子弹打木块动量守恒定律
物理知识课件-‘子弹打木块“专题-动量守恒定律及其应用
四 学生练习
[例题3]如图所示,A、B两木块的质量之比为3:2,原来静止在平板小车C上,A
、B间有一根被压缩了的轻弹簧,A、B与平板车的上表面间的动摩擦因素相同,地
面光滑.当弹簧突然释放后,A、B在小车上滑动时有:[
]
A. A、B系统动量守恒 B. A、B、C系统动量守恒 C. 小车向左运动 D. 小车向右运动
碰撞
弹性碰撞非弹性碰撞完全非弹性碰撞
lianhq@
碰撞的特点:
1. 碰撞物体之间的作用时间短, 一般只有百分之几秒,甚至千分之几秒.
2.碰撞物体之间的作用力大,因此经过碰撞以后,物体的状态变化是十分显著的.
设光滑水平面上,质量为m1的物 体A以速度v1向质量为m2的静止 物体B运动,B的左端连有轻弹簧 。(动碰静)
弹性碰撞
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少量全部转化为弹性势能, Ⅱ 状态系统动能最小而弹性势能最大; Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ 、Ⅲ状态系统动能相等。 由动量守恒和能量(动能)守恒可以证明A、 B的最终速度分别为:(学生演版)
v1
m1 m1
m2 m2
v1, v2
2m1 m1 m2
上述三式联立得
即
m1v’1+ m2v’2= m1v1+ m2v2 P’1+ P’2= P1+ P2
动量守恒定律的内容
一个系统不受外力或所受外力的 合力为零,这个系统的总动量保 持不变。这个结论叫做动量守恒 定律。
数学表达式: P=P ’
或
mAvA mBvB mAv’A mBv’B
三 、动量守恒定律的条件
1 2
m1
m2 v2
m1m2v12
动量守恒在子弹打木块模型和板块模型中的应用-高考物理复习
C.射入滑块A中时阻力对子弹做功是射入滑块B中时的两倍
√D.两个过程中系统产生的热量相等
子弹射入滑块过程中,子弹与滑块构成的系
统动量守恒,有mv0=(m+M)v,两个子弹的 末速度相等,所以子弹速度的变化量相等,A错误;
滑块A、B动量变化量相等,受到的冲量相等,B正确; 对子弹运用动能定理,有 Wf=12mv2-12mv02,由于末速度 v 相等,所 以阻力对子弹做功相等,C 错误; 对系统,由能量守恒可知,产生的热量满足 Q=12mv02-12(m+M)v2, 所以系统产生的热量相等,D 正确.
123456789
2.(多选)如图所示,质量为M的木块放在光滑的水平面上,质量为m的子
弹(可视为质点)以水平速度v0射中木块,并最终留在木块中与木块一起 以速度v运动,已知当子弹相对木块静止时,木块前进距离为L,子弹进
入木块的深度为s,此过程经历的时间为t.若木块对子弹的阻力大小Ff视 为恒定,则下列关系式中正确的是
√A.长木板B的质量为2 kg √B.物块A与长木板B之间的动摩擦因数为0.1
C.长木板B的长度至少为2 m
√D.物块A与长木板B组成的系统损失的机械能为2 J
123456789
A做匀减速运动,B做匀加速运动,最后一起做匀 速运动,共同速度v=1 m/s,取向右为正方向,设 B的质量为M,根据动量守恒定律得mv0=(m+M)v,解得M=2 kg, 故A正确; 木板 B 匀加速运动的加速度 aB=ΔΔvt =1 m/s2,根据牛顿第二定律,对 B 有 μmg=MaB,解得 μ=0.1,故 B 正确;
两次打穿木块过程中,子弹受到的阻力相等,阻力对子弹做的功等
于子弹损失的动能,即ΔEk损=Ffx,由于x2>x1,所以ΔEk2损>ΔEk1损,
子弹击木块类问题
作业: 作业:
质量为m 的小球从光滑的半径为R 的半圆槽顶 由静止滑下,如图所示. 设槽与桌面无摩擦, 部A由静止滑下,如图所示. 设槽与桌面无摩擦, 则:
A. B. C. D. 小球不可能滑到右边最高点B ; 小球到达槽底时的动能小于mgR ; 小球升到最大高度时, 小球升到最大高度时, 槽速度为零 ; 若球与槽有摩擦,则系统水平方向动量不守恒。 若球与槽有摩擦,则系统水平方向动量不守恒。
M
解:本题所设置的物理情景看似与演变不同,但若把小木块看作 本题所设置的物理情景看似与演变不同, 子弹,长木板看作木块,其受力和运动情况与演变完全相同, 子弹,长木板看作木块,其受力和运动情况与演变完全相同, 不难得出: 不难得出:
l=Leabharlann 2 µ( M + m) g
2 Mv0
MV0 t= µ ( M + m) g
专题六: 专题六: 动量守恒定律 ——子弹击木块问题 子弹击木块问题
“子弹击木块类”问题 子弹击木块类” 子弹击木块类
一、模型建立
(1)动力学规律: )动力学规律: 结论:子弹与木块受到大小相等、方向相反的一对恒力作用, 结论:子弹与木块受到大小相等、方向相反的一对恒力作用, 故两者的加速度大小与其质量成反比,方向相反。 故两者的加速度大小与其质量成反比,方向相反。
− ft = mv − mv0
Mmv0 t= ( M + m) f
演变2 若子弹在木块中刚好“ 演变2:若子弹在木块中刚好“停”时,木块运动距离为s,子弹射入 木块运动距离为s 木块的深度为d 木块的深度为d,则: >、=或 d s(填>、=或<)
1 2 对木块: 解:对木块: fs = Mv 2 1 1 2 对系统: 对系统: fd = mv 0 − ( M + m)v 2 2 2
动量守恒定律 子弹打木块弹簧 板块 三模型
一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v 0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。
—颗质量为的子弹从木块的左端打进。
设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。
由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
动量守恒定律的应用-子弹打木块模型
mv0 M mv
v mv0 Mm
质量为m的子弹以初速度v0射向静止在光滑水平
面上的质量为M的木块并留在其中,且木块对
子弹的阻力恒为f。
问题1 子弹和木块作用时,子弹和木块分别做什么运动?
思
考
学公式可得:
tv a
Mmv0
f M m
设质量为m的子弹以初速度v0射向静止在 光滑水平面上的质量为M 的木块并留在 其中,设木块对子弹的阻力恒为f。
问题3 求子弹在木块内运动的时间t,请用两种 不同的方法作答。 方法二:以木块为研究对象,由动量定理应有:
ft Mv
t Mmv0 f (M m)
2. 能量观
Q
1 2
mv02
1 2
(mv12
Mv22 )
f X相对
3. 相互作用观
f f'
木板M放置在光滑水平桌面上,木块m以速度v0 滑摩上擦木 因板数,为最终与,木求板:一起运动,两者之间动 1、木块与木板相对静止时的速度。 2、木块在木板上运动的时间。 3、在整个过程中系统增加的内能。 4、为使木块不从木板上掉下来,木板至少多 长。
相互作用力与相对位移的乘积等于系统机械能的转 化量
7.如果子弹打穿出木块,摩擦力恒为F,这种 情况下子弹和木块之间的动量、能量关系式 应该怎么列(假设木块长为L)?
动量:
能量:
模型扩展
“子弹打木块”模型的实质是两物体在一对 大小相等、方向相反的力的作用下的运动 (动量守恒),并通过做功实现了不同形式 能量之间的相互转化(能量守恒)。因此, 我们可以把这种模型扩展到其他问题当中。
专题21子弹打木块模型和板块模型(精讲)
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
子弹打击木块模型原理方法
子弹打击木块模型原理方法
子弹打击木块模型是一个经典的物理实验,它可以帮助我们理
解动量、能量和力学原理。
这个实验的原理和方法涉及到多个方面。
首先,让我们从原理方面来看。
当一颗子弹以一定的速度击中
木块时,它会传递动能给木块。
根据动量守恒定律,子弹的动量会
转移给木块,使得木块获得一个与子弹动量相等但方向相反的动量。
这个过程中,子弹和木块之间会发生碰撞,从而产生力。
根据牛顿
第三定律,子弹对木块施加的力与木块对子弹施加的力大小相等、
方向相反。
这些原理帮助我们理解了子弹打击木块的基本过程。
其次,我们来看具体的实验方法。
首先需要准备一个木块作为
靶标,然后使用枪支发射子弹来击中木块。
在实验过程中,需要测
量子弹的速度、木块的质量以及木块被击中后的速度变化,以便计
算动量转移和能量转化的情况。
通过实验数据的分析,我们可以验
证动量守恒和能量守恒定律,并进一步理解碰撞和力学原理。
除了物理原理和实验方法,我们还可以从工程应用、安全性等
角度来考虑子弹打击木块模型。
在工程应用方面,这个实验可以帮
助我们设计防弹材料和结构,以增强对子弹的抵抗能力。
在安全性
方面,这个实验也提醒我们在使用枪支时要格外小心,以避免意外伤害。
总的来说,子弹打击木块模型涉及了动量、能量、力学原理以及实验方法、工程应用和安全性等多个方面。
通过全面理解和研究这个模型,我们可以更好地认识物理规律,指导工程实践,并加强安全意识。
专题一-动量守恒定律-子弹打木块
lv 0 v S动量守恒定律—子弹打木块专题此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿"类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度运动。
子弹木块系统动量守恒: ''11112m v =m v +Mv对木块: 对子弹:运动学: f=Ma 1 '2211v =2a s 运动学:f=m 1a 2 '221111v -v =-2a s +l ()动量定理: '2ft=v M 动量定理:'1111-ft=m v -m v动能定理: '2121fs =Mv 2 动能定理: '221111111-f s +l =m v -m v 22() 能量损失,即产生的热量:2'2'211112111Q=fl=m v -m v -Mv 2222.“未击穿"类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动。
子弹木块系统动量守恒: '1111m v =m +M v ()对木块: 对子弹运动学: f=Ma 1 '2112v =2a s 运动学:f=m 1a 2 '2211112v -v =-2a s +s () 动量定理: '1ft=v M 动量定理:'1111-ft=m v -m v动能定理: '2211fs =Mv 2 动能定理:'2212111111-f s +s =m v -m v 22() 能量损失,即产生的热量:2'2'2211111111Q=fs =m v -m v -Mv 222V 1图1s M相S 2S例1:设质量为m 的子弹以初速度为v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中,子弹钻入木块深度为d.求 木块对子弹的平均阻力的大小和该过程中木块前进的距离. 解析:子弹射入木块过程中系统动量守恒: 0mv =m+M v () 该过程系统损失的动能全部转化为系统的内能,即热量.设平均阻力大小为f ,子弹、木块的位移大小分别为s 1、s 2 则有 s 1-s 2=d 对子弹:由动能定理:221011-fs =mv -mv 22(1) 对木块:由动能定理:221fs =Mv 2(2) 两式相加得:222200111m fd=mv -mv -Mv =v 2222+m M M ()平均阻力的大小: 2mv f=2d +m M M ()木块前进的距离 2mds =+m M ()变式1:一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v问题2 子弹在木块内运动的时间t问题3 子弹、木块发生的位移s1、s2以及子弹打进木块的深度s问题4 系统损失的机械能、系统增加的内能1图1图。
“子弹打木块”模型及其拓展
“子弹打木块”模型及其拓展河北省鸡泽县第一中学 057350 吴社英一、规律:子弹和木块组成的系统动量守恒,机械能不守恒。
二、结论:系统损失的机械能等于阻力乘以相对位移,即:。
三、特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定律和。
基本模型:例1. 子弹质量为m,以速度水平打穿质量为M,厚为d的放在光滑水平面上的木块,子弹的速度变为v,求此过程系统损失的机械能。
解析:①对子弹用动能定理:②②式中s为木块的对地位移对木块用动能定理:③由②③两式得:④由①④两式解得:模型拓展:例2. 如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图1解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或动量守恒求出转化为内能的量Q。
对物块,滑动摩擦力做负功,由动能定理得:即对物块做负功,使物块动能减少。
对木块,滑动摩擦力对木块做正功,由动能定理得:即对木块做正功,使木块动能增加,系统减少的机械能为:①本题中,物块与木块相对静止时,,则上式可简化为:②又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:③联立式②、③得:故系统机械能转化为内能的量为:点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即。
例3. 如图2所示,两个小球A和B质量分别为,。
球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动。
假设两球相距时存在着恒定的斥力F,时无相互作用力。
当两球相距最近时,它们间的距离为,此时球B的速度是4m/s。
求:(1)球B的初速度;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间。
子弹打木块模型
C
F
F对C做的功 W=F(S+L)=30J
Q=μmgL=5J
S A
B
例4.如图所示,在光滑水平面上有A、B两辆小车,水平面 的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车 的总质量是A车质量的10倍。两车开始都处于静止状态,小 孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原 速率返回,小孩接到A车后,又把它以相对于地面的速度v 推出。每次推出,A车相对于地面的速度都是v,方向向左。 则小孩把A车推出几次后,A车返回时小孩不能再接到A车? 解:取水平向右为正方向,小孩第一次推出A车时; mBv1-mAv=0 即:
根据动量守恒定律有 根据能量守恒定律有
(mA mB )v2 (mA mB mC )v3 ①
1 1 2 2 (m A mB ) gL (m A mB )v2 (m A mB mC )v3 2 2
联立①②式代入数据解得
②
L 0.375
h
B
C
例3:长L=1m,质量M=1kg的木板AB静止于光滑水 平面上。在AB的左端有一质量m=1kg的小木块C,现 以水平恒力F=20N作用于C,使其由静止开始向右运 动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对C 做的功及系统产生的热量 解:由于C受到外力作用所以系统动量不守恒,设木板 向前运动的位移是S,则木块的位移为S+L, 时间为t 对C: F(S+L)-μmg(S+L)=1/2×mvm2 m=1kg (F-μmg)t = mvm F=20N C 2 对AB:μmgS = 1/2×MvM A B μmg t = M vM M=1kg 解以上四式得: vm=3vM 摩擦生的热 S=0.5 m
子弹射入木块问题中的物理规律及其应用
子弹射木块问题中的物理规律及其应用设一质量为M 的木块放在光滑的水平面上,另一质量为m 的子弹以速度0v 水平射进木块内(如图所示)。
假设子弹进入木块深度为d 时,子弹与木块具有共同速度v ,此时木块位移为1S ,子弹位移为2S ,假设子弹所受木块阻力f 恒定不变。
则在该过程中,子弹、木块或系统可能遵循哪些物理规律呢?请写出相应的表达式。
(设取向右方向为正方向)讨论画什么样的子弹射木块的运动示意图比较好。
讨论总结以下内容:1、几何关系:d S S +=122、对系统应用动量守恒定律: v M m mv )(0+=3、用动量定理:对子弹:0mv mv ft -=-对木块:0-=Mv ft4、用动能定理: 对子弹:20222121mv mv fS -=- 对木块:02121-=Mv fS 5、对系统应用能量转化和守恒定律:)2121(212220Mv mv mv fd Q +-== 6、应用牛顿第二定律:对子弹:2ma f =-;对木块:1Ma f = 7、应用匀变速运动公式: 对子弹:作匀减运动220221t a t v S -=,t a v v 20-=,… 对木块:作匀加速运动21121t a S =,t a v 1=,…思考题:1、通常情况下,可不可以认为1S =0,2S =0,为什么?2、如果平面不光滑,木块受摩擦力作用,这种情况还可以认为系统动量守恒吗?3、假设木块厚度为L ,子弹射穿木块的条件是什么?1、(由于子弹射木块时间极短,如果题目不要求考虑木块的长度,则可认为子弹和木块的位移均为0,射过之后,可认为子弹和木块仍在原来的位置。
)2、(外力虽不为0,但只要外力远小于内力,可以为动量是守恒。
)3、①假设木块足够长,子弹与木块最终速度相同,子弹射穿木块的条件是子弹与木块速度相等时,d ≥L ;或:②假设子弹能够到达木块另一端,子弹射穿木块的条件是d=L 时,子弹速度≥木块速度。
小结:解子弹射穿木块的方法:1、对子弹射木块问题可从七个方面进行分析;2、子弹能够射出木块或物块能从木板上滑出的条件可从两方面考虑:①假设木块足够长,子弹与木块最终速度相同,子弹射穿木块的条件是子弹与木块速度相等时,d ≥L ;②假设子弹能够到达木块另一端,子弹射穿木块的条件是d=L 时,子弹速度≥木块速度。
专题20 动量守恒定律(子弹打木块模型)-2019高考物理一轮复习专题详解(原卷版)
1、在研究动量守恒中有一种类型题即子弹打木块的类型,由于子弹打击木块时内力远远大于外力,所以在外力不为零的 状态下也可以用动量守恒定律来求解,2 、在研究系统内物体的相互作用是,必须同时考虑动量关系和能量关系,否则问题往往会难以解决(1)动量关系一般是系统动量守恒(或某一方向动量恒).(2)对于能量关系,若系统内外均无滑动摩擦力,则对系统应用机械能守恒定律。
(3)若系统外部不受摩擦力,而内部有滑动摩擦力。
则系统应用摩擦生热的功能关系:=f Q F x E E =-相对系统末系统初 当然也可以分别对两个物体使用动能定理求解,只是过程繁琐点3、若研究对象为一个系统,最好考虑动量守恒定律和能量守恒定律,若研究的对象为单一物体,优先考虑动能定理。
例题分析:【例1】.质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d 2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等,当两颗子弹均相对于木块静止时,下列判断正确的是( )A . 木块静止,d 1=d 2B . 木块向右运动,d 1<d 2C . 木块静止,d 1<d 2D . 木块向左运动,d 1=d 2【例2.】(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较( )A . 子弹对滑块做的功一样多B . 子弹对滑块做的功不一样多C . 系统产生的热量一样多D.系统产生的热量不一样多【例3】.如图所示,在固定的光滑水平杆上,套有一个质量为m=0.5 kg的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M=1.98 kg的木块,现有一质量为m0=20 g的子弹以v0=100 m/s的水平速度射入木块并留在木块中(不计空气阻力和子弹与木块作用的时间,g取10 m/s2),求:(1)圆环、木块和子弹这个系统损失的机械能;(2)木块所能达到的最大高度.专题练习1.(多选)矩形滑块由不同材料的上、下两层粘合在一起,将其放在光滑水平面上,如图所示,质量为m的子弹以速度v水平射向滑块,若子弹击中上层,子弹刚好不穿出;若子弹击中下层,则子弹整个刚好嵌入,由此可知()A.子弹射中上层时对滑块做功多B.两次子弹对滑块做的功一样多C.子弹射中上层系统产生热量多D.子弹与下层之间的摩擦力较大2.(2017·荆门期末)(多选)如图所示,光滑水平面上静止一个质量为M的木块,一颗质量为m的子弹以水平速度v0射入木块并留在木块之中.下列说法中正确的是()A.若M=3m,则此过程中子弹的动能将损失95%B.在子弹射入木块的过程中,子弹和木块受到的冲量一定相同C.若在此过程中木块获得的动能为6 J,则该过程中产生的热量不可能为6 JD.在子弹射入木块的过程中,子弹射入木块的深度一定大于木块的位移3.(多选)如图所示,水平传送带AB足够长,质量为M=1.0 kg的木块随传送带一起以v1=2 m/s的速度向左匀速运动(传送带的速度恒定),木块与传送带的动摩擦因数μ=0.5,当木块运动到最左端A点时,一颗质量为m=20 g的子弹,以v0=300 m/s的水平向右的速度,正对射入木块并穿出,穿出速度v=50 m/s,设子弹射穿木块的时间极短,(g取10 m/s2)则()A.子弹射穿木块后,木块一直做减速运动B.木块遭射击后远离A的最大距离为0.9 mC.木块遭射击后到相对传送带静止所经历的时间为1 sD.木块遭射击后到相对传送带静止所经历的时间为0.6 s4、如图所示,在光滑水平面上放置一质量为M的静止木块,一质量为m的子弹以水平速度v0射向木块,穿出后子弹的速度变为v1,求木块和子弹所构成的系统损失的机械能.5.如图所示,两个质量都是M=0.4 kg的沙箱A、B并排放在光滑的水平面上,一颗质量为m=0.1 kg的子弹以v0=200 m/s的水平速度射向A,射穿A后,进入B并最终一起运动,已知子弹恰好射穿A时,子弹的速度v1=100 m/s,求沙箱A、B的最终速度.6.如图所示,质量为3m、长度为L的木块静止放置在光滑的水平面上.质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出木块时速度变为v0.试求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿透木块的过程中,所受到平均阻力的大小.7.如图所示,两物块A、B并排静置于高h=0.80 m的光滑水平桌面上,物块的质量均为M=0.60 kg.一颗质量m=0.10 kg的子弹C以v0=100 m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A,B都没有离开桌面.已知物块A的长度为0.27 m,A离开桌面后,落地点到桌边的水平距离s=2.0 m.设子弹在物块A、B 中穿行时受到的阻力大小相等,g取10 m/s2.(平抛过程中物块看成质点)求:(1)物块A和物块B离开桌面时速度的大小分别是多少;(2)子弹在物块B中打入的深度;(3)若使子弹在物块B中穿行时物块B未离开桌面,则物块B到桌边的最小初始距离.8、如图所示,相距足够远完全相同的质量均为3m的两个木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿出第一块木块时速度变为v0,已知木块的长为L,设子弹在木块中的阻力恒定.试求:(1)子弹穿出第一块木块后,木块的速度大小v;(2)子弹在第二块木块中与该木块发生相对运动的时间t.9.如图所示,质量为M的小车静止在光滑水平轨道上,下面用长为L的细线悬挂着质量为m的沙箱,一颗质量为m0的子弹以v0的水平速度射入沙箱,并留在其中,在以后的运动过程中,求沙箱上升的最大高度.10.如图所示,质量为m的铅弹以大小为v0初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)铅弹和砂车的共同速度;(2)铅弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为m0的砂子时砂车的速度.11.在一水平支架上放置一个质量m1=0.98 kg的小球A,一颗质量为m0=20 g的子弹以水平初速度v0=400 m/s的速度击中小球A并留在其中.之后小球A水平抛出恰好落入迎面驶来的沙车中,已知沙车的质量m2=3 kg,沙车的速度v1=2 m/s,水平面光滑,不计小球与支架间的摩擦.(1)若子弹打入小球A的过程用时Δt=0.01 s,求子弹与小球间的平均作用力;(2)求最终小车B的速度.12.如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动.且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).(1)求子弹射入木块前的速度.(2)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?13.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为v0的子弹水平射入木块且未穿出.设木块对子弹的阻力恒为F,求:(1)射入过程中产生的内能为多少?(2)木块至少为多长时子弹才不会穿出?14.如图所示,一质量为1 kg的物块静止在水平地面上,它与地面的动摩擦因数为0.2,一质量为10 g的子弹以水平速度500 m/s射入物块后水平穿出,物块继续滑行1 m距离停下.求:子弹射穿物块过程中系统损失的机械能.(g取10 m/s2)15.(2017年郑州高三质量预测)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.16.(2017·郑州质检)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2.子弹射入后,求:(1)子弹进入物块后一起向右滑行的最大速度v1.(2)木板向右滑行的最大速度v2.(3)物块在木板上滑行的时间t.。
子弹打木块问题例析(0)
子弹打木块问题例析河北满城中学 王占良(072150)“子弹打木块”类问题是动量守恒和动能(定理或功能关系综合应用最典型的问题。
一般思路是运用动量守恒和动能定理求解,必要时要画出物体的运动过程图形,帮助寻求各物理量之间的关系。
一.极值问题例如图质量为M 的木块在光滑水平面上,质量为m 的子弹以初速度v 0水平射向木块,如果木块没有击穿且子弹受到的阻力f 恒定,求: (1)木块的最大速度 (2)木块的最短长度 解析:(1)当木块与子弹的速度相等时,木块的速度v 1最大。
由动量守恒定律有 mv 0=(M+m )v 1 得,mM mv v +=1①(2)如图1 子弹和木块的对地位移不等,则有 L=S 1-S 2②对子弹应用动能定理有 fS 1=21202121mv mv -③ 对木块应用动能定理有fS 2=2121Mv ④联立①②③④式得)(22m M f Mmv L +=点评:当子弹和木块速度相等时木块的速度最大,两者相对位移(子弹射入的深度)取得极值。
二、.能量损失问题例.一质量为M 的木块静止在光滑水平面上,一质量为m 的子弹以水平速度v 0射入木块中,深度为d 。
求:(1)子弹射入过程中产生的热量 (2)木块对子弹的阻力是多大。
解析:由题意画出如图2所示的示意图滑动摩擦力使子弹减速,使木块加速。
当子弹与(1)由动量守恒定律得 mv 0=(M+m )v ① 系统损失的动能转化为内能则 Q=△E=220)(2121v m M mv +-②由①②得Q=)(22m M Mmv +(2) 由Q=fd ,得)(22M M Mmv d Q f +==点评:系统的动量守恒,但系统的机械能不守恒,系统减少的机械能转化为系统的内能。
三、.其他综合问题例如图3所示AOB 是光滑水平轨道,BC 是半径为R 的41圆弧轨道,两轨道恰好相切。
质量为M 的小木块静止在O 点,一质量为m (9Mm =)的子弹以某一初速度射入小木块内不穿出,木块恰好滑到圆弧的最高点C 处(子弹、小木块均可看成质点)。
动量守恒定律的应用之子弹打木块问题(滑块类问题)(解析版)
动量守恒定律的应用之子弹打木块问题(滑块类问题)子弹射击木块的两种典型情况1.木块放置在光滑的水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q=fs,其中f是滑动摩擦力的大小,s是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
【典例】如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0=179 m/s的初速度水平向左飞,瞬间击中木块并留在其中.如果木块刚好不从车上掉下,求木块与平板小车之间的动摩擦因数μ(g=10 m/s2).【答案】:0.54Q =μ(m +m 0)gs =12(m +m 0)v 21+12Mv 2-12(m +m 0+M )v 22 ③ 联立①②③并代入数据解得μ=0.54. 总结提升对于滑块类问题,往往通过系统内摩擦力的相互作用而改变系统内的物体的运动状态,既可由两大定理和牛顿运动定律分析单个物体的运动,又可由守恒定律分析动量的传递、能量的转化,在能量转化方面往往用到ΔE 内=ΔE 机=F 滑x 相。
【跟踪短训】1.(多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J 【答案】AB.【解析】法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得到的动能.2. 如图所示。
子弹打木块动量守恒定律课件
联立①②解得:s=
v02
子弹打木块动量守恒定律课件
课堂练习
2、质量均为2kg的物体A、B,在B物 体上固定一轻弹簧,则A以速度6m/s碰上弹 簧并和速度为3m/s的B相碰,则碰撞中AB相 距最近时AB的速度为多少?弹簧获得的最 大弹性势能为多少?
子弹打木块动量守恒定律课件
结论
2.涉及弹簧的临界问题 对于如图所示的有弹簧组成的系统,当物体a与弹簧 作用后,物体a做减速运动,物体b做加速运动,二者 间的距离逐渐减小,弹簧压缩量逐渐增大,在二者间 发生相互作用的过程中,当弹簧被压缩到最短(或二 者间距最小)时的临界条件是: 两个物体速度必须相同(大小、方向)。
据动量守恒 mv0Mmv
v mv0 M m子弹打木块动量守恒定律课件
问题2 子弹在木块内运动的时间
以子弹为研究对象,由牛顿运动定律和运动学公式可得:
t
vv0 a
Mm0 v
fMm
子弹打木块动量守恒定律课件
问题3 子弹、木块发生的位移以及子弹打进木块的深度 v0
s2
L
s1
对子弹用动能定理: f s1 12m02v12m2v……①
例1质量相等的A、B两球在光滑水平面 上沿一直线向同一方向运动,A球的动量 为PA=7kg·m/s,B球的动量为PB =5kg·m /s,当A球追上B球发生碰撞,则碰撞后A、 B两球的动量可能为( A )
A. pA'6kgmpB /'s6kgm
B.p A ' 3 kg /smp B ' 9 kg /sm
3.涉及弧形槽的临界问题 如图所示,在小球滑上斜面小车(斜面小车放在光滑 水平面上)的过程中,由于弹力的作用,斜面小车将 在水平方向做加速运动,小球做减速运动,小球滑倒 斜面上最高点的临界条件是 物体与斜面沿水平方向具有共同的速度,小球在竖直方 向的分速度为零。
模型7子弹打木块模型(解析版)-动量守恒的十种模型解读和针对性训练
动量守恒的十种模型解读和针对性训练模型7 子弹打木块模型模型解读子弹打木块模型,,一般要用到动量守恒,动量定理,动能定理及动力学等规律,综合性强,能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型,。
两种情景情景1 子弹嵌入木块中,两者速度相等,类似于完全非弹性碰撞,机械能损失最多。
情景2 子弹穿透木块,从木块中飞出,类似于非完全弹性碰撞,机械能有损失,损失的机械能等于子弹与木块之间作用力乘以L。
【典例精析】【典例】. (2024山西运城3月质检)如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的14固定圆弧轨道,两轨道恰好相切。
质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入长为L木块内,恰好没穿出木块,然后与木块一起继续运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点)。
求:(1)子弹射入木块前的速度;(2)子弹打入木块过程中产生的热量Q;(3)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【参考答案】(1;(2)()M M m gR Q m+=(3)92R m M M m +æöç÷+èø【名师解析】(1)第一颗子弹射入木块的过程,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得()01mv m M v =+系统由O 到C 的运动过程中机械能守恒,由机械能守恒定律得()()2112m M v m M gR +=+由以上两式解得0v =(2)由()22011122Q mv M m v =-+得()M M m gRQ m+=(3)由动量守恒定律可知,第2,4,6…颗子弹射入木块后,木块的速度为0,第1,3,5…颗子弹射入后,木块运动。
当第9颗子弹射入木块时,以子弹初速度方向为正方向,由动量守恒定律得()099mv m M v =+设此后木块沿圆弧上升的最大高度为H ,由机械能守恒得()()291992m M v m M gH +=+由以上各式可得29m M H R M m +æö=ç÷+èø【针对性训练】1. (2024江苏镇江质检)一木块静止在光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2cm 后相对于木块静止,同一时间内木块被带动前移了1cm ,则子弹损失的动能、木块获得动能之比为( )A. 3:2B. 3:1C. 2:1D. 2:3【参考答案】B【名师解析】在运动的过程中,子弹相对运动的位移12cmx =木块向前运动位移为21cmx =子弹的位移为123cmx x x =+=根据动能定理得,对子弹有k1fx E -=D 子弹损失的动能大小为k1E fxD =对于木块,有2k2fx E =D 木块获得动能k22E fx =则子弹损失的动能、木块获得动能之比为k1k 2:3:1E E D =故选B 。
子弹与木块碰撞前后动量守恒的原因
子弹与木块碰撞前后动量守恒的原因
动量是物体运动中的重要物理量,由质量和速度决定。
根
据动量守恒定律,在没有外力作用的情况下,物体的总动量在碰撞前后保持不变。
子弹与木块碰撞是一个典型的例子,下面将解释碰撞前后动量守恒的原因。
在碰撞前,子弹和木块都具有各自的动量。
子弹具有较小
的质量但较大的速度,而木块具有较大的质量但较小的速度。
当它们发生碰撞时,它们之间会产生相互作用力。
这个力会导致子弹和木块发生改变。
在碰撞瞬间,子弹的动量会传递给木块,使木块获得动量。
这是因为在碰撞瞬间,子弹对木块施加的冲量会导致木块获得速度。
同时,由于动量守恒定律,子弹的动量会减小,即速度减小。
这样,碰撞前后的总动量仍然保持不变。
碰撞后,子弹可能会继续穿过木块或者变形,但无论如何,由于动量守恒,总动量仍然是守恒的。
碰撞后子弹和木块的速度会发生变化,但它们的质量和速度之间的关系仍然保持平衡,使得总动量保持不变。
这种动量守恒的原因是与牛顿第三定律相关的。
根据牛顿
第三定律,任何两个物体之间的作用力都会有一个相等大小但方向相反的反作用力。
在碰撞过程中,子弹对木块施加一个冲击力,同时木块会对子弹产生一个相反的冲击力。
这些相互作用力导致了动量的传递和变化,但总动量始终保持不变。
子弹与木块碰撞前后动量守恒的原因可以归结为动量守恒
定律和牛顿第三定律的作用。
碰撞时子弹的动量传递给了木块,同时自身的动量减小,最终使得总动量保持不变。
这个过程符合物体碰撞时动量守恒的基本原理。
动量守恒之滑块子弹打木块模型
lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件?②作出作用过程中二者的速度-时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(2102v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vd S v v m )(0-v 0A Bv 0 AB v 0 lA 2v 0 v 0B C滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
1 2
mv02
1 2
(m
M
)v2
系统增加的内能 Q E
因此: Q E fL
问题5 要使子弹不穿出木块,木块至少多长? (v0、m、M、f一定)
子弹不穿出木块的长度:
d
S相
S1
S2
2
f
Mm
M
m v02
例1、 子弹以一定的初速度射入放在光滑水平面 上的木块中,并共同运动下列说法中正确的是:
课堂练习
4、如图所示,质量为M的滑块静止在光滑 的水平桌面上,滑块的光滑弧面底部与桌 面相切,一个质量为m的小球以速度v0向滑 块滚来,设小球不能越过滑块,(1)、则 小球到达最高点时,小球与滑块的速度各 是多少? (2).小球上升的最大高度H
v0
变形
将质量为 m = 2 kg 的物块,以水平速度 v0 = 5m/s 射到静止在光滑水平面上的平板车上 ,小车的质量为 M = 8 kg ,物块与小车间的摩擦因数μ = 0.4 ,取
g = 10 m/s2.
(1)物块抛到小车上经过多少时间两者相对静止?
(2)在此过程中小车滑动的距离是多少?
(3)整个过程中有多少机械能转化为内能?
求小车至少多长滑块才不滑出?
v0
结论
1.滑块与小车的临界问题
滑块与小车是一种常见的相互作用模型,如图所示,滑
块冲上小车后,滑块做减速运动,小车做加速运动,滑
块刚好不滑出小车的临界条件是:
1、滑块到达小车末端时,滑块与小车 的速度相同。 2、当滑块在小车上滑行的距离最远时, 滑块与小车相对静止,滑块与小 车两物体的速度必相等。
(1)由A、B系统动量守恒定律得:
Mv0-mv0=(M +m)v ①
所以v=
v0 方向向右
(2)A向左运动速度减为零时,到达最远处,此时 板车移动位移为s,速度为v′,则由动量守恒定律得: Mv0-mv0=Mv′ ①
对板车应用动能定理得:
-μmgs= Mv′2- Mv02 ②
联立①②解得:s=
v02
应用动量守恒定律解决问题的基本思路
明确研究对象
进行受力分析 选定正方向、确定初末状
态 建立方程计算
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则 二. 能量不增加的原则
三. 物理情景可行性原则
例如:追赶碰撞
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
( ACD)
A、子弹克服阻力做的功等于木块动能的增加与摩 擦生的热的总和
B、木块对子弹做功的绝对值等于子弹对木块做的功 C、木块对子弹的冲量大小等于子弹对木块的冲量 D、系统损失的机械能等于子弹损失的动能和子弹
对木块所做的功的差
如图示,在光滑水平桌面上静置一质量为M=980克的 长方形匀质木块,现有一颗质量为 m=20克的子弹以 v0 = 300m/s 的水平速度沿其轴线射向木块,结果子弹 留在木块中没有射出,和木块一起以共同的速度运动。 已知木块的长度为L=10cm,子弹打进木块的深度为 d=6cm,设木块对子弹的阻力保持不变。 (1)求子弹和木块的共同的速度以及它们在此过程中 所增加的内能。 (2)若要使子弹刚好能够穿出木块,其初速度v0应有 多大?
动量守恒定律
第二课时
课时2
动量守恒定律成立的条件
动量守恒定律成立的条件是系统不受外力,或所受外 力矢量和为0.但是实际应用中其受力情况分一下三种:
1、系统不受外力,或者所受外力和为零
2、系统所受的外力比相互用的内力小很多,以致 可以忽略外力的影响,则系统的动量守恒。
3、系统整体上不满足动量守恒的条件,但是在某 一特定方向上,系统不受外力或所受外力远小于 内力,则系统沿这一方向的分动量守恒。
课堂练习
2、质量均为2kg的物体A、B,在B物 体上固定一轻弹簧,则A以速度6m/s碰上弹 簧并和速度为3m/s的B相碰,则碰撞中AB相 距最近时AB的速度为多少?弹簧获得的最 大弹性势能为多少?
结论
2.涉及弹簧的临界问题 对于如图所示的有弹簧组成的系统,当物体a与弹簧 作用后,物体a做减速运动,物体b做加速运动,二 者间的距离逐渐减小,弹簧压缩量逐渐增大,在二者 间发生相互作用的过程中,当弹簧被压缩到最短(或 二者间距最小)时的临界条件是: 两个物体速度必须相同(大小、方向)。
C.pA' 2kgm/ s D.pA' 4kgm/ s
pB ' 14kgm/ s pB ' 17kgm/ s
子弹打木块模型
[题1]设质量为m 的子弹以初速度v0射向静止在光滑水平面上 的质量为M 的木块并留在其中,设木块对子弹的阻力恒为f。
问题1 子弹、木块相对静止时的速度v 问题2 子弹在木块内运动的时间 问题3 子弹、木块发生的位移以及子弹打进木块的深度 问题4 系统损失的机械能、系统增加的内能 问题5 要使子弹不穿出木块,木块至少多长?(v0、m、M、f一定)
问题1 子弹、木块相对静止时的速度v
解:从动量的角度看,以m和M组成的系统为研究对象,根
据动量守恒 mv0 M mv
v mv0 Mm
问题2 子弹在木块内运动的时间
以子弹为研究对象,由牛顿运动定律和运动学公式可得:
t
v v0 a
Mmv 0
f M m
问题3 子弹、木块发生的位移以及子弹打进木块的深度 v0
s2
L
s1
对子弹用动能定理:
f
s1
1 2
mv02
1 2
mv
2
……①
对木块用动能定理:
f
s2
1 2
Mv2
……②
①、②相减得:
f
L
1 2
mv
2 0
1 2
M
mv 2
Mm
2M
m
v02
……③
故子弹打进 木块的深度:
L
S1
S2
2
f
Mm
M
m v02
问题4 系统损失的机械能、系统增加的内能
系统损失的机械能
例1质量相等的A、B两球在光滑水平面
上沿一直线向同一方向运动,A球的动量
为PA=7kg·m/s,B球的动量为PB =5kg·m /s,当A球追上B球发生碰撞,则碰撞后A、
B两球的动量可能为( A )
A. pA ' 6kgm/s pB ' 6kgm/s
B.pA ' 3kgm/ s pB ' 9kgm/ s
• 如图所示,一质量为M的平板车B放在光滑 水平面上,在其右端放一质量为m的小木
块A,m<M,A、B间动摩擦因数为μ,现给
A和B以大小相等、方向相反的初速度v0,使 A开始向左运动,B开始向右运动,最后A 不会滑离B,求:
(1)A、B最后的速度大小和方向;
(2)从地面上看,小木块向左运动到离出发 点最远处时,平板车向右运动的位移大小。