 14.(1)n,(2)2m 三、 解答题 (本题共计9小题,总分90分) 15.(8分)15.X=-4,Y=-6,Z=-10 16.(8分)16.325,38==AB CE 17.(8分)17. 过B 作BM ‖AC ,交DF 于M 因为BM ‖AC 所以BM/AE =BD/AD 因为AD/DB =3/2 所以BM/AE =2/3 因为AE/EC =1/2 所以BD/EC =1/3 所以FB/FC =BM/EC =1/3即FB:FC=1:318.18.(8(2)1<x<3,或x<0(4)419.(10分)19(1)∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△PCD.(2)设△ABC的边长为x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的边长为3.解答:解:设△ABC的边长为x,由(1)得,△ABP∽△PCD.∴=,∴=.∴x=3.即△ABC的边长为3.20.(10分)20(1)∵∠BAF=∠DBC∴∠BAE=∠DBF,△ABC∽△AFD(2)AEBE =5221.(12分)21.(1)可证△ABE ∽△F AE ,AE 2=EF •BE (2)23=BC22. 22.(12分)(1)y=-x+60(15≤x ≤40).(2)m=y(x-10)=(-x+60)(x-10)=-2x +70x-600. 当x=35时,m 取最大值625. 23. 23.(14分)(1)28.0-4t t s = (2)13501130或=t (3)8251760310或或=t。

初三模拟试卷一数学

初三模拟试卷一数学

一、选择题(每题4分,共40分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. -0.52. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 84. 下列各式中,能被3整除的是()A. 24B. 25C. 26D. 275. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形7. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²8. 下列各式中,表示圆的周长的式子是()A. S = πr²B. C = πdC. A = πr²D. V = πr³9. 若a² + b² = 100,a - b = 6,则ab的值为()A. 14B. 16C. 18D. 2010. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = x²D. y = k/x(k≠0)二、填空题(每题4分,共40分)11. 若a = -3,则a² - 2a + 1的值为__________。

12. 已知x + y = 5,xy = 6,则x² + y²的值为__________。

13. 在直角坐标系中,点A(2,3)到原点O的距离是__________。

14. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的体积是__________cm³。

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

九年级第一次模拟考试数学试卷

九年级第一次模拟考试数学试卷

九年级第一次模拟考试数学试卷第Ⅰ卷 (选择题共36分)一、选择题 (以下各题的四个选项中,只有一项切合题意,每题3分,共 36分。

)1.计算 (- 1)3的结果是 ( )A.- 1 B . 1 C.- 3 D. 32.以下各式计算正确的选项是( )A.a2 a 2 a4 B.(3x)2 6x2C.(x2)3 x6 D.( x y)2 x2 y23.今年“五一”黄金周,我省实现社会花费的零售总数约为94亿元。

若用科学记数法表示,则 94亿可写为 ()A. 0. 94× 109 B .9. 4× 109C. 9.4× 107D. 9. 4×108 4.以下检查方式,适合的是()A.要认识一批灯泡的使用寿命,采纳普查方式B.要认识济宁电视台“直播民生”栏目的收视率,采纳普查方式C.要保证“嫦娥一号”月球卫星成功发射,对重要零零件的检查采纳抽查方式D.要认识人们对环境的保护意识,采纳抽查方式5.对角线相互垂直均分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形6.袋中有 3个红球, 2个白球,若从袋中随意摸出1个球,则摸出白球的概率是()A.1B .2 2 1 5C.3D.5 37.对于x 的不等式2x a 1 1 a ()的解集,如图所示,则的取值是A.0B.-3C.-2D.-18.在图 2中, EB 为半圆 O的直径,点 A在 EB的延伸线上, AD 切半圆 O于点 D, BC ⊥ AD 于点C, AB=2 ,半圆 O的半径为 2,则 BC 的长为 ()A. 2 B .1 C.1. 5 D.0.59.假如一次函数y kx b 的图象经过第一象限,且与y 轴负半轴订交,那么( ) A. k>0, b>0 B.k>0, b<0 C.k<0 , b>0 D . k<0, b<010.已知点A( - 1,1),B(2 ,3),若要在x 轴上找一点P,使PA+PB 最小,则点 P的坐标是( )A.(-1 ,0)B .(1, 0) C. (3, 0) D. (0, 0) 4 2 211.小明拿一个等边三角形木框在阳光下玩,是等边三角形木框在地面上形成的投影不行能...()12.察看表 1,找寻规律.表2是从表 1中截取的一部分,此中 a ,b,c的值分别为()A. 20, 25, 24 B .25, 20,24 C. 18,25, 24 D . 20, 30, 25第Ⅱ卷(非选择题共84分 )二、填空题:(每题 3分,共18分。

初三第一次模考数学试卷

初三第一次模考数学试卷

一、选择题(每题5分,共30分)1. 下列各数中,是整数的是()A. -3.5B. 2.3C. -1/2D. 22. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a - b)^2 = a^2 + 2ab - b^23. 已知a、b、c是等差数列,且a + b + c = 12,则b的值为()A. 4B. 6C. 8D. 104. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 2x5. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 150°二、填空题(每题5分,共25分)6. 0.001的分数形式是__________。

7. (-3/4)的相反数是__________。

8. 已知a + b = 7,a - b = 3,则a = ________,b = ________。

9. 若一个等差数列的前三项分别为1,4,7,则该数列的公差为__________。

10. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-2,3),则a的值为__________。

三、解答题(每题10分,共40分)11. (1)已知x^2 - 5x + 6 = 0,求x的值。

(2)若a、b是方程2x^2 - 3x - 2 = 0的两根,求a^2 + b^2的值。

12. (1)已知数列{an}的通项公式为an = 2n - 1,求该数列的前10项和。

(2)已知数列{bn}是等比数列,且b1 = 2,b3 = 16,求该数列的公比。

13. (1)已知函数y = kx + b的图象经过点(2,3),且与y轴的交点坐标为(0,1),求k和b的值。

九年级一模数学试卷【含答案】

九年级一模数学试卷【含答案】

九年级一模数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 已知一个等差数列的前三项分别为2、5、8,那么这个数列的公差是()。

A. 1B. 2C. 3D. 45. 若一个圆的半径为r,那么它的周长是()。

A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 两个负数相乘的结果是正数。

()3. 一元二次方程ax² + bx + c = 0(a≠0)的判别式Δ = b² 4ac,当Δ > 0时,方程有两个不相等的实数根。

()4. 若两个角互为补角,则它们的和为180°。

()5. 平行四边形的对边相等。

()三、填空题(每题1分,共5分)1. 若一个三角形的两边长分别为3和4,那么第三边的长度范围是______。

2. 若函数f(x) = 2x + 1,那么f(3) = ______。

3. 一个等差数列的第5项为15,第10项为30,那么这个数列的公差是______。

4. 若一个圆的直径为10cm,那么这个圆的面积是______cm²。

5. 若sinθ = 1/2,且θ为锐角,那么θ的度数是______°。

四、简答题(每题2分,共10分)1. 请简述勾股定理。

九年级数学中考第一次模拟试题及答案解析

九年级数学中考第一次模拟试题及答案解析

数学模拟考试一(120分)一、单选题(共8题,共24分)1.下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a52.在实数√2,x0(x≠0),cos30°,√83中,有理数的个数是()A.1个B.2个C.3个D.4个3.一元二次方程2x2−5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定4.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.10nn+15.临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x,则根据题意,可列方程为()A.8(1+2x)=11.52B.2×8(1+x)=11.52C.8(1+x)2=11.52D.8(1+x2)=11.526.如图,四边形ABCD是⊙O的内接四边形,若∠AOC=160°,则∠ABC的度数是()A.80°B.100°C.140°D.160°7.小明解分式方程1x+1=2x3x+3−1的过程下.解:去分母,得3=2x−(3x+3).①去括号,得3=2x−3x+3.②移项、合并同类项,得−x=6.③化系数为1,得x=−6.④以上步骤中,开始出错的一步是()A.①B.②C.③D.④8.如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°二、填空题(共8题,共24分)9.计算:√(−5)2= . 10.因式分解: a 2−16= .11.比较大小:√7 3.(选填“>”“<”“=”中的一个)12.若关于 x 的一元二次方程 mx 2+nx −1=0(m ≠0) 的一个解是 x =1 ,则 m +n 的值是 .13.若1√x−3在实数范围内有意义,则实数x 的取值范围是 . 14.已知ab =2,a +b =3,则a 2b +ab 2的值为 .15.如图,在⊙O 中,半径OC 垂直弦AB 于点D ,若OB =10,AB =16,则cosB = .16.如图,△ABC 内接于⊙O ,AB 是直径,过点A 作⊙O 的切线AD .若∠B =35°,则∠DAC 的度数是 度.三、解答题(共6题,共36分)17.解不等式组:{4(x −2)≤x −53x+12>x .18.解方程2x+1+1=x x−1.19.先化简,再求值:(2x+1+1x−2)÷x−1x−2,其中x =√3−1.20.解方程:2x 2﹣x ﹣3=0.21.计算:(−2)3+√12+(13)−1. 22.如图,AB 是⊙O 的直径,弦CD⊙AB ,垂足为E ,⊙CDB=30°,CD=2√3,求图中阴影部分的面积.四、综合题(共5题,共36分)23.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?24.某市举办“创建全国文明城市”知识竞赛,已知购买一件甲种奖品和2件乙种奖品共需220元,购买2件甲种奖品和3件乙种奖品共需360元.(1)求每件甲种奖品和每件乙种奖品的价格分别为多少元?(2)若计划购买甲种奖品和乙种奖品共30件,总费用不多于2300元,那么最少可购买甲种奖品多少件?25.如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC的延长线于点E,延长ED交AB的延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=4√2,求DE的值.26.如图,⊙ABC中,⊙ACB=90°,BO为⊙ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tanA=34,AD=2,求BO的长.27.如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB =AM ;(3)若ME =1,∠F =30°,求BF 的长.答案及解析1.【答案】C【分析】根据同类项是字母相同且相同字母的指数也相同的项可判断A ;根据完全平方公式可判断B ;同底数幂相乘,底数不变,指数相加,据此判断C ;幂的乘方,底数不变,指数相乘,据此判断D.2.【答案】B【分析】 有理数是整数(正整数、0、负整数)和分数的统称。

九年级数学中考第一次模拟考卷

九年级数学中考第一次模拟考卷

九年级数学中考第一次模拟考卷一、选择题(每题4分,共40分)1. 下列选项中,既是奇数又是合数的是()A. 21B. 39C. 51D. 632. 已知a、b为实数,且a≠b,则下列等式中成立的是()A. (a+b)² = a² + b²B. (ab)² = a² b²C. (a+b)² = a² + 2ab + b²D. (ab)² = a² 2ab b²3. 下列函数中,是正比例函数的是()A. y = 2x²B. y = 3x 1C. y = x + 3D. y = 5/x4. 在三角形ABC中,a=8,b=10,cosA=3/5,则三角形ABC的面积是()A. 24B. 30C. 36D. 405. 下列关于x的不等式中,有解的是()A. x² < 0B. x² = 1C. x² > 0D. x² = 06. 已知一组数据的方差是9,那么这组数据每个数都加5后,方差是()A. 4B. 9C. 14D. 187. 下列关于圆的说法,正确的是()A. 圆的半径相等,则圆心距相等B. 圆心角相等,则弧长相等C. 弧长相等,则圆心角相等D. 圆的半径相等,则面积相等8. 下列关于概率的说法,错误的是()A. 概率的取值范围是0到1B. 必然事件的概率是1C. 不可能事件的概率是0D. 随机事件的概率大于19. 已知平行四边形ABCD的对角线交于点E,若BE=4,CE=6,则平行四边形ABCD的面积是()A. 24B. 36C. 48D. 6010. 下列关于二次函数的说法,正确的是()A. 二次函数的图像一定经过原点B. 二次函数的图像一定有最小值C. 二次函数的图像一定有最大值D. 二次函数的图像一定是一条直线二、填空题(每题4分,共40分)11. 已知等差数列的前5项和为35,第5项为15,则首项为______。

初三数学模拟试卷一答案

初三数学模拟试卷一答案

一、选择题(每题3分,共30分)1. 已知等差数列{an}中,a1=3,d=2,则第10项an=()A. 19B. 21C. 23D. 25答案:B解析:由等差数列的通项公式an=a1+(n-1)d,代入a1=3,d=2,n=10,得到an=3+(10-1)×2=21。

2. 已知函数f(x)=2x+1,则f(-1)=()A. -1B. 1C. 0D. 3答案:A解析:将x=-1代入函数f(x)=2x+1,得到f(-1)=2×(-1)+1=-1。

3. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标为()A. (1,1)B. (3,-1)C. (0,1)D. (-1,0)答案:A解析:线段AB的中点坐标可以通过取两端点坐标的平均值得到,即(2+(-1))/2=1,(3+(-2))/2=1,所以中点坐标为(1,1)。

4. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 75°B. 105°C. 135°D. 150°答案:C解析:三角形内角和为180°,∠A=60°,∠B=45°,所以∠C=180°-60°-45°=135°。

5. 已知一次函数y=kx+b过点P(1,2),且与y轴的交点为Q(0,3),则该函数的解析式为()A. y=2x+1B. y=2x-1C. y=x+3D. y=x+1答案:B解析:由点P(1,2)可得2=k×1+b,由点Q(0,3)可得3=b,将b=3代入2=k×1+b得到k=2,所以函数的解析式为y=2x-1。

二、填空题(每题5分,共25分)6. 若a+b=5,ab=4,则a²+b²=()答案:25解析:由平方差公式(a+b)²=a²+2ab+b²,代入a+b=5,ab=4,得到25=a²+2×4+b²,所以a²+b²=25-8=17。

初三模拟试卷数学第一次

初三模拟试卷数学第一次

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 无理数2. 若a、b、c是等差数列,且a=1,b=3,则c的值为()A. 5B. 7C. 9D. 113. 下列函数中,是奇函数的是()A. y = x²B. y = |x|C. y = x³D. y = 1/x4. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 若等腰三角形的底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 36D. 486. 下列命题中,正确的是()A. 两个等腰三角形一定是相似的B. 两个等边三角形一定是相似的C. 两个等腰三角形一定是全等的D. 两个等边三角形一定是全等的7. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值为()A. 19B. 21C. 23D. 258. 下列方程中,无解的是()A. x + 2 = 0B. x² - 4 = 0C. x² + 4 = 0D. x² - 1 = 09. 若函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -4C. -3D. -210. 在直角坐标系中,直线y = 2x + 1与y轴的交点坐标是()A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(本大题共10小题,每小题3分,共30分)11. 已知等差数列{an}的第一项a1=2,公差d=3,则第10项an的值为______。

12. 函数f(x) = -x² + 4x + 3的对称轴方程是______。

13. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为______。

14. 若等腰三角形的底边长为8,腰长为10,则该三角形的周长为______。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。

A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。

A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。

A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。

A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。

A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。

A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。

A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。

2. 一个数的相反数是-2,这个数是______。

3. 一个数的平方是25,这个数可以是______。

4. 一个数的立方是-8,这个数是______。

5. 一个角的补角是120°,这个角的度数是______。

6. 一个角的余角是60°,这个角的度数是______。

7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。

8. 函数y=3x-2与x轴的交点坐标是______。

九年级第一次模拟考试(数学)试卷含答案

九年级第一次模拟考试(数学)试卷含答案

九年级第一次模拟考试(数学)(考试总分:120 分)一、单选题(本题共计7小题,总分21分)1.(3分)如如,如如如如如如如如如如如如如( )A.-1B.-1.5C.-4.2D.-32.(3分)如如如如“如如如如”如如如如如如如如如如如如如( )A.B.C.D.3.(3分)如如如如如如如x5如如( )A.x10÷x2B.(x2)3C.x2⋅x3D.x6−x4.(3分)如图,在Rt△ABC中,∠ACB=90∘,AB=5,AC=3,把Rt△ABC沿直线BC如如如如3如如如如如如如△A′B′C′,则四边形ABC′A′如如如如( )A.15B.18C.20D.225.(3分)如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如5如如如如如,如如如如如如如如8如如如如如,如如如如如如如如11如如如如如,…,如如如如如如如如,如如如如如如如如如如如如如如( )A.96B.92C.90D.936.(3分)如图,四边形ABCD 内接于⊙O,AB ^=AD ^,连接BD ,若∠DCE =50∘,则∠ABD 如如如如( )A.50∘B.60∘C.65∘D.70∘7.(3分)已知二次函数y =(x −m)(x −1)(1≤m ≤2),若函数图象过(a,b)和(a +6,b)两点,则a 如如如如如如( )A.−2≤a≤−32B.−2≤a≤−1C.−3≤a≤−32D.0≤a≤2二、解答题(本题共计13小题,总分81分)8.(3分)已知正比例函数y=(2m−6)x如如如如如如(x0,y0),如x0y0<0,则m如如如如如如( )A.m>3B.m>13C.m<13D.m<39.(5分)如如:(√6+√23)×√3+(−8)0−|√2−2|.10.(5分)如如如如如:{4(x−1)≥x+2 2x+13>x−1.11.(5分)如如如(mm+3−2mm−3)÷mm2−9,如如如-3,0,1,3如如如如如如如如如如如如.12.(5分)如图,点P为∠AOB内一定点,过点P作PD⊥OA于点D,请用尺规作图法在OB上求作一点Q,使得∠AOB与∠DPQ如如.(如如如如如如,如如如如)13.(6分)如图,在▱ABCD中,E、F为对角线AC上两点,且BE//DF,如如如如如如如如如如如如如,如如如.14.(6分)如如如如如如如如如如100如如,如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如“如如如如如如如如如如”如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如如“如如如如”如如如如如:如如如如如如如如如如如如如,如如如如如如如如如如20如如如如5如如如如如如如,如如如如:如如如如:90 91 89 89 90 98 90 97 95 9898 97 95 88 90 97 95 90 95 88(1)如如如如如如,如如如如如如如如如.如如如如如如如:如如如如:如如如如如如如如如如如如如如如如如如(如如如如如如如如如:(2)如如如如如如,如如如如如如如如如如如如如如如30%如如如“如如如如”如如如如,如如如如如如如如如如如如如如如,如如如如如.15.(6分)如如如如如如如如如“如如如如如”(如如),如如如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如“如如如如如”如如如如如如如,如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如,如如如如如如:(1)如如如如如如如如如如如,如_____小组的数据无法算出“天下第一灯”的高度AB;(2)如如如如如如如如如如如如如如如如如,如如“如如如如如”如如如AB.(如如如如:sin⁡37∘≈0.60,cos⁡37∘≈0.80,tan⁡37∘≈0.75)16.(6分)如如如如如如如如如如如如如“如如如如”,如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如如如如如如如,如如如如如如如如如如如如如如如如如如如如如如,如如如如:如如如,如如如如如如如如如如如如如如如如如如如如如如如如(如如如如如如如如如如如),如如如如如如如如如如如如如如如如(如如如),如如如如如如如如如如如如如如如如如如如如如如如如如如.(1)"如如如如如如如如如”如如如如如__________如如;(如“如如”如“如如如”如"如如”)(2)如如如如如如如如如,如如如如如如如如如如如如如如如如“如如如如”如如如.17.(7分)小王计划从某批发市场批量购买A,B两种仿古秦兵马俑工艺品摆件,已知A种摆件的批发价比B种摆件的批发价每个少5元,且用400元购买的A种摆件数量与用500元购买的B如如如如如如如.(1)求A,B如如如如如如如如如如如?(2)如如如如如如如如如如如如如如如如如如8如如如,如如如如如如50如,如如如如如如如如如如如如按需购买100个仿古秦兵马俑工艺品摆件,共用了y元,设A种摆件购买了x个,请求出y与x之间的函数关系式.若小王共用了1930元,则他购买A,B如如如如如如如如?18.(8分)如图,在△ABC中,∠ACB=90∘,边AB与⊙O相切于点D,CD是⊙O的直径,AC交⊙O于E,连接BE交CD于P,交⊙O于F,连接DF.(1)求证:∠ABC=∠EFD;(2)若AD=2,CD=√6,求BD如如.19.(9分)如图,在平面直角坐标系中,抛物线L:y=−x2+bx+c的图象与x轴的一个交点为A(−3,0),顶点B如如如如如-1.(1)求抛物线L如如如如如如;(2)点P为坐标轴上一点,将抛物线L绕点P如如180∘如如如如如如L′,且A,B的对应点分别为C,D,当以A,B,C,D为顶点的四边形是矩形时,请求出符合条件的点P如如.20.(10分)如如如如1.如图如,在△ABC中,AB=AC=2,∠A=120∘如如SΔABC=__________;2.如图如,在△ABC中AB的垂直平分线交BC于D,交AB于点M,AC的垂直平分线交BC于E,交AC于N,N,∠DAE=20∘,BC=6,求∠BAC的度数及△ADE如如如;如如如如3.如图如,某农场主欲规划出一个如图所示的矩形田地ABCD其中BC=0.4km,点P在边AD 上,E,F为BC边上两点(包括端点),在△PEF如如如如如如如如如,如如如如如如如如如如如,如如△PEF的三边铺设围栏,围栏总长为0.6km(即△PEF的周长为0.6km),围栏PE与PF如如如如60∘(即∠EPF=60∘),为了尽可能多的种植农作物,要求矩形ABCD的面积尽可能的大请问能否设计出一个面积尽可能大又满足要求的矩形ABCD田地?若能,求出矩形ABCD如如如如如如,如如如,如如如如如.三、填空题(本题共计6小题,总分18分)21.(3分)如如如如如如如如如5,如如如如如如_____.22.(3分)因式分解:mx2−2mx+m=__________.23.(3分)如图,EC,BD是正五边形ABCDE如如如如,如∠1如如如如_____.24.(3分)如如2021如3如如如如如如如如如如如如1如如如,5如如如如如如如如如如如如1.21如如如,如3如如如5如如,如如如如如如如如如如如如如如如如如如如如如_____.的图象交于A(1,m),B(−2,n)两点,点C(2,t) 25.(3分)直线y=2x+b与反比例函数y=kx也在该反比例函数的图象上,则m,n,t如如如如如如__________.(如“ < "如如)26.(3分)如图,已知正方形ABCD中,AB=6,点E是边AD的中点,点P是边CD上的动点,点Q 是正方形内一动点,且满足∠BQC=90∘,则PE+PQ如如如如如__________.答案一、单选题(本题共计7小题,总分21分)1.(3分)如如如如A2.(3分)如如如如C3.(3分)如如如如D4.(3分)如如如如C5.(3分)如如如如D6.(3分)如如如如B7.(3分)如如如如C二、解答题(本题共计13小题,总分81分)8.(3分)如如如如A9.(5分)如如如如5√2−1如如如如如如=3√2+√2+1−(2−√2)=4√2+1−2+√2=5√2−1 10.(5分)【答案】2≤x<4【解析】解不等式4(x−1)≥x+2,得x≥2,如如如如2x+13>x−1,得x<4,则不等式组的解集为2≤x<4.·11.(5分)如如如如-10如如如如如如=[m(m−3)(m+3)(m−3)−2m(m+3)(m+3)(m−3)]⋅(m+3)(m−3)m=m[(m−3)−2(m+3)](m+3)(m−3)⋅(m+3)(m−3)m=(m−3)−2(m+3)=m−3−2m−6=−m−9,当m=−3,0,3如,如如如如如如,如如;当m=1如,如如=-1-9=-10.12.(5分)【答案】解:点Q如如如如:如:如如如如如如如如如如如如如如如如;如如如如如如如如如如如13.(6分)【答案】解:一对全等三角形为:△ADF≌△CBE(或△ADC≌△CBA,△DFC≌△BEA);证明:如四边形ABCD如如如如如如,如AD=BC,∠DAC=∠BCA,如BE//DF,如∠DFC=∠BEA,如∠AFD=∠BEC,如△ADF≌△CBE(AAS).如:如如如如如如如如如如如如如如如如如如如.·14.(6分)(1)5如3; 93如93如(2)如如如如如如如如如如如如如如如97如;如如如如:如20×30%=6如如如如如如如如如如如如如如如如如97如.15.(6分)未找到试题答案16.(6分)(1)如如;(2)如如如如:如如20如如如如如如如,如如如如如如如如如如如如如如如“如如如如”如如如如8如,如P(如如如如如如如如如如如如如如如“如如如如”)=820=25,如:如如2如如如如如如如如如如,如如如如如如如如如如如如3如;如如如如如如,如如如如如如如如如如如如如如如如如如如如如;如如2如如如如如如如如如如如如20如如如如如如,如如如如如如,如如如.17.(7分)(1)20;25;【解析】设A种摆件的单价为a元/个,则种摆件的单价为(a+5)如/如,如如如如,如如400a =500a+5,解得a=20,如a+5=25,如A,B如如如如如如如如如如20如/如如25如/如.(2)30;70.【解析】根据题意,可得y=50+0.8×[20x+25(100−x)]=50+0.8×[2500−5x] =−4x+2050,可得1930=−4x+2050,解得x=30,如小王购买A,B如如如如如如如30如如70如.18.(8分)(1)证明:∵AB与⊙O相切,CD是⊙O如如如,如CD⊥AB,如∠CDB=90∘,即∠ABC+∠BCD=90∘,如∠ACB=90∘,如∠ECD+∠BCD=90∘,如∠ABC=∠ECD,如∠ECD=∠EFD,如∠ABC=∠EFD.(2)由1知∠ACD=∠ABC,又如∠ADC=∠BDC=90∘,如△ACD∽△CBD,如CD AD =BDCD,如√62=√6如如BD=3.19.(9分)(1)y=−x2−2x+3;如如如如如−b2a=−1,如b=2a=−2,将A(−3,0),代入y=−x2−2x+c得:0=−9+6+c如解得:c=3如如抛物线L的函数表达式为:y=−x2−2x+3如(2)(0,1),(2,0) .【解析】由y=−x2−2x+3=−(x+1)2+4得点B如如如(−1,4)如由抛物线L如L′关于坐标轴上一点P对称,可得PA=PC,PB=PD如如以A,B,C,D如如如如如如如如如如如如如,由矩形的中心对称性知:PB=PA时,四边形ABCD如如如.如当点P在y轴上时,令点P坐标为(0,y)如如PB2=(−1)2+(4−y)2,PA2=(−3)2+y2如∴(−1)2+(4−y)2=(−3)2+y2如如y=1如如P1(0,1),如当点P在x轴上时,令点P坐标为(x,0)如如PB2=(−1)2+(4−y)2,PA2=(−3)2+y2,如(−1)2+(4−y)2=(−3)2+y 2,∴x =2,如P 2(2,0),综上所述满足题意的P 如如如如(0,1),(2,0).20.(10分)如如如如1.√32.∵DM 如如如AB如如如如如如,如DA =DB ,如∠B =∠DAB ,同理AE =CE,∠C =∠EAC ,如∠B +∠DAB +∠C +∠EAC +∠DAE =180∘,如∠DAB +∠EAC =80∘,如∠BAC =100∘,∵DA =DB,AE =CE ,如△ADE 如如如=AD +DE +AE =BD +DE +EC =BC =6;3.如图,延长FE 至M,使得EM =PE ,延长EF 至N ,使得FN =PF ,则MN 的长等于ΔPEF 的周长,即MN =0.6,则∠BMN +∠PNM =180∘−∠EPF 2=180∘−60∘2=60∘,如∠MPN =180∘−(∠PMN +∠PNM)=120∘,连接PM,PN ,作△PMN 的外接圆⊙O 过点O 作OG ⊥MN 于G,延长OG 交⊙O 如P ′,如P 作PH ⊥MN 于H ,分别连接OP,OM,ON ,则∠MON =2(180∘−∠MPN)=120∘,如OG ⊥BC ,如∠NOG =12∠MON =60∘,CN =12MN =0.3, 在RtΔOGN 中,ON =GN sin⁡∠NOG =0.3sin⁡60∘=√35,OG =√310, 如OG +PH ≤OP,∴√310+PH ≤√35, 解得PH ≤√310,如当点P 如如P ′重合时,PH 如如如如如√310, ∵PH =AB,∴PH 取得最大值时矩形ABCD 如如如如如,S 矩形ABCD 最大=BC ⋅PH 最大=0.4×√310=√325,如矩形ABCD 如如如如如如如如,如如如如√325km 2. 三、 填空题 (本题共计6小题,总分18分)21.(3分)如如如如±√522.(3分)【答案】m(x −1)223.(3分)如如如如7224.(3分)如如如如 10%25.(3分)【答案】n<t<m26.(3分)如如如如6√2−3。

初中初三数学第一次模拟考试试卷

初中初三数学第一次模拟考试试卷

九年级数学模拟试卷一、选择题〔本大题共10小题,每题3分,共30分〕 1.2的相反数是 ( ▲ )A .2B .2-C .12-D .122.函数5-=x y 中自变量x 的取值范围是 〔 ▲ 〕A.5-≥xB.5-≤xC.5≥xD.5≤x3.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力到达1 40 000立方平米。

将1 40 000用科学记数法表示应为〔 ▲ 〕A .14×104B .1.4×105C .1.4×106D .0.14×1064.以下说法正确的选项是〔 ▲ 〕 A .一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .假设甲组数据的方差S 甲2=0.2,乙组数据的方差S 乙2=0.5,则乙组数据比甲组数据稳定 5.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为〔 ▲ 〕 A. 4)1(2++=x y B. 2)1(2++=x y C. 4)1(2+-=x y D. 2)1(2+-=x y6. 在平面直角坐标系中,把点P 〔-3,2〕绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( ▲ ) A.〔3, 2〕 B.〔2,-3〕 C.〔-3,-2〕D. 〔3,-2〕7.在边长为1的小正方形组成的网格中,有如下列图的A ,B 两点,在格点上任意放置点C ,恰好能使得△ABC 的面积为1的概率为〔 ▲ 〕A.B.C.D.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP 的面积S与点P运动的路程x之间的函数图象大致为(▲〕A. B.C.D.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是〔▲〕A.120°B.135°C.150°D.45°10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长〔▲〕A .随C 、D 的运动位置而变化,且最大值为4B .随C 、D 的运动位置而变化,且最小值为2 C .随C 、D 的运动位置长度保持不变,等于2 D .随C 、D 的运动位置而变化,没有最值二、填空题〔本大题共8小题,每题2分,共16分〕 11.分解因式:5x 2-10x+5=____▲_____. 12. 计算2x +6x 2-9得___▲______13. 同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =59x +32.如果某一温度的 摄氏度数是25℃,那么它的华氏度数是___▲_____℉.14.假设反比例函数13ky x-=的图像经过第一、三象限,则 k 的取值范围是 ▲ . 15.如图是由射线AB ,BC ,CD ,DE ,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___▲__.16. 如图,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果CE=2,EB=4,FD=1.5,那么AD= ▲ .17. 如图,等边△ABC 中,D 是边BC 上的一点,且BD :DC=1:3,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么的值为 ▲ .18.假设m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,假设m 1+m 2+…+m 2016=1546,〔m 1﹣1〕2+〔m 2﹣1〕2+…+〔m 2016﹣1〕2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为 ▲ .三、解答题〔本大题共10小题,共84分〕 19. (此题总分值8分)计算:〔1〕101()27(5)6tan 604-︒-+-π+ 〔2〕(x +1)2-2(x -2).20. (此题总分值8分)〔1〕 解方程:13132=-+--x x x 〔2〕解不等式组:2(2)43251x x x x-≤-⎧⎨--⎩<第15题 第16题 第17题21. (此题总分值8分) 如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.22. (此题总分值8分)如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.〔1〕求证:BC平分∠PDB;〔2〕假设PA=6,PC=6,求BD的长.23.〔此题总分值8分〕四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答以下是问题:〔Ⅰ〕本次接受随机抽样调查的学生人数为,图①中m的值是;〔Ⅱ〕求本次调查获取的样本数据的平均数、众数和中位数;〔Ⅲ〕根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. (此题总分值6分)九〔1〕班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖时机,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌反面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3〔1〕用列表或画树状图的方法求出甲同学获得一等奖的概率;〔2〕是否每次抽奖都会获奖,为什么?25. (此题总分值10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s〔米〕,甲行走的时间为t〔分〕,s关于t的函数图象的一部分如下列图.〔1〕求甲行走的速度;〔2〕在坐标系中,补画s关于t的函数图象的其余部分;〔3〕问甲、乙两人何时相距360米?26. (此题总分值10分)某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M〔如下列图〕,M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.〔1〕求栈道BC的长度;〔2〕当点M位于何处时,可以使该圆形保护区的面积最大?27.(此题总分值10分)如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为〔2,2〕,过点B的直线l∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.〔1〕填空:直线L的函数解析式为;a,b的关系式是.〔2〕当△PBC是等腰Rt△时,求抛物线的解析式;〔3〕当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围.28.(此题总分值8分) 在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点〔垂足〕的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.〔1〕如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段的长度.〔2〕如图2,RT△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC 的距离为.〔3〕如图3,假设长为1个单位个单位长度,请用适当的方法表示满足条件的所有线段CD.注:假设满足条件的线段是有限的,请画出;假设满足条件的线段是无限的,请用阴影表示其所在区域.〔保留画图痕迹,简要标注数据〕。

初三第一次模拟考试数学试卷含答案

初三第一次模拟考试数学试卷含答案

....1初三第一次模拟考试试卷数学学校______________班级______________姓名_____________考号____________考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的1.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴上画点C,则与点C对应的实数是A.2 B.3C.4D.52.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是A.x>0B.x<1C.x>D.x为任意实数3.若实数a,b满足a>b,则与实数a,b对应的点在数轴上的位置可以是4.如图,e O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是A.πB.3π2C.2πD.3π5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°A . 30B .C .D . A . 1 B . C . D .CG ,EF ,且 AB =CG =EF ;弯道为以点 O 为圆心的一段弧,且 BC , CD ,DE 所对的圆心角均为 90°.甲、 与时间 x(s)的对应关系如图 2 所示.结合题目信息,下列说法错误的是6. 甲、乙两位同学做中国结,已知甲每小时比乙少做 6 个,甲做 30 个所用的时间与乙做 45 个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做 x 个,那么可列方程为4530 45 30 4530 45====x x + 6x x - 6 x - 6 x x + 6 x7.第 24 届冬奥会将于 2022 年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等) 冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是2 1 35 5 2 58.如图 1 是一座立交桥的示意图(道路宽度忽略不计), A 为入口, F ,G 为出口,其 中直行道为 AB ,» »»乙两车由 A 口同时驶入立交桥,均以 10m/s 的速度行驶,从不同出口驶出. 其间两车到点 O 的距离 y (m )..A. 甲车在立交桥上共行驶 8sB. 从 F 口出比从 G 口出多行驶 40mC. 甲车从 F 口出,乙车从 G 口出D. 立交桥总长为 150m二、填空题(本题共 16 分,每小题 2 分)9.若根式x -1 有意义,则实数 x 的取值范围是__________________.12. 化简代数式 x +1+ l .17.计算: 2sin 60︒- (π-2)0+ ⎪10.分解因式: m 2n - 4n = ________________.11.若多边形的内角和为其外角和的 3 倍,则该多边形的边数为________________.⎛ ⎝1 ⎫ x⎪ ÷ ,正确的结果为________________.x -1 ⎭ 2x - 213. 含 30°角的直角三角板与直线 l 1,2的位置关系如图所示,已知 l 1//l 2,∠1=60°. 以下三个结论中正确的是_____________(只填序号). ① AC = 2BC ; ② △BCD 为正三角形; ③ AD = BD14. 将直线 y =x 的图象沿 y 轴向上平移 2 个单位长度后,所得直线的函数表达式为 ____________,这两条直线间的距离为____________.15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤)年份2015 上半年 2015 下半年 2016 上半年 2016 下半年 2017 上半年 2017 下半年选手甲乙290(冠军)285(亚军) 170(没获奖) 292(季军)287(亚军) 293(亚军) 135(没获奖) 298(冠军)292(亚军) 294(亚军) 300(冠军)296(亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选派____________(填“甲”或“乙”),理由是______________________________________. 16.已知正方形 ABCD.求作:正方形ABCD 的外接圆 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点 O 为圆心,OA 长为半径作e O .e O 即为所求作的圆.请回答:该作图的依据是_____________________________________.三、解答题(本题共 68 分,第 17-24 题,每小题 5 分,第 25 题 6 分,第 26-27,每小题 7 分,第 28 题 8 分)⎛ 1 ⎫⎝ 3 ⎭-2 + 1- 3 .18. 解不等式组 ⎨x + 2 并写出它的所有整数解. 22. 已知函数 y =3 ( x >0) 的图象与一次函数 y = ax - 2 (a ≠ 0 ) 的图象交于点 A (3, n ) .⎧ 4 x +6> x , ⎪ ⎪⎩ 3 ≥ x ,19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点 D . BF 平分∠ABC 交 AD 于点 E ,交 AC 于点 F.求证:AE =AF.20. 已知关于 x 的一元二次方程 x 2 -(m + 3)x + m + 2 = 0 .(1) 求证:无论实数 m 取何值,方程总有两个实数根; (2) 若方程有一个根的平方等于 4,求 m 的值.21.如图,已知四边形 ABCD 是平行四边形,延长 BA 至点 E ,使 AE = AB ,连接 DE ,AC.(1)求证:四边形 ACDE 为平行四边形;1(2)连接 CE 交 AD 于点 O . 若 AC=AB =3, cos B = ,求线段 CE 的长.3x(1)求实数 a 的值;(2) 设一次函数 y = ax - 2 (a ≠ 0 ) 的图象与 y 轴交于点 B.若点 C 在 y 轴上,且 S△ ABC =2 S △ AOB,求点 C 的坐标.23.如图,AB为e O的直径,点C,D在e O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是e O的切线;(2)连接BC.若AB=5,BC=3,求线段AE的长.24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用___________(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是_________________________________________.25.如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:(说明:补全表格时,xy5.2124.234.645.957.669.5相关数值保留一位小数).(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y的最小值为______________(保留一位小数),此时点P在图1中的位置为________________________.26.在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a-2a≠0与x轴()交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.27.已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60︒①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.⎪⎪.在A(1,0),B(1,1),C (2,0(1)如图2,M ⎪⎪,N (2)如图3,M(0,1),N ,-⎪⎪,点D是线段MN关于点O的关联点.③点F在直线y=-3x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.在平面直角坐标系xOy中,⊙O的半径为1.⎛22⎫⎛22⎫,,-⎝22⎭⎝22⎭三点中,是线段MN关于点O的关联点的是;⎛31⎫⎝22⎭①∠MDN的大小为°;)②在第一象限内有一点E(3m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;3F⎪⎩3≥x,②分第一次模拟检测初三数学试题参考答案及评分标准一、选择题(本题共16分,每小题2分)题号答案1B2B3D4D5C6A7B8C二、填空题(本题共16分,每小题2分)9.x≥110.n(m+2)(m-2)11.812.2x13.②③14.y=x+2,215.答案不唯一,理由须支撑推断结论16.正方形的对角线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)17.解:原式=2⨯3-1+9+3-1----------4分2=23+7------------------------5⎧4x+6>x,①⎪18.解:⎨x+2由①得,x>-2,------------------1分由②得,x≤1,------------------2分∴不等式组的解集为-2<x≤1.所有整数解为-1,0,1.---------------------5分19.证明:∵∠BAC=90°,∴∠FBA+∠AFB=90°.-------------------1分∵AD⊥BC,∴∠DBE+∠DEB=90°.----------------2分∵BE平分∠ABC,∴∠DBE=∠FBA.-------------------3分∴∠AFB=∠DEB.-------------------4分∵∠DEB=∠FEA,∴∠AFB=∠FEA.∴AE=AF.-------------------5分在 △Rt EBC 中,BE =6, cos B = BC如图,1 1△SABC=220. (1)证明: ∆= (m +3)2 -4 (m + 2) = (m +1)2∵ (m +1)2 ≥0 ,∴无论实数 m 取何值,方程总有两个实根. -------------------2 分(2)解:由求根公式,得 x =1,2(m + 3)± (m + 1)2,∴ x =1 , x =m +2 .1 2∵方程有一个根的平方等于 4, ∴ (m +2)2 = 4 .解得 m =-4 ,或 m =0 . -------------------5 分 21.(1) 证明:∵平行四边形 ABCD , ∴ AB =DC , AB ∥DC . ∵AB =AE ,∴ AE =DC , AE ∥DC .∴四边形 ACDE 为平行四边形. -------------------2 分 (2) ∵ AB =AC , ∴ AE =AC .∴平行四边形 ACDE 为菱形. ∴AD ⊥CE.∵ AD ∥BC , ∴BC ⊥CE.1BE =3 ,∴ BC =2 .根据勾股定理,求得 BC =4 2 .----------------------5 分22.解:(1)∵点 A (3, n ) 在函数 y = 3 (x >0) 的图象上,x∴ n =1 ,点 A (3,1) .∵直线 y = ax - 2 (a ≠ 0)过点 A (3,1) ,∴ 3a - 2 = 1 . 解得 a = 1 .----------------------2 分(2)易求得 B (0, -2) .△S AOB2A△S ABC = 2 BC ⋅ xA∵ △S AOB,∵CD=CB ∴AE∴AE∴BC=2OB=4.∴C(0,2),或C(0,-6).----------------------5分1223.(1)证明:连接OC.»»∴∠1=∠3.∵OA=OC,∴∠1=∠2.∴∠3=∠2.∴AE∥OC.∵AE⊥EF,∴OC⊥EF.∵OC是e O的半径,∴EF是e O的切线.----------------------2分(2)∵AB为e O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AE⊥EF,∴∠AEC=90°.∴△AEC△∽ACB.AC=AC AB4=.45.∴AE=165.----------------------5分24.解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分113 .--------------------2 解得 a ≥ .综上, a < - 2 ,或 a ≥ . --------------------7 分25.解:(1)4.5 . --------------------2 分(2)--------------------4 分(3) 4.2,点 P 是 AD 与 CE 的交点. --------------------6 分26.解:(1) ∵点 O (0,0 )在抛物线上,∴ 3a - 2 = 0 , a = 2 分(2)①对称轴为直线 x = 2 ;②顶点的纵坐标为 -a - 2 .--------------------4 分(3) (i )当 a >0时,⎧-a - 2<0,依题意, ⎨ ⎩3a - 2≥0.23(ii )当 a <0时,⎧-a - 2>0,依题意, ⎨ ⎩3a - 2≤0.解得 a <-2.2312, ( ) ) ,⎪ . 2 2 ⎭27. (1)① ∠B = 75︒ , ∠ACB = 45︒ ;--------------------2 分②作 DE ⊥AC 交 AC 于点 E.△Rt ADE 中,由 ∠DAC = 30︒ ,AD=2 可得 DE =1,AE = 3 .△Rt CDE 中,由 ∠ACD = 45︒ ,DE=1,可得 EC=1.∴AC = 3 + 1 .△Rt ACH 中,由 ∠DAC = 30︒ ,可得 AH = 3 + 3 ; --------------4 分2(2)线段 AH 与 AB +AC 之间的数量关系:2AH =AB +AC证明: 延长 AB 和 CH 交于点 F ,取 BF 中点 G ,连接 GH. 易证△ACH ≌△AFH.∴ AC = AF , HC = HF .∴ GH ∥BC .∵ AB = AD ,∴ ∠ABD = ∠ADB .∴ ∠AGH = ∠AHG .∴ AG = AH .∴ AB + AC = AB + AF = 2 A B + BF = 2 (AB + BG ) = 2 A G = 2 A H . --------------7 分28. 解:(1)C ;--------------2 分 (2)① 60°;② △MNE 是等边三角形,点 E 的坐标为 ( 31 );--------------5 分 ③ 直线 y = - 3 3x + 2 交 y 轴于点 K (0,2 ,交 x 轴于点 T 2 3,0 .∴ OK = 2 , OT = 2 3 .∴ ∠OKT = 60︒ .作 OG ⊥KT 于点 G ,连接 MG .∵ M (0,1) ,∴OM =1.∴M 为 OK 中点 .∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG = 3 .⎛ 3 3 ⎫ ∴ G ⎝∵ ∠MON = 120︒ ,13, 2 ≤x ≤3 .--------------8 分∴ ∠GON = 90︒ .又 OG = 3 , ON = 1 ,∴ ∠OGN = 30︒ . ∴ ∠MGN = 60︒ . ∴G 是线段 MN 关于点 O 的关联点.经验证,点 E ( 31 )在直线 y = - 3 3x + 2 上. 结合图象可知, 当点 F 在线段 GE 上时 ,符合题意.∵ x ≤x≤x ,G F E∴ 3 F14。

初三第一次模考试卷数学

初三第一次模考试卷数学

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 15B. 21C. 29D. 252. 下列代数式中,完全平方式是()A. (x + 2)^2B. (x - 3)^2C. (x + 1)(x - 1)D. (x - 2)^33. 在直角坐标系中,点P(-2,3)关于y轴的对称点是()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)4. 若sinθ = 0.8,则cosθ的值是()A. 0.6B. 0.9C. 0.7D. 0.55. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 3/xD. y = 3x + 26. 一个长方形的长是8cm,宽是4cm,则它的对角线长是()A. 6cmB. 10cmC. 12cmD. 14cm7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 1C. 5x + 2 = 3D. 2x + 1 = 08. 下列命题中,正确的是()A. 对顶角相等B. 平行四边形的对角线相等C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等9. 若a、b是实数,且a^2 + b^2 = 25,则|a| + |b|的最大值是()A. 5B. 10C. 15D. 2010. 下列数列中,第10项是12的是()A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 4, 9, 16, ...D. 3, 6, 9, 12, ...二、填空题(每题3分,共30分)11. 已知sinα = 0.6,则cosα的值是______。

12. 二元一次方程2x - 3y = 6的解为______。

13. 一个等腰三角形的底边长是8cm,腰长是10cm,则它的周长是______cm。

14. 已知直角三角形的两个锐角分别是30°和60°,则它的斜边长是______。

九年级第一次模拟考试(数学)试题含答案

九年级第一次模拟考试(数学)试题含答案

九年级第一次模拟考试(数学)(考试总分:80 分)一、单选题(本题共计7小题,总分35分)1.(5分)已知线段a,b,c,d满足ab=cd,则把它改写成比例式正确的是A.a∶d=c∶bB.a∶b=c∶dC.c∶a=d∶bD.b∶c=a∶d2.(5分)如图,在△ABC中,DE∥AB,且CDBD =32,则CECA的值为A.23B.35C.45D.323.(5分)下列关于相似三角形的说法,正确的是A.等腰三角形都相似B.直角三角形都相似C.两边对应成比例,且其中一组对应角相等的两个三角形相似D.一条直角边和斜边对应成比例的两个直角三角形相似4.(5分)如图,CD是Rt△ABC的斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E.添加下列条件仍不能判定△CEB与△CAD相似的是A.∠CBA=2∠AB. B是DE的中点C.CE·CD=CA·CBD.CECA =BEAD5.(5分)如图,在▱ABCD中,E是DC上的点,DE∶EC=3∶2,连接AE交BD于点F,则△DEF与△DAF的面积之比为A.2∶5B.3∶5C.4∶25D.9∶256.(5分)如图,在△ABC中,点D,E分别在边AB和AC上,DE∥BC,M为BC边上的一点(不与点B,C重合),连接AM交DE于点N,则A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM7.(5分)如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD,CE.若AC∶BC=3∶4,则BD∶CE值为A.5∶3B.4∶3C.√5∶2D.2∶√3二、填空题(本题共计3小题,总分15分)8.(5分)若a3=b4=c5(a≠0),则a+b+cc=.9.(5分)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶√3,点A的坐标为(0,√3),则点E的坐标是.10.(5分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为.三、解答题(本题共计3小题,总分30分)11.(8分)已知线段a=1cm,b=4cm,c=5cm.(1)求c,b的比例中项;(2)求c,b,a的第四比例项.12.(10分)已知△ABC与△DEF相似,相似比为1∶3.若它们面积的和为40cm2,求这两个三角形的面积.13.(12分)在△ABC中,E,F分别为线段AB,AC上的点(不与点A,B,C重合).(1)如图1,若EF∥BC,求证:S△AEFS△ABC =AEAB·AFAC.(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由.答案一、单选题(本题共计7小题,总分35分)1.(5分)【答案】A2.(5分)【答案】B3.(5分)【答案】D4.(5分)【答案】D5.(5分)【答案】B6.(5分)【答案】C7.(5分)【答案】A二、填空题(本题共计3小题,总分15分)8.(5分)【答案】1259.(5分)【答案】(3,3)10.(5分)【答案】32三、解答题(本题共计3小题,总分30分)11.(8分)【答案】解:(1)c,b的比例中项为2√5cm.(2)c,b,a的第四比例项为45cm.12.(10分)【答案】解:设△ABC的面积为x cm2,△DEF的面积为y cm2.由题意得x∶y=1∶9,即y=9x,又∵x+y=40,∴可解得x=4,y=36,∴△ABC的面积为4cm2,△DEF的面积为36cm2.13.(12分)【答案】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴AEAB =AFAC,∴S△AEFS△ABC=(AEAB)2=AEAB·AFAC.(2)EF不与BC平行时,(1)中的结论仍然成立.理由:作CM⊥AB于点M,FN⊥AB于点N,则CM∥FN,∴△ANF∽△AMC,∴FNCM =AFAC,∴S△AEFS△ABC =12AE·FN12AB·CM=AEAB·AFAC.。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...2. 如果一个二次函数的图像开口向上,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 03. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的高是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米4. 一个数列的前三项为1,3,5,那么它的通项公式是什么?A. an = 2n - 1B. an = 2n + 1C. an = 2nD. an = 2n - 25. 一个圆的半径为5厘米,那么它的面积是多少?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米6. 一个多边形的内角和为900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 87. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米8. 一个等差数列的前三项为2,5,8,那么它的公差是多少?A. 1B. 2C. 3D. 49. 一个函数y = 2x + 3的图像与x轴的交点坐标是什么?A. (-3/2, 0)B. (3/2, 0)C. (0, 3/2)D. (0, -3/2)10. 一个二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 0二、填空题(每题3分,共15分)11. 一个等腰直角三角形的斜边长为10厘米,那么它的直角边长是______厘米。

12. 一个二次函数y = ax^2 + bx + c的顶点坐标为(-1, 4),那么a 的值是______。

13. 一个圆的直径为12厘米,那么它的周长是______厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金额(元)
50
100
(第9题图)
(第12题图)
(第15题)
2011--2012年九年级第一次模拟考试数学试卷
A 、-1
B 、1
C 、0
D 、不存在
2、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形
3、下列计算哪个是正确的( )
A 、523=+
B 、5252=+
C 、b a b a +=+22
D 、
212221
221+=-
4

5、下列说法错误的是( )
A 、 两点确定一条直线
B 、线段是直线的一部分
C 、一条直线是一个平角
D 、把线段向两边延长即是直线
6、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( )
A B C D
7、已知一元二次方程(m-1)x 2
-4mx+4m-2=0有实数根,则m 的取值范围是( ) A 、m ≤1 B 、3
1

m 且m ≠1 C 、m ≥1 D 、-1<m ≤1 8、下列命题中,正确的个数是( )
①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似
⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似
A 、2个
B 、3个
C 、4个
D 、5个
9、“只要人人都献出一点爱,世界将变成美好的 人间”.在今年的慈善一日捐活动中,济南市 某中学八年级三班50名学生自发组织献爱
心捐款活动.班长将捐款情况进行了统计,
并绘制成了统计图.根据右图提供的信息,
捐款金额..
的众数和中位数分别是( ) A .20、20 B .30、20
C .30、30
D .20、30
10、在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:
()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,
()()()()1313h a b a b h --=--如③,=,.,,,
. 按照以上变换有:(())
()()233232f g f -=-=,,,,
那么()()53f h -,等于( )
A .()53--,
B .()53,
C .()53-,
D .()53-,
二、细心填一填(本大题共5小题,每小题3分,共15分)
11、因式分解:-4x 2
+y 2
=____________________
12、如图,⊙O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 __ cm . 13、函数1
32
2)352(----=m m x
m m y 的图象是双曲线,则m =______________。

14、将3张茂名新湖公园门票和2张高州会堂影院门票分别装入5个完全相同的信封中.小明从中 随机抽取一个信封,信封中恰好装有茂名新湖公园门票的概率为 ________ 15、用正三角形和正六边形按如图所示的规律拼图案,即
从第二个图案开始,每个图案都比上一个图案多一个 正六边形和两个正三角形,则第n 个图案中正三角形 的个数为 _______ (用含n 的代数式表示)
学校_______________________ 班别___________________ 姓名________________ 考号____________________
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇订◇◇◇◇◇◇◇◇◇线◇◇◇◇◇◇◇◇
正面 A . B . C . D .
(第20题图)
三、用心做一做(本大题共3小题,每小题7分,共21分)
16.计算:|2-
|o 2o 12sin30((tan45)-+-+
17、如图,直线AT 切圆O 于点A ,过A 引AT 的垂线,交圆O 于B ,BT 交圆O 于C ,连结AC ,
求证:AC 2
=BC ·CT 。

18、如图,反比例函数x
y 2
=
的图像与一次函数b kx y +=的图像交于点A(m,2), 点B(-2, n ),一次函数图像与y 轴的交点为C 。

(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积。

四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)
19、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?
20、如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针
指向的数字分别记作a b 、,把a b 、作为点A 的横、纵坐标.
(1)求点()A a b ,的个数; (3分) (2)求点()A a b ,在函数y x =的图象上的概率.(4分)
B T
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇订◇◇◇◇◇◇◇◇◇线◇◇◇◇◇◇◇◇
图二
75
70 分数/分
图一
竞选人 A B C
五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)
21、A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用
了两种方式进行了统计,如表一和图一: 表一
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没
有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3 的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成
绩判断谁能当选.
22、已知2x 2x 是关于x 的一元二次方程062
=+-k x x 的两个实数根,
且2
1x 2
2x —1x —2x =115
(1)求k 的值;(2)求2
1x +2
2x +8的值。

23、一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种
来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)
(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少
升?
(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油
箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少 升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)
学校_______________________ 班别___________________ 姓名________________ 考号____________________
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇订◇◇◇◇◇◇◇◇◇线◇◇◇◇◇◇◇◇
(第25题)
x
x

六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分)
24、如图,一元二次方程2
230x x +-=的二根12x x ,(12x x <)是抛物线2y ax bx c =++与
x 轴的两个交点B C ,的横坐标,且此抛物线过点(36)A ,
. (1)求此二次函数的解析式.
(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标. (3)在x 轴上有一动点M ,当MQ MA +取得最小值时,求M 点的坐标.
25、在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴
上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图). (1)求边OA 在旋转过程中所扫过的面积;
(2)旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数;
(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇订◇◇◇◇◇◇◇◇◇线◇◇◇◇◇◇◇◇。

相关文档
最新文档