人教版八年级上学期数学《期末考试试题》含答案
人教版数学八年级上学期《期末检测试题》含答案解析
∵∠EBD=65°,
∴65∘−∠EBC=60°−∠BAE,
∴65°−(60°−∠ABE)=60°−∠BAE,
∴∠ABE+∠BAE=55°,
∴∠AEB=180°−(∠ABE+∠BAE)=125°.
故选C.
[点睛]本题考查了全等三角形 判定与性质, 等边三角形的性质,根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=55°,根据三角形内角和定理求出即可.
若提速前列车的平均速度为x km/h,行驶1200km的路程,提速后比提速前少用多长时间?
(2)若v=50,行驶1200km的路程,提速后所用时间是提速前的 ,求提速前列车的平均速度?
用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.
24.已知:BE⊥CD于E,BE=DE,BC=DA,
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方 一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
答案与解析
一、选一选(本大题共10小题,每小题3分,共30分)
1.下列计算正确的是()
A.(2ab3)•(﹣4ab)=2a2b4B. ,
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()
(3)计算△ABC的面积.
22.如图,△ABC中,∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.
人教版数学八年级上学期《期末检测题》含答案
人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。
人教版数学八年级上学期《期末测试题》及答案解析
15.因式分解:
(1) ;(2) .
16.(1)解分式方程: .
(2)如图, 与 中,AC与BD交于点E,且 , ,求证: .
四、解答题(共32分,每题8分)
17.(1)已知 ,求 的值.
(2)化简: ,并从±2,±1,±3中选择一个合适的数求代数式的值.
18.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型 共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
例如:
利用这种分组的思想方法解决下列问题:
(1)分解因式 ;
(2) 三边a,b,c满足 判断 的形状,并说明理由.
五、解答题(本题共18分,其中每9分)
21.如图,在 中, ,点 在 内, , ,点 在 外, , .
(1)求 的度数;
(2)判断 形状并加以证明;
(3)连接 ,若 , ,求 的长.
22.阅读下面材料:
①AD是∠BAC 平分线
②∠ADC=60°
③点D在AB的垂直平分线上
④若AD=2dm,则点D到AB的距离是1dm
⑤S△DAC:S△DAB=1:2
A.2B.3C.4D.5
[答案]D
[解析]
[分析]
①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
(1) ;(2) .
[答案](1) ;(2)
[解析]
[分析]
(1)先提取公因式,然后利用完全平方公式因式分解即可;
人教版八年级上学期期末考试数学试卷及答案解析(共六套)
人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。
人教版八年级上学期数学《期末测试卷》及答案解析
6.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( )
A.SSSB.SASC.ASAD.AAS
7. 下列各式从左到右的变形是因式分解的是()
A(a+5)(a﹣5)=a2﹣25
Ba2﹣b2=(a+b)(a﹣b)
C.(a+b)2﹣1=a2+2ab+b2﹣1
Da2﹣4a﹣5=a(a﹣4)﹣5
C. AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处
10.一正多边形的内角和与外角和的和是1440°,则该正多边形是()
A.正六边形B.正七边形C.正八边形D.正九边形
11.若x2﹣2(k﹣1)x+9是完全平方式,则k的值为()
A.±1B.±3C. ﹣1或3D.4或﹣2
12. 如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()
A. 个B. 个C. 个D. 个
二、填空题
17.(1)当x=_____时,分式 的值为0.
(2)已知(x+y)2=30,(x﹣y)2=18,则xy=_____.
18.点P(1,﹣2)关于x轴对称的点的坐标为P′______.
19.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是_____.
[答案]B
[解析]
[分析]
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
人教版八年级数学上册期末考试及答案【完整版】
人教版八年级数学上册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若式子x1x+有意义,则x的取值范围是__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、A6、B7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、x 1≥-且x 0≠3、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、40°三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、22x -,12-.3、0.4、E (4,8) D (0,5)5、略.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级上学期数学《期末测试卷》带答案
(1)画出 关于 轴对称的 ;
(2)每个小方格都是边长为1个单位的正方形,求多边形 的面积.
23.奉节脐橙是重庆市奉节县特产,中国地理标志产品,眼下,正值奉节脐橙销售旺季,某商家看准商机,第一次用4800元购进一批奉节脐橙,销售良好,于是第二次又用12000元购进一批奉节脐橙,但此时进价比第一次涨了2元,所购进的数量恰好是第一次购进数量的两倍.
10.在平行四边形 中, , , ,则平行四边形 的面积等于()
A. B. 4C. D. 6
[答案]A
[解析]
[分析]
根据题意作图,作AE⊥BC,根据 ,AB= 求出平行四边形的高AE,再根据平行四边形的面积公式进行求解.
[详解]如图,作AE⊥BC
∵ ,AB=
∴AE= AB= ,
∴平行四边形 面积=BC×AE=2× =2
A. B.2C.3D.
[答案]C
[解析]
[分析]
连接BD,根据题意得到BD平分∠CBA,得到∠DBE=30°,再根据三角函数即可求解.
[详解]连接BD,
∵ , ,
∴BD平分∠CBA
∴∠DBE=30°,
∴BE=DE÷tan30°= =3,
故选C.
[点睛]此题主要考查解直角三角形,解题的关键是熟知角平分线的判定及性质、三角函数的应用.
B、是轴对称图形,故此选项正确;
C、不是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项错误;
故选:B.
[点睛]此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.
2.下列计算正确的是()
A. B. C. D.
[答案]A
[解析]
[分析]
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版数学八年级上学期《期末考试题》带答案解析
[点睛]本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
15.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.
[答案]﹣7或5
[解析]
[分析]
利用完全平方公式得到9x2﹣2(m+1)xy+4y2=(3x±2y)2,则﹣2(m+1)xy=±12xy,即m+1=±6,然后解m的方程即可.
[解析]
试题解析:∵x2+(m-2)x+9是一个完全平方式,
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
10.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()
A. 30°B. 15°C. °D. 35°
[答案]2
[解析]
[分析]
本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.
[详解]解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
[点睛]本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
[答案]A
[解析]
[分析]
由于点C关于直线MN的对称点是B,所以当 三点在同一直线上时, 的值最小.
[详解]由题意知,当B.P、D三点位于同一直线时,PC+PD取最小值,
人教版八年级上学期数学《期末考试题》附答案解析
故答案为4.
[点睛]本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.
14.已知4y2+my+1是完全平方式,则常数m的值是______.
[答案]4或-4
[解析]
[详解]∵4y2-my+1是完全平方式,
∴-m=±4,即m=±4.
故答案为4或-4.
15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
5.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC
6.已知 ,则分式 的值为()
A.1B.5C. D.
7.一个多边形 每一个外角都等于36 ,则该多边形的内角和等于()
A 1080°B. 900°C. 1440°D. 720°
(1)求原计划每天铺设路面的长度;
(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.
23.阅读理解:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
③∵∠1=∠B=30°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=30°,∴CD= AD.
∴BC=CD+BD= AD+AD= AD,S△DAC= AC•CD= AC•AD.
∴S△ABC= AC•BC= AC•A D= AC•AD.
人教版数学八年级上学期《期末测试卷》带答案解析
C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
[答案]C
[解析]
[分析]
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
[详解]解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即 ,乙图中阴影部分长方形的长为 ,宽为 ,阴影部分的面积为 ,根据两个图形中阴影部分的面积相等可得 .
18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
三、解答题(共8题,共66分 )
19.分解因式:
A. ∠1=∠2+∠AB. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A
二、填空题(每小题3分,共24分)
11.当x=时,分式 无意义.
12.如图,在△ABC中,AM是中线,AN是高.如果BM=3.5cm,AN=4cm,那么△ABC的面积是___________cm2.
13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.
8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()
A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°
[答案]B
[解析]
[详解]∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()A .1组B .2组C .3组D .4组3.一个多边形的每一个内角都是135°,则这个多边形是()A .七边形B .八边形C .九边形D .十边形4.某病毒的直径为100纳米(1纳米=0.000000001米),100纳米用科学记数法表示为()A .81010-⨯米B .7110-⨯米C .9110-⨯米D .80110-⨯.米5.在直角坐标系中,点A (–2,2)与点B 关于x 轴对称,则点B 的坐标为()A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2)6.把一副三角板按如图叠放在一起,则α∠的度数是()A .165B .160C .155D .150 7.下列各式中,正确的是()A .2242ab b a c c =B .1a b b ab b ++=C .23193x x x -=-+D .22x y x y -++=-8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B ,下列结论中不一定成立的是()A .PA PB =B .PO 平分APB ∠C .=OA OBD .AB 垂直平分OP9.如图,在四边形ABCD 中,AB ∥DC ,DAB ∠的平分线交BC 于点E ,DE AE ⊥,若6AD =,4BC =,则四边形ABCD 的周长为()A .14B .15C .16D .1710.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-11.在ABC 中,已知8AB =,5AC =,6BC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD (如图所示).则下列结论:①DE AB ⊥②ADE V 的周长等于7③:3:4BCD ABD S S = ④CD AD =,其中正确的是()A .①②B .②③C .①②③D .②③④12.由图,可得代数恒等式()A .()2222a b a ab b +=++B .()()22232a b a b a ab b ++=++C .()()2224a b a b a ab b ++=++D .()222232a b a ab b +++=二、填空题13.计算:(20112-⎛⎫-= ⎪⎝⎭________.14.若分式211x x--的值为零,则x 的值为________.15.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________°.16.如图,在ABC 中,AB AC =,点P 在ABC ∠的平分线上,将PBC 沿PC 对折,使点B 恰好落在AC 边上的点D 处,连接PD ,若AD PD =,则A ∠=______.17.分解因式:a -2ax+a 2x =__________.18.如图,∠B =50°,∠C =70°,∠BAD 平分线与∠ADC 外角平分线交于点F ,则∠F =_____.三、解答题19.计算:(1)()()322ab ab ÷-;(2)()()()2412525x x x +-+-.20.解方程:21324x x =--.21.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.22.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A 1B 1C 1的面积.23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.24.如图,已知ABC 中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在CA 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,BPD △与CQP V 是否全等?请说明理由:②若点Q 与点P 的运动速度不相等,要使BPD △与CQP V 全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC 的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC 的哪条边上.25.在直角ABC 中,90ACB ∠= ,60B ∠= ,AD ,CE 分别是BAC ∠和BCA ∠的平分线,AD ,CE 相交于点F .()1求EFD ∠的度数;()2判断FE 与FD 之间的数量关系,并证明你的结论.26.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?27.晓芳利用两张正三角形纸片,进行了如下探究:初步发现:如图1,△ABC 和△DCE 均为等边三角形,连接AE 交BD 延长线于点F ,求证:∠AFB =60°;深入探究:如图2,在正三角形纸片△ABC 的BC 边上取一点D ,作∠ADE =60°交∠ACB 外角平分线于点E ,探究CE ,DC 和AC 的数量关系,并证明;拓展创新:如图3,△ABC 和△DCE 均为正三角形,连接AE 交BD 于P ,当B ,C ,E 三点共线时,连接PC ,若BC =3CE ,直接写出下列两式分别是否为定值,并任选其中一个进行证明:(1)3AP PD PC -;(2)2AP PC PD BD PC PE++-+.参考答案1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,判断即可.【详解】解:(1)223+>,232+>,223-<,322-<,能构成;(2)235+=,不能构成;(3)146+<,不能构成;(4)345+>,354+>,453+>,435-<,534-<,543-<能构成;故选:B .【点睛】本题是对三角形三边关系的考查,熟练掌握三角形三边关系是解决本题的关键.3.B【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【详解】多边形的边数是:n =360°÷(180°﹣135°)=8.故选:B .【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100纳米=0.0000001米7110-=⨯米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.6.A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.C【分析】根据分式的基本性质对选项逐一判断即可.【详解】A 、2242ab b a c ac=,故错误;B 、11a b ab a b+=+,故错误;C 、23193x x x -=-+,故正确;D 、22x y x y -+-=-,故错误;故选C .【点睛】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.8.D【分析】根据角平分线的性质,垂直平分线的判定和三角形全等的判定和性质逐项进行判定即可.【详解】解:对A 、B 、C 选项,∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴PA PB =,∵在Rt PAO ∆和Rt PBO ∆中==PA PB OP OP⎧⎨⎩,∴Rt Rt OPA OPB ∆∆≌,∴APO BPO ∠=∠,=OA OB ,∴PO 平分APB ∠,故A 、B 、C 正确,不符合题意;D .∵PA PB =,=OA OB ,∴OP 垂直平分AB ,但AB 不一定垂直平分OP ,故D 错误,符合题意.【点睛】本题主要考查了角平分线的性质,垂直平分线的判定,全等三角形的判定和性质,根据题意证明Rt Rt OPA OPB ∆∆≌,是解题的关键.9.C【分析】延长AB 、DE 相交于点F ,根据AED AEF ∆∆≌得到DE EF =,AD AF =,再证明DEC FEB ∆∆≌得到DC BF =,从而推算出四边形ABCD 的周长等于2AD BC +得到答案.【详解】解:如下图所示,延长AB 、DE 相交于点F,DAB ∠的平分线交BC 于点E ,∴DAE FAE ∠=∠,∵DE AE ⊥,90AED AEF ∠=∠=︒∴,∵AE=AE ,∴AED AEF ∆∆≌,∴DE EF =,AD AF =,∵AB ∥DC ,∴CDE EFB ∠=∠,∵CDE EFB DE EF DEC FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DEC FEB ∆∆≌,∴DC BF =,∵6AB DC AB BF AF +=+==,∴四边形ABCD 的周长为66416AD AB BC DC AD AF BC +++=++=++=,故选:C .【点睛】本题考查全等三角形、平行线和角平分线的性质,解题的关键是熟练掌握全等三角形、平行线和角平分线的相关知识.10.A【分析】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,由题意得:759011.82x x =+,故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.11.B【分析】由折叠的性质得到CBD EBD ≅ ,继而得到BED C ∠=∠,根据题意90C ∠<︒,据此判断①错误;由折叠的性质得到DC=DE ,BE=BC=6,求得AED △的周长为:AD+AE+DE=AC+AE=7,可判断②;设点D 到AB 的距离为h ,根据三角形面积公式得到11::6:83:422BCD ABD S S h BE AB =⋅⋅== ,可判断③;设点B 到AC 的距离为m ,根据三角形面积公式得到11:::3:422BCD ABD S S m CD m AD CD AD =⋅⋅== ,可判断④.【详解】解:沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,CBD EBD≅ ,CBD EBD BED C∴∠=∠∠=∠90C ∠<︒90DEB ∴∠<︒DE ∴不垂直AB ,故①错误;由折叠的性质可知DC=DE ,BE=BC=68AB = 2AE AB BE ∴=-=AED ∴ 的周长为:AD+AE+DE=AC+AE=7,故②正确;设点D 到AB 的距离为h ,11::6:83:422BCD ABD S S h BE h AB ∴=⋅⋅== ,故③正确;设点B 到AC 的距离为m ,11:::3:422BCD ABD S S m CD m AD CD AD ∴=⋅⋅== ,故④错误,故选:B.【点睛】本题考查翻折变换,三角形周长的求法、三角形的面积公式等知识,是基础考点,掌握相关知识是解题关键.12.B【分析】根据大长方形的面积等于3个正方形的面积加上3个长方形的面积即可求解.【详解】解:依题意,得()()22232a b a b a ab b ++=++.故选B .【点睛】本题考查了多项式乘法与图形的面积,数形结合是解题的关键.13.3【分析】原式根据负整数指数幂、零指数幂的运算法则化简各项后,再进行减法运算即可得到答案.【详解】解:(201141=32-⎛⎫-=- ⎪⎝⎭.故答案为:3.【点睛】本题主要考查了负整数指数幂、零指数幂,熟练掌握负整数指数幂、零指数幂的运算法则是解答本题的关键.14.=1x -【分析】根据分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零,即可得到答案.【详解】解;根据分式的值为零的条件得:210x -=,且10x -≠,解得:=1x -,故答案为:=1x -.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.15.60【分析】连接,BP BE ,先根据等边三角形的性质可得60,ACB BE AC ∠=︒⊥,从而可得30CBE ∠=︒,再根据等边三角形的性质、线段垂直平分线的性质可得PB PC =,从而可得PC PE PB PE +=+,然后根据两点之间线段最短可得当点,,B P E 共线时,PB PE +最小,最后根据等腰三角形的性质可得30BCP CBE ∠=∠=︒,利用三角形的外角性质即可得出答案.【详解】解:如图,连接,BP BE ,ABC 是等边三角形,E 是AC 的中点,60ACB ∠=︒∴,BE AC ⊥,9030CBE ACB ∴∠=︒-∠=︒,AD 是等边ABC 的BC 边上的高,AD ∴垂直平分BC ,PB PC ∴=,PC PE PB PE ∴+=+,由两点之间线段最短得:如图,当点,,B P E 共线时,PB PE +最小,最小值为BE ,此时有30BCP CBE ∠=∠=︒,则60CPE BCP CBE ∠=∠+∠=︒,故答案为:60.【点睛】本题考查了等边三角形的性质、两点之间线段最短等知识点,利用两点之间线段最短找出PC PE +最小时,点P 的位置是解题关键.16.36︒【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得PBC PCB ∠=∠,从而得到BP PC =,PD PC =,进一步证明PDC PCD ∠=∠,再根据ABP ACP ∆∆≌得到PDC BAC ∠=∠,推算出2ABC BCA BAC ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如下图所所示,连接AP ,∵点P 在ABC ∠的平分线上,∴ABP PBC ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∵折叠,∴PCB DCP ∠=∠,∴PBC PCB ∠=∠,∴BP PC =,∵BP PD =,∴PD PC =,∴PDC PCD ∠=∠,∴ABP PBC BCP PCD PDC ∠=∠=∠=∠=∠,∵AD PD =,∴PAD APD ∠=∠,∵2PDC PAD APD PAD ∠=∠+∠=∠,∵AB ACAP AP BP PC=⎧⎪=⎨⎪=⎩,∴ABP ACP ∆∆≌,∴BAP PAC ∠=∠,∴PDC BAC ∠=∠,∴2ABC BCA BAC ∠=∠=∠,∵180ABC BCA BAC ∠+∠+∠=︒∴22180BAC BAC BAC ∠+∠+∠=︒,∴36BAC ∠=︒.【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明2ABC BCA BAC ∠=∠=∠.17.a 2(1)x -【分析】首先提取公因式a ,然后利用完全平方公式.【详解】解:原式=a(1-2x+2x )=a 2(1)x -.18.80︒【分析】设∠ADC=x ,则∠ADG=180°-x ,先证明∠BAE=∠C+∠EDC-∠B=x+20°,再由角平分线的定义得到1902ADF x =︒-∠,1102DAF x =︒+∠,再利用三角形内角和定理求解即可.【详解】解:设∠ADC=x ,则∠ADG=180°-x ,∵∠AEB=∠DEC ,∠AEB+∠B+∠BAE=180°,∠DEC+∠C+∠EDC=180°,∴∠B+∠BAE=∠C+∠EDC ,∴∠BAE=∠C+∠EDC-∠B=x+20°,∵AF 平分∠BAD ,DF 平分∠ADG ,∴119022ADF ADG x ==︒-∠∠,111022DAF BAD x ==︒+∠∠,∴1118018090108022F ADF DAF x x =︒--=︒-︒+-︒-=︒∠∠∠,故答案为:80︒.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,正确得到∠BAE=∠C+∠EDC-∠B 是解题的关键.19.(1)4ab(2)8x 29+【分析】(1)根据积的乘方、同底数幂的除法法则解答;(2)根据完全平方公式、平方差公式解答.(1)解:()()322ab ab ÷-6322a b a b =÷4ab =;(2)解:()()()2412525x x x +-+-()()22421425x x x =++--22484425x x x =++-+829x =+.20.1x =【分析】先去分母,方程两边同时乘以(2)(2)x x +-,转化为解一元一次方程,再验根即可.【详解】解:方程两边同时乘以(2)(2)x x +-得,23x +=1x ∴=经检验,1x =是分式方程的解1x ∴=.21.-2【详解】试题分析:原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将0x =代入计算即可求出值.试题解析:原式2541,112x x x x x x x ⎛⎫+-+=-⋅ ⎪++-⎝⎭2541,12x x x x x x +-++=⋅+-()221,12x x x x -+=⋅+-2x =-.当0x =时,原式 2.=-22.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【分析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.23.证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.24.(1)①△BPD ≌△CQP ,理由见解析;②点Q 的运动速度为4cm/s ,理由见解析;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;②因为VP≠VQ ,所以BP≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度;(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得.(1)①1秒钟时,△BPD 与△CQP 全等;理由如下:∵t=1秒,∴BP=CQ=3(cm )∵AB=12cm ,D 为AB 中点,∴BD=6cm ,又∵PC=BC-BP=9-3=6(cm ),∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵VP≠VQ ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD ≌△CPQ ,只能BP=CP=4.5,∵△BPD ≌△CPQ ,∴CQ=BD=6.∴点P 的运动时间 4.5 1.533BP t ===(秒),此时641.5Q CQ V t ===(cm/s ).(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得:4x=3x+2×12,解得:x=24,此时P 运动了24×3=72(cm )又∵△ABC 的周长为33cm ,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题是三角形综合题目,考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用;熟练掌握三角形全等的判定和性质是解决问题的关键.25.(1)120°;(2)FE=FD ;见解析.【分析】(1)由已知条件易得∠BAC=30°,结合AD ,CE 分别是∠BAC 和∠ACB 的角平分线可得∠FAC=15°,∠FCA=45°,由此结合三角形内角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.(2)如下图,在AC 是截取AG=AE ,连接FG ,在由已知条件易证△AGF ≌△AEF ,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,结合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,这样结合∠GCF=∠DCF ,CF=CF 即可得到△GCF ≌△DCF ,由此可得FG=FD ,结合FE=FG 即可得到FE=FD.【详解】(1)∵ABC 中,90ACB ∠= ,60B ∠=∴30BAC ∠= ,∵AD 、CE 分别是BAC ∠、BCA ∠的平分线,∴1152FAC BAC ∠=∠= ,1452FCA ACB ∠=∠= ,∴180120AFC FAC FCA ∠=-∠-∠= ,∴120EFD AFC ∠=∠= ;()2FE 与FD 之间的数量关系为FE FD =;在AC 上截取AG AE =,连接FG,∵AD 是BAC ∠的平分线,∴EAF GAF∠=∠在EAF △和GAF 中,∵AEAGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴AEF △≌AGF ,∴FE FG =,∠AFG=∠AFE=∠FAC+∠ECA=60°,∴∠CFD=∠AFE=60°,∴∠CFD=∠CFG ,∵在FDC △和FGC △中,DFC GFCFC FC FCG FCD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴CFG △≌CFD △,∴FG FD =,∴FE FD =.26.(1)5;(2)962.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解;(2)求出两次的购进千克数,根据利润=售价-进价,可求出结果.【详解】(1)设第一次所购水果的进货价是每千克x 元,依题意,得1650x 0.5+=3500x⨯,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1-5%)×8-500]+[300×(1-2%)×8-1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.27.初步发现:证明见解析;深入探究:CE+DC=AC ,证明见解析;拓展创新:(1)2,证明见解析;(2)1,证明见解析【分析】初步发现:只需要利用SAS 证明△BCD ≌△ACE 得到∠CBD=∠CAE ,由∠BOC=∠AOF ,推出∠AFO=∠BCO=60°,由此即可证明结论;深入探究:在AB 上取一点G 使得BG=BD ,连接DG ,先证明△BDG 是等边三角形,得到BG=BD=DG ,∠BGD=60°,再利用ASA 证明△AGD ≌△DCE 得到CE=GD=BD ,即可证明CE+DC=AC ;拓展创新:(1)如图所示,在AE 上取一点F ,使得EF=PD ,先证明△ACE ≌△BCD 得到AE=BD ,∠AEC=∠BDC ,再证明△CPD ≌△CFE 得到PD=FE ,∠PCD=∠FCE ,PC=CF ,进而证明△PCF 是等边三角形,得到PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,利用面积法证明CG=CH ,得到3BP PE =,得到34AE BD PC PD ==+23AP PC PD =+,由此即可得到结论;(2)根据(1)所求分别用PC 和PD 表示出分子和分母的线段的和差即可得到答案.【详解】解:初步发现:如图所示,设AC 与BF 交于O ,∵△ABC 和△CDE 都是等边三角形,∴CB=CA ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴∠CBD=∠CAE ,∵∠BOC=∠AOF ,∠AOF+∠AFO+∠OAF=180°,∠CBO+∠BOC+∠BCO=180°,∴∠AFO=∠BCO=60°,即∠AFB=60°;深入探究:CE+DC=AC ,证明如下:如图所示,在AB 上取一点G 使得BG=BD ,连接DG ,∵△ABC 是等边三角形,∴AC=BC=AB ,∠ACB=∠B=60°,∴∠ACF=120°,△BDG 是等边三角形,∴BG=BD=DG ,∠BGD=60°,∴∠AGD=120°,AG=DC ,∵CE 平分∠ACF ,∴1602ECF ACE ACF ∠=∠=∠=︒,∴∠DCE=120°,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD ,∠B=∠ADE=60°,∴∠CDE=∠BAD ,在△AGD 和△DCE 中,DAG EDCAG DC AGD DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△DCE (ASA ),∴CE=GD=BD ,∴CE+DC=BD+DC=BC ,∴CE+DC=AC;拓展创新:(1)32AP PDPC -=,证明如下:如图所示,在AE 上取一点F ,使得EF=PD ,∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,∴∠BCD=∠ACE ,在△ACE 和△BCD 中,AC BCACE BCD CE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∠AEC=∠BDC ,在△CPD 和△CFE 中,CD CECDP CEF DP EF=⎧⎪∠=∠⎨⎪=⎩,∴△CPD ≌△CFE (SAS ),∴PD=FE ,∠PCD=∠FCE ,PC=CF ,∴∠PCD+∠DCF=∠FCE+∠DCF ,∴∠PCF=∠DCE=60°,∴△PCF 是等边三角形,∴PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,∵△ACE ≌△BCD ,∴ACE BCD S S =△△,∴1122BD CG AE CH ⋅=⋅,∴CG=CH ,∵BC=3CE ,∴3BCP PCE S S =△△,∴11322BP CG PE CH ⋅=⨯⋅,∴3BP PE =,∴33334AE BD BP PD PE PD PF EF PD PC PD ==+=+=++=+,∴3423AP AE PE PC PD PF EF PC PD =-=+--=+,∴32322AP PD PC PD PDPC PC -+-==;(2)21AP PC PDBD PC PE ++=-+,证明如下:由(1)可得223235AP PC PD PC PD PC PD PC PD ++=+++=+,343435BD PC PE PC PD PC PF EF PC PD PC PC PD PC PD -+=+-++=+-++=+,∴21AP PC PDBD PC PE ++=-+;。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共10小题,每小题3分,计30分)1.下列长度的线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.6,10,42.下列图案中不是轴对称图形的是()A.B.C.D.3.分式有意义的条件是()A.x≠﹣4B.x≠6C.x≠﹣4且x≠6D.x=44.甲、乙、丙、丁4名运动员参加射击训练,他们10次射击的平均成绩都是8.5环,方差分别是S甲2=3,S乙2=4,S丙2=6,S丁2=2,则这4名运动员10次射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×3+①C.①﹣②×3D.①×(﹣2)+②6.下列各组线段不能构成直角三角形的是()A.2,3,4B.3,4,5C.1,1,D.6,8,107.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<10.关于x的分式方程有整数解,关于x的不等式组无解,所有满足条件的整数a的和为()A.2B.﹣6C.﹣3D.4二、填空题(共8小题,每空3分,计24分)11.(3分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为.12.(3分)计算:(﹣1)2019+(﹣)﹣2﹣(π﹣)0=.13.(3分)如图,若AB∥CD,∠A=110°,则∠1=°.14.(3分)一次函数y=2x+1的图象不经过第象限.15.(3分)将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.16.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为.18.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.三、计算题(共3小题,计16分)19.(6分)化简:(1)(3x+2y)(x﹣3y)﹣6xy(2)(a+2b)2+(2a3b+8ab3)÷(2ab)20.(4分)解方程组.21.(6分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2(2)解方程:=﹣1四、操作题(5分)22.(5分)在平面直角坐标系中,已知点A(1,3),B(3,1),C(4,3).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1.连接A1B并直接写出线段A1B的长.五、解答题(共3小题,计25分)23.(8分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(8分)如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.25.(9分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.人教版八年级(上)数学期末试卷参考答案与试题解析一、选择题1.【解答】解:A、3+4<8,不能构成三角形,故此选项不符合题意;B、5+6<11,不能构成三角形,故此选项不符合题意;C、6+5>10,能构成三角形,故此选项符合题意;D、6+4=10,不能构成三角形,故此选项不符合题意.故选:C.2.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:要使分式有意义,必须x+4≠0,解得,x≠﹣4,故选:A.4.【解答】解:∵S甲2=3,S乙2=4,S丙2=6,S丁2=2,∴S丁2<S甲2<S乙2<S丙2,∴这4名运动员10次射击成绩最稳定的是丁,故选:D.5.【解答】解:A.,①×2﹣②,得7y=7,能消元,故本选项不符合题意;B.,②×3+①,得7x=7,能消元,故本选项不符合题意;C.,①﹣②×3,得﹣5x+6y=1,不能消元,故本选项符合题意;D.,①×(﹣2)+②,得﹣7y=﹣7,能消元,故本选项不符合题意;故选:C.6.【解答】解:A、∵22+32≠42,∴三角形不是直角三角形,故本选项正确;B、∵32+42=52,∴三角形是直角三角形,故本选项错误;C、∵12+12=()2,∴三角形是直角三角形,故本选项错误;D、∵62+82=102,∴三角形不是直角三角形,故本选项错误.故选:A.7.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.10.【解答】解:将不等式组整理得:,由不等式组无解,得到﹣1≥,解得:a≤3,分式方程去分母得:1﹣ax+4(x﹣3)=﹣5,去括号得:1﹣ax+4x﹣12=﹣5,移项合并得:(4﹣a)x=6,解得:x=,∵x﹣3≠0,当a=﹣2、1、3时,符合题意;∴所有满足条件的a的值之和为:﹣2+1+3=2,故选:A.二、填空题11.【解答】解:0.000002275=2.275×10﹣6.故答案是:2.275×10﹣6.12.【解答】解:原式=﹣1+9﹣1=7.故答案为:7.13.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.16.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.18.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、计算题19.【解答】解:(1)(3x+2y)(x﹣3y)﹣6xy =3x2﹣9xy+2xy﹣6y2﹣6xy=3x2﹣13xy﹣6y2;(2)(a+2b)2+(2a3b+8ab3)÷(2ab)=a2+4ab+4b2+a2+4b2=2a2+4ab+8b2.20.【解答】解:①×3﹣②得:2x=4,解得:x=2,把x=2代入①得:4+y=2,解得:y=﹣2,所以原方程组的解为.21.【解答】解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.四、操作题22.【解答】解:(1)如图,△ABC为所作;(2)如图,△A1B1C1为所作;A1B==2.五、解答题23.【解答】解:(1)设该旅行社去年有x人前来观看赛事,根据题意,得:,解得:x=30,经检验:x=30是原方程的解,所以原方程的解为x=30,∴(1+50%)x=45,答:该旅行社今年的有45人前来观看赛事;(2)今年该旅行社本次费用中,人均交通费为x元,由题意得:9600+3900﹣45x≥2×45x,解得:x≤100,答:人均交通费最多为100元.24.【解答】解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.25.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
人教版八年级上学期数学《期末测试题》及答案
A.3B.4C.5D.6
二、填空题
13.已知4y2+my+9是完全平方式,则m=____.
14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
故选C.
点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.
12.如图,△ABC中,AB=AC,BC=5, , 于D,EF垂直平分AB,交AC于F,在EF上确定一点P使 最小,则这个最小值为()
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
[答案]100°
[解析]
[分析]
依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.
[详解]解:∵△ABC与△A′B′C′关于直线l对称,
∴∠C=∠C′=30°.
∴∠B=180°-∠A-∠C=180°-50°-30°=100°.
26.如图,在四边形 中, , 是 的中点,连接 并延长交 的延长线于点 ,点 在边 上,且 .
(1)求证: ≌ .
(2)连接 ,判断 与 位置关系并说明理由.
27.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米 少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
人教版数学八年级上学期《期末检测试卷》含答案解析
A.5B.6C. D.8
[答案]B
[解析]
[分析]
连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.
[详解]解:连接BD,DE,
A.1个B.2个C.3个D.4个
二、填空题(本题满分18分,共有6道小题,每小题3分)
9.若代数式 的值为零,则x的取值应为_____.
10.某校规定学生 期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.
②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;
③④求出∠ECD=90°,根据平行线 性质得出∠BEC=∠ECD,即可得出答案.
[详解]解:∵四边形ABCD是平行四边形,
24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).
(1)判断AM与PM的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立.请说明理由.
B.若BD=CD,则四边形AEDF是菱形
C.若AD垂直平分BC,则四边形AEDF是矩形
人教版八年级上学期期末考试数学试卷及答案(共五套)
人教版八年级上学期期末考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列各组数据为三角形的三边,不能构成三角形的是( ) A .4,8,7 B .3,4,7 C .2,3,4 D .13,12,5 2.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2·3ab 3=-3a 2b 5C.ba -b +ab -a =-1 D.a 2-1a ·1a +1=-1 3.如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC第3题图 第6题图4.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-145.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x 2-4,乙与丙相乘为x 2+15x -34,则甲与丙相加的结果为( ) A .2x +19 B .2x -19 C .2x +15 D .2x -156.如图,在Rt△ABC 中,AB =AC ,点D 为BC 中点,直角∠MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①△DEF 是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( )A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(-2x3)3= ________.8.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3=________.第8题图第10题图9.一个三角形的三个外角之比为5∶4∶3,则这个三角形内角中最大的角是________度.10.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设列车原来的平均速度为x千米/时,根据题意,可列方程为______________.12.已知C,D两点在线段AB的垂直平分线上,且∠ACB=40°,∠ADB=68°,则∠CAD=__________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(-4b)·(-a2b)2÷(-2a);(2)分解因式:x2(x-2y)+xy2.14.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.15.(1)化简求值:a2a+1-a+1,其中a=99;(2)解方程:xx-1=3x+1+1.16.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数.17.如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边,要求:①仅用无刻度直尺,②保留必要的画图痕迹.四、(本大题共3小题,每小题8分,共24分)18.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.19.(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.20.现定义运算“△”,对于任意实数a、b,都有a△b=a2-2ab+b2,请按上面的运算计算(3x+5)△(2-x)的值,其中x满足xx-1-3x=1.五、(本大题共2小题,每小题9分,共18分)21.在我市开展的“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?22.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数;(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.六、(本大题共12分)23.如图①,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB,OB于E,F 两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案与解析 1.B 2.C 3.C 4.C5.A 解析:∵x 2-4=(x +2)(x -2),x 2+15x -34=(x +17)(x -2),∴乙为x -2,∴甲为x +2,丙为x +17,∴甲与丙相加的结果为x +2+x +17=2x +19.故选A.6.C 解析:∵在Rt△ABC 中,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.7.-8x 98.55° 9.90 10.36° 11.1480x =1480x +70+312.126°或14° 解析:分C 、D 在线段AB 同侧和异测两种情况讨论.(1)如图①.∵点C 、D 为线段AB 的垂直平分线上的两点,∴CA =CB ,DA =DB .∵∠ACB =40°,∠ADB =68°,∴∠CAB =∠CBA =12(180°-40°)=70°.∴∠DAB =∠DBA =12(180°-68°)=56°,∴∠CAD =∠CAB +∠DAB =126°;(2)如图②.同(1)可得∠CAB =70°,∠DAB =56°,∴∠CAD =∠CAB -∠DAB =70°-56°=14°.综上所述,∠CAD =126°或14°.13.解:(1)原式=4b ·a 4b 2·12a=2a 3b 3.(3分) (2)原式=x (x 2-2xy +y 2)=x (x -y )2.(6分)14.证明:∵∠OBC =∠OCB ,∴OB =OC .(2分)在△AOB 和△DOC 中,⎩⎨⎧OA =OD ,∠AOB =∠DOC ,OB =OC ,∴△AOB ≌△DOC (SAS),(4分)∴∠1=∠2.(6分) 15.解:(1)原式=a 2-(a +1)(a -1)a +1=1a +1.(2分)将a =99代入得原式=1100.(3分) (2)方程两边同乘x 2-1,得x (x +1)=3(x -1)+x 2-1,解得x =2.(5分)检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2.(6分)16.解:∵∠D +∠C +∠DAB +∠ABC =360°,∠D +∠C =220°,∴∠DAB +∠ABC =360°-220°=140°.(2分)∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°.(4分)∴∠AOB =180°-70°=110°.(6分)17.解:如图所示,∠ABC =45°(AB ,AC 是小长方形的对角线,答案不唯一).(6分)18.解:(1)如图所示.(3分) (2)如图所示.(6分)(3)点B ′的坐标为(2,1).(8分)19.解:(1)a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)∵3x +2·5x +2=153x -4,∴(3×5)x +2=153x -4,即x +2=3x -4,解得x =3.(6分)又∵(2x -1)2-4x 2+7=4x 2-4x +1-4x 2+7=-4x +8,∴当x =3时,原式=-4×3+8=-4.(8分)20.解:去分母得x 2-3(x -1)=x (x -1),解得x =32.(3分)经检验,x =32是原方程的解,(4分)∴(3x +5)△(2-x )=(3x +5)2-2(3x +5)(2-x )+(2-x )2=(3x +5-2+x )2=(4x +3)2=⎝⎛⎭⎪⎫4×32+32=81.(8分)21.解:设引进新设备前工程队每天改造管道x 米.(1分)由题意得360x+900-360(1+20%)x =27,(4分)解得x =30.(6分)经检验,x =30是原分式方程的解且符合实际.(8分)答:引进新设备前工程队每天改造管道30米.(9分)22.解:(1)∵AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,∴∠ACE =∠ACF ,∠AEC =∠AFC =90°,∴AE =AF .(1分)在Rt△ABE 和Rt△ADF 中,⎩⎨⎧AE =AF ,AB =AD ,∴Rt△ABE ≌Rt△ADF (HL),(3分)∴∠ADF =∠ABE =60°,∴∠CDA =180°-∠ADF =120°.(4分)(2)由(1)知Rt△ABE ≌Rt△ADF ,∴FD =BE =1,AF =AE =2.在△AEC 和△AFC 中,⎩⎨⎧∠ACE =∠ACF ,∠AEC =∠AFC ,AC =AC ,∴△AEC ≌△AFC (AAS),∴CE =CF =CD +FD =5,(7分)∴S 四边形AECD=S △AEC +S △ACD =12EC ·AE +12CD ·AF =12×5×2+12×4×2=9.(9分)23.(1)解:(m -4)2+n 2-8n =-16,即(m -4)2+(n -4)2=0,则m -4=0,n -4=0,解得m =4,n =4.则A 点的坐标是(4,4).(3分)(2)证明:∵AB ⊥x 轴,AC ⊥y 轴,A (4,4),∴AB =AC =OC =OB ,∠ACO =∠COB =∠ABO =90°.又∵四边形的内角和是360°,∴∠A =90°.∵OF +BE =AB =BE+AE ,∴AE =OF .(5分)在△COF 和△CAE 中,⎩⎨⎧OF =AE ,∠COF =∠A ,OC =AC ,∴△COF ≌△CAE (SAS),∴CF =CE .(7分)(3)解:结论①正确,值为0.(8分)证明如下:如图②,在x 轴负半轴上取点H ,使OH =AE ,连接CH .在△ACE 和△OCH 中,⎩⎨⎧AE =OH ,∠A =∠COH =90°,OC =AC ,∴△ACE ≌△OCH (SAS),∴∠1=∠2,CE =CH ,∴∠ECH =∠2+∠ECO =∠1+∠ECO =90°.又∵∠ECF =45°,∴∠HCF =45°.(10分)在△HCF 和△ECF 中,⎩⎨⎧CH =CE ,∠HCF =∠ECF ,CF =CF ,∴△HCF ≌△ECF (SAS),∴HF =EF ,∴OH +OF =AE +OF =EF ,∴OF +AE -EF =0.(12分)人教版八年级上学期期末考试数学试卷(二) 时间:120分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1 C .1 D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图是两个全等三角形,则∠1的度数为( ) A .62° B.72° C .76° D.66°第3题图 第5题图 4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,D 为BC 上一点,且AB =AC =BD ,则图中∠1与∠2的关系是( ) A .∠1=2∠2 B.∠1+∠2=180°C .∠1+3∠2=180° D.3∠1-∠2=180° 6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( ) A.12 B.13 C.25 D.37第8题图9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④第10题图第11题图二、填空题(共6小题,每小题3分,共18分)11.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=________°.12.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.13.如图,在△ABC中,D为AB上一点,AB=AC,CD=CB.若∠ACD=42°,则∠BAC =________°.第13题图 第16题图 14.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.15.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.16.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共8题,共72分)17.(8分)计算:(1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.18.(8分)分解因式:(1)3mx -6my; (2)4xy 2-4x 2y -y 3.19.(8分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.20.(8分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.21.(8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD .(1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.22.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF .(1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.23.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?24.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C8.B 解析:如图,连接CC ′并延长交A ′B ′于D ,连接CB ′,CA ′.∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A ′C ,BC =B ′C ,∠ACB =∠A ′CB ′,AB 垂直平分CC ′,∴△ABC ≌△A ′B ′C (SAS),∴S △ABC =S △A ′B ′C ,∠A =∠AA ′B ′,AB =A ′B ′,∴AB ∥A ′B ′,∴CD ⊥A ′B ′.根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ′,∴S △A ′B ′C =13S △A ′B ′C ′,∴S △ABC =13S △A ′B ′C ′,∴△ABC 与△A ′B ′C ′的面积之比为13.故选B.9.C 解析:在方程两边同乘x +1,得x -a =a (x +1),整理得(1-a )x =2a .当1-a =0时,即a =1,整式方程无解;当x +1=0,即x =-1时,分式方程无解,把x =-1代入(1-a )x =2a ,得-(1-a )=2a ,解得a =-1.故选C.10.C 解析:∵在Rt△ABC 中,∠BAC =90°,AB =AC ,点D 为BC 的中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠FAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,AF +AE >EF ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.11.50 12.(1)a (x -1)2 (2)1x +113.32 14.(-2,-15) 15.1480x=1480x +70+316.4 解析:如图,延长DE 至F ,使EF =BC ,连接AC ,AD ,AF .∵AB =CD =AE =BC +DE =2,∠B =∠AED =90°,∴CD =EF +DE =DF ,∠AEF =90°.在△ABC与△AEF 中, ⎩⎨⎧AB =AE ,∠ABC =∠AEF ,BC =EF ,∴△ABC ≌△AEF (SAS),∴AC =AF .在△ACD 与△AFD 中,⎩⎨⎧AC =AF ,CD =FD ,AD =AD ,∴△ACD ≌△AFD (SSS),∴五边形ABCDE 的面积S =2S △ADF =2×12·DF ·AE =2×12×2×2=4.故答案为4.17.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(4分)(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.(8分)18.解:(1)原式=3m (x -2y ).(4分)(2)原式=-y (-4xy +4x 2+y 2)=-y (y -2x )2.(8分)19.解:如图,作AB 的垂直平分线EF ,(3分)作∠BAC 的平分线AM ,两线交于P ,(6分)则P 为这个中心医院的位置.(8分)20.解:(1)∵a +b =7,ab =10,∴a 2+b 2=(a +b )2-2ab =72-2×10=49-20=29,(2分)(a -b )2=(a +b )2-4ab =72-4×10=49-40=9.(4分)(2)原式=(a -2)(a +2)-5a +2·2(a +2)a -3=(a +3)(a -3)a +2·2(a +2)a -3=2a +6.(6分)∵a =(3-π)0+⎝ ⎛⎭⎪⎫14-1=1+4=5,∴原式=2×5+6=16.(8分) 21.(1)证明:∵AC =AD ,∴∠ACD =∠ADC .又∵∠BCD =∠EDC =90°,∴∠ACB=∠ADE .(2分)在△ABC 和△AED 中, ⎩⎨⎧BC =ED ,∠ACB =∠ADE ,AC =AD ,∴△ABC ≌△AED (SAS).(4分)(2)解:由(1)知△ABC ≌△AED ,∴∠E =∠B =140°.又∵∠BCD =∠EDC =90°,∴五边形ABCDE 中,∠BAE =540°-140°×2-90°×2=80°.(8分)22.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(5分)(2)解:BE +CF >EF .(6分)理由如下:由(1)知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴DE 垂直平分GF ,∴EG =EF .(8分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(10分)23.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5,(3分)解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(5分)(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路15-1.5a 1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,(8分)解得a ≥8.答:甲工程队至少修路8天.(10分)24.(1)证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE .(1分)在△ACD 和△BCE中,⎩⎨⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS),∴BE =AD .(3分)(2)解:由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE .∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =180°-(180°-α)=α.(6分)(3)解:△CPQ 为等腰直角三角形.(7分)证明如下:由(1)可知BE =AD .∵AD ,BE 的中点分别为点P ,Q ,∴AP =BQ .由(1)知△ACD ≌△BCE ,∴∠CAP =∠CBQ .在△ACP 和△BCQ 中,⎩⎨⎧CA =CB ,∠CAP =∠CBQ ,AP =BQ ,∴△ACP ≌△BCQ (SAS),∴CP =CQ 且∠ACP =∠BCQ .(10分)又∵∠ACP +∠PCB =90°,∴∠BCQ +∠PCB =90°,∴∠PCQ =90°,∴△CPQ 为等腰直角三角形.(12分)人教版八年级上学期期末考试数学试卷(三)时间:120分钟 满分:150分一、选择题(本题共12小题,每小题3分,共36分)1.若分式x +1x +2的值为0,则x 的值为( ) A .0 B .-1C .1D .22.下列图形中,是轴对称图形的是( )3.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -2b )=a 2-2b 2D .5a -2a =34.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .155.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+16.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( )A .∠B =∠B ′ B.∠C =∠C ′C .BC =B ′C ′ D.AC =A ′C ′7.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB ,BC 于点D ,E ,则∠BAE =( )A .80°B .60°C .50°D .40°8.已知2m +3n =5,则4m ·8n =( )A .16B .25C .32D .649.若a +b =3,ab =-7,则a b +b a的值为( )A .-145B .-25C .-237D .-25710.如图,在△ABC 和△CDE 中,已知AC =CD ,AC ⊥CD ,∠B =∠E =90°,则下列结论不正确的是( )A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠211.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的平分线,则图中的等腰三角形有( )A.5个 B.4个C.3个 D.2个12.如图,在Rt△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确结论是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(本题共6小题,每小题4分,共24分)13.一个n边形的内角和为1800°,则n=________.14.如图,小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为________米.15.若x2+bx+c=(x+5)(x-3),则点P(b,c)关于y轴对称点的坐标是________.16.已知甲、乙两地间的铁路长1480千米,列车提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为________.17.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为________.18.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF 的最小值是________.三、解答题(本题共9小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)化简或解方程:(1)(a+b)(a-b)+2b2;(2)xx-1+21-x=2.20.(8分)先化简,再从1,2,3中选取一个适当的数代入求值.21.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系并说明理由.22.(10分)如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.23.(10分)把两个含有45°角的直角三角板ACB和DEC如图放置,点A,C,E 在同一直线上,点D在BC上,连接BE,AD,AD的延长线交BE于点F.(1)求证:△ADC≌△BEC;(2)猜想AD与EB是否垂直?并说明理由.24.(10分)如图,在△ABC中,点O是∠ABC,∠ACB平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.25.(12分)某公司向甲、乙两所中学送水,每次送往甲中学7600升,乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.(1)求这两所中学师生人数分别是多少;(2)若送瓶装水,价格为1元/升;若用消防车送饮用水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个,其他费用不计.请问这次乙中学用瓶装水花费少还是饮用消防车送水花费少?26.(12分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连接EG,EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.27.(14分)已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x s.(1)如图①,当x为何值时,PQ∥AB?(2)如图②,若PQ⊥AC,求x的值;(3)如图③,当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.期末检测卷1.B 2.C 3.A 4.A 5.C 6.C7.D 8.C 9.C 10.D 11.A12.C 解析:∵在Rt△ABC 中,∠B =45°,AB =AC ,点D 为BC 中点,∴AD ⊥BC ,∠B =∠C =∠BAD =∠CAD =45°,∴∠ADB =∠ADC =90°,AD =CD =BD .∵∠MDN 是直角,∴∠ADF +∠ADE =90°.∵∠BDE +∠ADE =∠ADB =90°,∴∠ADF =∠BDE .在△BDE 和△ADF 中,⎩⎨⎧∠B =∠CAD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①③正确;∵AE =AB -BE ,CF =AC -AF ,AB =AC ,BE =AF ,∴AE =CF ,故②正确;∵BE +CF =AF +AE ,∴BE +CF >EF ,故④错误.综上所述,正确的结论有①②③.故选C.13.12 14.100 15.(-2,-15) 16.1480x =1480x +70+3 17.60° 18.10 解析:利用正多边形的性质可得点F 关于AD 的对称点为点B ,连接BE 交AD 于点P ′,连接P ′F ,那么有P ′B =P ′F .P ′E +P ′F =P ′E +P ′B =BE ,故当点P 与点P ′重合时,PE +PF 的值最小,最小值为BE 的长.易知△AP ′B 和△EP ′F 均为等边三角形,所以P ′B =P ′E =5,可得BE =10.所以PE +PF 的最小值为10.19.解:(1)原式=a 2-b 2+2b 2=a 2+b 2.(3分)(2)方程两边乘(x -1),得x -2=2(x -1),解得x =0.检验:当x =0时,x -1≠0.所以,原分式方程的解为x =0.(6分)20.解:⎝ ⎛⎭⎪⎫a 2+4a a -2-42-a ·a -2a 2-4=a 2+4a +4a -2·a -2a 2-4=(a +2)2a -2·a -2(a +2)(a -2)=a +2a -2.(5分)∵a -2≠0,a +2≠0,∴a ≠±2,∴可取a =1.(6分)当a =1时,原式=-3(答案不唯一,也可取a =3代入求值).(8分)21.解:(1)如图所示.(2分)(2)DE ∥AC .(4分)理由如下:∵DE 平分∠BDC ,∴∠BDE =12∠BDC .∵∠ACD =∠A ,∠ACD +∠A =∠BDC ,∴∠A =12∠BDC ,∴∠A =∠BDE ,∴DE ∥AC .(8分) 22.解:选②BC =DE .(3分)证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E =∠C .(5分)在△ADE 和△ABC 中,⎩⎨⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(10分)23.(1)证明:∵△DCE 和△ABC 都是等腰直角三角形,∴∠ECB =∠DCA =90°,EC =DC ,BC =AC ,(3分)∴△BEC ≌△ADC (SAS).(4分)(2)解:AD ⊥EB .(6分)理由如下:由(1)知△BEC ≌△ADC ,∴∠CAD =∠CBE .∵∠CAD +∠ADC =90°,∠ADC =∠BDF ,(8分)∴∠CBE +∠BDF =90°,(9分)∴∠BFD =90°,∴AD ⊥EB .(10分)24.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO+S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)25.解:(1)设乙中学有师生x 人,则甲中学有师生(2x -20)人,依题意得76002x -20=4000x,解得x =200.(4分)经检验,x =200是原分式方程的解,且符合题意.∴2x -20=380.(6分)答:甲中学有师生380人,乙中学有师生200人.(7分)(2)乙中学饮用瓶装水的费用为4000×1=4000(元),饮用消防车送水的费用为4000÷500×520=4160(元).(11分)∵4000<4160,∴这次乙中学饮用瓶装水花费少.(12分)26.(1)证明:∵BG ∥AC ,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD .(2分)在△BGD 与△CFD 中,⎩⎨⎧∠DBG =∠DCF ,BD =CD ,∠BDG =∠CDF ,∴△BGD ≌△CFD (ASA),∴BG =CF .(6分)(2)解:BE +CF >EF .(8分)理由如下:由(1)可知△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF .(10分)∵在△EBG 中,BE +BG >EG ,∴BE +CF >EF .(12分)27.解:(1)∵∠C =60°,∴当PC =CQ 时,△PQC 为等边三角形,∴∠QPC =60°=∠B ,从而PQ ∥AB .(2分)∵PC =(4-x )cm ,CQ =2x cm ,∴4-x =2x ,解得x =43,∴当x =43时,PQ ∥AB .(4分) (2)∵PQ ⊥AC ,∠C =60°,∴∠QPC =30°,∴CQ =12PC ,即2x =12(4-x ),解得x =45.(8分)(3)OQ 与OP 总是相等.(9分)理由如下:作QH ⊥AD 于H .(10分)∵△ABC 为等边三角形,AD ⊥BC ,∴∠QAH =30°,BD =12BC =2cm ,∴QH =12AQ =12(2x -4)=(x -2)cm.∵DP =BP -BD =(x -2)cm ,∴QH =DP .(12分)在△OQH 和△OPD 中,⎩⎨⎧∠QOH =∠POD ,∠QHO =∠PDO ,QH =PD ,∴△OQH ≌△OPD (AAS),∴OQ =OP .(14分)人教版八年级上学期期末考试数学试卷(四)时间:120分钟 满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若分式x -3x +4有意义,则x 的取值应满足( ) A .x ≠3 B.x ≠4 C.x ≠-4 D .x ≠-32.涞水的文化底蕴深厚,涞水人民的生活健康向上.下面的四幅简笔画是从涞水的文化活动中抽象出来的,其中是轴对称图形的是( )3.下列二次三项式是完全平方式的是( )A .x 2-8x -16B .x 2+8x +16C .x 2-4x -16D .x 2+4x +164.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125° B.120° C.140° D.130°5.若等腰三角形的两边长分别为4和8,则它的周长为( )A .12B .16C .20D .16或206.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组7.化简x -y x +y ÷(y -x )·1x -y的结果是( ) A.1x 2-y 2 B.y -x x +y C.1y 2-x 2 D.x -y x +y8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .60° B.72° C.90° D.108°9.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,直线m 为∠ABC 的平分线,l 与m 相交于P 点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为( )A .24° B.30° C.32° D.36°10.若a -b =12,且a 2-b 2=14,则a +b 的值为( ) A .-12 B.12C .1D .2 11.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC .若∠ABC =67°,则∠1=( )A .23° B.46° C.67° D.78°12.如图,在等腰△ABC 中,∠BAC =120°,DE 是AC 的垂直平分线,线段DE =1cm ,则BD 的长为( )A .6cmB .8cmC .3cmD .4cm13.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰直角三角形,则点C 的个数是( )A .2B .4C .6D .814.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )15.已知A ,C 两地相距40千米,B ,C 两地相距50千米,甲、乙两车分别从A ,B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/时,依题意列方程正确的是( )A.40x =50x -12B.40x -12=50xC.40x =50x +12D.40x +12=50x16.当x 分别取-2017、-2016、-2015、…、-2、-1、0、1、12、13、…、12015、12016、12017时,计算分式x 2-1x 2+1的值,再将所得结果相加,其和等于( ) A .-1 B .1 C .0 D .2016二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.若点A (m +2,3)与点B (-4,n +5)关于y 轴对称,则m n = .18.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DE =2cm ,AB =4cm ,S △ABC =7cm 2,则AC 的长为 .19.如图,已知长方形OABC中,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),则第二次碰到长方形的边上一点P2的坐标为.当点P第2018次碰到长方形的边时,点P2018的坐标是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)计算:(1)a·a5-(2a3)2+(-2a2)3;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2.21.(9分)因式分解:(1)2x3-4x2+2x;(2)(m-n)(3m+n)2+(m+3n)2(n-m).22.(9分)(1)解分式方程:x x +1=2x3x +3+1;(2)先化简⎝ ⎛⎭⎪⎫a -2ab -b 2a ·a 2+ab a 2-b 2,再求值,其中a =3,b =1.23.(9分)如图,在平面直角坐标系中有一个△ABC ,顶点A (-1,3),B (2,0),C (-3,-1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1(不写画法),并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.24.(10分)如图,已知∠AOB ,以O 为圆心,以任意长为半径作弧,分别交OA ,OB 于F ,E 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线OP ,过点F 作FD ∥OB 交OP 于点D . (1)若∠OFD =116°,求∠DOB 的度数;(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.25.(11分)元旦晚会上,王老师要为她的学生及班级的六位老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5∶4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱.(1)贺年卡的零售价是多少?(2)班里有多少学生?26.(12分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请写出你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,并证明.参考答案与解析1.C 2.C 3.B 4.D 5.C 6.C 7.C 8.B 9.C 10.B 11.B 12.D 13.C 14.D 15.B16.A 解析:设a 为负整数.∵当x =a 时,分式的值为a 2-1a 2+1,当x =-1a 时,分式的值为⎝ ⎛⎭⎪⎫-1a 2-1⎝ ⎛⎭⎪⎫-1a 2+1=1-a 2a 2+1,∴当x =a 时与当x =-1a 时两分式的和为a 2-1a 2+1+1-a 2a 2+1=0.∴当x 的两个取值互为负倒数时,两分式的和为0.∴所得结果的和为02-102+1=-1.故选A. 17.1418.3cm 19.(7,4) (7,4) 解析:按照光线反射规律,画出图形,如图:P (0,3),P 1(3,0),P 2(7,4),P 3(8,3),P 4(5,0),P 5(1,4),P 6(0,3),通过以上变化规律,可以发现每六次反射一个循环.∵2018÷6=336……2,∴P 2018与P 2的坐标相同,∴点P 2018的坐标是(7,4).20.解:(1)原式=a 6-4a 6-8a 6=-11a 6.(4分) (2)原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5.(8分) 21.解:(1)原式=2x (x 2-2x +1)=2x (x -1)2.(4分)(2)原式=(m -n )[(3m +n )2-(m +3n )2]=(m -n )(2m -2n )(4m +4n )=8(m -n )2(m +n ).(9分) 22.解:(1)方程x x +1=2x3x +3+1两边同乘3(x +1),得3x =2x +3x +3.解得x=-32.(3分)检验:当x =-32时,3(x +1)≠0,所以x =-32是原分式方程的解.(4分) (2)原式=(a -b )2a·a (a +b )(a +b )(a -b )=a -b .(7分)当a =3,b =1时,原式=3-1=2.(9分)23.解:(1)如图所示,△A 1B 1C 1即为所求.(3分)点A 1的坐标为(1,3),点B 1的坐标为(-2,0),点C 1的坐标为(3,-1).(6分)(2)△ABC 的面积为4×5-12×3×3-12×2×4-12×1×5=9.(9分)24.(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =180°.又∵∠OFD =116°,∴∠AOB =180°-∠OFD =180°-116°=64°.(2分)由作法知,OP 是∠AOB 的平分线,∴∠DOB =12∠AOB =32°.(4分)(2)证明:∵OP 平分∠AOB ,∴∠AOD =∠DOB .∵OB ∥FD ,∴∠DOB =∠ODF ,∴∠AOD =∠ODF .又∵FM ⊥OD ,∴∠OMF =∠DMF .(7分)在△MFO 和△MFD 中,⎩⎨⎧∠OMF =∠DMF ,∠FOM =∠FDM ,FM =FM ,∴△MFO ≌△MFD (AAS).(10分) 25.解:(1)设零售价为5x 元,则团购价为4x 元.则100+105x +6=1004x ,(2分)解得x =12,经检验,x =12是原分式方程的解,(5分)5x =2.5.(6分)答:零售价为2.5元.(7分)(2)学生数为1102.5-6=38(人).(10分) 答:王老师的班级里有38名学生.(11分)26.(1)证明:∵AC =BC ,∴∠ABC =∠CAB .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD =45°,∴∠A=∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(4分)(2)解:不变,AE =CG .理由如下:∵AC =BC ,∴∠ABC =∠A .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD=45°,∴∠A =∠BCD .在△BCG 和△CAE 中,⎩⎨⎧∠BCG =∠A ,BC =CA ,∠CBG =∠ACE ,∴△BCG ≌△CAE (ASA),∴AE =CG .(8分)(3)解:BE =CM .证明如下:∵∠ACB =90°,∴∠ACE +∠BCE =90°.∵AH ⊥CE ,∴∠AHC =90°,∴∠HAC +∠ACE =90°,∴∠BCE =∠HAC .∵∠ACB =90°,CD ⊥AB ,AC =BC ,∴∠BCD =∠ACD =45°,∴∠ACD =∠ABC .在△BCE 和△CAM中,⎩⎨⎧∠BCE =∠CAM ,BC =CA ,∠CBE =∠ACM ,∴△BCE ≌△CAM (ASA),∴BE =CM .(12分)人教版八年级上学期期末考试数学试卷(五) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.若分式x +1x +2的值为0,则x 的值为( )A .0B .-1C .1D .22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )A .25B .25或20C .20D .153.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( ) A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC4.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+15.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线分别交AB 、BC 于点D 、E ,则∠BAE 的大小为( ) A .80° B .60° C.50° D.40°6.已知2m +3n =5,则4m ·8n 的值为( ) A .16 B .25 C .32 D .647.已知14m 2+14n 2=n -m -2,则1m -1n 的值为( )A .1B .0C .-1D .-148.如图,在△ABC 中,∠C =40°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1-∠2的度数是( ) A .40° B.80° C.90° D.140°9.若关于x的分式方程x-ax+1=a无解,则a的值为( )A.1 B.-1 C.±1 D.010.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN 绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF.其中正确的是( ) A.①②④ B.②③④C.①②③ D.①②③④二、填空题(每小题3分,共24分)11.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=________°.12.计算:(-8)2018×0.1252017=________.13.(1)分解因式:ax2-2ax+a=__________;(2)计算:2x2-1÷4+2x(x-1)(x+2)=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若∠1=25°,∠2=30°,则∠3的度数为________.15.如图,在△ABC 中,D 为AB 上一点,AB =AC ,CD =CB .若∠ACD =42°,则∠BAC =________°.16.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是________.17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x 千米/时,根据题意,可列方程为______________.18.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是________.三、解答题(共66分) 19.(8分)计算: (1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.20.(6分)现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.21.(10分)(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值;(2)先化简,再求值:⎝ ⎛⎭⎪⎫a -2-5a +2÷a -32a +4,其中a =(3-π)0+⎝ ⎛⎭⎪⎫14-1.22.(10分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED ;(2)当∠B =140°时,求∠BAE 的度数.23.(10分)如图,在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于点G ,DE ⊥DF ,交AB 于点E ,连接EG ,EF . (1)求证:BG =CF ;(2)请你判断BE +CF 与EF 的大小关系,并说明理由.24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(12分)如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,分别取AD,BE的中点为点P,Q,连接CP,CQ,PQ,如图②所示,判断△CPQ的形状,并加以证明.参考答案与解析1.B 2.A 3.C 4.C 5.D 6.C 7.C 8.B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.因式分解:
22.已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.
23.现有三个村庄A,B,C,位置如图所示,线段AB,BC,AC分别是连通两个村庄之间 公路.现要修一个水站P,使水站不仅到村庄A,C的距离相等,并且到公路AB,AC的距离也相等,请在图中作出水站P的位置.(要求:尺规作图,不写作法,保留作图痕迹.)
【点睛】本题考查了学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.
8.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE
【答案】C
2.下列四个汽车标志图中,不是轴对称图形的是( )
A. B.
C. D.
3.下列因式分解正确 是( )
A.6x+9y+3=3(2x+3y)B.x2+2x+1=(x+1)2
C.x2﹣2xy﹣y2=(x﹣y)2D.x2+4=(x+2)2
4.若分式 的值为0,则 的值等于( )
A.0B.2C.3D.-3
5.等腰三角形有两条边长为5cm和9cm,则该三角形的周长是( )
3.下列因式分解正确的是( )
A.6x+9y+3=3(2x+3y)B.x2+2x+1=(x+1)2
C.x2﹣2xy﹣y2=(x﹣y)2D.x2+4=(x+2)2
【答案】B
【解析】
【详解】(A)原式=3(2x+3y+1),故A错误;
(C)x²−2xy−y²不是完全平方式,不能因式分解,故C错误;
(D)x2+4不能因式分解,故D错误;
2.下列四个汽车标志图中,不是轴对称图形的是( )
A. B.
C. D.
【答案】B
【解析】
根据轴对称图形 概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.对各图形分析后即可得解A、是轴对称图形,故不符合题意;B、不是轴对称图形,故符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意
A.SASB.ASAC.AASD.HL
【答案】D
【解析】
【分析】
根据直角三角形全等的判定HL定理,可证△OPM≌△OPN.
【详解】解:由题意知OM=ON,∠OMP=∠ONP=90°,OP=OP,
在Rt△OMP和Rt△ONP中,
∵ ,
∴Rt△OMP≌Rt△ONP(HL),
∴∠AOP=∠BOP,
故选D.
点睛:本题考查了轴对称的性质、等腰三角形的性质、三角形的内角和定理、全等三角形的判定与性质等知识点,根据轴对称的性质证得△OCD是等腰三角形,求得得∠OCD=∠ODC=50°,再利用SAS证明△CON≌△PON,△ODM≌△OPM,根据全等三角形的性质可得∠OCN=∠NPO=50°,∠OPM=∠ODM=50°,再由∠MPN=∠NPO+∠OPM即可求解.
A.18cmB.19cmC.23cmD.19cm或23cm
6.点P(3,4)关于y轴对称的点的坐标是()
A.(3,﹣4)B.(﹣3,4)C.(﹣4,﹣3)D.(﹣4,3)
7.如图,小敏用三角尺按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,其作图原理是:△OMP≌△ONP,这样就有∠AOP=∠BOP,则说明这两个三角形全等的依据是( )
二、填空题(本大题共6小题,共18.0分)
13.当x________时,分式 有意义.
【答案】 .
【解析】
【分析】
分母不为零时,分式有意义.
【详解】当2x﹣1≠0,即x 时,分式 有意义.
故答案为 .
【点睛】本题考点:分式有意义.
14.计算:6a2b÷2a=_____.
【答案】3ab
【解析】
试题分析:根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.
答案与解析
一、选择题(本大题共12小题,共36.0分)
1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
【答案】B
【解析】
【详解】0.056用科学记数法表示为:0.056= ,故选B.
【答案】D
【解析】
【分析】
由于等腰三角形的腰和底边的长不能确定,故应分两种情况进行讨论.
【详解】解:当等腰三角形的腰长为5cm,底边长为9cm时,
∵5+5>9,9﹣5<5,
∴能够成三角形,
∴三角形的周长=5+5+9=19cm;
当等腰三角形的腰长为9cm,底边长为5cm时,
∵9+5>9,9﹣5<5,
∴能够成三角形,
A. -2B. 2C. -4D. 4
【答案】D
【解析】
,
“ ”中的数为4,
故选D.
10.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若B
【解析】
【详解】解:∵∠B=60°,DE⊥BC,
∴BD=2BE=2,
∵D为AB边的中点,
19.解分式方程: .
20.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.
A.SASB.ASAC.AASD.HL
8.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
AAE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE
9.计算(x+2)2的结果为x2+□x+4,则“□”中的数为
A. -2B. 2C. -4D. 4
24.先化简,再求值:(m+2﹣ )× ,其中m=4.
25.把一个长为2m,宽为2n的长方形沿图1中的虚线平均分成四块小长方形,然后拼成一个正方形(如图2)
(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示)
方法1:
方法2:
(2)根据(1)中的结论,请你写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系;
(3)根据(2)中 等量关系,解决如下问题:已知实数a,b满足:a+b=3,ab=2,求a﹣b的值.
26.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;
(2)若∠PAC=20°,求∠AEB的度数;
(3)连结CE,写出AE,BE,CE之间 数量关系,并证明你的结论.
16.各角都相等的十五边形的每个内角的度数是_____度.
17.如图,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=_____.
18.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.
三、计算题(本大题共2小题,共14.0分)
12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140°B. 100°C. 50°D. 40°
【答案】B
【解析】
如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.根据轴对称的性质可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根据等腰三角形的性质和三角形的内角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根据全等三角形的性质可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故选B.
【分析】
根据关于y轴对称的点的特点解答即可.
【详解】解:∵两点关于y轴对称,
∴横坐标为﹣3,纵坐标为4,
∴点P关于y轴对称的点的坐标是(﹣3,4).
故选B.
【点睛】本题考查了关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.
7.如图,小敏用三角尺按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,其作图原理是:△OMP≌△ONP,这样就有∠AOP=∠BOP,则说明这两个三角形全等的依据是( )
A.140°B.100°C.50°D.40°
二、填空题(本大题共6小题,共18.0分)
13.当x________时,分式 有意义.
14.计算:6a2b÷2a=_____.
15.如图,点B、F、C、E在一条直线上,已知BF=CE,AC∥DF,请你添加一个适当的条件______,使得△ABC≌△DEF.