二次函数型综合问题
题库-二次函数性质综合题
二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b 或b =(舍), ∴二次函数解析式为y =27x +;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b 舍)或b (舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =2或b =-2时,此时二次函数的解析式分别为y =27x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2=4 ,4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a-,24b a -), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a -=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a+)2+1−2(1)4a a +, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C与直线y3=x-3 除顶点外的另一交点为M,此时点M的横坐标即为m的最大值,由2(2)13y xy x⎧=--⎨=-⎩,解得x=2或x=3,∴m的最大值为3.(3)如解图②所示,由(1)可知:抛物线C与直线l都过点a(h,-1).第8题解图②当0<a≤1时,k>0,在直线l下方的抛物线C上至少存在三个横坐标为整数点,即当x=h+3时,y2>y1恒成立.∴k(h+3)-kh-1>a(h+3-h)2-1,整理得:k>3a.又∵0<a≤1,所以0<3a≤3,所以k>3.9.已知二次函数23 2y ax bx=+-的图象与y轴交于点B,(1)若二次函数的图象经过点A(1,1).①二次函数的图象对称轴为直线x=1,求此二次函数的解析式;②对于任意的正数a,当x>n时,y随x的增大而增大,请求出n的取值范围;(2)若二次函数的图象的对称轴为直线x=-1,且直线y=2x-2与直线l也关于直线x=-1对称,且二次函数的图象在-5<x<-4这一段位于直线l的上方,在1<x<2这一段位于直线y=2x-2的下方,求此二次函数的解析式.解:(1)①由题意得31212a bba⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525ab⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a -< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。
二次函数综合题--二次函数与线段有关的问题(原卷版)-中考数学重难点题型专题汇总
二次函数综合题-中考数学重难点题型二次函数与线段有关的问题(专题训练)1.小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.2.如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23P P ,34P P ,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234P P P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).3.在平面直角坐标系xoy 中,已知抛物线y =-x 2+bx +c 经过点A (-1,0)和点B (0,3),顶点为C ,点D 在其对称轴上,且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.(1)求抛物线的解析式;(2)求点P 的坐标;(3)将抛物线平移,使其顶点落在原点O ,这时点P 落在点E 的位置,在y 轴上是否存在点M ,使得MP +ME 的值最小,若存在,求出点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.5.如图,已知抛物线2:L y x bx c =++经过点(0,5),(5,0)A B -.(1)求,b c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .①求点M 的坐标;②将抛物线L 向左平移(0)m m >个单位得到抛物线1L .过点M 作//MN y 轴,交抛物线1L 于点N .P 是抛物线1L 上一点,横坐标为1-,过点P 作//PE x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若10PE MN +=,求m 的值.6.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x 轴上,抛物线2y x bx c =++经过点B ,()4,5D -两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;(2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由;(3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP .探究EM MP PB ++是否存在最小值.若存在,请求出这个最小值及点M 的坐标;若不存在,请说明理由.7.如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:x…1-0123…y …03430…(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.已知抛物线23y ax bx =+-与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点(,0)N n 是x 轴上的动点.(1)求抛物线的解析式;(2)如图1,若3n <,过点N 作x 轴的垂线交抛物线于点P ,交直线BC 于点G .过点P 作PD BC ⊥于点D ,当n 为何值时,PDG BNG ≌;(3)如图2,将直线BC 绕点B 顺时针旋转,使它恰好经过线段OC 的中点,然后将它向上平移32个单位长度,得到直线1OB .①1tan BOB ∠=______;②当点N 关于直线1OB 的对称点1N 落在抛物线上时,求点N 的坐标.9.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB=90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F .①求DE+BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与 AOG 相似,求点D 的坐标.10.如图,抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .(1)直接写出OCA ∠的度数和线段AB 的长(用a 表示);(2)若点D 为ABC 的外心,且BCD △与ACO △4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(1)()y x x a =+-上是否存在一点P ,使得CAP DBA ∠=∠若存在,求出点P 的坐标;若不存在,请说明理由.11.如图,二次函数y =ax 2+bx+x 的图象过O (0,0)、A (1,0)、B (32,(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.12.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.13.在平面直角坐标系xOy中,直线y=−12x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.14,若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC 恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.15.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y 轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值.16.已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.17.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=43,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求35PC+PB的最小值.。
(新)中考数学二次函数与几何综合典型试题(附答案解析)
解:(1)当x=0时,y=3,即A(0,3),
设抛物线的解析式为:y=a(x+3)(x-1),
把A(0,3)入得:3=-3a,
a=-1,
∴y=-(x+3)(x-1)=-x2-2x+3,
1.(1)m2;(2)m1=-3,m2=1;(3) 或 ;(4)-3<m≤-1或m>1
【分析】
(1)根据平行线的性质知,点B与点A的横坐标相同,所以把x=m代入抛物线解析式,即可求得点B的纵坐标;
(2)把点A代入二次函数解析式,列出方程,然后解方程即可;
(3)根据等量关系AB=2和两点间的距离公式列出方程,解方程即可求得m的值;
∴线段AB的长度随m的增大而增大时,-3<m≤-1.
当m>1时,根据题意知,线段AB的长度随m的增大而增大时,m>1.
综上所述,m的取值范围是-3<m≤-1或m>1.
【点睛】
本题主要考查了二次函数综合题,注重培养二次函数的解析式的求法和与几何图形结合的综合能力.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
所以方程组的解为: 或 ,
∴
【点睛】
本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.
4.(1) (2)P(4,5)(3)(-2,5)或(4,5).
【详解】
解:(1)将A(-1,0),B(3,0)代入抛物线解析式得
解得
∴抛物线的解析式为
(2)∵抛物线的解析式为 ,A(-1,0),B(3,0)
中考二次函数专题12二次函数的应用综合问题(学生版)
专题12二次函数函数的应用综合问题[例1](2021·宁夏西吉实验中学九年级期中)据统计每年由于汽车超速行驶而造成的交通事故是造成人员伤亡的主要原因之一,行驶中的汽车,在刹车后由于惯性,还要继续向前滑行一段距离才能停住,这段距离称为刹车距离,为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车的刹车距离进行了测试,测得的数据如下表:(1)在如图所示的平面直角坐标系中以刹车时的速度为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.(3)一辆该型号的汽车在福银高速上发生了交通事故,现场测得刹车距离为32.5m,请推测该汽车的刹车时的速度是多少?请问在事故发生时,汽车是否超速行驶?(假定该路段最高限速110km/h)[例2](2021·全国·九年级专题练习)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图像是函数P=1204t+(0<t≤8)的图像与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=28,01244,1224t tt t+<≤⎧⎨-+<≤⎩(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;①该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.[例3](2021·江苏·无锡市港下中学九年级阶段练习)某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y(件)是售价x(元/件)的一次函数,其售价、销售量的二组对应值如下表:(1)若某天销售利润为800元,求该天的售价为多少元/件?(2)设该商店销售商品每天获得的利润为W(元),求W与x之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?(3)由于某种原因,该商品进价提高了a元/件(a>0),该商店在今后的销售中,日销售量与售价仍然满足原来的函数关系.规定商店售价不低于进价,售价不得超过70元/件,若今后每天能获得的销售最大利润是960元,求a的值.[例4](2021·江苏·常熟市第一中学九年级阶段练习)如图①,在矩形ABCD中,已知BC=8cm,点G为BC 边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF①AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图①所示.(1)图①中,CG=______cm,图①中,m=______;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分①AEF的面积,求此时t的值.[例5].(2021·全国·九年级专题练习)“宿松家乐福超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关系如图(20≤x≤60):(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?【例6】某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?1.(2021·湖南郴州·九年级阶段练习)为满足市场需求,郴州某超市在“中秋节”来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于57元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售月饼多少盒?2.(2021·云南·云大附中九年级阶段练习)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线).(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是元;(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大,最大收益是多少?说明理由.3.(2021·湖北·武汉第三寄宿中学九年级阶段练习)近年来我国无人机设备发展迅猛,新型号无人机不断面世,科研单位为保障无人机设备能安全投产,现针对某种型号的无人机的降落情况进行测试,该型号无人机在跑道起点处着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间满足二次函数关系,其部分函数图象如图所示.(1)求y关于x的函数关系式;(2)若跑道长度为900(m),是否够此无人机安全着陆?请说明理由;(3)现对该无人机使用减速伞进行短距离着陆实验,要求无人机触地同时打开减速伞(开伞时间忽略不计),若减速伞的制动效果为开伞后每秒钟减少滑行距离20a(单位:m),无人机必须在200(单位:m)的短距跑道降落,请直接写出a的取值范围为.4.(2021·江西·九年级阶段练习)2021年新冠肺炎依然在肆虐,“江西加油!中国加油!”每个人都在为抗击疫情而努力市场对口罩的需求依然很大,某公司销售一种进价为20元/袋的口罩,其销售量y(万袋)与销售价格x(元/袋)的变化如下表:同时,销售过程中的其他开支(不含进价)总计50万元.(1)观察并分析表中的y与x之间的对应关系,写出y(万袋)与x(元/袋)之间的一次函数解析式;(2)求出该公司销售这种口罩的净得利润(万元)与销售价格x(元/袋)之间的函数解析式,当销售价格定为多少元时净利润最大,最大值是多少?5.(2021·贵州·遵义市第十二中学九年级期中)疫情从未远去,据云南省卫健委通报,连续3天,云南省的本土日新增确诊病例均超过10例,从3月30日到4月6日,短短一周时间,本轮疫情中的本土确诊病例累计已达65例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为40元的消毒液,市场调查发现,每天的销售量(y瓶)与每瓶的售价(x元)之间满足如图所示的函数关系.(1)求y与x之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过55元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?6.(2021·福建闽侯·九年级期中)如图,四边形ABCD 是一块边长为6米的正方形花圃,现将它改造为矩形AEFG 的形状,其中点E 在AB 边上(不与点B 重合),点G 在AD 的延长线上,3DG BE =,设BE 的长为x 米,改造后花圃AEFG 的面积为y 平方米.(1)当改造后花圃AEFG 的面积与原正方形ABCD 花圃的面积相等时,求BE 的长;(2)当x 为何值时,改造后的花圃AEFG 的面积最大?并求出最大面积.7.(2021·甘肃·临泽二中九年级期中)如图,在直角坐标系中,Rt OAB 的直角顶点A 在x 轴上,4OA =,3AB =.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动,当两个动点运动了x 秒(04)x <<时,解答下列问题: (1)求点N 的坐标(用含x 的代数式表示)(2)设OMN 的面积为S ,求S 与x 之间的函数表达式;(3)在两个动点运动的过程中,是否存在某一时刻,使OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.8.(2021·四川·南部县第二中学九年级阶段练习)如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球于点C,P、A两点相移动的水平距离PD为9米.已知山坡P A与水平方向PC的夹角为30°,AC PC距P为原点,直线PC为x轴建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P点直接打入球洞A,并说明理由.9.(2021·湖南凤凰·九年级期中)凤凰县某超市销售一种大米,每千克大米的成本为5元,经试销发现,该大米每天的销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式(不要求写出自变量取值范围).(2)为保证某天获得1600元的销售利润,且要惠及客户,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?10.(2021·浙江·九年级期中)中国小将杨倩在2021东京奥运会射击比赛中,拿下中国第一枚金牌.某网店顺势推出纪念T恤衫,成本为30元/件,经市场调查发现每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)直接写出y与x之间的函数关系式.(2)当销售单价为多少时,每天获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出160元给希望工程,为了保证捐款后每天利润不低于3800元,求该纪念T恤衫的销售单价x的取值范围.11.(2021·湖北·荆州市荆南中学九年级期中)在荆州市“创建国家文明城市”活动中,好邻居超市购进一批“创文”用的劳动工具,每件成本价6元,每件销售单价x(元)与每天的销售量y(件)的关系如下表:(1)若每天的销售量y(件)与单价x(元)成一次函数关系:求y与x的关系式;(2)设超市销售这种劳动工具每天获得的利润为W(元),当销售单价x为何值时,超市每天可获得最大利润?最大利润是多少?(3)若超市销售这种劳动工具每天获得的利润最多不超过600元,最低不低于480元,那么超市该如何确定销售单价的波动范围?画出草图,结合图像直接写出销售单价x的取值范围.12.(2021·山西孝义·九年级期中)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?13.(2021·河南·南阳市第十三中学校九年级阶段练习)南阳某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?14.(2022·全国·九年级专题练习)已知:如图,在矩形ABCD和等腰Rt ADE中,AB=8cm,AD=AE=6cm,∠DAE=90°.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DB方向匀速运动,速度为1cm/s.过点Q作QM∥BE,交AD于点H,交DE于点M,过点Q作QN∥BC,交CD于点N.分别连接PQ,PM,设运动时间为t(s)(0<t<8).解答下列问题:(1)当PQ⊥BD时,求t的值;(2)设五边形PMDNQ的面积为S(cm2),求S与t之间的函数关系式;(3)当PQ=PM时,求t的值;(4)若PM与AD相交于点W,分别连接QW和EW.在运动过程中,是否存在某一时刻t,使∠AWE=∠QWD若存在,求出t的值;若不存在,请说明理由.15.(2021·浙江·杭州外国语学校九年级阶段练习)某产品每件成本为25元,经过市场调研发现,这种产品在未来20天内的日销售量m(单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如表:这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:y=14t+30(t为整数),根据以上提供的条件解决下列问题:(1)求出m关于t的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a元(a<6)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t的增大而增大,求a的取值范围.16.(2021·福建省南平第一中学九年级期中)经调查某商品在某月30天内的第x天的销售数量y(单位:件)关于x的函数解析式为48(020)5216(2030)5x xyx x⎧+<≤⎪⎪=⎨⎪-+<≤⎪⎩,销售价格p(单位:元/件)关于x的函数关系如图所示,设第x天的销售额为w(单位:元),回答下列问题:(1)第20天的销售量为________件,销售价格为________元/件,销售额为________元;(2)求p与x之间的函数解析式;(3)这个月第几天,该商品的销售额w最大,最大销售额为多少?17.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.18.某种食品的销售价格y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是部分抛物线).(1)已知6月份这种食品的成本最低,求当月出售这种食品每千克的利润(利润=售价﹣成本)是多少?(2)求出售这种食品的每千克利润P与销售月份x之间的函数关系式;(3)哪个月出售这种食品,每千克的利润最大?最大利润是多少?简单说明理由.19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.20.为了探索函数y=x+1x(x>0)的图象与性质,我们参照学习函数的过程与方法.列表:描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;(2)已知点(x1,y1),(x2,y2)在函数图象上,结合表格和函数图象,回答下列问题:若0<x1<x2≤1,则y1>y2;若1<x1<x2,则y1<y2;若x1•x2=1,则y1=y2(填“>”,“=”或“<”).(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边的长为x米,水池总造价为y千元.①请写出y与x的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x应控制在什么范围内?。
二次函数综合练习题(含答案)
二次函数综合练习题一、选择题1.〔2013,6,3分〕二次函数y =x 2-3x +m 〔m 为常数〕的图象与x 轴的一个交点为(1,0),那么关于x 的一元二次方程x 2-3x +m =0的两实数根是〔 〕. A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=3 【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为〔1,0〕,∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,那么x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .【方法指导】考察一元二次方程的根、二次函数图象与x 轴交点的关系.当b 2-4ac ≥0时,二次函数y =ax 2+bx+c 的图象与x 轴的两个交点的横坐标是一元二次方程ax 2+bx+c =0的两个根.【易错警示】因审题不严,容易错选;或因解方程出错而错选.2.〔2013,8,3分〕方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么方程3210x x +-=的实根0x 所在的围是〔 〕. A .4100<<x B .31410<<x C .21310<<x D .1210<<x 【答案】C .【解析】首先根据题意推断方程x 3+2x -1=0的实根是函数y =x 2+3与xy 1=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x -1=0的实根x 0所在围.解:依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如下图,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x ==4,此时抛物线的图象在反比例函数下方; 当x =13时,y =x 2+2=219,1y x ==3,此时抛物线的图象在反比例函数下方;当x =12时,y =x 2+2=214,1y x==2,此时抛物线的图象在反比例函数上方;当x =1时,y =x 2+2=3,1y x==1,此时抛物线的图象在反比例函数上方.所以方程3210x x +-=的实根0x 所在的围是21310<<x .所以应选C .【方法指导】此题考察了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点〞,还要善于分析各图象的变化趋势.【易错警示】不会得出函数解析式,不会观察图象而出错.3. 〔2013市(A ),12,4分〕一次函数y =ax +b 〔a ≠0〕、二次函数y =ax 2+bx 和反比例函数y =kx(k ≠0)在同一直角坐标系中的图象如下图,A 点的坐标为(-2,0).那么以下结论中,正确的选项是〔〕A .b =2a +kB .a =b +kC .a >b >0D .a >k >0 【答案】D .【解析】∵一次函数与二次函数的图象交点A 的坐标为〔-2,0〕,∴-2a +b =0,∴b =2a . 又∵抛物线开口向上,∴a >0,那么b >0.而反比例函数图象经过第一、三象限,∴k >0. ∴2a +k >2a ,即b <2a +k .故A 选项错误. 假设B 选项正确,那么将b =2a 代入a =b +k ,得a =2a +k ,a =-k .又∵a >0,∴-k >0,即k <0,这与k >0相矛盾,∴a =b +k 不成立.故B 选项错误.再由a >0,b =2a ,知a ,b 两数均是正数,且a <b ,∴b >a >0.故C 选项错误. 这样,就只有D 选项正确.【方法指导】此题考察一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象与性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D 为何正确,可由二次函数y =ax 2+bx 与反比例函数y =k x (k ≠0)的图象,知当x =-2b a =-22aa=-1时,y =-k >-24b a =-244a a =-a ,即k <a .又因为a >0,k >0,所以a >k >0.【易错警示】二次函数a 、b 、c 的符号确实定与函数图象的关系混淆不清. 4. 〔2013,7,4分〕抛物线1)3(22+-=x y 的顶点坐标是〔 〕 A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】:A【解析】抛物线2()y a x h k =-+的顶点是〔h ,k 〕【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式24(,)24b ac b a a--求顶点坐标。
二次函数(十二大题型综合归纳 )(学生版)--新九年级数学
二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
中考数学压轴题专题二次函数的经典综合题及答案解析
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。
题库-二次函数性质综合题
二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b =72或b =72-(舍), ∴二次函数解析式为y =277x x ++;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b =7(舍)或b =-7(舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =72或b =-2时,此时二次函数的解析式分别为y =277x x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2|=21212()4x x x x +-=4 , ∴212b +=4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a -,24b a-), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a-=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a +)2+1−2(1)4a a+, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C 与直线y 3=x -3 除顶点外的另一交点为M , 此时点M 的横坐标即为m 的最大值,由 2(2)13y x y x ⎧=--⎨=-⎩,解得x =2或x =3, ∴m 的最大值为3.(3)如解图②所示,由(1)可知:抛物线C 与直线l 都过点a (h ,-1).第8题解图②当0<a ≤1时,k >0,在直线l 下方的抛物线C 上至少存在三个横坐标为整数点,即当x =h +3时,y 2>y 1恒成立.∴k (h +3)-kh -1>a (h +3-h )2-1,整理得:k >3a .又∵0<a ≤1, 所以0<3a ≤3,所以k >3.9.已知二次函数232y ax bx =+-的图象与y 轴交于点B , (1) 若二次函数的图象经过点A (1,1).①二次函数的图象对称轴为直线 x =1,求此二次函数的解析式;②对于任意的正数a ,当x>n 时,y 随x 的增大而增大,请求出n 的取值范围;(2)若二次函数的图象的对称轴为直线x =-1,且直线y =2x -2与直线l 也关于直线x =-1对称,且二次函数的图象在-5<x<-4这一段位于直线l 的上方,在1<x<2这一段位于直线y =2x -2的下方,求此二次函数的解析式.解:(1)①由题意得31212a b b a⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525a b ⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a-< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。
专题09 二次函数的综合性问题(原卷版)
决胜2020中考数学压轴题全揭秘精品专题09 二次函数综合性问题【典例分析】【考点1】二次函数与经济利润问题【例1】(2019·山东中考真题)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)【变式1-1】(2019·浙江中考真题)某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25时可近似用函数11505P t=-刻画;当25≤t≤37时可近似用函数21()0.4160P t h=--+刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系:生长率P 0.20.250.30.35提前上市的天数m (天)051015①请运用已学的知识,求m 关于P 的函数表达式;②请用含t的代数式表示m ;(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【变式1-2】(2019·辽宁中考真题)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中030x <„).(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元?(3)设每天销售该特产的利润为W 元,若1430x <„,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?【考点2】二次函数与几何图形问题【例2】(2018·福建中考真题)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【变式2-1】(2019·湖南中考真题)如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.【变式2-2】(2018·吉林中考真题)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【考点3】二次函数与抛物线形问题【例3】(2019·山东省青岛第二十六中学中考模拟)如图,斜坡AB长10米,按图中的直角坐标系可用y=3+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=13x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?【变式3-1】(2019·河北中考模拟)如图,一座拱桥的轮廓是抛物线型,拱高6m,在长度为8m的两支柱OC和AB之间,还安装着三根支柱,相邻两支柱间的距离为5m.(1)建立如图所示的直角坐标系,求拱桥抛物线的函数表达式;(2)求支柱EF的长度.(3)拱桥下面拟铺设行车道,要保证高3m的汽车能够通过(车顶与拱桥的距离不小于0.3m),行车道最宽可以铺设多少米?【变式3-2】(2019·辽宁中考模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【达标训练】1.(2019·江苏中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是( )A .18m 2B .183m 2C .243m 2D .4532m 22.(2019·台湾中考真题)如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A .90,2⎛⎫ ⎪⎝⎭B .270,2⎛⎫ ⎪⎝⎭C .()0,9D .()0,193.(2019·山西中考真题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-4.(2019·山西中考模拟)如图所示的是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2m ,则水面宽度增加( )A .()424m +B .42mC .()424m -D .4m5.(2019·江苏中考真题)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分.下列说法不正确的是( )A .25min~50min ,王阿姨步行的路程为800mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5min~20min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23201200520s t t =--+≤≤()()6.(2018·北京中考真题)跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.10m B.15m C.20m D.22.5m7.(2018·四川中考真题)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.8.(2019·河北中考模拟)如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=32,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为_____;若水面上升1m,水面宽为_____m.9.(2019·吉林中考模拟)如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)10.(2019·湖南中考真题)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店,A B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?11.(2019·内蒙古中考真题)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.12.(2019·辽宁中考真题)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y (件)与销售单价x (元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.(1)求y 与x 之间的函数关系式.(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?13.(2019·云南中考真题)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示: (1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.14.(2019·四川中考真题)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?15.(2019·湖北中考真题)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式182p x=+,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为______元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为______元/千克.16.(2019·四川中考真题)随着5G技术的发展,人们对各类5G产品的使用充满期待.某公司计划在某地区销售第一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可用1122p x=+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?17.(2019·辽宁中考真题)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?18.(2019·辽宁中考真题)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?19.(2019·贵州中考真题)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?20.(2019·湖北中考真题)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足315(115)75(1530)x x m x x +≤≤⎧=⎨-+<≤⎩(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图所示: 如果李大爷的草莓在上市销售期间每天的维护费用为80元.(1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y 的最大值及相应的x .21.(2019·四川中考真题)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m 最大,最大利润是多少元? 22.(2019·湖北中考真题)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg .设第x 天的销售价格为y (元/kg ),销售量为()m kg .该超市根据以往的销售经验得出以下的销售规律:①当130x 剟时,y=40;当3150x 剟时,y 与x 满足一次函数关系,且当36x =时,37y =;44x =时,33y =.②m 与x 的关系为550m x =+.(1)当3150x 剟时,y 与x 的关系式为 ; (2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W (元)随x 的增大而增大,则需要在当天销售价格的基础上涨a 元/kg ,求a 的最小值.23.(2019·辽宁中考真题)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量y (kg )与时间第t 天之间的函数关系式为2100y t =+(180t 剟,t 为整数),销售单价p (元/kg )与时间第t 天之间满足一次函数关系如下表:(1)直接写出销售单价p (元/kg )与时间第t 天之间的函数关系式.(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?24.(2018·内蒙古中考真题)如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N, FN ⊥BC . (1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y .①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.25.(2019·浙江中考真题)有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B ∠=∠=︒,135C ∠=︒,90E ∠>︒.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.26.(2019·四川中考模拟)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?27.(2019·湖北中考真题)若二次函数2(0)y ax bx c a =++≠图象的顶点在一次函数(0)y kx t k =+≠的图象上,则称2(0)y ax bx c a =++≠为(0)y kx t k =+≠的伴随函数,如:21y x =+是1y x =+的伴随函数.(1)若24y x =-是y x p =-+的伴随函数,求直线y x p =-+与两坐标轴围成的三角形的面积;(2)若函数()30y mx m =-≠的伴随函数22y x x n =++与x 轴两个交点间的距离为4,求m ,n 的值.。
二次函数综合问题之抛物线与直线交点个数问题
二次函数综合问题之抛物线与直线交点个数1.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线得表达式及对称轴;(2)设点B关于原点得对称点为C,点D就是抛物线对称轴上一动点,记抛物线在A,B之间得部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t得取值范围.考点: 待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数得最值.专题: 计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n得值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数得最小值,确定出D纵坐标得最小值,求出直线BC解析式,令x=1求出y得值,即可确定出t得范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2得最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t得范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数得最值,熟练掌握待定系数法就是解本题得关键.2.(2011•石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4).(1)求抛物线顶点D得坐标;(2)设直线CD交x轴于点E,过点B作x轴得垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数得性质;待定系数法求二次函数解析式.专题: 探究型.分析:(1)先设出过A(﹣2,0)、B(4,0)两点得抛物线得解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴得交点坐标即可求出a得值,进而得出此抛物线得解析式;(2)先用待定系数法求出直线CD解析式,再根据抛物线平移得法则得到(1)中抛物线向下平移m各单位所得抛物线得解析式,再将此解析式与直线CD得解析式联立,根据两函数图象有交点即可求出m得取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4),∵C点坐标为(0,4),∴a=﹣,(1分)∴解析式为y=﹣x2+x+4,顶点D坐标为(1,);(2分)(2)直线CD解析式为y=kx+b.则,,∴,∴直线CD解析式为y=x+4,(3分)∴E(﹣8,0),F(4,6),若抛物线向下移m个单位,其解析式y=﹣x2+x+4﹣m(m>0),由消去y,得﹣x2+x﹣m=0,∵△=﹣2m≥0,∴0<m≤,∴向下最多可平移个单位.(5分)若抛物线向上移m个单位,其解析式y=﹣x2+x+4+m(m>0),方法一:当x=﹣8时,y=﹣36+m,当x=4时,y=m,要使抛物线与EF有公共点,则﹣36+m≤0或m≤6,∴0<m≤36;(7分)方法二:当平移后得抛物线过点E(﹣8,0)时,解得m=36,当平移后得抛物线过点F(4,6)时,m=6,由题意知:抛物线向上最多可以平移36个单位长度,(7分)综上,要使抛物线与EF有公共点,向上最多可平移36个单位,向下最多可平移个单位.点评:本题考查得就是二次函数得图象与几何变换,涉及到用待定系数法求一次函数与二次函数得解析式、二次函数与一次函数得交点问题,有一定得难度.3.(2013•丰台区一模)二次函数y=x2+bx+c得图象如图所示,其顶点坐标为M(1,﹣4).(1)求二次函数得解析式;(2)将二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象,请您结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n得取值范围.考点:待定系数法求二次函数解析式;二次函数图象与几何变换.分析:(1)确定二次函数得顶点式,即可得出二次函数得解析式.(2)求出两个边界点,继而可得出n得取值范围.解答:解:(1)因为M(1,﹣4)就是二次函数y=(x+m)2+k得顶点坐标,所以y=(x﹣1)2﹣4=x2﹣2x﹣3,(2)令x2﹣2x﹣3=0,解之得:x1=﹣1,x2=3,故A,B两点得坐标分别为A(﹣1,0),B(3,0).如图,当直线y=x+n(n<1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=﹣3,∴n得取值范围为﹣3<n<1,翻折后得二次函数解析式为二次函数y=﹣x2+2x+3当直线y=x+n与二次函数y=﹣x2+2x+3得图象只有一个交点时,x+n=﹣x2+2x+3,整理得:x2﹣x+n﹣3=0,△=b2﹣4ac=1﹣4(n﹣3)=13﹣4n=0,解得:n=,∴n得取值范围为:n>,由图可知,符合题意得n得取值范围为:n>或﹣3<n<1.点评:本题考查了待定系数法求二次函数解析式得知识,难点在第二问,关键就是求出边界点时n得值.4.(2009•北京)已知关于x得一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k得值;(2)当此方程有两个非零得整数根时,将关于x得二次函数y=2x2+4x+k﹣1得图象向下平移8个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:综合题.分析:(1)综合根得判别式及k得要求求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围.本题第二问就是难点,主要就是不会借助计算淘汰不合题意得k值.解答:解:(1)由题意得,△=16﹣8(k﹣1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3;(2)设方程2x2+4x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=.当k=1时,方程2x2+4x+k﹣1=0有一个根为零;当k=2时,x1•x2=,方程2x2+4x+k﹣1=0没有两个不同得非零整数根;当k=3时,方程2x2+4x+k﹣1=0有两个相同得非零实数根﹣1.综上所述,k=1与k=2不合题意,舍去,k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它得图象向下平移8个单位得到得图象得解析式为y=2x2+4x﹣6;(3)设二次函数y=2x2+4x﹣6得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为<b<.(3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段.而因式分解得y=2x2+4x﹣6=2(x﹣1)(x+3),第一段,当y=x+b过(1,0)时,有一个交点,此时b=﹣.当y=x+b过(﹣3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时﹣<b<.第二段,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折后,开口向下得部分得函数解析式为y=﹣2(x﹣1)(x+3).显然,当y=x+b与y=﹣2(x﹣1)(x+3)(﹣3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=﹣2(x﹣1)(x+3)整理得, 4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合得二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣<b<.点评:考查知识点:一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强,考查面广,似乎就是一个趋势或热点.5.(2012•东城区二模)已知关于x得方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等得实数根,求m得取值范围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3得图象与x轴交于A、B两点,将此图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=k x+3与此图象恰好有三个公共点时,求出k得值(只需要求出两个满足题意得k值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等得实数根,由一元二次方程得定义与根得判别式可求m得取值范围;(2)先求出正整数m得值,从而确定二次函数得解析式,得到解析式与x轴交点得坐标,由图象可知符合题意得直线y=kx+3经过点A、B.从而求出k得值.解答:解:(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意得m得取值范围就是m≠﹣2且m≠1得一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取得值为1与2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点得坐标分别为(﹣1,0)、(3,0).依题意翻折后得图象如图所示.由图象可知符合题意得直线y=kx+3经过点A、B.可求出此时k得值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也就是符合题意得答案.点评:本题考查了二次函数综合题.(1)考查了一元二次方程根得情况与判别式△得关系:△>0⇔方程有两个不相等得实数根.(2)得到符合题意得直线y=kx+3经过点A、B就是解题得关键.6.在平面直角坐标系中,抛物线y=﹣x2+mx+m2﹣3m+2与x轴得交点分别为原点O与点A,点B(4,n)在这条抛物线上.(1)求B点得坐标;(2)将此抛物线得图象向上平移个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:压轴题.分析:(1)把原点坐标代入抛物线,解关于m得一元二次方程得到m得值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n得值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y得到关于x得一元二次方程,根据△=0求出b得值,然后令y=0求出抛物线与x轴得交点坐标,再求出直线经过抛物线与x轴左边交点得b值,然后根据图形写出b得取值范围即可.解答:解:(1)∵抛物线经过原点O,∴m2﹣3m+2=0,解得m1=1,m2=2,当m=1时,﹣=﹣=0,∴m=2,∴抛物线得解析式为y=﹣x2+3x,∵点B(4,n)在这条抛物线上,∴n=﹣×42+3×4=﹣8+12=4,∴点B(4,4);(2)∵抛物线得图象向上平移个单位,∴平移后得图象得解析式y=﹣x2+3x+;(3)联立,消掉y得,﹣x2+3x+=x+b,整理得,x2﹣5x+2b﹣7=0,△=(﹣5)2﹣4×1×(2b﹣7)=0,解得b=,令y=0,则﹣x2+3x+=0,整理得,x2﹣6x﹣7=0,解得x1=﹣1,x2=7,∴抛物线与x轴左边得交点为(﹣1,0),当直线y=x+b经过点(﹣1,0)时,×(﹣1)+b=0,解得b=,∴当直线y=x+b与此图象有两个公共点时,b得取值范围为b>或b<.点评:本题就是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点得坐标特征,二次函数图象与几何变换,难点在于(3)求出直线与抛物线有三个交点时得b值,作出图形更形象直观.7.关于x得二次函数y=x2+2x+k﹣1得图象与x轴有交点,k为正整数.(1)求k得值;(2)当关于x得二次函数y=x2+2x+k﹣1与x轴得交点得横坐标均就是负整数时,将关于x得二次函数y=x2+2x+k﹣1得图象向下平移4个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=(b<3)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)综合根得判别式及k得要求,求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围. 解答:解:(1)由题意得,△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为(0,0),不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它得图象向下平移4个单位得到得图象得解析式为:y=x2+2x﹣3;(3)设二次函数y=x2+2x﹣3得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为:﹣<b<.点评:此题主要考查了一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强.8.(2014•东城区一模)已知:关于x得一元二次方程mx2﹣(4m+1)x+3m+3=0(m>1).(1)求证:方程有两个不相等得实数根;(2)设方程得两个实数根分别为x1,x2(其中x1>x2),若y就是关于m得函数,且y=x1﹣3x2,求这个函数得解析式; (3)将(2)中所得得函数得图象在直线m=2得左侧部分沿直线m=2翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当关于m得函数y=2m+b得图象与此图象有两个公共点时,b得取值范围.考点: 一次函数综合题.专题:压轴题.分析:(1)列式表示出根得判别式△,再根据△>0,方程有两个不相等得实数根证明;(2)利用求根公式法求出x1、x2,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2时得函数值与以及m=1时得翻折图象得对应点得坐标,再代入直线解析式求出b值,然后结合图形写出b得取值范围即可.解答:(1)证明:△=(4m+1)2﹣4m(3m+3)=4m2﹣4m+1=(2m﹣1)2,∵m>1,∴(2m﹣1)2>0,∴方程有两个不等实根;(2)解:x=,∴两根分别为=3,=1+,∵m>1,∴0<<1,∴1<1+<2,∵x1>x2,∴x1=3,x2=1+,∴y=x1﹣3x2,=3﹣3(1+),=﹣,所以,这个函数解析式为y=﹣(m>1);(3)解:作出函数y=﹣(m>1)得图象,并将图象在直线m=2左侧部分沿此直线翻折,所得新图形如图所示,m=2时,y=﹣,m=1时,y=﹣=﹣3,∴函数图象直线m=2左侧部分翻折后得两端点坐标为(3,﹣3),(2,﹣),当m=3时,2×3+b=﹣3,解得b=﹣9,当m=2时,2×2+b=﹣,解得b=﹣,所以,此图象有两个公共点时,b得取值范围﹣9<b<﹣.点评:本题就是一次函数综合题型,主要利用了根得判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分得两个端点得坐标以及有两个交点时得b得取值范围,作出图形更形象直观.9.(2013•门头沟区一模)已知关于x得一元二次方程.(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m<3时,关于x得二次函数得图象与x轴交于A、B两点(点A在点B得左侧),与y轴交于点C,且2AB=3OC,求m得值;(3)在(2)得条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧得部分沿直线l翻折,二次函数图象得其余部分保持不变,得到一个新得图象,记为G.请您结合图象回答:当直线与图象G只有一个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)运用根得判别式就可以求出△得值就可以得出结论;(2)先当x=0或y=0就是分别表示出抛物线与x轴与y轴得交点坐标,表示出AB、OC得值,由2AB=3OC建立方程即可求出m得值;(3)把(2)m得值代入抛物线得解析式就可以求出抛物线得解析式与C点得坐标,当直线经过点C时就可以求出b得值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b得值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△=(m﹣2)2﹣4××(2m﹣6)=(m﹣4)2,∵无论m为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;(2)由题意,得当y=0时,则,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B得左侧,∴A(﹣2,0),B(﹣2m+6,0),∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C(0,2m﹣6),∴OC=﹣(2m﹣6)=﹣2m+6.∵2AB=3OC,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1;(3)如图,当m=1时,抛物线得解析式为y=x2﹣x﹣4,点C得坐标为(0,﹣4).当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b(b<﹣4)与函数y=x2﹣x﹣4(x>0)得图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b=﹣.结合图象可知,符合题意得b得取值范围为b>﹣4或b<﹣.点评:本题就是一道一次函数与二次函数得综合试题,考查了一元二次方程根得判别式得运用,二次函数与坐标轴得交点坐标得运用,轴对称得性质得运用,解答时根据函数之间得关系建立方程灵活运用根得判别式就是解答本题得关键.。
二次函数新定义型综合问题 中考数学
抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数新定义型综合问题是数学的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 新定义型二次函数之共生或伴随抛物线【例1】(新考法,拓视野)(2024·江西九江·一模)定义:若两条抛物线的顶点关于原点对称,二次函数的二次项系数互为负倒数,这样的两条抛物线称之为“共生抛物线”,如抛物线20.5y x =与22y x =-是共生抛物线,已知抛物线()212:213C y x =-++的顶点是点P ,它的共生抛物线2C 的顶点是Q ;(1)点P 的坐标是 ,点Q 的坐标是_________,抛物线2C 的函数关系式是 .(2)直线y m =与抛物线1C 、2C 均有两个交点,这些交点从左到右分别是A 、B 、C 、D .①求m 的取值范围 ;②若AB CD =,求m 的值;【例2】(2023·江苏泰州·二模)在平面直角坐标系中,对于函数21y ax bx c =++,其中a 、b 、c 为常数,a c ≠,定义:函数22y cx bx a =++是21y ax bx c =++的衍生函数,点(),M a c 是函数21y ax bx c =++的衍生点,设函数21y ax bx c =++与其衍生函数的图象交于A 、B 两点(点A 在点B 的左侧).(1)若函数21y ax bx c =++的图象过点()13C -,、 ()15D -,,其衍生点()1M c ,,求函数21y ax bx c =++的解析式;(2)①若函数21y ax bx c =++的衍生函数为221y x =-,求A 、B 两点的坐标;②函数21y ax bx c =++的图象如图所示,请在图中标出点A 、B 两点的位置;(3)是否存在常数b ,使得无论a 为何值,函数21y ax bx c =++的衍生点M 始终在直线AB 上,若存在,请求出b 的值;若不存在,请说明理由.1.新定义:我们把抛物线2y ax bx c =++(其中0ab ≠与抛物线2y bx ax c =++称为“关联抛物线”,例如,抛物线2231y x x =++的“关联抛物线”为2321y x x =++已知抛物线1C :2443(0)y ax ax a a =++->的“关联抛物线”为2C ,1C 与y 轴交于点E.本题考查了二次函数的新定义,正确利用二次函数的图像与性质是解决问题的关键.(1)若点E 的坐标为()0,1-,求1C 的解析式;(2)设2C 的顶点为F ,若△OEF 是以OF 为底的等腰三角形,求点E 的坐标;(3)过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C ,于点M ,N .①当MN =6时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.2.(2023·广东广州·一模)定义:在平面直角坐标系中,直线()y a x h k =-+称为抛物线()2y a x h k =-+的伴随直线,如直线()12y x =-+-为抛物线()212y x =-+-的伴随直线.(1)求抛物线2245y x x =-+的伴随直线;(2)无论a 取何值,抛物线1G :()2212y ax a x a =--+-总会经过某定点,抛物线2G :()()13y m x x m =---的伴随直线经过该定点,求m 的值;(3)顶点在第一象限的抛物线()214y a x a =--+与它的伴随直线交于点A ,B (点A 在点B 的左侧),与x 轴负半轴交于点C ,当90BAC ∠=︒时,y 轴上存在点P ,使得APB ∠取得最大值,求此时点P 的坐标.题型二 新定义型二次函数之特殊形状问题【例1】(新考法,拓视野)(23-24九年级上·浙江杭州·期末)定义:由两条与x 轴有相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.【概念理解】(1)抛物线()()1212y x x =--与抛物线2232y x x =-+是否围成“月牙线”?说明理由.【尝试应用】(2)抛物线211(1)22y x =--与抛物线2212y ax bx c a ⎛⎫=++> ⎪⎝⎭组成一个如图所示的“月牙线”,与x 轴有相同的交点M ,N (点M 在点N 的左侧),与y 轴的交点分别为,A B .①求::a b c 的值.②已知点()0,P x m 和点()0,Q x n 在“月牙线”上,m n >,且m n -的值始终不大于2,求线段AB 长的取值范围.【例2】二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:…()1,3B -()0,0O ()1,1C -A (___,___)()3,3D ……()5,3B '-()4,0O '()3,1C '()2,0A '()1,3D '-…①补全表格;本题考查二次函数综合应用,涉及新定义,二次函数的性质等知识,解题的关键是读懂题意,理解“月牙线”的概念.②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.1.(2023·江西赣州·一模)定义:若直线1y =-与开口向下的抛物线有两个交点,则这两个交点之间的距离叫做这条抛物线的“反碟长”1L :2y x =-与直线1y =-相交于P ,Q .(1)抛物线1L 的“反碟长”PQ =________.(2)抛物线随其顶点沿直线12y x =向上平移,得到抛物线2L .①当抛物线1L 的顶点平移到点()6,3,抛物线2L 的解析式是________.抛物线2L 的“反碟长”是________.②若抛物线2L 的“反碟长”是一个偶数,则其顶点的纵坐标可能是________.(填写所有正确的选项)A .15B .16C .24D .25③当抛物线2L 的顶点A 和抛物线2L 与直线1y =-的两个交点B ,C 构成一个等边三角形时(点B 在点C 左右),求点A 的坐标.题型三 新定义型二次函数与其他函数的综合问题【例1】(新考法,拓视野)(2024·湖南长沙·三模)对某一个函数给出如下定义:如果函数的自变量x 与函数值y 满足:当()()0x m x n --≤时,()()0y m y n --≤(,m n 为实数,且)m n <,我们称这个函数在m n →上是“民主函数”.比如:函数1y x =-+在12-→上是“民主函数”.理由: 由[(1)](2)0x x ---≤,得12x -≤≤. 1x y =-,112y ∴-≤-≤,解得12y -≤≤,[(1)](2)0y y ∴---≤,∴是“民主函数”.(1)反比例函数6y x=是23→上的“民主函数”吗?请判断并说明理由:(2)若一次函数y kx b =+在m n →上是“民主函数”,求此函数的解析式(可用含,m n 的代数式表示);(3)若抛物线2(0,0)y ax bx c a a b =++>+>在13→上是“民主函数”,且在13x ≤≤上的最小值为4a ,设抛物线与直线3y =交于,A B 点,与y 轴相交于C 点.若ABC 的内心为G ,外心为M ,试求MG 的长.【例2】(2023·江苏南通·一模)定义:若函数图象上存在点()1M m n ,,()21M m n '+,,且满足21n n t -=,则称t 为该函数的“域差值”.例如:函数23y x =+,当x m =时,123n m =+;当1x m =+时,221252n m n n =+-=,则函数23y x =+的“域差值”为2(1)点12'1M m n M m n +(,),(,)在4y x =的图象上,“域差值”4t =-,求m的值;本题是二次函数综合题,主要考查了一次函数、反比例函数、二次函数的性质,三角形外心和内心的性质等知识,理解新定义,得出抛物线的解析式从而得出的顶点坐标是解题的关键.ABC(2)已知函数220y x x =-(>),求证该函数的“域差值”2t <-;(3)点A a b (,)为函数22y x =-图象上的一点,将函数22y x x a =-≥()的图象记为W 1,将函数22y x x a =-≤()的图象沿直线y b =翻折后的图象记为2W 当12W W ,两部分组成的图象上所有的点都满足“域差值”1t ≤时,求a 的取值范围.1.(2023·江苏南通·一模)定义:若函数1G 的图象上至少存在一个点,该点关于x 轴的对称点落在函数2G 的图象上,则称函数1G ,2G 为关联函数,这两个点称为函数1G ,2G 的一对关联点.例如,函数2y x =与函数3y x =-为关联函数,点()1,2和点()1,2-是这两个函数的一对关联点.(1)判断函数2y x =+与函数y =-3x是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k ,函数2y x b =+与5y kx k =++始终为关联函数,求b 的值;(3)若函数21y x mx =-+与函数224n y x =-(m ,n 为常数)为关联函数,且只存在一对关联点,求2226m n m -+的取值范围.2.(2024·浙江湖州·一模)定义:对于y 关于x 的函数,函数在 ()1212x x x x x ≤≤<范围内的最大值,记作 []12,M x x 如函数2y x =,在13x -≤≤范围内,该函数的最大值是6, 即,[]1,36M -=.请根据以上信息,完成以下问题:已知函数 ()22141y a x x a =--+-(a 为常数)(1)若2a =.①直接写出该函数的表达式,并求 []1,4M 的值;②已知 5,32M p ⎡⎤=⎢⎥⎣⎦,求p 的值.(2)若该函数的图象经过点()0,0, 且[]3,M k k -=, 求k 的值.题型四 新定义型二次函数与几何图形的综合问题【例1】(新考法,拓视野)(2023·江苏南通·二模)定义:在平面直角坐标系中,点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足11y kx b ≤+且22y kx b ≥+(或满足11y kx b ≥+且22y kx b ≤+),则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“界线”.例如:直线4y x =-+是函数4(0)y x x=>的图象与抛物线2y x =-的一条“界线”.已知点(,2),(,2),(4,2),(4,2)A m B m C m D m -+-+.(1)若2m =-,在直线①3y x =+,②4y x =-+,③27y x =-+中,是函数6(0)y x x=>的图象与正方形ABCD 的“界线”的有______(填序号);(2)若点E 的坐标是(0,4),E的半径为E 与正方形ABCD 的“界线”有且只有一条,求“界线”l 的函数关系式;(3)若存在直线2y x b =+是函数223(22)y x x x =++-≤≤的图象与正方形ABCD 的“界线”,求m 的取值范围.【例2】(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q为平面内不重合的两个点,其本题考查二次函数的图象及性质,反比例函数的性质,一次函数的性质,熟练掌握二次函数的图象及性质,弄清“界线”的定义与图形之间的关系,数形结合、分类讨论是解题的关键.中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.1.(2023·江苏扬州·一模)对于二次函数给出如下定义:在平面直角坐标系xOy 中,二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠的图象顶点为P (不与坐标原点重合),以OP 为边构造正方形OPMN ,则称正方形OPMN 为二次函数2y ax bx c =++的关联正方形,称二次函数2y ax bx c =++为正方形OPMN 的关联二次函数.若关联正方形的顶点落在二次函数图象上,则称此点为伴随点.(1)如图,直接写出二次函数2(1)2y x =+-的关联正方形OPMN 顶点N 的坐标___,并验证点N 是否为伴随点___(填“是”或“否”):(2)当二次函数24y x x c =-++的关联正方形OPMN 的顶点P 与N 位于x 轴的两侧时,请解答下列问题:①若关联正方形OPMN 的顶点M 、N 在x 轴的异侧时,求c 的取值范围:②当关联正方形OPMN 的顶点M 是伴随点时,求关联函数24y x x c =-++的解析式;③关联正方形OPMN 被二次函数24y x x c =-++图象的对称轴分成的两部分的面积分别为1S 与2S ,若1213S S ≤,请直接写出c 的取值范围.2.(2024·江西九江·一模)定义概念:在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++的“衍生直线”.如图1,抛物线2y x bx c =-++与其“衍生直线”交于A ,B 两点(点B 在x 轴上,点A 在点B 的左侧),与x 轴负半轴交于点()3,0C -.(1)求抛物线和“衍生直线”的表达式及点A 的坐标;(2)如图2,抛物线2y x bx c =-++的“衍生直线”与y 轴交于点1D ,依次作正方形111DEFO ,正方形2221D E F F ,…,正方形1n n n n D E F F -(为正整数),使得点1D ,2D ,3D ,…,n D 在“衍生直线”上,点1F ,2F ,3F ,…,n F 在x 轴负半轴上.①直接写出下列点的坐标:1E ______,2E ______,3E ______,n E ______;②试判断点1E ,2E ,…,n E 是否在同一条直线上?若是,请求出这条直线的解析式;若不是,请说明理由.3.(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______ .【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
专题13 函数之一次函数、反比例函数和二次函数综合问题(压轴题)
《中考压轴题》专题13:函数之一次函数、反比例函数和二次函数问题一、选择题1.函数y=ax 2+1与a y x =(a≠0)在同一平面直角坐标系中的图象可能是【】A .B .C .D .2.二次函数2y ax b =+(b >0)与反比例函数a y x=在同一坐标系中的图象可能是【】A. B. C. D.3.函数a y x=与y=ax 2(a≠0)在同一平面直角坐标系中的图象可能是【】A. B. C. D.4.已知反比例函数k y x =的图像如图所示,则二次函数22y 2kx 4x k =-+的图像大致为【】A. B. C. D.5.已知反比例函数k y x =的图像如图所示,则二次函数22y 2kx 4x k =-+的图像大致为【】A. B. C. D.6.在平面直角坐标系中,函数y=x 2﹣2x (x≥0)的图象为C 1,C 1关于原点对称的图象为C 2,则直线y=a (a 为常数)与C 1、C 2的交点共有【】A.1个B.1个或2个C.个或2个或3个D.1个或2个或3个或4个7.函数k y x=与y=﹣kx 2+k (k≠0)在同一直角坐标系中的图象可能是【】A. B. C.D.8.已知a ≠0,在同一直角坐标系中,函数y ax =与2y ax =的图象有可能是【】A. B. C. D.9.一次函数()y ax b a 0=+≠、二次函数2y ax bx =+和反比例函数()k y k 0x=≠在同一直角坐标系中图象如图,A 点为(-2,0)。
则下列结论中,正确的是【】A .b 2a k =+B .a b k =+C .a b 0>>D .a k 0>>10.若正比例函数y=mx (m ≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是【】11.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.下列判断:①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=1.其中正确的有【】A .1个B .2个C .3个D .4个12.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是【】A .B .C .D .13.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数a y x=与y=bx+c 在同一直角坐标系内的大致图象是【】A .B .C .D .二解答题1.如图①,双曲线kyx(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.(1)求双曲线和抛物线的解析式;(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;(3)如图②,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求DNNB的值.2.已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM 为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.3.在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴分别相交于A (﹣3,0),B (0,﹣3)两点,二次函数y=x 2+mx+n 的图象经过点A .(1)求一次函数y=kx+b 的解析式;(2)若二次函数y=x 2+mx+n 图象的顶点在直线AB 上,求m ,n 的值;(3)当﹣3≤x≤0时,二次函数y=x 2+mx+n 的最小值为﹣4,求m ,n 的值.4.在平面直角坐标系中,抛物线()2y x k 1x k =+--与直线y kx 1=+交于A,B 两点,点A 在点B 的左侧.(1)如图1,当k 1=时,直接写出....A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线()()2y x k 1x k k >0=+--与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线y kx 1=+上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.5.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ .6.已知:直线y=ax+b 与抛物线2y ax bx c =-+的一个交点为A (0,2),同时这条直线与x 轴相交于点B ,且相交所成的角β为45°.(1)求点B 的坐标;(2)求抛物线2y ax bx c =-+的解析式;(3)判断抛物线2y ax bx c =-+与x 轴是否有交点,并说明理由.若有交点设为M ,N (点M 在点N 左边),将此抛物线关于y 轴作轴反射得到M 的对应点为E ,轴反射后的像与原像相交于点F ,连接NF ,EF 得△DEF ,在原像上是否存在点P ,使得△NEP 的面积与△NEF 的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由.7.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为.8.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.9.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x (天)123...50p (件)118116114 (20)销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x≤50时1125q 40x=+.(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?10.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.11.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价) 销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)101113销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?12.如图,抛物线y=ax 2+bx+c 关于y 轴对称,它的顶点在坐标原点O ,点B (2,43-)和点C (﹣3,﹣3)两点均在抛物线上,点F (0,34-)在y 轴上,过点(0,34)作直线l 与x 轴平行.(1)求抛物线的解析式和直线BC 的解析式.(2)设点D (x ,y )是线段BC 上的一个动点(点D 不与B ,C 重合),过点D 作x 轴的垂线,与抛物线交于点G .设线段GD 的长度为h ,求h 与x 之间的函数关系式,并求出当x 为何值时,线段GD 的长度h 最大,最大长度h 的值是多少?(3)若点P (m ,n )是抛物线上位于第三象限的一个动点,连接PF 并延长,交抛物线于另一点Q ,过点Q 作QS ⊥l ,垂足为点S ,过点P 作PN ⊥l ,垂足为点N ,试判断△FNS 的形状,并说明理由;(4)若点A (﹣2,t )在线段BC 上,点M 为抛物线上的一个动点,连接AF ,当点M 在何位置时,MF+MA 的值最小,请直接写出此时点M 的坐标与MF+MA 的最小值.13.如图,直线y=﹣3x+3与x 轴、y 轴分别交于点A 、B ,抛物线()2y a x 2k =-+经过点A 、B ,并与x 轴交于另一点C ,其顶点为P .(1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标;(3)在抛物线及其对称轴上分别取点M 、N ,使以A ,C ,M ,N 为顶点的四边形为正方形,求此正方形的边长.14.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.15.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数ny x=(n 为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s ﹣1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax 2+bx+1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足﹣2<x 1<2,|x 1﹣x 2|=2,令t=b 2﹣2b+15748,试求出t 的取值范围.16.已知抛物线()25k 2y x k 2x 4+=-++和直线()()2y k 1x k 1=+++.(1)求证:无论k 取何实数值,抛物线总与x 轴有两个不同的交点;(2)抛物线于x 轴交于点A 、B ,直线与x 轴交于点C ,设A 、B 、C 三点的横坐标分别是x 1、x 2、x 3,求x 1•x 2•x 3的最大值;(3)如果抛物线与x 轴的交点A 、B 在原点的右边,直线与x 轴的交点C 在原点的左边,又抛物线、直线分别交y 轴于点D 、E ,直线AD 交直线CE 于点G (如图),且CA•GE=CG•AB ,求抛物线的解析式.17.如图①,直线l :y=mx+n (m >0,n <0)与x ,y 轴分别相交于A ,B 两点,将△AOB 绕点O 逆时针旋转90°,得到△COD ,过点A ,B ,D 的抛物线P 叫做l 的关联抛物线,而l 叫做P 的关联直线.(1)若l :y=﹣2x+2,则P 表示的函数解析式为;若P :y=﹣x 2﹣3x+4,则l 表示的函数解析式为.(2)求P 的对称轴(用含m ,n 的代数式表示);(3)如图②,若l :y=﹣2x+4,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标;(4)如图③,若l :y=mx ﹣4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM=,直接写出l ,P 表示的函数解析式.18.如图,直线y=x ﹣4与x 轴、y 轴分别交于A 、B 两点,抛物线21y x bx c 3=++经过A 、B 两点,与x 轴的另一个交点为C ,连接BC .(1)求抛物线的解析式及点C 的坐标;(2)点M 在抛物线上,连接MB ,当∠MBA+∠CBO=45°时,求点M 的坐标;(3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动,试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.19.如图,抛物线y=-x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中-3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L 与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.20.如图,已知直线l的解析式为1y x12=-,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D51,4⎛⎫⎪⎝⎭三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.21.今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为1y x56=-+.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x满足一次函数关系如下表:时间x(单位:年,x为正整数)12345…单位面积租金z(单位:元/平方米)5052545658…(1)求出z与x的函数关系式;(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?22.如图,抛物线y=14x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD 重叠部分的面积记为S,试求S的最大值.24.如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.25.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线1y x12=-+相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.26.如图,在平面直角坐标系中,抛物线2y ax bx 3=++与x 轴交于点A (﹣4,0),B (﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D .①如图(1),若四边形ODAE 是以OA 为对角线的平行四边形,当平行四边形ODAE 的面积为6时,请判断平行四边形ODAE 是否为菱形?说明理由.②如图(2),直线1y x 32=+与抛物线交于点Q 、C 两点,过点D 作直线DF ⊥x 轴于点H ,交QC 于点F .请问是否存在这样的点D ,使点D 到直线CQ 的距离与点C 到直线DF :2?若存在,请求出点D 的坐标;若不存在,请说明理由.27.如图,已知一次函数11y x b 2=+的图象l 与二次函数22y x mx b =-++的图象'C 都经过点B (0,1)和点C ,且图象'C 过点A (52-,0).(1)求二次函数的最大值;(2)设使21y y >成立的x 取值的所有整数和为s ,若s 是关于x 的方程131x 0a 1x 3⎛⎫++= ⎪--⎝⎭的根,求a 的值;(3)若点F 、G 在图象'C 上,长度为5的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴,当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD+PE 最小,求出点P 的坐标.28.如图,已知直线y 3x 3=-+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过点A 和点C ,对称轴为直线l :x 1=-,该抛物线与x 轴的另一个交点为B .(1)求此抛物线的解析式;(2)点P 在直线l 上,求出使△PAC 的周长最小的点P 的坐标;(3)点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M 的坐标;若不能,请说明理由.29.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;=2S△BPD;(2)当m为何值时,S四边形OBDC(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.30.已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.31.如图,已知抛物线23y ax x c 2=-+与x 轴相交于A 、B 两点,并与直线1y x 22=-交于B 、C 两点,其中点C 是直线1y x 22=-与y 轴的交点,连接AC .(1)求抛物线的解析式;(2)证明:△ABC 为直角三角形;(3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.32.对某一个函数给出如下定义:若存在实数M 0>,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数()1y x 0x=>和()y x 14x 2=+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数()y x 1a x b b a =-+≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数()2y x 1x m m 0=-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足3t 14≤≤33.如图,抛物线2y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,直线3y x 34=-+与y 轴交于点C ,,与x 轴交于点D.点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E.设点P 的横坐标为m.(1)求抛物线的解析式;(2)若PE =5EF ,求m 的值;(3)若点E /是点E 关于直线PC 的对称点、是否存在点P ,使点E /落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.34.某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:价格x (元/个)…30405060…销售量y (万个)…5432…同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?35.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.36.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,B类杨梅深加工再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位∶万元/吨)与销售数量x(x≥2)(单位∶吨)之间的函数关系式如图,B类杨梅深加工总费用s(单位:万元)与加工数量t(单位∶吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x这间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收人-经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问∶用于直销的A类杨梅有多少吨?(3)第二次该公司准备投人132万元资金,请设计-种经营方案,使公司获得最大毛利润,并求出最大毛利润.37.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.38.已知函数23y kx 2x 2=-+(k 是常数)(1)若该函数的图像与x 轴只有一个交点,求k 的值;(2)若点()M 1,k 在某反比例函数的图像上,要使该反比例函数和二次函数23y kx 2x 2=-+都是y 随x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设抛物线23y kx 2x 2=-+与x 轴交于()()12x ,0,B x A ,0两点,且12x x <,2212x x 1+=,在y 轴上,是否存在点P ,使△ABP 是直角三角形?若存在,求出点P 及△ABP 的面积;若不存在,请说明理由。
初中中考数学二次函数压轴试题题型归纳
中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式 : ABy A y B2x A x B22、中点坐标 :线段 AB 的中点 C 的坐标为:x A x B y A y B2 ,2直线 y k 1 x b 1 ( k 10 )与 yk 2 x b 2 ( k 2 0 )的地点关系:( 1)两直线平行k 1 k 2 且 b 1 b 2 ( 2)两直线订交k 1 k 2( 3)两直线重合 k 1k 2 且 b 1 b 2( 4)两直线垂直k 1k 213、一元二次方程有整数根问题 ,解题步骤以下:① 用 和参数的其余要求确立参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 剖析求解:假如分式,分母是分子的因数;假如二次根式,被开方式是完整平方式。
例:对于的一元二次方程x 2-2 m 1 x m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。
4、二次函数与 x 轴的交点为整数点问题。
(方法同上)例:若抛物线 ymx 23m 1 x 3 与 x 轴交于两个不一样的整数点,且 m 为正整数,试确立此抛物线的分析式。
5、方程总有固定根问题,能够经过解方程的方法求出该固定根。
举比以下:已知对于 x 的方程 mx 23(m 1)x 2m 3 0( m 为实数),求证:不论 m 为什么值,方程总有一个固定的根。
解:当 m0 时, x 1;当 m0时,m323 m 1, x 1 23 1 ;0 , x2m、 x 2m综上所述:不论 m 为什么值,方程总有一个固定的根是1。
6、函数过固定点问题,举比以下:已知抛物线 yx 2mxm 2 ( m 是常数),求证:不论m 为什么值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原分析式变形为对于m 的方程 y x 22 m 1 x ;∴y x 22 0,解得:y1;1x0x 1∴ 抛物线总经过一个固定的点(1,- 1)。
二次函数【综合2】
二次函数【综合2】1、 函数y =(m -3)232--m mx为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.2、 抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.3、 已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.4、 把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象. (1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.5、 函数y =x 2+mx -2(m <0)的图象是( )6、 二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <37、 在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )8、 函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )9、 已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称; (2)k 为何值时,抛物线经过原点.10、 如图是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)11、 抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.12、 二次函数y =x 2+bx +c 的图象过点A (-2,5),且当x =2时,y =-3,求这个二次函数的解析式,并判断点B (0,3)是否在这个函数的图象上.13、 抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.14、 抛物线过(-1,-1)点,它的对称轴是直线x +2=0,且在x 轴上截得线段的长度为,22求抛物线的解析式.15、 抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.16、 把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.17、 二次函数y =ax 2+bx +c 的最大值等于-3a ,且它的图象经过(-1,-2),(1,6)两点,求二次函数的解析式.18、 已知函数y 1=ax 2+bx +c ,它的顶点坐标为(-3,-2),y 1与y 2=2x +m 交于点(1,6),求y 1,y 2的函数解析式.19、 如图,抛物线y =ax 2+bx +c 与x 轴的交点为A ,B (B 在A 左侧),与y 轴的交点为C ,OA =OC .下列关系式中,正确的是( )A .ac +1=bB .ab +1=cC .bc +1=aD .c ba=+1 20、 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直,若小正方形边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )21、 如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD .(1)求C ,D 两点的坐标;(2)求经过C ,D ,B 三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P ,AB 的中点为M (2,1),试判断△PMB 是钝角三角形,直角三角形还是锐角三角形,并说明理由.22、 m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23、 当m 取何值时,抛物线y =x 2与直线y =x +m(1) 有公共点;(2)没有公共点.24、 已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.25、 如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.26、 如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)27、 如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长;(2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.28、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?29、工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?30、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;3)求第8个月公司所获利润为多少万元?31、已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.32、将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( )A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-133、抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定34、函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和435、已知函数y=a(x+2)和y=a(x2+1),那么它们在同一坐标系内图象的示意图是( )36、 y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a -b +c ,a +b +c ,2a-b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个37、 若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+- B .-1 C .251-- D .1 38、 已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.39、 二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.40、 如图,从O 点射出炮弹落地点为D ,弹道轨迹是抛物线,若击中目标C 点,在A 测C 的仰角∠BAC =45°,在B 测C 的仰角∠ABC =30°,AB 相距,km )31(+,OA =2km ,AD =2km .(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.41、 二次函数y 1=ax 2-2bx +c 和y =(a +1)·x 2-2(b +2)x +c +3在同一坐标系中的图象如图所示,若OB=OA ,BC =DC ,且点B ,C 的横坐标分别为1,3,求这两个函数的解析式.42、 若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________. 43、 若抛物线y =ax 2+bx +c (a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx+c 的解析式为______.44、 若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC =3,则b =______. 45、 二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______. 46、 二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________.47、 把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( )A .(-5,1)B .(1,-5)C .(-1,1)D .(-1,3)48、 若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =349、 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④50、 把二次函数43212+-=x x y 配方成y =a (x -k )2+h 的形式,并求出它的图象的顶点坐标、对称轴方程,y <0时x 的取值范围,并画出图象.51、 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过一次函数323+-=x y 的图象与x 轴、y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么?52、 已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m (1)求此抛物线的解析式;(2)设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点P ,求△ACP 的面积.53、 已知抛物线y =ax 2+bx +c 经过点A (-1,0),且经过直线y =x -3与x 轴的交点B 及与y 轴的交点C .(1)求抛物线的解析式; (2)求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标.54、 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q (元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q (元)与时间t (月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?55、 如图甲,Rt △PMN 中,∠P =90°,PM =PN ,MN =8cm ,矩形ABCD 的长和宽分别为8cm 和2cm ,C点和M 点重合,BC 和MN 在一条直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1cm 的速度移动(如图乙),直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2.求y 与x 之间的函数关系式.。
中考数学二次函数综合经典题含详细答案
一、二次函数 真题与模拟题分类汇编(难题易错题)1.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.2.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.3.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m =﹣m 2﹣3m , 解得,m =0或m =﹣4, ∴n =0﹣(﹣4)=4, ∴﹣2<m ≤2,由上可得,当m >2或m ≤﹣2时,n =2, 当﹣2<m ≤2时,n =4. 【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.4.如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C-.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S =△△,求点D 的横坐标;(3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作ME y ∥轴,与直线BC 交于点E ,过N 作NF y ∥轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.【答案】(1)y =239344x x --,A (﹣1,0),B (4,0);(2)D 点的横坐标为22﹣2,2;(3)M (13,﹣113) 【解析】 【分析】(1)求出a ,即可求解;(2)求出直线BC 的解析式,过点D 作DH ∥y 轴,与直线BC 交于点H ,根据三角形面积的关系求解;(3)过点M 作MG ∥x 轴,交FN 的延长线于点G ,设M (m ,34m 2﹣94m ﹣3),N(n,34n2﹣94n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,即可求M;【详解】(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=34,∴y=34x2﹣94x﹣3,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴403k bb+=⎧⎨=-⎩,∴343kb⎧=-⎪⎨⎪=-⎩,∴y=34x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,34x﹣3),D(x,34x2﹣94x﹣3),∴DH=|34x2﹣3x|,∵S△ABC=1155323⨯⨯=,∴S△DBC=41552⨯=6,∴S△DBC=2×|34x2﹣3x|=6,∴x=2+22,x=2﹣22,x=2;∴D点的横坐标为2+22,2﹣22,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,34m2﹣94m﹣3),N(n,34n2﹣94n﹣3),则E(m,34m﹣3),F(n,34n﹣3),∴ME=﹣34m2+3m,NF=﹣34n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣34m2+3m=﹣34n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MG OBMN BC,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n﹣m)=54(4﹣2m)=5﹣52m,∴ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,∵﹣34<0,∴当m=13时,ME+MN有最大值,∴M(13,﹣113)【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题.5.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.6.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少? 【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论. 【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b , 将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩,解得:3300m n =-⎧⎨=⎩,∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105,∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600, 当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65,∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675, ∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.7.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:74+-74. 【解析】【分析】 (1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-,∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --, ∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++, ∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴 ∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=,∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠∴1tan tan 3DEP GAB ∠=∠=, 在x轴下方过点O 作OH OE ⊥,在OH 上截取123OH OE ==, 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -,∴45EOT ∠=∵90EOH ∠=∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:773+-或737-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x 2+32x ﹣2;(2)9;(3)点Q 的坐标为(﹣2,4)或(﹣2,﹣1).【解析】 (1)如答图1所示,利用已知条件求出点B 的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA 面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC 与直线x=2的交点F 的坐标,从而确定了Rt △AGF 的各个边长;然后证明Rt △AGF ∽Rt △QEF ,利用相似线段比例关系列出方程,求出点Q 的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.9.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4.【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M的坐标为,点N的坐标为,. 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭.AMN ∆为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1;②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。
二次函数基础知识综合练(2)
二次函数综合练习(1)一、填空题 1.抛物线22-=x y 的顶点坐标为( ) 2.二次函数y=(x -3)(x +2)的图象的对称轴是( ) 3.已知抛物线y=x 2-8x +c 的顶点在x 轴上,则c 的值是( )4.童装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系 y=-x 2+50x -500,则要想获得最大利润每天必须卖出( ) 5.二次函数y =x 2-2x+1与x 轴的交点个数是( ) 6.若A(-134,y 1)、B(-1,y 2)、C(53,y 3)为二次函数y=-x 2-4x+5的图象上的三点,则y 1、y 2、y 3的大小关系是( )7.把抛物线y =2x 2先向左平移3个单位,向上平移4个单位,所得抛物线的函数表达式为( ) 8.某大学的校门是一抛物线形水泥建筑物(如图所示),大门的地面宽度为8m ,两侧距地 面4米高处各有一个挂校名匾用的铁环,两铁环的水平距离为6 m ,则校门的高为(精 确到0.1 m ,水泥建筑物的厚度忽略不计)( )9.二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( ) 10.已知函数y=x 2-2x -2的图象如图2示,根据其中提供的信息,可求得使y ≥1成立的x的取值范围是( )第8题) (第9第11.抛物线2)3(94-=x y 与x 轴的交点为A ,与y 轴的交点为B ,则△AOB 的面积为 。
12.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与抛物线y =-x 2形状相同。
则这个二次函数的解析式为 。
13.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.对称轴 14.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x 2上.15.已知二次函数y=x 2-2(k+1)x+k 2+2的图象与x 轴交点的横坐标分别为x 1,x 2,且(x 1+1)(x 2+1)=8,则k 的值为__________. 16.如果y 与x 2成正比例,并且它的图象上一点P 的横坐标a 和纵坐标b 分别是方程x 2-x-6=0的两根,那么这个函数的解析式为_________. 17.抛物线y=x 2-4x+11的对称轴是直线________,顶点坐标为________. 18.如果抛物线y=-23x 2+(m+2)x+27m 的对称轴为直线x=32,则m 的值为_________.19.把函数y=5x 2+10mx+n 的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x 2+30x+44,则m=_______,n=_______. 20.开口向下的抛物线y=a (x+1)(x-4)与x 轴交于A 、B 两点,与y•轴交于点C .•若∠ACB=90°,则a 的值为________. 21.如图,二次函数y=x 2-ax+a-5的图象交x 轴于点A 和B ,交y 轴于点C ,当线段AB•的长度最短时,点C 的坐标为________. 22.在同一直角坐标系内,二次函数y 1=ax 2+bx+c 与y 2=cx 2+bx+a 的图象大致为( )23.在同一直角坐标系内,函数y=ax 2+bx 与y=b x(b ≠0)的图象大致为( )25.给出下列四个函数:y=-2x ,y=2x-1,y=3x (x>0),y=-x 2+3(x>0),其中y 随x•的增大而减小的函数有( )26.当m 取任何实数时,抛物线y=-2(x-m )2-m 的顶点所在的直线为( ) A .x 轴 B .y 轴 C .y=x D .y=-x27.当m 取任何实数时,抛物线y=-2(x+m )2-m 2的顶点所在的曲线为( ) A .y=x 2 B .y=-x 2 C .y=x 2(x>0) D .y=-x 2(x>0)28.已知抛物线y=ax 2+bx+c (a ≠0)与抛物线y=x 2-4x+3关于x 轴对称,则a 、b 、c•的值分别是( ) A .-1,4,-3 B .-1,-4,-3 C .-1,4,3 D .-1,-4,3 29、.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是( )A.43 B.-43 C.45 D.-45二次函数综合练习(2)30.如果抛物线y=-23x 2+(m+2)x+27m 的对称轴为直线x=32,则m 的值为_________.31、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )32、直线y=3x-3与抛物线y=x 2-x+1的交点的个数是( ).33.抛物线y=4x 2-1与y 轴的交点坐标是_________,与x 轴的交点坐标是_____. 34.在同一坐标系中,二次函数y=-21x 2,y=x 2,y=-3x 2的开口由大到小的顺序是______.35.已知抛物线y=-2(x+1)2-3,如果y 随x 的增大而减小,那么x 的取值范围是______ 36.函数y=34x -2-3x 2有最_ _值为___.37.函数y=21x 2+2x+1写成y=a(x -h)2+k 的形式是( )38.抛物线y=-2x 2-x+1的顶点在第_____象限( )39.不论m 取任何实数,抛物线y=a(x+m)2+m(a ≠0)的顶点都( )A.在y=x 直线上;B.在直线y=-x 上;C.在x 轴上;D.在y 轴上40、函数y=ax 2+bx+c(a ≠0)的图象经过原点和第一、三、四象限,则函数有最______值,且a________0,b________0,c__________0。
二次函数综合问题之抛物线与直线交点个数问题
二次函数综合问题之抛物线与直线交点个数1.〔2021•北京〕在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A〔0,﹣2〕,B〔3,4〕.〔1〕求抛物线的表达式及对称轴;〔2〕设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的局部为图象G〔包含A,B两点〕.假设直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:〔1〕将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;〔2〕由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.解答:解:〔1〕∵抛物线y=2x2+mx+n经过点A〔0,﹣2〕,B〔3,4〕,代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;〔2〕由题意得:C〔﹣3,﹣4〕,二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,那么t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解此题的关键.2.〔2021•石景山区二模〕:抛物线与x轴交于A〔﹣2,0〕、B〔4,0〕,与y轴交于C〔0,4〕.〔1〕求抛物线顶点D的坐标;〔2〕设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式.专题:探究型.分析:〔1〕先设出过A〔﹣2,0〕、B〔4,0〕两点的抛物线的解析式为y=a〔x+2〕〔x﹣4〕,再根据抛物线与y 轴的交点坐标即可求出a的值,进而得出此抛物线的解析式;〔2〕先用待定系数法求出直线CD解析式,再根据抛物线平移的法那么得到〔1〕中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:〔1〕设抛物线解析式为y=a〔x+2〕〔x﹣4〕,∵C点坐标为〔0,4〕,∴a=﹣,〔1分〕∴解析式为y=﹣x2+x+4,顶点D坐标为〔1,〕;〔2分〕〔2〕直线CD解析式为y=kx+b.那么,,∴,∴直线CD解析式为y=x+4,〔3分〕∴E〔﹣8,0〕,F〔4,6〕,假设抛物线向下移m个单位,其解析式y=﹣x2+x+4﹣m〔m>0〕,由消去y,得﹣x2+x﹣m=0,∵△=﹣2m≥0,∴0<m≤,∴向下最多可平移个单位.〔5分〕假设抛物线向上移m个单位,其解析式y=﹣x2+x+4+m〔m>0〕,方法一:当x=﹣8时,y=﹣36+m,当x=4时,y=m,要使抛物线与EF有公共点,那么﹣36+m≤0或m≤6,∴0<m≤36;〔7分〕方法二:当平移后的抛物线过点E〔﹣8,0〕时,解得m=36,当平移后的抛物线过点F〔4,6〕时,m=6,由题意知:抛物线向上最多可以平移36个单位长度,〔7分〕综上,要使抛物线与EF有公共点,向上最多可平移36个单位,向下最多可平移个单位.点评:此题考查的是二次函数的图象与几何变换,涉及到用待定系数法求一次函数与二次函数的解析式、二次函数与一次函数的交点问题,有一定的难度.3.〔2021•丰台区一模〕二次函数y=x2+bx+c的图象如下列图,其顶点坐标为M〔1,﹣4〕.〔1〕求二次函数的解析式;〔2〕将二次函数的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象,请你结合新图象答复:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.考点:待定系数法求二次函数解析式;二次函数图象与几何变换.分析:〔1〕确定二次函数的顶点式,即可得出二次函数的解析式.〔2〕求出两个边界点,继而可得出n的取值范围.解答:解:〔1〕因为M〔1,﹣4〕是二次函数y=〔x+m〕2+k的顶点坐标,所以y=〔x﹣1〕2﹣4=x2﹣2x﹣3,〔2〕令x2﹣2x﹣3=0,解之得:x1=﹣1,x2=3,故A,B两点的坐标分别为A〔﹣1,0〕,B〔3,0〕.如图,当直线y=x+n〔n<1〕,经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=﹣3,∴n的取值范围为﹣3<n<1,翻折后的二次函数解析式为二次函数y=﹣x2+2x+3当直线y=x+n与二次函数y=﹣x2+2x+3的图象只有一个交点时,x+n=﹣x2+2x+3,整理得:x2﹣x+n﹣3=0,△=b2﹣4ac=1﹣4〔n﹣3〕=13﹣4n=0,解得:n=,∴n的取值范围为:n>,由图可知,符合题意的n的取值范围为:n>或﹣3<n<1.点评:此题考查了待定系数法求二次函数解析式的知识,难点在第二问,关键是求出边界点时n的值.4.〔2021•北京〕关于x的一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.〔1〕求k的值;〔2〕当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k﹣1的图象向下平移8个单位,求平移后的图象的解析式;〔3〕在〔2〕的条件下,将平移后的二次函数的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象.请你结合这个新的图象答复:当直线y=x+b〔b<k〕与此图象有两个公共点时,b的取值范围.考点:二次函数综合题.专题:综合题.分析:〔1〕综合根的判别式及k的要求求出k的取值;〔2〕对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式;〔3〕求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值范围.此题第二问是难点,主要是不会借助计算淘汰不合题意的k值.解答:解:〔1〕由题意得,△=16﹣8〔k﹣1〕≥0.∴k≤3.∵k为正整数,∴k=1,2,3;〔2〕设方程2x2+4x+k﹣1=0的两根为x1,x2,那么x1+x2=﹣2,x1•x2=.当k=1时,方程2x2+4x+k﹣1=0有一个根为零;当k=2时,x1•x2=,方程2x2+4x+k﹣1=0没有两个不同的非零整数根;当k=3时,方程2x2+4x+k﹣1=0有两个相同的非零实数根﹣1.综上所述,k=1和k=2不合题意,舍去,k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位得到的图象的解析式为y=2x2+4x﹣6;〔3〕设二次函数y=2x2+4x﹣6的图象与x轴交于A、B两点,那么A〔﹣3,0〕,B〔1,0〕.依题意翻折后的图象如下列图.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意的b〔b<3〕的取值范围为<b<.〔3〕依图象得,要图象y=x+b〔b小于k〕与二次函数图象有两个公共点时,显然有两段.而因式分解得y=2x2+4x﹣6=2〔x﹣1〕〔x+3〕,第一段,当y=x+b过〔1,0〕时,有一个交点,此时b=﹣.当y=x+b过〔﹣3,0〕时,有三个交点,此时b=.而在此中间即为两个交点,此时﹣<b<.第二段,将平移后的二次函数的图象在x轴下方的局部沿x轴翻折后,开口向下的局部的函数解析式为y=﹣2〔x﹣1〕〔x+3〕.显然,当y=x+b与y=﹣2〔x﹣1〕〔x+3〕〔﹣3<x<1〕相切时,y=x+b与这个二次函数图象有三个交点,假设直线再向上移,那么只有两个交点.因为b<3,而y=x+b〔b小于k,k=3〕,所以当b=3时,将y=x+3代入二次函数y=﹣2〔x﹣1〕〔x+3〕整理得,4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣<b<.点评:考查知识点:一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强,考查面广,似乎是一个趋势或热点.5.〔2021•东城区二模〕关于x的方程〔1﹣m〕x2+〔4﹣m〕x+3=0.〔1〕假设方程有两个不相等的实数根,求m的取值范围;〔2〕假设正整数m满足8﹣2m>2,设二次函数y=〔1﹣m〕x2+〔4﹣m〕x+3的图象与x轴交于A、B两点,将此图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象.请你结合这个新的图象答复:当直线y=kx+3与此图象恰好有三个公共点时,求出k的值〔只需要求出两个满足题意的k值即可〕.考点:二次函数综合题.分析:〔1〕根据方程有两个不相等的实数根,由一元二次方程的定义和根的判别式可求m的取值范围;〔2〕先求出正整数m的值,从而确定二次函数的解析式,得到解析式与x轴交点的坐标,由图象可知符合题意的直线y=kx+3经过点A、B.从而求出k的值.解答:解:〔1〕△=〔4﹣m〕2﹣12〔1﹣m〕=〔m+2〕2,由题意得,〔m+2〕2>0且1﹣m≠0.故符合题意的m的取值范围是m≠﹣2且m≠1的一切实数.〔2〕∵正整数m满足8﹣2m>2,∴m可取的值为1和2.又∵二次函数y=〔1﹣m〕x2+〔4﹣m〕x+3,∴m=2.…〔4分〕∴二次函数为y=﹣x2+2x+3.∴A点、B点的坐标分别为〔﹣1,0〕、〔3,0〕.依题意翻折后的图象如下列图.由图象可知符合题意的直线y=kx+3经过点A、B.可求出此时k的值分别为3或﹣1.…〔7分〕注:假设学生利用直线与抛物线相切求出k=2也是符合题意的答案.点评:此题考查了二次函数综合题.〔1〕考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根.〔2〕得到符合题意的直线y=kx+3经过点A、B是解题的关键.6.在平面直角坐标系中,抛物线y=﹣x2+mx+m2﹣3m+2与x轴的交点分别为原点O和点A,点B〔4,n〕在这条抛物线上.〔1〕求B点的坐标;〔2〕将此抛物线的图象向上平移个单位,求平移后的图象的解析式;〔3〕在〔2〕的条件下,将平移后的二次函数的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象.请你结合这个新的图象答复:当直线y=x+b与此图象有两个公共点时,b的取值范围.考点:二次函数综合题.专题:压轴题.分析:〔1〕把原点坐标代入抛物线,解关于m的一元二次方程得到m的值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n的值,即可得解;〔2〕根据向上平移纵坐标加解答即可;〔3〕把直线解析式与抛物线解析式联立,消掉y得到关于x的一元二次方程,根据△=0求出b的值,然后令y=0求出抛物线与x轴的交点坐标,再求出直线经过抛物线与x轴左边交点的b值,然后根据图形写出b 的取值范围即可.解答:解:〔1〕∵抛物线经过原点O,∴m2﹣3m+2=0,解得m1=1,m2=2,当m=1时,﹣=﹣=0,∴m=2,∴抛物线的解析式为y=﹣x2+3x,∵点B〔4,n〕在这条抛物线上,∴n=﹣×42+3×4=﹣8+12=4,∴点B〔4,4〕;〔2〕∵抛物线的图象向上平移个单位,∴平移后的图象的解析式y=﹣x2+3x+;〔3〕联立,消掉y得,﹣x2+3x+=x+b,整理得,x2﹣5x+2b﹣7=0,△=〔﹣5〕2﹣4×1×〔2b﹣7〕=0,解得b=,令y=0,那么﹣x2+3x+=0,整理得,x2﹣6x﹣7=0,解得x1=﹣1,x2=7,∴抛物线与x轴左边的交点为〔﹣1,0〕,当直线y=x+b经过点〔﹣1,0〕时,×〔﹣1〕+b=0,解得b=,∴当直线y=x+b与此图象有两个公共点时,b的取值范围为b>或b<.点评:此题是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点的坐标特征,二次函数图象与几何变换,难点在于〔3〕求出直线与抛物线有三个交点时的b值,作出图形更形象直观.7.关于x的二次函数y=x2+2x+k﹣1的图象与x轴有交点,k为正整数.〔1〕求k的值;〔2〕当关于x的二次函数y=x2+2x+k﹣1与x轴的交点的横坐标均是负整数时,将关于x的二次函数y=x2+2x+k﹣1的图象向下平移4个单位,求平移后的图象的解析式;〔3〕在〔2〕的条件下,将平移后的二次函数的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象.请你结合这个新的图象答复:当直线y=〔b<3〕与此图象有两个公共点时,b的取值范围.考点:二次函数综合题.分析:〔1〕综合根的判别式及k的要求,求出k的取值;〔2〕对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式;〔3〕求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值范围.解答:解:〔1〕由题意得,△=4﹣4〔k﹣1〕≥0.∴k≤2.∵k为正整数,∴k=1,2;〔2〕设方程x2+2x+k﹣1=0的两根为x1,x2,那么x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为〔0,0〕,不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为〔﹣1,0〕,符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它的图象向下平移4个单位得到的图象的解析式为:y=x2+2x﹣3;〔3〕设二次函数y=x2+2x﹣3的图象与x轴交于A、B两点,那么A〔﹣3,0〕,B〔1,0〕.依题意翻折后的图象如下列图.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意的b〔b<3〕的取值范围为:﹣<b<.点评:此题主要考查了一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强.8.〔2021•东城区一模〕:关于x的一元二次方程mx2﹣〔4m+1〕x+3m+3=0 〔m>1〕.〔1〕求证:方程有两个不相等的实数根;〔2〕设方程的两个实数根分别为x1,x2〔其中x1>x2〕,假设y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;〔3〕将〔2〕中所得的函数的图象在直线m=2的左侧局部沿直线m=2翻折,图象的其余局部保持不变,得到一个新的图象.请你结合这个新的图象答复:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.考点:一次函数综合题.专题:压轴题.分析:〔1〕列式表示出根的判别式△,再根据△>0,方程有两个不相等的实数根证明;〔2〕利用求根公式法求出x1、x2,然后代入关系式整理即可得解;〔3〕作出函数图象,然后求出m=2时的函数值与以及m=1时的翻折图象的对应点的坐标,再代入直线解析式求出b值,然后结合图形写出b的取值范围即可.解答:〔1〕证明:△=〔4m+1〕2﹣4m〔3m+3〕=4m2﹣4m+1=〔2m﹣1〕2,∵m>1,∴〔2m﹣1〕2>0,∴方程有两个不等实根;〔2〕解:x=,∴两根分别为=3,=1+,∵m>1,∴0<<1,∴1<1+<2,∵x1>x2,∴x1=3,x2=1+,∴y=x1﹣3x2,=3﹣3〔1+〕,=﹣,所以,这个函数解析式为y=﹣〔m>1〕;〔3〕解:作出函数y=﹣〔m>1〕的图象,并将图象在直线m=2左侧局部沿此直线翻折,所得新图形如下列图,m=2时,y=﹣,m=1时,y=﹣=﹣3,∴函数图象直线m=2左侧局部翻折后的两端点坐标为〔3,﹣3〕,〔2,﹣〕,当m=3时,2×3+b=﹣3,解得b=﹣9,当m=2时,2×2+b=﹣,解得b=﹣,所以,此图象有两个公共点时,b的取值范围﹣9<b<﹣.点评:此题是一次函数综合题型,主要利用了根的判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于〔3〕确定出翻折局部的两个端点的坐标以及有两个交点时的b的取值范围,作出图形更形象直观.9.〔2021•门头沟区一模〕关于x的一元二次方程.〔1〕求证:无论m取任何实数,方程都有两个实数根;〔2〕当m<3时,关于x的二次函数的图象与x轴交于A、B 两点〔点A在点B的左侧〕,与y轴交于点C,且2AB=3OC,求m的值;〔3〕在〔2〕的条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧的局部沿直线l翻折,二次函数图象的其余局部保持不变,得到一个新的图象,记为G.请你结合图象答复:当直线与图象G只有一个公共点时,b的取值范围.考点:二次函数综合题.分析:〔1〕运用根的判别式就可以求出△的值就可以得出结论;〔2〕先当x=0或y=0是分别表示出抛物线与x轴和y轴的交点坐标,表示出AB、OC的值,由2AB=3OC 建立方程即可求出m的值;〔3〕把〔2〕m的值代入抛物线的解析式就可以求出抛物线的解析式和C点的坐标,当直线经过点C时就可以求出b的值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b的值,再根据图象就可以得出结论.解答:解:〔1〕根据题意,得△=〔m﹣2〕2﹣4××〔2m﹣6〕=〔m﹣4〕2,∵无论m为任何数时,都有〔m﹣4〕2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;〔2〕由题意,得当y=0时,那么,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B的左侧,∴A〔﹣2,0〕,B〔﹣2m+6,0〕,∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C〔0,2m﹣6〕,∴OC=﹣〔2m﹣6〕=﹣2m+6.∵2AB=3OC,∴2〔2﹣2m+6〕=3〔﹣2m+6〕,解得:m=1;〔3〕如图,当m=1时,抛物线的解析式为y=x2﹣x﹣4,点C的坐标为〔0,﹣4〕.当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b〔b<﹣4〕与函数y=x2﹣x﹣4〔x>0〕的图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=〔﹣8〕2﹣4×3×〔﹣6b﹣24〕=0,解得:b=﹣.结合图象可知,符合题意的b的取值范围为b>﹣4或b<﹣.点评:此题是一道一次函数与二次函数的综合试题,考查了一元二次方程根的判别式的运用,二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程灵活运用根的判别式是解答此题的关键.。
2023年中考九年级数学高频考点 专题训练--二次函数的三种形式
2023年中考九年级数学高频考点专题训练--二次函数的三种形式一、综合题1.已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)(1)当k= 12时,将这个二次函数的解析式写成顶点式;(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.2.求二次函数的顶点坐标和对称轴.(1)用配方法:y=3x2﹣6x+2;(2)用公式法:y=﹣5x2+80x﹣319.3.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.4.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.5.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?6.利用配方法,把下列函数写成y=a(x﹣h)2+k的形式,并写出它们图象的开口方向、对称轴和顶点坐标.(1)y=﹣x2+6x+1(2)y=2x2﹣3x+4(3)y=﹣x2+nx(4)y=x2+px+q.7.对于二次函数y= 12x2﹣3x+4,(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.8.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.9.如图,△M的圆心M(﹣1,2),△M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣12x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是△M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF△y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.10.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.11.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F 四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN△BD,交线段AD于点N,连接MD,使△DNM△△BMD?若存在,求出点T的坐标;若不存在,请说明理由.12.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2与y轴交于点C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN△BC,交AC于点N,连结CM,当△CMN 的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的点F的坐标;若不存在,请说明理由.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l△x轴于H,交抛物线于点M,过点C作CF△l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时(与点M重合)①求点F的坐标;②求线段OD的长;③试探究在直线l上,是否存在点G,使△EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.(3)在点D的运动过程中,连接CM,若△COD△△CFM,请直接写出线段OD的长.14.如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得SΔMAP=2SΔACP,若存在,求出M点坐标;若不存在,请说明理由.15.已知抛物线G: y=x2−2tx+3( t为常数)的顶点为P.(1)求点P的坐标;(用含t的式子表示)(2)在同一平面直角坐标系中,存在函数图象H,点A(m,n1)在图象H上,点B(m,n2)在抛物线G上,对于任意的实数m,都有点A,B关于点(m,m)对称.①当t=1 时,求图象H对应函数的解析式;②当1≤m≤t+1时,都有n1>n2成立,结合图象,求t的取值范围.16.抛物线y= 13x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若△PBA= 12△OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.答案解析部分1.【答案】(1)解:把k= 12代入y=x2﹣(2k+1)x+k2+k(k>0)得y=x2﹣2x+ 34,因为y=(x﹣1)2﹣1 4所以抛物线的顶点坐标为(1,﹣1 4)(2)证明:△=(2k+1)2﹣4(k2+k)=1>0,所以关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根2.【答案】(1)解:y=3x2﹣6x+2=3(x﹣1)2﹣1,顶点坐标为(1,﹣1),对称轴为x=1(2)解:∵a=﹣5,b=80,c=﹣319,∴﹣b2a=﹣802×(−5)=8,4ac−b2 4a = 4×(−5)×(−319)−8024×(−5)=1,∴顶点坐标为(8,1),对称轴为x=83.【答案】(1)解:用交点式函数表达式得:y=(x−1)(x−3)=x2−4x+3;故二次函数表达式为:y=x2−4x+3(2)解:①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:m+2 2,即:m+22=2,解得:m=2,故点P(2,−1);综上:点P(4,3)或(0,3)或(2,−1);(3)解:利用待定系数法求得直线BC的表达式为:y=−x+3,设点E坐标为(x,x2−4x+3),则点D(x,−x+3),S四边形AEBD =12AB(yD−yE)=−x+3−x2+4x−3=−x2+3x,∵−1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,−34).4.【答案】(1)解:设抛物线解析式为y=a(x+4)(x﹣2),将B(0,﹣4)代入得:﹣4=﹣8a,即a= 1 2,则抛物线解析式为y= 12(x+4)(x﹣2)=12x2+x﹣4;(2)解:过M作MN△x轴,将x=m代入抛物线得:y= 12m2+m﹣4,即M(m,12m2+m﹣4),∴MN=| 12m2+m﹣4|=﹣12m2﹣m+4,ON=﹣m,∵A(﹣4,0),B(0,﹣4),∴OA=OB=4,∴△AMB的面积为S=S△AMN+S梯形MNOB﹣S△AOB= 12×(4+m)×(﹣12m2﹣m+4)+ 12×(﹣m)×(﹣12m2﹣m+4+4)﹣12×4×4 =2(﹣12m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4,当m=﹣2时,S取得最大值,最大值为4.5.【答案】(1)解:由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S=a(t﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a(0﹣2)2﹣2=0,解得a= 1 2.∴所求函数关系式为:S= 12(t﹣2)2﹣2,即S= 12t2﹣2t.答:累积利润S与时间t之间的函数关系式为:S= 12t2﹣2t(2)解:把S=30代入S= 12(t﹣2)2﹣2,得12(t﹣2)2﹣2=30.解得t1=10,t2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元(3)解:把t=7代入关系式,得S= 12×72﹣2×7=10.5,把t=8代入关系式,得S= 12×82﹣2×8=16,16﹣10.5=5.5,答:第8个月公司所获利是5.5万元.6.【答案】(1)解:y=﹣x2+6x+1=﹣(x2﹣6x)+1=﹣(x﹣3)2+10,对称轴x=3,顶点坐标为:(3,10),开口向下(2)解:y=2x2﹣3x+4=2(x2﹣32x)+4=2(x﹣34)2+ 238,对称轴x= 34,顶点坐标为:(34,238),开口向上(3)解:y=﹣x2+nx=﹣(x﹣n2)2+n24,对称轴x= n2,顶点坐标为:(n2,n24),开口向下(4)解:y=x2+px+q=(x+ p2)2+4q−p24,对称轴x=﹣p2,顶点坐标为:(p2,4q−p24),开口向上7.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2),对称轴为:直线x=3(3)解:∵a= 12>0,∴函数的最小值为:﹣1 28.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4),令x=0,则y=﹣3,∴与y轴交点为(0,﹣3),令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3,∴与x轴交点为(﹣1,0),(3,0).列表:描点、连线:(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<129.【答案】(1)解:设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣2 9.∴抛物线的解析式为y=﹣29x2﹣49x+169(2)解:连接AM,过点M作MG△AD,垂足为G.把x=0代入y=﹣12x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣12x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan△MAG=tan△ABO= 1 2.∴△MAG=△ABO.∵△OAB+△ABO=90°,∴△MAG+△OAB=90°,即△MAB=90°.∴l是△M的切线(3)解:∵△PFE+△FPE=90°,△FBD+△PFE=90°,∴△FPE=△FBD.∴tan△FPE= 1 2.∴PF:PE:EF= √5:2:1.∴△PEF的面积= 12PE•EF=12×2√55PF• √55PF= 15PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣29x2﹣49x+169),则F(x,﹣12x+4).∴PF=(﹣12x+4)﹣(﹣29x2﹣49x+169)=﹣12x+4+29x2+ 49x﹣169=29x2﹣118x+209=29(x﹣18)2+ 7132.∴当x= 18时,PF有最小值,PF的最小值为7132.∴P(18,5532).∴△PEF的面积的最小值为= 15×(7132)2= 5041512010.【答案】(1)解:∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4)(3)解:设P 的纵坐标为|y P |,∵S △PAB =8,∴12AB•|y P |=8,∵AB=3+1=4,∴|y P |=4, ∴y P =±4,把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1±2 √2 ,把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(1+2 √2 ,4)或(1﹣2 √2 ,4)或(1,﹣4)时,满足S △PAB =8 11.【答案】(1)解:设抛物线的解析式为:y=a (x ﹣1)2+4,∵点B 的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x ﹣1)2+4=﹣x 2+2x+3(2)解:存在.抛物线的对称轴方程为:x=1,∵点E 的横坐标为2,∴y=﹣4+4+3=3,∴点E (2,3),∴设直线AE 的解析式为:y=kx+b ,∴{−k +b =02k +b =3, ∴{k =1b =1, ∴直线AE 的解析式为:y=x+1,∴点F (0,1),∵D (0,3),∴D 与E 关于x=1对称,作F 关于x 轴的对称点F′(0,﹣1),连接EF′交x 轴于H ,交对称轴x=1于G ,四边形DFHG 的周长即为最小,设直线EF′的解析式为:y=mx+n ,∴{n =−12m +n =3, 解得: {m =2n =−1, ∴直线EF′的解析式为:y=2x ﹣1,∴当y=0时,2x ﹣1=0,得x= 12, 即H ( 12,0), 当x=1时,y=1,∴G (1,1);∴DF=2,FH=F′H= √(12)2+12 = √52 ,DG= √22+12 = √5 , ∴使D 、G ,H 、F 四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+ √52 + √52+ √5 =2+2 √5(3)解:存在.∵BD= √32+32 =3 √2 ,设M (c ,0),∵MN△BD ,∴MN BD =AN AB, 即 3√2= 1+c 4 , ∴MN= 3√24(1+c ),DM= √32+c 2 , 要使△DNM△△BMD ,需 DM BD =MN DM,即DM 2=BD•MN , 可得:9+c 2=3 √2 × 3√24 (1+c ), 解得:c= 32或c=3(舍去). 当x= 32 时,y=﹣( 32 ﹣1)2+4= 154.∴存在,点T的坐标为(32,154)12.【答案】(1)解:∵x2﹣4x﹣12=0,∴x1=﹣2,x2=6.∴A(﹣2,0),B(6,0),又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x﹣6),将点C的坐标代入,求得a= 1 3,∴抛物线的解析式为y= 13x2﹣43x﹣4.(2)解:设点M的坐标为(m,0),过点N作NH△x轴于点H(如图(1)).∵点A的坐标为(﹣2,0),点B的坐标为(6,0),∴AB=8,AM=m+2,∵MN△BC,∴△MNA△△BCA.∴NHCO=AMAB,∴NH4=m+28,∴NH= m+2 2,∴S△CMN=S△ACM﹣S△AMN= 12•AM•CO﹣12AM•NH,= 12(m+2)(4﹣m+22)=﹣14m2+m+3,=﹣14(m﹣2)2+4.∴当m=2时,S△CMN有最大值4.此时,点M的坐标为(2,0).(3)解:∵点D(4,k)在抛物线y= 13x2﹣43x﹣4上,∴当x=4时,k=﹣4,∴点D的坐标是(4,﹣4).①如图(2),当AF为平行四边形的边时,AF平行且等于DE,∵D(4,﹣4),∴DE=4.∴F1(﹣6,0),F2(2,0),②如图(3),当AF为平行四边形的对角线时,设F(n,0),∵点A的坐标为(﹣2,0),则平行四边形的对称中心的横坐标为:n+(−2)2,∴平行四边形的对称中心坐标为(n−22,0),∵D(4,﹣4),∴E'的横坐标为:n−22﹣4+n−22=n﹣6,E'的纵坐标为:4,∴E'的坐标为(n﹣6,4).把E'(n﹣6,4)代入y= 13x2﹣43x﹣4,得n2﹣16n+36=0.解得n=8±2 √7.F3(8﹣2 √7,0),F4(8+2 √7,0),综上所述F1(﹣6,0),F2(2,0),F3(8﹣2 √7,0),F4(8+2 √7,0).13.【答案】(1)解:把x=0代入抛物线的解析式得:y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣5),将点C的坐标代入得:﹣5a=3,解得:a=﹣3 5.∴抛物线的解析式为y=﹣35x2+125x+3(2)解:①∵CF△l,OB△l,∴CF△x轴.∴点F的纵坐标为3.将y=3代入抛物线的解析式得:﹣35x2+ 125x+3=3,解得x=0或x=4.∴点F的坐标为(4,3).②∵点F的坐标为(4,3),∴点H的坐标为(4,0).∵△CDE=90°,∴△CDO+△EDH=90°.∵△OCD+△CDO=90°,∴△OCD=△EDH.由旋转的性质可知:CD=DE.在Rt△OCD和Rt△HDE中,{∠OCD=∠EDH∠COD=∠DHECD=DE,∴Rt△OCD△Rt△HDE.∴CO=DH=3.又∵OH=4,∴OD=1.③如图1所示:将CD绕点C逆时针旋转90°得到线段CN,则N(3,4)且四边形CDEN为正方形.∵四边形CDEN为正方形,∴△GDE=45°.设DN的解析式为y=kx+b,将点D和点N的坐标代入得:{k+b=03k+b=4,解得:k=2,b=﹣2.∴DN的解析式为y=2x﹣2.把x=4代入得:y=6,∴G(4,6).设直线DG′的解析式为y=﹣12x+c,将点D的坐标代入得:﹣12+c=0,解得:c=12.∴直线DG′的解析式为y=﹣12x+12.将x=4代入得:y=﹣3 2.∴点G′的坐标为(4,﹣3 2).综上所述,点G的坐标为(4,6)或(4,﹣3 2)(3)解:如图2所示:设点D的坐标为(a,0),则点M的坐标(a+3,﹣35a2﹣65a+245).∴FM=﹣35a2﹣65a+95.∵△COD△△CFM,∴OCDO=CFFM,即3a=3+a−35a2−65a+95,整理得:14a2+33a﹣27=0,解得a= 914或a=﹣3(舍去).∴OD= 9 14.如图3所示:设点D的坐标为(a,0),则点M的坐标(a+3,﹣35a2﹣65a+245).∴FM= 35a2+ 65a﹣95.∵△COD△△CFM,∴OCDO=CFFM,3a=a+335a2+65a−95,整理得:4a2+3a﹣27=9,解得:a=﹣3(舍去)或a=94.∴OD= 9 4.综上所述,OD 的长为 914 或 9414.【答案】(1)解:设此抛物线的解析式为: y =ax 2+bx +c ,由题意得: {a +b +c =09a +3b +c =0c =3 ∴{a =−1b =−2c =3∴所求解析式为y =−x 2−2x +3(2)解:∵点A (1,0),点C (0,3),∴OA=1,OC=3,∵DC△AC ,OC△x 轴,∴△QOC△△COA ,∴OQ OC =OC OA ,即 OQ 3=31, ∴OQ=9,又∵点Q 在x 轴的负半轴上,∴Q (﹣9,0),设直线DC 的解析式为:y=mx+n ,则 {−9m +n =0n =3, 解之得: {m =13n =3, ∴直线DC 的解析式为: y =13x +3 , ∵点D 是抛物线与直线DC 的交点,∴{y =13x +3y =−x 2−2x +3, 解之得: {x 1=−73y 1=209, {x 2=0y 2=3 (不合题意,应舍去), ∴点D (−73,209) , (3)解:如图,点M 为直线x=﹣1上一点,连接AM ,PC ,PA ,设点M (﹣1,y ),直线x=﹣1与x 轴交于点E ,∴AE=2,∵抛物线y=﹣x 2﹣2x+3的顶点为P ,对称轴为x=﹣1,∴P (﹣1,4),∴PE=4,则PM=|4﹣y|,∵S 四边形AEPC =S 四边形OEPC +S △AOC ,= 12×1×(3+4)+12×1×3 = 12(3+7) =5,又∵S 四边形AEPC =S △AEP +S △ACP ,S △AEP 12AE ×PE =12×2×4=4,∴+S △ACP =5﹣4=1,∵S △MAP =2S △ACP ,∴12×2×|4−y|=2×1 ,∴|4﹣y|=2,∴y 1=2,y 2=6,故抛物线的对称轴上存在点M 使S△MAP=2S△ACP,点M(﹣1,2)或(﹣1,6)15.【答案】(1)y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3∴顶点P的坐标为(t,−t2+3);(2)解:①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;①关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3所以,图象H的解析式为:y H=−x2+2tx+2x−3.=−[x−(t+1)]2+(t2+2t−2)配方,得yH∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.16.【答案】(1)解:∵y= 13x2+bx+c经过点A(﹣4,0)、B(2,0)两点,∴y= 13(x+4)(x﹣2)=13(x2+2x﹣8)= 13(x+1)2﹣3.∴D(﹣1,﹣3).(2)解:在x轴上点E(﹣2,0),连接CE,并延长CE交PB于点F,过点F作FG△x轴,垂足为G.∵点E与点B关于y轴对称,∴△OBC=△OEC.∴△OBC=△GEF.∵△PBA= 12△OBC,∴△PBA=△EFB.∴EF=EB=4.∵OE=2,OC= 8 3,∴EC= 10 3.∵GF△OC,∴△FGE△△COE.∴FGOC=EGOE=EFEC,即FG83= EG2=4103,解得:FG= 165,EG=125,∴F(﹣225,165).设BP的解析式为y=kx+b,将点F和点B的坐标代入得:{2k+b=0−225k+b=165,解得:k=﹣12,b=1,∴直线BP的解析式为y=﹣12x+1.将y=﹣12x+1与y=13x2+ 23x﹣83联立,解得:x=﹣112,x=2(舍去),∴y= 15 4.∴P(﹣112,154);(3)解:设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由{y=kx+ky=13x2+23x−83得:13x2+(23﹣k)﹣83﹣k=0∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,解得:x1=﹣1,x2=3k﹣1,∵点M是线段PQ的中点,∴由中点坐标公式的点M(32k﹣1,32k2).假设存在这样的N点如图2,直线DN△PQ,设直线DN的解析式为y=kx+k﹣3由{y=kx+k−3y=13x2+23x−83,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3).∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=(3k2)2+ 32k2+3)2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=± 2√33,∵k<0,∴k=﹣2√33,∴P(﹣3 √3﹣1,6),M(﹣√3﹣1,2),N(﹣2 √3﹣1,1).∴PM=DN=2 √7,∵PM△DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2 √3﹣1,1).。
二次函数压轴题综合训练
二次函数压轴题综合训练二次函数综合题难度大、综合性强、涉及的知识面广,综合考查学生分析问题、解决问题的能力。
大的方面来看,有两种题型:与二次函数有关代数方面的考查、与二次函数有关几何方面的考查。
本专题节选近年来各地中考题中的典型例子,对二次函数的压轴题的考查形式、解题思路、方法作简要的分析。
解决二次函数问题,图象的直观很重要;根据题意迅速画出二次函数的大致图象,能更有效地解决问题。
二次函数 y=ax 2+bx+c (a≠0)的图象与其表达式中各项系数的符号有着十分密切的关系:ax 2+bx+c=0(a≠0)的两个根。
考点一、与二次函数有关代数方面的考查1.已知抛物线y=﹣2x 2+(b ﹣2)x+(c ﹣2020)(b ,c 为常数)。
(1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m≤x≤n 时,恰好12+m m ≤21+y ≤12+n n , 求m 、n 的值。
2.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上。
(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围。
3.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B、C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值。
4.已知抛物线y=x 2+(2m+1)x+m(m - 3)(m 为常数,- 1≤m≤4),A (- m - 1,y 1),B (2m,y 2),C (- m ,y 3)是该抛物线上不同的三点。
人教全国中考数学二次函数的综合中考真题汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读书破万卷下笔如有神
二次函数型综合问题
这类综合题是以二次函数为中心,综合二次方程、二次三项式、不等式或几何、三角等知识,组成一个题组,重点、难点集中,综合性较强,灵活性较大,是当前各地中考命题的一个热门题型。
3.2.1直接与代数知识相结合的问题
这类问题主要是代数知识的综合,解题时牢牢抓住二次函数的有关性质和其它二次三项式的有关知识和解题方法,并结合函数的图象就能找到解题的思路。
2?(m?1)2xx?m?1y?。
(1)求证:无论m为何值时,函数y的图象与1例.已知二次函数x 轴总有交点,并指出当m为何值时只有一个交点?(2)当m为何值时,函数y的图象经过原点,并求出此时图象与x 轴的另一个交点的坐标。
(3)如果函数y的图象的顶点在第四象限,求职m的取值范围。
2?(m?2)x?(m?1)x1(m?y为实数)。
求:(1)m取何值时,抛物线与x例2.已知二次函数轴2?(m?2))xx?1?0(m?1的两个不相等的实的一元二次方程)如果关于x有两个交点?(2数根倒数平方和等于2,求m的值。
(3)如果抛物线与x 轴相交于A、B两点,与y轴交于C S?2确定m点,且的值。
ABC?
3)02,32,?),(?0(,),()(13例.()已知一个二次函数的图象经过三点。
求这个二次函数的解析式;22)中所求的二次函数图象的开口方向和形状保持不变,平行移动这个函数的图象,使之1如果()1,0?(,求此时二次函轴交于两点,与,轴交于与xAByC|AC|=|AB|点坐标为B点,若,且数的解析式。
下笔如有神读书破万卷
22)?3?4)x?(mmy??xm?(2?2的整数,它0m中,例4.以x为自变量的二次函数为不小于)求这个二次函数的解析1B在原点右边。
(A,B,点A在原点左边,点的图象与x轴交于点10?S b?y?kx,C式;(2)一次函数A,与这个二次函数的图象交于点,且的图象经过点ABC?求一次函数的解析式。
221mmmx??y?x??2轴有交点,那)求证:如果抛物线与x例5.设抛物线为实数)。
(1(m 轴的所有交点中,求与原点距离最近的交点坐)在抛物线与x轴的正半轴上;(2x么交点都在m 的值。
标,并求此时
2)a?0?bx?c(?yax与坐标轴有两个且只有两个公共点,这两个公共点到原点已知抛物线.例622dd,dd,0?7???x4x2?5xx?5求符合的两个实数根。
的距离分别为是方程,而2211条件的抛物线的解析式。
习题:20m?xy?)求平1(两点。
)()m,0(,)0,0轴相交于(x的图象平移,使它与把二次函数.1.
下笔如有神读书破万卷
)若平移后函数图象的顶点在第三象限内两条坐标轴夹角的平分线2移后函数图象的解析式;(的值。
上,求m
22212m?4)xy?x??(m2?轴已知抛物线2.x m取任何实数,抛物线与。
(1)证明:不论)02,(?)求?(3)求m为何值时,两交点之间的距离为12。
(2恒有两个交点,且一个交点是m为何值时,两交点之间的距离最小?
2ABC?1?kxy?x?是等腰直角C已知抛物线3.,x轴的正方向相交于A、B两点,顶点为与2?k?4AB;的值。
k三角形。
(1)求证:)求2(
2)0?axy???bxc(a3?,)如果抛物线开口向下,1)和1(4.已知抛物线2()两点。
,(经过01?x? y对称轴在轴的左侧,求)若对称轴为(a的取值范围;2,求抛物线的解析式。
读书破万卷下笔如有神
1122?(b?2)y?xxy??dxx?(b?2)?c其中一条的顶点为5.P(已知抛物线与0,如图,22?2,0)。
N的坐标为((1)试判断哪条抛物线经过两点,且点1),另一条与x轴交于M,NM,N,两点;(2)求两条抛物线的解析式。
2)0b?bx?1(?y?x?2,若,抛物线顶点为CA6.设二次函数x轴的两个交点为,B的图象与?ABC 为等边三角形,求此函数的解析式。
2?6xx?8y??与x轴交于7.如图,已知抛物线A,B两点。
(1)通过配方,求抛物线的对称y?0;(取哪些值时,函数值3)如果平行于x轴的直2轴和顶点坐标;()利用图象,说明x线与抛物线交于C,D两点,且点C在横坐标为5,画出直线CD并求梯形ABCD的面积。
22ab?2?ax?3abxy)若抛物的取值范围;b(2)求不经过第三象限。
(1a8.已知抛物线
和)0a(?1,ax??y x线与,且顶点在正比例函数轴有交点的图象上,求该抛物线。
读书破万卷下笔如有神
tx?y?1?0?(a?0)有两组相同的解。
的取)求t)求t9.已知方程组和a的关系;(2(1?22ax?y?a?0?值范围;(3)把a看成是t的函数,画出这个函数的图象。
1122?b(a?0y?ax,?c:ya?(x?1)),;c:c,c有且仅有一公共点P.已知两条抛物线。
10
212144c,c1)?1)(4b?1(4a?与y轴的P的坐标;(2)如果(1)证明:;并求出用b表示公共点21c 的表达式。
时,求3)当PQ=PR倍;,R,证明P点横坐标的绝对值等于QR长的4(交点为Q2
2cbx?y?ax?)求抛物线的解析式和(1,3)三点。
5,11.已知抛物线0),(40经过(1,),(220?n4?(m)?x(?4m?n)x的两个2)若抛物线顶点的横坐标、纵坐标是方程顶点坐标;(的值。
根,求m,n
2xx,c?xy??bx,二次方程轴的两个交点的横坐标分别为的图象与12.已知二次函数
x2122x,xx?xx?x?x?x?30??x?bx20。
求b,c的值。
的两根分别为,且,43434321
读书破万卷下笔如有神
?ABC42x?y??且为x轴上一点,y轴交于点B。
点C的图象与x 轴交于点A,与13.一次函数的面积为6,某二次函数图象过A,B,C三点,求这个二次函数的解析式和此二次函数图象的顶点坐标,并在平面直角坐标系中画出这个二次函数图象的示意图。
2yyx,x,0kx??3x?4程的方是设个的是关于x方程实数根,关于y的两14.2121222??y??y2,xx0?x?xp?k。
)若以的两个实数根。
若的值;)求(1k和p(221122,?0)点,求这条抛物线的解析式。
y轴的抛物线经过(点(k,p)为顶点且对称轴平行于
1252?x?qypx??x?。
(1)求p,q,当15.已知二次函数的值;(2时取得最小值)这条抛
24?ABM的面积为10,设点BM在这条抛物线上,且平方单位,,轴的两个交点为物线与xA求M点的坐标。