相似三角形模型总结4(相似与几何图形的综合问题)
《怎样判定三角形相似》 知识清单
《怎样判定三角形相似》知识清单三角形相似是初中数学中的重要知识点,在解决几何问题中经常会用到。
下面我们来详细了解一下怎样判定三角形相似。
一、定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。
二、判定方法1、两角分别相等的两个三角形相似这是判定三角形相似最常用的方法之一。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么三角形 ABC 相似于三角形 A'B'C'。
2、两边成比例且夹角相等的两个三角形相似当两个三角形的两组对应边的比相等,并且它们的夹角相等时,这两个三角形相似。
比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C',且∠A =∠A',那么三角形 ABC 相似于三角形 A'B'C'。
3、三边成比例的两个三角形相似如果两个三角形的三条边对应成比例,那么这两个三角形相似。
假设在三角形 ABC 和三角形 A'B'C'中,AB / A'B' = BC / B'C' =AC / A'C',则三角形 ABC 相似于三角形 A'B'C'。
三、常见的相似三角形模型1、“A”字型在图形中,如果有一条直线平行于三角形的一边,与另外两边或其延长线相交,所构成的三角形与原三角形相似。
例如,在三角形 ABC 中,DE 平行于 BC,交 AB、AC 于 D、E 两点,那么三角形 ADE 相似于三角形 ABC。
2、“8”字型在图形中,如果两个三角形的对顶角相等,且两组对边分别交叉成比例,那么这两个三角形相似。
九年级相似三角形知识点总结
九年级相似三角形知识点总结相似三角形作为九年级数学中的重要内容,涉及到比例、角度、边长等概念。
在本文中,我们将对九年级相似三角形的相关知识点进行总结。
以下是该知识点的详细内容:一、相似三角形的定义与性质相似三角形是指具有相同形状但大小可能不同的三角形。
在两个相似三角形中,对应角度相等,对应边长成比例。
1. 对应角相等性质:若两个三角形的内角分别对应相等,那么这两个三角形是相似的。
2. 对应边成比例性质:若两个三角形的三条边之间成比例,那么这两个三角形是相似的。
3. 相似三角形的比例关系:设两个相似三角形A和B,它们的对应边长分别为a、b和c、d。
则有以下比例关系成立:a/b = c/d = k (k为比例系数)二、相似三角形的判定方法判定两个三角形是否相似,常用以下方法:1. AA相似判定法:若两个三角形的两个角分别对应相等,那么这两个三角形一定相似。
2. AAA相似判定法:若两个三角形的三个角分别对应相等,那么这两个三角形一定相似。
3. SSS相似判定法:若两个三角形的三边分别成比例,那么这两个三角形一定相似。
三、相似三角形的性质应用相似三角形的性质在解决实际问题中有广泛的应用。
以下是相似三角形的性质在实际问题中的应用:1. 测量不可达长度:在实际测量中,有时由于某些原因,无法直接测量出几何图形中的某些边长。
利用相似三角形的比例关系,可以间接计算出这些不可达长度。
2. 高度与距离计算:利用相似三角形的性质,可以求解建筑物高度、山上塔楼高度等实际问题中需要计算的高度和距离。
3. 相似三角形的构造:利用相似三角形的特点,可以进行各种构造问题的求解,如分割线段、求解垂足等问题。
四、相似三角形与比例运算相似三角形的性质与比例运算密切相关。
以下是相似三角形与比例运算的相关内容:1. 比例关系的运用:相似三角形的性质中涉及到边长的比例关系,通过运用比例关系,可以计算出未知边长的具体值。
2. 比例运算的应用:在解决相似三角形实际问题中,我们可以借助比例运算的方法,确定未知量的数值。
三角形的相似性质与判定
三角形的相似性质与判定三角形是平面几何中的基本图形,具有相似性质的三角形在数学和实际应用中起着重要的作用。
本文将探讨三角形的相似性质以及如何判定两个三角形是否相似。
一、相似三角形的定义与性质相似三角形是指具有相同的形状但大小不一的三角形。
它们的边长之比相等,并且对应角度相等。
考虑两个三角形ABC和DEF,若存在一个比值k使得AB/DE=BC/EF=AC/DF=k,则称这两个三角形相似。
相似三角形有以下性质:1. 对应角度相等:∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边长比例相等:AB/DE = BC/EF = AC/DF = k。
3. 对应边长比例相等的性质也可以表达为:AB/BC = DE/EF =AC/DF = 1/k。
二、判定三角形相似的方法1. 三边对应角相等法(SAS法):如果两个三角形的两条边的比值相等,并且这两个边夹角相等,那么这两个三角形相似。
根据这个方法,可以判定两个三角形是否相似,但需要注意两个三角形的顶点要对应一致。
2. 角-角-角(AAA)法:如果两个三角形的三个角度分别相等,那么这两个三角形相似。
由于一个三角形的内角和为180度,所以只需知道两个角度相等就可以推断出第三个角度相等。
但是需要注意,AAA法只能说明两个三角形是相似的可能性,还需要验证其他条件。
3. 角-边-角(ASA)法:如果两个三角形的一对角度相等,并且夹在两条相等边之间的夹角也相等,那么这两个三角形相似。
4. 边-角-边(SAS)法:如果两个三角形的一对边比值相等,并且两条边之间夹角相等,那么这两个三角形相似。
三、相似三角形的应用1. 比例定理:相似三角形的边长比值等于对应边上的线段比值。
例如,若三角形ABC与三角形DEF相似,则有AB/DE = BC/EF =AC/DF。
2. 测量不可达长度:当实际中无法直接测量到物体的长度时,可以利用相似三角形的性质来计算。
通过测量已知长度的物体与其相似三角形的对应边长,再利用比例关系计算出不可达长度。
中考数学几何专项——相似模型(相似三角形)
中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。
下面给出几个几何问题。
1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。
2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。
3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。
中考数学圆中相似三角形解题模型
【主题】中考数学圆中相似三角形解题模型【内容】一、相似三角形的性质1. 如果两个三角形的对应角相等,那么它们是相似的。
2. 如果两个三角形的两个对应边的比值相等,那么它们是相似的。
3. 相似三角形的性质是解决圆中相似三角形题目的基础。
二、圆中相似三角形的应用1. 在圆中,相似三角形的出现是常见的。
2. 当两个圆内的三角形具有相似性质时,可以利用相似三角形的定理解题。
3. 圆内相似三角形的解题模型需要掌握好相似三角形的性质,灵活应用定理来进行求解。
三、圆中相似三角形题目解题步骤1. 确定相似三角形的条件a)要根据题目中给出的条件,确定两个三角形是否具有相似性质。
b)通过对应角相等或对应边比值相等来判断两个三角形是否相似。
c)使用相似判定条件来确定是否可以应用相似三角形的定理。
2. 利用相似三角形的定理进行求解a)根据两个相似三角形的特点,可以建立等式或比例式来解题。
b)利用相似三角形的性质和定理,可以求解出题目中所要求的未知量。
3. 注意圆的性质a)在圆中相似三角形的题目中,要充分利用圆的性质来辅助解题。
b)利用弧长、弧角关系以及圆心角的性质来辅助解题,可以更好地理解相似三角形的关系。
四、实际题目解析1. 通过实际题目的解析,可以更好地理解圆中相似三角形的解题模型。
以下是一个例题:例题:已知∠A为弧BC的圆心角,且∠A>∠B,构造∠BAD,使得△ABC≌△BAD。
比较AD和BC的大小。
解题步骤:(1)首先确定两个三角形的相似性:根据题目条件,∠A为弧BC的圆心角,因此∠A=1/2∠BC,根据对应角相等,△ABC≌△BAD。
(2)确定相似三角形的性质:由相似三角形的性质可知,AD/BC=AB/AC,即AD/BC=AB/AC。
(3)利用相似三角形的性质进行求解:利用AD/BC=AB/AC,可以得到AD与BC之间的关系。
2. 通过以上例题的解析,可以发现在解题过程中,需要严格按照相似三角形的性质和定理来进行推理和计算,从而得出最终的结论。
数学相似三角形的知识点归纳
数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。
它是一门古老而崭新的科学,是整个科学技术的基础。
随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。
以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。
数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
相似三角形的计算与应用知识点总结
相似三角形的计算与应用知识点总结相似三角形是初中数学中较为重要的一个概念,它在几何图形的相似性以及角度和边长比例计算等方面有着广泛的应用。
掌握相似三角形的计算与应用是解决几何问题的关键。
本文将从相似三角形的定义入手,逐步介绍计算和应用知识点。
1. 相似三角形的定义相似三角形指的是具有相同形状但可能不等大小的两个三角形。
两个相似三角形的对应角度相等,对应边长之比称为相似比。
具体而言:- 两个三角形的对应角度分别相等,即对应的三个角度完全相等或者对应的两个角度以及包含它们的一对对应边的夹角相等;- 对应边长之比相等,即三个边长的比值相等。
2. 相似三角形的性质相似三角形具有一些重要的性质,我们可以通过这些性质来进行计算和解决问题。
以下是常见的相似三角形性质:- 对应角的相等性:两个相似三角形的对应角度相等;- 对应边长的比例性:两个相似三角形的对应边长之比等于两个三角形的相似比;- 高度和底边之比的相等性:两个相似三角形的相似比等于其中一个三角形的高度和底边之比;- 面积之比的相等性:两个相似三角形的面积之比等于两个三角形的相似比的平方。
3. 相似三角形的计算方法a. 已知两个相似三角形的相似比和一个边长若已知两个相似三角形的相似比为k,求未知三角形的对应边长时,可以使用如下方法:- 若已知对应边边长:未知边长 = 已知边长 × k;- 若已知对应边边比:未知边长与已知边长的比等于对应边边比,即未知边长/已知边长 = 对应边边比。
b. 已知两个相似三角形的一个边长和一个角度若已知两个相似三角形的一个角度和一个边长,求未知三角形的对应边长时,可以使用正弦定理和余弦定理。
- 正弦定理:在一个三角形中,任意一对角和其对边的比值相等。
即 sin(A)/a = sin(B)/b = sin(C)/c;- 余弦定理:在一个三角形中,两个边和夹角的平方和等于第三边和其所对角的平方。
即 a² = b² + c² - 2bc * cos(A)。
归纳相似三角形的模型
课例研究新教师教学与相似三角形有关的几何证明题是初高中数学学习的难点。
相似三角形变化多样,尤其当题目图示中有超过三个三角形时,就无法一眼看出谁和谁相似,更别说证明让人眼花缭乱的边长关系了。
本文意在介绍几个简单常见的相似三角形模型。
有了这些内容的积累,学生的记忆不再停留在两个三角形相似的情况。
我们知道,一些复杂的几何题,正是由基本的三角形模型组合起来的。
有了这些相似三角形模型,学生对复杂的三角形几何图形便有了“整体分拆”的意识。
这对我们处理复杂问题,和快速解决问题有帮助。
同时学生对相似三角形图形的应用、认知会有新的认识。
一、基本相似三角形模型A 字型 8字型对于这两个模型,简单叙述一下就行。
已知条件是两直线平行,于是得到各个图中的两个三角形相似。
斜A 字型母子型双垂直对于斜A 字型,已知条件是∠1=∠2,于是得到图中的两个三角形相似。
若将线段CD 向下移动,使点C 到三角形的一顶点处,便得到经典的“母子型”模型。
对于“母子型”,前提条件依旧是∠1=∠2,于是得到图中ΔABC ∽ΔACD ,即在这三个三角形中,上面的三角形与大三角形相似(与下三角形无关)。
再由相似的性质知AC 2=AD•AB ,即AC 为比例中项。
对于AC 2=AD•AB 这个式子,可以用一句话来记忆:两相似三角形的公共边长度的平方=两相似三角形由公共角的顶点发射的两条线段长的乘积。
有了这句话,同学们可以比较容易地写出AC 2=AD•AB 。
对于这个式子:AC 2=AD•AB ,有些同学似乎想到了射影定理。
没错,我只要稍加改变就可以联系到射影定理,那就是增加两个垂直条件,从而演化成“双垂直”型(如图所示)。
由“母子型”模型可以知“双垂直”中三个三角形均相似,又由两相似三角形的公共边长度的平方=两相似三角形公共角的顶点发射的两条线段长的乘积知:AC 2=AD•AB ,BC 2=BD•AB ,CD 2=AD•BD 。
这就是射影定理。
用一句话便可记住,以后便可灵活运用。
小学奥数-几何五大模型(相似模型)讲解学习
模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,任意四边形、梯形与相似模型所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EA D C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。
【例 3】如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
A ED CB【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,255315BEC S =÷⨯=△份,所以:4:15ADE ECB S S =△△。
初中数学知识归纳相似三角形的判定与计算
初中数学知识归纳相似三角形的判定与计算初中数学知识归纳:相似三角形的判定与计算在初中数学中,相似三角形是一个重要的概念。
相似三角形不仅与几何形状有关,而且在解决实际问题时也起着重要的作用。
本文将对相似三角形的判定和计算进行归纳总结,帮助读者更好地理解和应用相关知识。
一、相似三角形的判定方法相似三角形的判定方法主要有以下几种:1. AA 判定法:如果两个三角形的两个角分别相等,则这两个三角形相似。
以图1为例,若∠BAC=∠EDF,且∠ABC=∠DEF,则可判定△ABC∽△DEF。
2. SSS 判定法:如果两个三角形的对应边的长度成比例,则这两个三角形相似。
以图2为例,若AB/DE=BC/EF=AC/DF,则可判定△ABC∽△DEF。
3. SAS 判定法:如果两个三角形的一对对应边的长度成比例,且这两个边所夹的角相等,则这两个三角形相似。
以图3为例,若∠ABC=∠DEF,且AB/DE=AC/DF,则可判定△ABC∽△DEF。
4. 实际应用判定:有些情况下,相似三角形的判定可以依据实际应用问题的特点进行判断。
例如,两座高塔的影子长度与太阳高度角相等,可以判定两座高塔相似。
二、相似三角形的计算方法相似三角形的计算方法主要包括:1. 边长比计算:在已知两个相似三角形的一个对应角相等的情况下,可以利用相似三角形的定理计算两个三角形相应边的比值。
设△ABC与△DEF相似,知∠BAC=∠EDF,则可以计算出边长比AB/DE,AC/DF,BC/EF。
2. 面积比计算:已知两个相似三角形的一个对应角相等的情况下,可以利用相似三角形的定理计算两个三角形面积的比值。
设△ABC与△DEF相似,知∠BAC=∠EDF,则可以计算出面积比(△ABC的面积)/(△DEF的面积)。
3. 周长比计算:已知两个相似三角形的一个对应角相等的情况下,可以利用相似三角形的定理计算两个三角形周长的比值。
设△ABC与△DEF相似,知∠BAC=∠EDF,则可以计算出周长比(△ABC的周长)/(△DEF的周长)。
相似三角形的基本图形总结
相似三角形的基本图形总结+一模相似汇总用相似三角形的性质来证线段成比例和角相等,是几何证题中的重点之一,而解题的关键是在几何图形中发现或构造所需的相似三角形,下面举例说明。
相似三角形主要基本类型:一、平行线型如图1,若DE ∥BC ,则△ADE ∽△ABC 。
例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。
求证:FB AF 2ED AE =。
证明:例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。
求证:2GF GC GE GB ==。
例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。
求证:AY CY CZ BZ BX AX ⋅⋅=1。
二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。
例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点,且AE AD AB 2⋅=。
求证:BC 平分∠DCE 。
例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。
求证:FB FC FG 2⋅=。
三、旋转翻折型如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。
如图9,直角三角形中的相似三角形,若∠ACB=︒90,AB ⊥CD ,则△ACD ∽△CBD∽△ABC 。
例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。
求证:DB ·AC=AB ·DE 。
例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41AD ,FG ⊥CE 于G 。
求证:CG EG FG 2⋅=。
几何形的相似与全等知识点总结
几何形的相似与全等知识点总结几何形的相似与全等是初中数学中重要的概念和知识点之一,它们在几何图形的变换和计算中起着重要的作用。
相似和全等是几何形之间的一种关系,通过对几何形的对比,我们可以判断它们之间是否相似或全等。
本文将对几何形的相似与全等知识点进行总结,并进行逐一解释。
一、相似的概念与性质相似是指两个几何形的形状、比例和角度完全相同,但大小不同。
当两个几何形相似时,它们的对应边的比例相等,对应角的度数相等。
相似的几何形可以通过相似比例来表示。
1. 相似比例:相似三角形的三边对应长度的比值是相等的。
记作∠ABC∼∠A'B'C' 或ΔABC∼ΔA'B'C'。
2. 相似性质:对于两个相似的几何形,其对应角度相等,对应边比例相等。
3. 相似三角形的判定:对于两个三角形ABC和A'B'C',存在一个唯一的相似比例,使得∠ABC∼∠A'B'C' 成立。
二、相似的判定方法1. AA判定相似:两个三角形的两个角分别相等,则这两个三角形相似。
2. SAS判定相似:两个三角形的一个角相等,并且两边的比例相等,则这两个三角形相似。
3. SSS判定相似:两个三角形的三边比例相等,则这两个三角形相似。
4. 直角三角形相似的判定:两个直角三角形的斜边比例相等,则这两个直角三角形相似。
三、全等的概念与性质全等是指两个几何形的形状和大小完全相同。
当两个几何形全等时,它们的对应边长相等,对应角度相等。
1. 全等性质:对于两个全等的几何形,它们的对应边长相等,对应角度相等。
2. 全等三角形的判定:两个三角形的三个对应边长都相等,则这两个三角形全等。
3. 全等四边形的判定:两个四边形的四个对应边长和对应角度都相等,则这两个四边形全等。
四、常见几何形的相似与全等性质1. 直角三角形:两个直角三角形的斜边和一个锐角边相等,则这两个直角三角形全等。
九年级数学相似三角形知识点总结及例题讲解
1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a
:
c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE
相似三角形性质教学反思四
相似三角形性质教学反思四《相似三角形性质》教学反思篇10根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,以问题导入,循序渐近,由浅入深,从单一到综合,以逐步提高学生应用能力。
另外本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
教学亮点:教学过程中始终穿插一条主线:“基本图形”的巧妙应用,一条副线:培养学生学会看图。
教学中,通过一系列的活动调动起学生的积极性,让学生亲身体验知识形成的过程。
另外,图形不同的变化形式也体现了数学的转化思想,习题的设计选用了近几年的中考题,拉近了教学与中考的距离。
在这一堂课中,我觉得有几点做的还是比较好的:一、以多种形式(组合条件、添加条件、作相似三角形、练习等)强化学生对三角形相似判定的理解,并起到了一定的效果。
二、真正关注到中等偏下的学生,课堂中设计的问题有三分之二是针对这一部分学生,并在课堂中也正是让他们表现的。
三、营造了和谐轻松的课堂氛围,使一些平时从不发言的同学也在课堂中表达了自己的见解。
当然在教学过程中也反映出了一些问题:一、题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
二、出示了几道中考题,虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,对中考命题方向进行研究和探索,仅是为做题而做题。
在以后的教学中,我会更加深入在研究《考纲》和学生,使复习课的效率更加的理想。
《相似三角形性质》教学反思篇11在探索三角形相似条件的过程中,先通过学生类比三角形全等的条件,引导他们运用操作和讨论的方式得出结论,并加以应用。
在这个过程中学生积累了数学活动的经验,体验了交流讨论带来的成就感,又一次熟悉了数学探索的方法和过程,提高了学生的推理能力和有条理的表达能力。
在本节教学中,我还注重了习题的发展性作用,通过分层次,逐步提高的问题设计和图形的逐一变化,让学生的思维步步深入,突出学习上的重点,突破知识上的难点,最后引导学生进行归纳。
最新人教版初中九年级上册数学难点探究专题:相似与几何图形的综合问题
难点探究专题:相似与几何图形的综合问题——突破相似与三角形、四边形等综合问题及含动点的解题思路◆类型一 相似与三角形1.(娄底中考)一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(-3,0),∠B =30°,则点B 的坐标为 .第1题图第2题图2.(无锡中考)如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处.再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( )A.35B.45C.23D.32 ◆类型二 相似与四边形3.★(黄石中考)现有多个全等直角三角形,先取三个拼成如图①所示的形状,R 为DE 的中点,BR 分别交AC ,CD 于P ,Q ,易证BP ∶PQ ∶QR =3∶1∶2.(1)若取四个直角三角形拼成如图②所示的形状,S 为EF 的中点,BS 分别交AC ,CD ,DE 于P ,Q ,R ,则BP ∶PQ ∶QR ∶RS = ;(2)若取五个直角三角形拼成如图③所示的形状,T 为FG 的中点,BT 分别交AC ,CD ,DE ,EF 于P ,Q ,R ,S ,则BP ∶PQ ∶QR ∶RS ∶ST = .4.★★(安徽中考)如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF 的值.◆类型三 运用相似解决几何图形中的动点问题5.如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.6.★(钦州中考)如图,在平面直角坐标系中,以点B (0,8)为端点的射线BG ∥x 轴,点A 是射线BG 上的一个动点(点A 与点B 不重合),在射线AG 上取AD =OB ,作线段AD 的垂直平分线,垂足为E ,与x 轴交于点F ,过点A 作AC ⊥OA ,交射线EF 于点C ,连接OC 、CD ,设点A 的横坐标为t .(1)用含t 的式子表示点E 的坐标为 ; (2)当t 为何值时,∠OCD =180°?7.★如图,在一块直角三角板ABC 中,∠C =90°,∠A =30°,BC =1,将另一个含30°角的△EDF 的30°角的顶点D 放在AB 边上,E 、F 分别在AC 、BC 上,当点D 在AB 边上移动时,DE 始终与AB 垂直,若△CEF 与△DEF 相似,求AD 的长度.难点探究专题:相似与几何图形的综合问题1.(-3-3,33) 解析:如图,过点B 作BE ⊥x 轴于点E .易证△EBC ∽△OCA ,∴EB OC =BCCA =ECOA.∵点A 的坐标为(0,1),点C 的坐标为(-3,0),∴OA =1,OC =3,∴AC =OA 2+OC 2=10.在Rt △ACB 中,∠B =30°,∴AB =2AC =210,∴BC =AB 2-AC 2=30,∴BCAC = 3.∴BE =33,EC =3,∴EO =EC +CO =3+3,∴点B 的坐标为(-3-3,33).2.B 解析:在Rt △ABC 中,∵∠ACB =90°,AC =3,BC =4,∴AB =5.∵将边AC 沿CE 翻折,使点A 落在AB 上的点D 处,∴AE =DE ,CE ⊥AB .易得△AEC ∽△ACB ,∴AC AB =AEAC ,∴AE=95.∵S △ABC =12AB ·CE =12AC ·BC ,∴CE =125.∵将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,∴∠ECF =45°,∴EF =CE =125,∴BF =AB -AE -EF =5-95-125=45.故选B.3.(1)4∶1∶3∶2 (2)5∶1∶4∶2∶3 解析:(1)由题意可知ABBC=CE =12BE .设CQ =a .∵S 是EF 的中点,∴EF =2ES .∵CD ∥EF ,∴△BCQ ∽△BES ,∴CQ ES =BCBE =12,∴ES =2CQ =2a ,∴AB =CD =EF =2ES =4a ,QD =3a .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AB CQ =41.同理:PQ QR =CQ QD =13,QR RS =QD ES =32.∴BP ∶PQ ∶QR ∶RS = 4∶1∶3∶2.故答案为4∶1∶3∶2;(2)设CP =b .由题意可知BC =CE =EG =13BG .∵T 是FG 的中点,∴FG =2TG .∵AC ∥DE ,∴△BCP ∽△BER ,∴CP ER =BC BE =12,∴RE =2CP =2b .同理:△BCP ∽△BGT ,∴CP TG =BC BG =13,∴TG =3CP =3b ,∴AC =DE =FG =6b ,∴AP =5b ,DR =4b ,FT =3b .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AP CP =51.同理:PQ QR =CP DR =14,QR RS = DR RE =42,RSST =RE FT =23.∴BP ∶PQ ∶QR ∶RS ∶ST = 5∶1∶4∶2∶3.故答案为5∶1∶4∶2∶3. 方法点拨:根据已知条件,充分利用图形中平行的条件,连续用相似三角形的判定与性质,得出线段之间的比例关系,“遇平行,想相似;用相似,得比例”是相似形的常用思路之一.4.(1)证明:∵点E 是AB 的中点,GE ⊥AB ,∴GE 是线段AB 的垂直平分线,∴AG =BG .同理可得GD =GC .在△AGD 与△BGC 中,⎩⎪⎨⎪⎧AG =BG ,∠AGD =∠BGC ,GD =GC ,∴△AGD ≌△BGC ,∴AD =BC ;(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC .∵AG =BG ,DG =CG ,且E 、F 分别为AB 、CD 的中点,∴∠AGE =12∠AGB ,∠DGF =12∠DGC ,∴∠AGE =∠DGF ,∴∠AGE -∠DGE =∠DGF-∠DGE ,即∠AGD =∠EGF .∵GE ⊥AB ,GF ⊥CD ,∴∠AEG =∠DFG =90°,∴△AGE ∽△DGF ,∴AG DG =GE GF ,∴AG GE =DGGF.又∵∠AGD =∠EGF ,∴△AGD ∽△EGF ;(3)解:如图,延长AD 交BC 的延长线于点M .∵AD 、BC 所在的直线互相垂直,∴∠DAB +∠ABC =90°,即∠DAB +∠ABG +∠GBC =90°.由(1)可知△AGD ≌△BGC ,∴∠GAD =∠GBC .∴∠DAB +∠ABG +∠GAD =90°,即∠GAB +∠GBA =90°.由(1)可知AG =BG ,∴∠GAB =∠GBA ,∴∠GAB =45°.又∵GE ⊥AB ,∴∠AEG =90°,∴GA =AE 2+GE 2=2GE ,∴GAGE= 2.由(2)可知△AGD ∽△EGF ,∴AD EF =GAGE= 2.5.12或456.解:(1)(t +4,8)(2)∵EF 是线段AD 的垂直平分线,点C 在射线EF 上,AD =BO =8,∴AE =DE =12AD =4,∠AEC =90°,∴∠ECA +∠EAC =90°.又∵AO ⊥CA ,∴∠OAC =90°,∴∠BAO +∠EAC =90°,∴∠ECA =∠BAO .又∵BG ∥x 轴,∴BG ⊥y 轴,则∠OBA =90°,∴∠AEC =∠OBA ,∴△ABO ∽△CEA ,∴BO EA =AB CE ,即84=t CE .∴CE =12t .当∠OCD =180°时,点C 在线段OD 上.∵EF ⊥BG ,BO ⊥BG ,∴CE ∥BO ,∴△CDE ∽△ODB ,∴CE OB =DE DB ,即12t 8=4t +8,∴12t 2+4t-32=0,解得t 1=45-4,t 2=-45-4(不合题意,舍去).∴当t =45-4时,∠OCD =180°.7.解:∵∠C =90°,∠A =30°,∴∠B =60°.∵∠EDF =30°,ED ⊥AB 于D ,∴∠FDB =60°,∴△BDF 是等边三角形.∵BC =1,∴AB =2.∵BD =BF ,∴2-AD =1-CF ,∴AD =CF +1.(Ⅰ)如图①,若∠FED =90°,则∠FED =∠ADE ,∴EF ∥AB ,∴∠CEF =∠A =30°,∴CF =12EF ,∠CEF =∠EDF .又∵∠C =∠FED =90°,∴△CEF ∽△EDF ,∴CF EF =EF DF ,即CF 2CF =2CF1-CF ,解得CF =15,∴AD =15+1=65;(Ⅱ)如图②,若∠EFD =90°,则∠CFE =180°-90°-60°=30°,∴CE =12EF ,∠CFE =∠FDE .又∵∠C =∠EFD =90°,∴△CEF ∽△FED ,∴CF FD =CE FE ,即CF 1-CF =12,解得CF =13,∴AD =13+1=43. 综上所述,若△CEF 与△DEF 相似,AD 的长为65或43.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
相似三角形的性质定理(3种题型)-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)
相似三角形的性质定理(3种题型)【知识梳理】一、相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 二、相似三角形性质定理2相似三角形周长的比等于相似比. 三、相似三角形性质定理3相似三角形的面积的比等于相似比的平方.【考点剖析】题型一:相似三角形性质定理1例1.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,1132AB A B =,BE 、B 1E 1分别是它们的对应中线,且6BE =.求B 1E 1的长. 【答案】4.【解析】解:111ABC A B C ∆∆∽,BE 、11B E 分别是对应中线,1111AB BEA B E B ∴=即11362E B =,114E B =【总结】本题考查相似三角形对应中线的比等于相似比.例2.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,12AC =,119A C =,1A ∠的平分线A 1D 1的长为6,求A ∠的平分线的长. 【答案】8.【解析】解:111ABC A B C ∆∆∽,AD 、11A D 分别是A ∠、1A ∠的平分线,1111AC AD A C A D ∴=即1296AD =,8AD ∴=即A ∠的平分线的长为8.【总结】本题考查相似三角形对应角平分线的比等于相似比. 例3.求证:相似三角形对应高的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BC 、11B C 的高.求证:11ADkA D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,11ABkA B =;又AD 、11A D 分别是BC 、11B C 的高,11190BDA B D A ∴∠=∠=,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质. 例4.求证:相似三角形对应中线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是边BC 、11B C 的 中线.求证: 11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,1111AB CBkA B C B ==;又AD 、11A D 分别是边BC 、11B C 的中线,12BD BC ∴=,111112B D B C =,∴11DB k D B =,1111AB BD A B B D ∴=,111ABD A B D ∴∆∆∽,1111AB ADkA B A D ∴==.【总结】本题考查相似三角形的判定和性质的运用.例5.求证:相似三角形对应角平分线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BAC ∠、111B A C ∠ 的角平分线.求证:11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,111BAC B A C ∠=∠,11ABkA B =;又AD 、11A D 分别是BAC ∠、111B A C ∠的角平分线,11111111,22BAD BAC B A D B A C ∴∠=∠∠=∠,111BAD B A D ∴∠=∠,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质.例 6.如图,ABC ∆和111A B C ∆中,AD 和BE 是ABC ∆的高,11A D 和11B E 是111A B C ∆的高,且1C C ∠=∠,1111AD ABA D AB =. 求证:1111AD BEA DB E =【解析】AB C D EA 1E 1D 1 C 1B 1证明:1111AB ADA B A D =,又111ADB A D B ∠=∠,111ABD A B D ∴∆∆∽,111ABD A B D ∴∠=∠,又1C C ∠=∠,111ABC A B C ∴∆∆∽,又BE 、11B E 分别是ABC ∆、111A B C ∆的高,1111BE AB E B A B ∴=,1111BE ADE B A D ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例7.如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD 于点F ,1BD =,3CD =,求BF :BE .【解析】解:BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠,又BAD C ∠=∠,ABF CBE ∴∆∆∽,AB BFCB BE ∴=,又BAD C ∠=∠,ABD ABC ∠=∠BAD BCA ∴∆∆∽,AB BD BC BA ∴=,14AB AB ∴=,2AB ∴=,12AB BC ∴=,1:2BF BE ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例8.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.【答案】2360cm .AB C DEFABC D EFGH K【解析】解:设DG xcm =,()38FG x cm=−矩形DEFG ,//90GF BC GDB ∴∠=,,GF AGBC AB ∴=,又AH 是高,90AHB ∴∠=,GDB AHB ∴∠=∠//DG AH ∴,DG BG AH AB ∴=,1DG GFAH BC ∴+=,3813248x x −∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例9.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC = 60厘米,AH = 40厘米,求正方形DEFG 的边长.【答案】24.【解析】设正方形EFGD 的边长为x ,//DG BC ,DG AD APBC AB AH ∴==.406040x x −∴=,24x ∴=,∴正方形EFGD 的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系. 例10.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.ABCDEF GH P【答案】23(4)4x y x x =>−.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠=,,GD AD BC AB ∴=.又 AH 是高,90AHC ∴∠=. DEC AHC ∴∠=∠, //DE AH ∴,DE BDAH AB ∴=, 1DG DEBC AH ∴+=, 641BC x ∴+=,64xBC x ∴=−,又12ABC S y BC AH ∆==,∴()2344x y x x =>−.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.题型二:相似三角形性质定理2例11.若ABC ∆∽DEF ∆,ABC ∆与DEF ∆的相似比为1:2,则ABC ∆与DEF ∆的周长比为( )(A )1:4 (B )1:2 (C )2:1 (D )1:2【答案】B【总结】相似三角形的周长比等于相似比.例12.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,它们的周长分别为48和60,且12AB =,1125B C =,求BC 和A 1B 1的长.【答案】112015BC A B ==,.【解析】解:111ABC A B C ∆∆∽,1111111ABC A B C C AB CBC A B C B ∆∆∴==;又111484605ABC A B C C C ∆∆==,∴1120,15BC A B ==.【总结】本题考查相似三角形的性质.例13.如果两个相似三角形的最长边分别为35厘米和14厘米,它们的周长相差60厘米,那么大三角形的周长是.【答案】100cm .【解析】两三角形的相似比为5:2,则周长比为5:2,设大三角形周长为5acm ,小三 角形周长为2acm ,则5260a a −=,所以20a =,所以大三角形的周长为100cm . 【总结】相似三角形的周长比等于相似比.例14.如图,在ABC ∆中,12AB =,10AC =,9BC =,AD 是BC 边上的高.将ABC ∆沿EF 折叠,使点A 与点D 重合,则DEF ∆的周长为.【答案】312.【解析】由折叠得EF 垂直平分AD ,AD 是BC 上的高,ABCD EF//EF BC ∴,AEF ABC ∴∆∆∽,12AEF ABC C C ∆∆∴=,9101231ABC C ∆=++=,312AEF C ∆∴=.【总结】本题考查相似三角形的性质和判定.例15.如图,梯形ABCD 的周长为16厘米,上底3CD =厘米,下底7AB =厘米,分别延长AD 和BC 交于点P ,求PCD ∆的周长.【答案】152cm .【解析】解:梯形ABCD ,//CD AB ∴,AEF ABC ∴∆∆∽,37PDC PAB C CD C AB ∆∆∴==,即327PDC PDC ABCD C C C CD ∆∆=+−梯形, 31667PDC PDC C C ∆∆∴=+−,152PDC C cm ∆∴=.【总结】本题考查相似三角形的性质和判定.例16.如图,在ABC ∆中,=90C ∠︒,5AB =,3BC =,点P 在AC 上(与点A 、C 不重合),点Q 在BC 上,PQ //AB .当PQC ∆的周长与四边形P ABQ 的周长相等时,求CP 的长.【答案】247.【解析】解:CPQ PABQC C ∆=四边形,ABCD PABCPQCP CQ PQ BQ PQ AP AB ∴++=+++, CP CQ BC CQ AC CP AB ∴+=−+−+, 5AB =,3BC =,90C ∠=,4AC ∴=,345CP CQ CQ CP ∴+=−+−+,6CP CQ ∴+=,//PQ AB ,CP CQCA CB ∴=,∴643CP CP −=,247CP =. 【总结】本题考查了三角形一边的平行线性质,主要考查了学生的推理能力.题型三:相似三角形性质定理3例17.(1)如果把一个三角形的三边的长扩大为原来的100倍,那么这个三角形的面积扩大为原来的倍;(2)如果一个三角形保持形状不变但面积扩大为原来的100倍,那么这个三角形的边长扩大为原来的倍.【答案】(1)10000;(2)10.【总结】相似三角形的面积比等于相似比的平方.例16.两个相似三角形的面积分别为5cm 2和16cm 2,则它们的对应角的平分线的比为( )(A )25:256(B )5:16(C )5:4(D )以上都不对.【答案】C【解析】相似三角形对应角平分线的比等于相似比,对应面积的比等于相似比的平方. 【总结】本题考查相似三角形的性质.例18.如图,点D 、E 分别在ABC ∆的边AB 和AC 上,DE //BC ,6DE =,9BC =,16ADE S ∆=.求ABC S ∆的值.【答案】36.ABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,226499ADE ABC S DE S BC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,36ADE S ∆∴=. 【总结】本题考查相似三角形的判定及性质.例19.如图,在ABC ∆中,D 是AB 上一点,若B ACD ∠=∠,4AD cm =,6AC cm =,28ACD S cm ∆=,求ABC ∆的面积.【答案】218cm .【解析】解:B ACD ∠=∠,A A ∠=∠,ACD ABC ∴∆∆∽,222439ACD ABC S AD S AC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 又28ACD S cm ∆=,218ABC S cm ∆∴=.【总结】本题考查相似三角形的判定及性质.例20.如图,在ABC ∆中,点D 、E 在AB 、AC 上,DE //BC ,ADE ∆和四边形BCED 的面积相等,求AD :BD 的值.【答案】21+.ABCDABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,2ADE ABC S AD S AB ∆∆⎛⎫∴= ⎪⎝⎭,ADE BCEDS S ∆=四边形,12ADE ABC S S ∆∆∴=,12AD AB ∴=,12121AD DB ∴==+−.【总结】本题考查相似三角形的判定及性质.例21.如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,D 、E 分别为垂足.若60C ∠=︒,1CDE S ∆=,求四边形DEAB 的面积.【答案】3. 【解析】解:AD BC BE AC ⊥⊥,,90CDA BEC ∴∠=∠=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=,DCE ACB ∴∆∆∽,2DCE ACB S CD S CA ∆∆⎛⎫∴= ⎪⎝⎭,又60C ∠=, 30CBE CAD ∴∠=∠=,12CD CA =,14DCE ACB S S ∆∆∴=,13DCE BDEA S S ∆∴=四边形,1CDE S ∆=,3DEAB S ∴=四边形.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.例22.如图,Rt ABC ∆中,点D 是BC 延长线上一点,直线EF //BD 交AB 于点E , 交AC 于点G ,交AD 于点F ,若13AEG EBCG S S ∆=四边形,求CFAD的值.A B CDEF【答案】21.【解析】解://EF BD ,AEG AEC ∴∆∆∽,AE AFAB AD ∴=,2AEG ABC S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,13AEG EBCGS S ∆=四边形,14AEG ABC S S ∆∆∴=,12AE AF AB AD ∴==,Rt ABC ∆,90ACD ACB ∴∠=∠=,CF ∴是中线,12CF AD ∴=,12CF AD ∴=.【总结】本题考查相似三角形的性质,直角三角形的性质,三角形一边的平行线等知识.【过关检测】一、单选题1.(2022秋·上海浦东新·九年级校考期中)两个相似三角形的对应角平分线的比为1:4,则它们的周长比为( ) A .1:4 B .1:2C .1:16D .以上答案都不对【答案】A【分析】两个相似三角形的对应边的比,对应角平分线的比,对应中线的比,对应高线的比,周长的比都等于相似比.【详解】两个相似三角形的对应角平分线的比为1:4,∴两个相似三角形的相似比为1:4, ∴周长的比为1:4.ABCDEFG故选A .【点睛】本题考查相似三角形的性质,解题的关键是熟记相似三角形的性质并灵活运用.在ABC 的边,ABC 的面积是A .4B .8【答案】A【分析】过点A 作AH BC ⊥于H ,交GF 于M ,如图,先利用三角形面积公式计算出8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−,再证明AGF ABC ∽,则根据相似三角形的性质得方程,然后解关于x 的方程即可.【详解】解:如图,过点A 作AH BC ⊥于H ,交GF 于M ,∵ABC 的面积是32,8BC =, ∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−, ∵GF BC ∥,∴AGF ABC ∽, ∴GF AMBC AH = , 888x x −∴= ,解得∶4x =,即这个正方形的边长是4. 故选:A .【点睛】本题考查了相似三角形的判定与性质及正方形的性质,添加合适的辅助线是解题的关键. 3.(2022秋·上海嘉定·九年级校考期中)已知两个相似三角形的相似比为49:,那么它们的面积比为( ) A .23: B .818:C .49:D .1681:【答案】D【分析】根据相似三角形的面积比等于相似比的平方,即可得到答案.【详解】解:两个相似三角形的相似比为49:, ∴它们的面积比1618:故选D .【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题关键. 九年级统考期中)已知ABC 的三边长分别为,DEF 的一边长,如果这两个三角形相似,那么DEF 的另两边长可能是(【答案】B【分析】根据三边对应成比例的三角形相似,即可求得.注意DEF 中为5cm 边长的对应边可能是6cm 或7.5cm 或9cm ,所以有三种情况.【详解】解:设DEF 的另两边为cm,cm x y , 若DEF 中为5cm 边长的对应边为6cm , 则:567.59x y==,解得:254x =,152y =; 若DEF 中为5cm 边长的对应边为7.5cm ,则:57.569x y ==,解得:4x =,6y =;若DEF 中为5cm 边长的对应边为9cm , 则:5967.5x y ==,解得:103x =,256y =; 结合选项可得B 选项可选. 故选:B .【点睛】此题考查了相似三角形的判定:三边对应成比例的三角形相似.解此题的关键要注意DEF 中为5cm 边长的对应边不确定,答案不唯一,要仔细分析,小心别漏解.九年级上海市华东模范中学校考期中)如图,在ABC 中,:ADEABCSS为(A .3:5 【答案】C【分析】根据DE BC ∥可知ADEABC ,由:3:2AD DB =可知:3:5AD AB =,即相似比为3:5,再利用面积比是相似比的平方,即可判断求解. 【详解】解:∵DE BC ∥, ∴ADEABC ,∵:3:2AD DB =, ∴:3:5AD AB =,2239525ADE ABCSAD SAB ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 故选:C .【点睛】本题考查了相似三角形的判定与性质.用到的知识为:平行于三角形一边的直线与其他两边所截的三角形与原三角形相似,相似三角形对应边的比相等,都等于相似比,相似三角形面积的比等于相似比的平方.DEF 的最短边长为,那么DEF 的周长等于(126【答案】D【分析】由相似三角形的性质:周长的比等于相似比,求出相似比即可求得结果. 【详解】ABC DEF ∽,∴相似比为3193k ==,13ABC DEFC C∴=,33(356)42DEFABCCC ∴==⨯++=;故选:D .【点睛】本题考查了相似三角形的性质,掌握相似三角形周长的比等于相似比是关键.是ABC 的重心,四边形与ABC 面积的比值是(【答案】B【分析】连接DE ,根据三角形中位线定理以及中线的性质可得1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,从而得到ADE ACB △△∽,进而得到221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==,继而得到13DEGBDESS =,14ADEABCSS =,可得1116212DEGABCABCSS S =⨯=,再由ADEDEGAEGD S SS=+四边形,即可.【详解】解:如图,连接DE ,∵点G 是ABC 的重心,∴点D ,E 分别为,AC AB 的中点,∴1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,∴ADE ACB △△∽, ∴12DG EG DE BG CG BC ===, ∴221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==, ∴13DEGBDES S =,14ADE ABCSS =,∴111326DEGABDABDS S S =⨯=, ∴1116212DEG ABCABCSS S =⨯=,∴1114123ADEDEGABCABCABCAEGD S SS S S S =+=+=四边形,即四边形AEGD 与ABC 面积的比值是13.故选:B【点睛】本题主要考查了三角形的重心,相似三角形的判定和性质,三角形中位线定理,熟练掌握三角形的重心,相似三角形的判定和性质,三角形中位线定理是解题的关键. 二、填空题8.(2022秋·上海长宁·九年级校考期中)已知ABC 与DEF 相似,且ABC 与DEF 的面积比为1:4,若DEF 的周长为16,那么ABC 的周长等于________.【答案】8【分析】根据相似三角形的面积的比等于相似比的平方先求出ABC 与DEF 的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形ABC 与DEF 面积的比为1:4, ∴它们的相似比为1:2,∴ABC 与DEF 的周长比为1:2, ∵DEF 的周长为16, ∴ABC 的周长等于8, 故答案为:8.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.9.(2022秋·上海奉贤·九年级校联考期中)已知ABC ∽111A B C △,顶点A 、B 、C 分别与1A 、1B 、1C 对应,AB :113A B =:4,BE 、11B E 分别是它们的对应角平分线,则BE :11B E =______. 【答案】3:4【分析】根据相似三角形对应角平分线的比都等于相似比解答即可. 【详解】解:ABC ∽111A B C △,BE ∴:11B E AB =:113A B =:4,故答案为:3:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.10.(2022秋·上海浦东新·九年级校考期中)如图,DE BC ∥,:2:3AE EC =,则:OE OB =________.【答案】2:5【分析】根据:2:3AE EC =可求出:2:5AE AC =,再根据三角形相似的性质即可求解. 【详解】解:∵:2:3AE EC =,∴25AE AC =,∵DE BC ∥,∴25DE AE BC AC ==,且DEO CBO △∽△, ∴25OE DE OB CB ==, 故答案为:2:5.【点睛】本题主要考查比例的性质,相似三角形的性质,理解平行线的性质,相似三角形的性质是解题的关键.11.(2022秋·上海松江·九年级校考期中)已知ABC 和DEF 相似,对应边AB 与DE 之比为3:4,如果DEF 的周长为24,那么ABC 的周长是___________.【答案】18【分析】根据相似三角形的周长之比等于相似比得:3:4ABCDEFCC=,又因为DEF 的周长是24,再建立方程即可.【详解】解:∵ABC 和DEF 相似,对应边AB 与DE 之比为3:4, ∴:3:4ABCDEFCC=,∵DEF 的周长是24, ∴:243:4ABCC=∴ABC 的周长是18, 故答案为:18.【点睛】本题考查了相似三角形的性质,解题的关键是掌握相似三角形的周长之比等于相似比. 12.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.【答案】24【分析】通过证明Rt Rt AFE HGB ∽,则AF BG EF HG ⨯=⨯,即可得到答案. 【详解】90C ∠=︒,正方形EFGH 的四个顶点在三角形的边上, 90A B ∴∠+∠=, 90B BHG ∠+∠=,Rt Rt AFE HGB ∴∽, =24AF BG EF HG ∴⨯=⨯.故答案为24.【点睛】本题主要涉及三角形相似的判定和相似三角形的性质应用,掌握相似三角形的判定和性质是解题的关键.,如果ABC 三边长分别是DEF 的两边长为【分析】根据相似三角形的性质列出比例式,代入数据即可求解.【详解】解:∵ABC DEF △△∽,∵ABC ,2,2,DEF 的两边长为1x∴21x ==,解得:x所以DEF ..【点睛】本题考查了相似三角形的性质,求出相似比是解题关键.14.(2022秋·上海宝山·九年级统考期中)已知111ABC A B C :△△,顶点A 、B 、C 分别与1A 、1B 、1C 对应,11:3:5AB A B =,E 、1E 分别是边AC 、11AC 的中点,如果1BE =,那么11B E 的长为________. 【答案】53/213【分析】根据相似三角形对应中线的比等于相似比列比例式求解即可.【详解】解答:解:∵11111:35ABC A B C AB A B =∽,:,∴对应中线BE 、11B E 的比值为35:,∴11135B E =::, ∴1153B E =. 故答案为:53.【点睛】本题考查了相似三角形的性质,相似三角形对应中线的比等于相似比. 15.(2022秋·上海杨浦·九年级统考期中)如果两个相似三角形的面积比为3:4,那么它们对应高之比为__________.2 【分析】根据相似三角形的性质,两个相似三角形的面积比等于相似比的平方,因为两个相似三角形的面积比为3:42;再结合两个相似三角形对应高的比等于相似比即可得到答案. 【详解】解:两个相似三角形的面积比为3:4,∴2,∴2,2.【点睛】本题考查相似三角形的性质应用,熟练掌握形式三角形面积比等于相似比的平方,相似三角形对应高的比等于相似比是解决问题的关键. 16.(2023·上海·一模)如果ABC ∽DEF ,且ABC 的三边长分别为3、4、5, DEF 的最短边长为6,那么DEF 的周长等于________.【答案】24【分析】先设DEF 的周长等于c ,再根据相似三角形周长的比等于相似比即可求出c 的值.【详解】解;设DEF 的周长等于l ,∵ABC ∽DEF ,ABC 的三边长分别为3、4、5,DEF 的最短边长为6, ∴33546c ++=,解得24c = .故答案为:24.【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比. 17.(2023·上海黄浦·统考一模)已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12 【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案. 【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶, ∴ABC 与DEF 的相似比为16∶, 设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.18.(2023·上海宝山·一模)已知一个三角形的三边之比为2:3:4,与它相似的另一个三角形ABC 的最小边长为4厘米,那么三角形ABC 的周长为 _____厘米.【答案】18【分析】相似三角形的对应边的比相等,因而与已知三角形相似的三角形的三边的比也是2:3:4,即可求得三角形的三边,从而求得周长.【详解】解:所求三角形的三边的比是2:3:4,设最短边是2x 厘米,则24=x ,解得2x =,因而另外两边的长是36x =厘米,48x =厘米.则三角形的周长是68418++=(厘米).故答案为:18.【点睛】本题考查了相似三角形的性质,相似三角形对应边的比相等,由此得到所求三角形的三边的比也是2:3:4,是解题关键. 19.(2022·上海·九年级专题练习)两个相似三角形的面积之比是 9:25, 其中较大的三角形一边上的高是 5 厘米, 那 么另一个三角形对应边上的高为_________厘米.【答案】3【分析】把面积之比转换成相似比,在通过比例求出高 【详解】∵两个三角形面积比为9:25∴两个三角形相似比为3:5设:另一三角形对应边上的高为x∴355x =,解得x=3 故答案为:3【点睛】本题考查相似比和面积比的应用,掌握他们的区别是本题关键. 20.(2023·上海徐汇·统考一模)如图,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,正方形DEFG 内接于ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是______.【答案】【分析】过点C 作C M A B ⊥于点M ,交GF 于点N ,首先由勾股定理得出AB 的长,由面积法即可求出CM 的长,可证得CGF CAB ∽,再根据相似三角形的性质,即可得出答案.【详解】解:如图:过点C 作C M A B ⊥于点M ,交GF 于点N ,Rt ABC △中,90C ∠=︒,2AC =,1BC =,AB ∴,1122ABC S AC BC AB CM =⋅=⋅△,∴AC BC CM AB ⋅∴===, ∵正方形DEFG 内接于ABC ,GF EF MN ∴==,GF AB ∥,CGF CAB ∴△∽△,CN GF CM AB ∴=,EF −=,解得:EF =,故答案为:.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键. 21.(2023·上海虹口·校联考二模)如图,在ABC 中,点D 、E 分别在边BC AC 、上,ABE C ∠=∠,DE AB ∥,如果6AB =,9AC =,那么:BDE CDE S S △△的值是______.【答案】4:5【分析】根据已知证明ABE ACB ∽,得出4AE =,进而得出5EC =,根据DE AB ∥,根据平行线分线段成比例,得出45AE BD EC DC ==,即可求解. 【详解】解:∵BAE CAB ∠=∠,ABE C ∠=∠,∴ABE ACB ∽,∵6AB =,9AC =,∴AB AE AC AB =∴24AB AE AC ==,∴945EC AC AE =−=−=,∵DE AB ∥,∴45AE BD EC DC == ∴:BDE CDE S S △△=::4:5BD DC AE EC ==,故答案为:4:5.【点睛】本题考查了相似三角形的性质与判定,平行线分线段成比例,熟练掌握相似三角形的性质与判定是解题的关键.22.(2023·上海·一模)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为______.【答案】8+8【分析】根据 “优美梯形”的定义,得到ABD BDC ∽△△,从而得到90CBD BAD ∠=∠=︒,AD AB BD BC BD CD ==,推出2BD AB CD =⋅,算出BD =再根据勾股定理,得到AD 、BC 的长,即可得到该直角梯形的周长.【详解】解:根据题意,作图如下,ABCD 为直角梯形,90BAD ADC ∴∠=∠=︒,90ABD ADB ∴∠+∠=︒,90ADB BDC ∠+∠=︒,ABD BDC ∴∠=∠,直角梯形ABCD 是“优美梯形”,ABD BDC ∴∽,90CBD BAD ∴∠=∠=︒,AD AB BD BC BD CD ==,2BD AB CD ∴=⋅,2AB =,4CD =,BD ∴,在Rt ABD 中,2AD ,在Rt BCD △中,BC =∴该梯形的周长2428AB BC CD DA =+++=++=+故答案为:8+【点睛】本题考查了直角梯形的性质,相似三角形的性质,勾股定理,熟练掌握相似三角形的性质是解题关键. 23.(2022秋·上海奉贤·九年级校联考期中)如图,在梯形ABCD 中,AD BC ∥,AC 与BD 相交于点O ,如果2ABC ACD S S =,那么COD S △:ABC S =______.【答案】1:3/13【分析】首先根据2ABC ACD S S =,可得AD :1BC =:2;然后根据AOD ∴∽COB ,可得AO :OC OD =:OB AD =:1BC =:2,进而可得AOD S:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2,设AOD S k =,分别表达OCD S 和ABC S 进而可得结论.【详解】解:在梯形ABCD 中,//AD BC ,2ABC ACD S S =,AD ∴:1BC =:2;//AD BC ,AOD ∴∽COB ,AO ∴:OC OD =:OB AD =:1BC =:2,AOD S∴:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2, 设AOD S k=,则4BOC S k =,2AOB OCD S S k ==, 6ABC AOB BOCS S S k ∴=+=, COD S ∴:2ABC S k =:61k =:3.故答案为:1:3.【点睛】此题主要考查了相似三角形的判定与性质的应用,以及梯形的特征和应用,要熟练掌握.三、解答题24.(上海·九年级校考阶段练习)如图,已知梯形ABCD ,AB ∥DC ,△AOB 的面积等于9,△AOD 的面积等于6,AB =7,求CD 的长.【答案】143【详解】试题分析:由题意易得△COD ∽△AOB ,由此可得:CD DO AB BO =;由△AOB 的面积等于9,△AOD 的面积等于6,可得:23DO BO =,再结合AB=7即可求得CD 的长.试题解析:∵AB ∥DC ,∴△COD ∽△AOB , ∴CD DO AB BO =,∵△AOB 的面积等于9,△AOD 的面积等于6, ∴23DO BO =, ∴23CD DO AB BO ==, 又∵AB =7, ∴273CD =, ∴CD =143.【答案】20平方厘米【分析】根据两个相似三角形的面积比等于对应边的比的平方,结合面积和即可求解.【详解】解:设两个三角形的面积分别为x ,y ,则有22365x y x y ⎧⎛⎫=⎪ ⎪⎨⎝⎭⎪+=⎩,解得2045x y =⎧⎨=⎩;答:较小三角形面积为20平方厘米.【点睛】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于对应边的比的平方.26.(2020秋·上海宝山·九年级统考阶段练习)如图,正方形DEFG 的边EF 在ABC ∆的边上,顶点D 、G 分别在边AB 、AC 上,已知ABC ∆的边15BC =,高10AH =,求:正方形DEFG 的边长和面积.【答案】6,36【分析】由正方形的性质可得DG //BC ,不难证明ADG △∽ABC ,即DG AM BC AH =,设正方形的边长为x ,分别表示出对应边的长度并代入DG AM BC AH =求解,即可得出正方形的边长,即可得出正方形的面积. 【详解】设正方形的边长为x ,正方形DEFH ,AH ⊥BC ,∴DG=GF=MH=x ,DG //BC ,∴ADG=B ∠∠,AM=10-x ,在ADG △与ABC 中,ADG=BAC BAC B ∠=∠⎧⎨∠∠⎩,∴ADG △∽ABC ,∴DG AM BC AH =,∴101510x x −=, 解得:x=6,S=6×6=36.答:正方形的边长为6,面积为36.【点睛】本题主要考查正方形的性质以及相似三角形的判定与性质,设正方形的边长为x ,根据相似比等于高之比列方程求解是解题关键.27.(上海·九年级阶段练习)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.【答案】48mm【分析】设正方形EF=EG=ID=x,根据正方形的性质,得到EF∥BC,△AEF∽△ABC,列出比例式EF AIBC AD=,代入计算即可.【详解】∵四边形EFHG是正方形,AD是高,∴ EF∥BC,四边形EGDI是矩形,∴ EG=ID,设正方形EF=EG=ID=x,∴△AEF∽△ABC,∴EF AI BC AD=,∵ BC=120mm,高AD=80mm,∴80 12080x x−=,解得x=48,故正方形的边长为48mm.【点睛】本题考查了正方形的性质,三角形相似的判定和性质,熟练掌握三角形相似的性质是解题的关键.。
小学奥数-几何五大模型(相似模型)
...任意四边形、梯形与相似模型模型四相似三角形模型( 一 ) 金字塔模型( 二) 沙漏模型A E F DAD F EB GC B G C ①AD AE DE AF ;AB AC BC AG② S△ADE: S△ABC AF 2 : AG 2。
所谓的相似三角形,就是形状相同,大小不同的三角形( 只要其形状不改变,不论大小怎样改变它们都相似 ) ,与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例1】如图,已知在平行四边形 ABCD 中, AB 16 , AD 10 , BE 4 ,那么 FC 的长度是多少?D CFAB E【解析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为 AB 平行于CD ,所以 BF : FC BE : CD 4:16 1: 4 ,所以 FC 1048 .41.....【例 2】如图,测量小玻璃管口径的量具 ABC , AB 的长为 15 厘米, AC 被分为 60等份。
如果小玻璃管口 DE 正好对着量具上 20 等份处 ( DE 平行 AB ) ,那么小玻璃管口径 DE 是多大?BEA D C 0 10 20 30 40 50 60【解析】 有一个金字塔模型, 所以 DE : AB DC : AC ,DE :15 40:60 ,所以 DE 10 厘米。
【例 3】如图, DE 平行 BC ,若 AD : DB 2:3 ,那么 S △ ADE : S △ ECB________ 。
AD EB C【解析】 根 据 金 字 塔 模 型 AD:AB AE:ACDE :BC 2: (23)2:5 ,S△ ADE : S△ ABC 22 :52 4 : 25,设 S △ ADE 4 份 , 则 S △ABC25 份 , S △BEC 2 5 5 3 份,所以S: S 4 。
相似三角形的九大模型
相似三角形的九大模型相似三角形是几何学中一类重要的图形,它具有一些独特的性质和模型。
这些模型可以用来解决各种实际问题,从简单的长度关系到复杂的空间结构。
本文将介绍相似三角形的九大模型,并给出相应的例子和应用场景。
相似三角形是指两个三角形形状相同,大小成比例。
相似三角形的对应边成比例,对应角相等。
相似三角形还有一些其他的性质,例如,相似三角形的中线、角平分线、高的比等于它们的相似比。
平行线模型:两个三角形分别在两条平行线上,它们的对应边平行且成比例。
这种模型经常用于解决一些与长度和角度相关的问题。
共顶点模型:两个三角形有一个共同的顶点,且它们的对应边成比例。
这种模型常用于证明两个三角形相似,以及求解一些角度问题。
角平分线模型:一个三角形的角平分线将这个三角形分成两个小的相似三角形。
这种模型可以用于证明两个三角形相似,以及求解一些角度问题。
平行四边形模型:一个平行四边形被它的两条对角线分成四个小的相似三角形。
这种模型可以用于解决一些与面积和长度相关的问题。
位似模型:一个相似变换将一个三角形映射到另一个三角形,这种变换称为位似变换。
这种模型可以用于解决一些与长度、角度和面积相关的问题。
旋转模型:一个三角形绕着它的一个顶点旋转一定的角度后得到另一个三角形,这两个三角形是相似的。
这种模型可以用于解决一些与角度和长度相关的问题。
镜像模型:一个三角形沿一条直线翻折后得到另一个三角形,这两个三角形是相似的。
这种模型可以用于解决一些与长度和角度相关的问题。
传递模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分相似。
这种模型可以用于解决一些与长度和角度相关的问题。
扩展模型:如果一个三角形与另一个三角形相似,那么这个三角形的每一个部分都与另一个三角形的对应部分成比例。
这种模型可以用于解决一些与长度和角度相关的问题。
相似三角形的九创作者是几何学中一类重要的模型,它们具有广泛的应用价值。
三角形的相似性质总结
三角形的相似性质总结在几何学中,相似性质是研究几何图形相似关系的重要内容之一。
相似性质涉及到几何图形的形状、尺寸和比例等方面,对于解决与几何图形相关的问题有着重要的作用。
本文将系统总结三角形的相似性质,以帮助读者更好地理解和应用这些性质。
一、相似三角形的定义相似三角形是指具有对应角相等、对应边成比例的三角形。
设三角形ABC和三角形DEF为两个相似三角形,若有∠A=∠D,∠B=∠E,∠C=∠F,且\(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\),那么这两个三角形是相似的。
二、相似三角形的判定1. AA判定法:如果两个三角形的两个对应角相等,则它们是相似的。
2. SAS判定法:如果两个三角形中有一对对应角相等,并且两个对应边成比例,则它们是相似的。
3. SSS判定法:如果两个三角形的三条对应边成比例,则它们是相似的。
三、相似三角形的性质1. 相似三角形的对应边成比例:如果两个三角形相似,则它们的对应边成比例。
2. 相似三角形的周长比:如果两个三角形相似,则它们的周长之比等于任意两边之比。
3. 相似三角形的面积比:如果两个三角形相似,则它们的面积之比等于任意两边之比的平方。
4. 相似三角形的高线比:如果两个三角形相似,则它们的高线之比等于任意两边之比。
5. 相似三角形的中线比:如果两个三角形相似,则它们的中线之比等于任意两边之比。
6. 相似三角形的角平分线比:如果两个三角形相似,则它们的角平分线之比等于任意两边之比。
四、相似三角形的应用1. 比例定理:在相似三角形中,如果已知一条边与它对应的角的比例,可以通过比例定理求解其他边的长度。
2. 测量高度或距离:利用相似三角形的性质,可以利用已知边长和对应角的度量来测量无法直接测量的高度或距离。
3. 建立比例关系:相似三角形的性质允许我们建立各种比例关系,可以用于计算、设计和建模等方面的应用。
总结:本文介绍了相似三角形的定义、判定法和性质,并举例说明了相似三角形在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点探究:相似与几何图形的综合问题
——突破相似与三角形、四边形等综合问题及含动点的解题思路
类型一:相似与三角形
1.(娄底中考)一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(-3,0),∠B =30°,则点B 的坐标为 .
解析:如图,过点B 作BE ⊥x 轴于点E .易证△EBC ∽△OCA ,∴EB OC =BC CA =EC OA
.∵点A 的坐标为(0,1),点C 的坐标为(-3,0),∴OA =1,OC =3,∴AC =OA 2+OC 2=10.在
Rt △ACB 中,∠B =30°,∴AB =2AC =210,∴BC =AB 2-AC 2=30,∴BC AC = 3.∴BE =33,EC =3,∴EO =EC +CO =3+3,∴点B 的坐标为(-3-3,33).
2.(无锡中考)如图,Rt∠ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处.再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为
解析:在Rt △ABC 中,∵∠ACB =90°,AC =3,BC =4,∴AB =5.∵将边AC 沿CE 翻
折,使点A 落在AB 上的点D 处,∴AE =DE ,CE ⊥AB .易得△AEC ∽△ACB ,∴AC AB =AE AC
,∴AE =95.∵S △ABC =12AB ·CE =12AC ·BC ,∴CE =125
.∵将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,∴∠ECF =45°,∴EF =CE =125,∴BF =AB -AE -EF =5-95-125=45
类型二:相似与四边形
3.∠(黄石中考)现有多个全等直角三角形,先取三个拼成如图∠所示的形状,R 为DE 的中点,BR 分别交AC ,CD 于P ,Q ,易证BP ∠PQ ∠QR =3∠1∠2.
(1)若取四个直角三角形拼成如图∠所示的形状,S 为EF 的中点,BS 分别交AC ,CD ,DE 于P ,Q ,R ,则BP ∠PQ ∠QR ∠RS = ;
(2)若取五个直角三角形拼成如图∠所示的形状,T 为FG 的中点,BT 分别交AC ,CD ,DE ,EF 于P ,Q ,R ,S ,则BP ∠PQ ∠QR ∠RS ∠ST = .
解析:(1)由题意可知AB BC =CE =12BE .设CQ =a .∵S 是EF 的中点,∴EF =2ES .∵CD ∥EF ,∴△BCQ ∽△BES ,∴CQ ES =BC BE =12
,∴ES =2CQ =2a ,∴AB =CD =EF =2ES =4a ,QD =3a .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AB CQ =41.同理:PQ QR
=CQ QD =13,QR RS =QD ES =32
.∴BP ∶PQ ∶QR ∶RS = 4∶1∶3∶2.故答案为4∶1∶3∶2; (2)设CP =b .由题意可知B BC =CE =EG =1
3
BG .∵T 是FG 的中点,∴FG =2TG .∵AC ∥DE ,∴△BCP ∽△BER ,∴CP ER =BC BE =12
,∴RE =2CP =2b .同理:△BCP ∽△BGT ,∴CP TG =BC BG =13
,∴TG =3CP =3b ,∴AC =DE =FG =6b ,∴AP =5b ,DR =4b ,FT =3b .∵AB ∥CD ,∴△ABP ∽△CQP ,∴BP QP =AP CP =51.同理:PQ QR =CP DR
=14,QR RS = DR RE =42,RS ST = RE FT =23
.∴BP ∶PQ ∶QR ∶RS ∶ST = 5∶1∶4∶2∶3.故答案为5∶1∶4∶2∶3.
小结:根据已知条件,充分利用图形中平行的条件,连续用相似三角形的判定与性质,得出线段之间的比例关系,“遇平行,想相似;用相似,得比例”是相似形的常用思路之一.
4.∠∠(安徽中考)如图∠,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .
(1)求证:AD =BC ;
证明:∵点E 是AB 的中点,GE ⊥AB ,∴GE 是线段AB 的垂直平分线,∴AG =BG .同
理可得GD =GC .在△AGD 与△BGC 中,⎩⎪⎨⎪⎧AG =BG ,∠AGD =∠BGC ,GD =GC ,
∴△AGD ≌△BGC ,∴AD =
BC ;
(2)求证:∠AGD ∠∠EGF ;
证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC .∵AG =BG ,DG =CG ,且E 、F 分别为
AB 、CD 的中点,∴∠AGE =12∠AGB ,∠DGF =12
∠DGC ,∴∠AGE =∠DGF ,∴∠AGE -∠DGE =∠DGF -∠DGE ,即∠AGD =∠EGF .∵GE ⊥AB ,GF ⊥CD ,∴∠AEG =∠DFG =
90°,∴△AGE ∽△DGF ,∴AG DG =GE GF ,∴AG GE =DG GF
.又∵∠AGD =∠EGF ,∴△AGD ∽△EGF ; (3)如图∠,若AD 、BC 所在直线互相垂直,求AD EF
的值. 解析:如图,延长AD 交BC 的延长线于点M .∵AD 、BC 所在的直线互相垂直,∴∠DAB +∠ABC =90°,即∠DAB +∠ABG +∠GBC =90°.由(1)可知△AGD ≌△BGC ,∴∠GAD =∠GBC .∴∠DAB +∠ABG +∠GAD =90°,即∠GAB +∠GBA =90°.由(1)可知AG =BG ,∴∠GAB =∠GBA ,∴∠GAB =45°.又∵GE ⊥AB ,∴∠AEG =90°,∴GA =AE 2+GE 2=2
GE ,∴GA GE = 2.由(2)可知△AGD ∽△EGF ,∴AD EF =GA GE = 2.
类型三:运用相似解决几何图形中的动点问题
5.如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,CN =14
CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.
解析:12或45
6.∠(钦州中考)如图,在平面直角坐标系中,以点B (0,8)为端点的射线BG ∠x 轴,点A 是射线BG 上的一个动点(点A 与点B 不重合),在射线AG 上取AD =OB ,作线段AD 的垂直平分线,垂足为E ,与x 轴交于点F ,过点A 作AC ∠OA ,交射线EF 于点C ,连接OC 、CD ,设点A 的横坐标为t .
(1)用含t 的式子表示点E 的坐标为 ;
(2)当t 为何值时,∠OCD =180°?
解析:(1)(t +4,8)
(2)∵EF 是线段AD 的垂直平分线,点C 在射线EF 上,AD =BO =8,∴AE =DE =12AD
=4,∠AEC =90°,∴∠ECA +∠EAC =90°.又∵AO ⊥CA ,∴∠OAC =90°,∴∠BAO +∠EAC =90°,∴∠ECA =∠BAO .又∵BG ∥x 轴,∴BG ⊥y 轴,则∠OBA =90°,∴∠AEC =∠OBA ,
∴△ABO ∽△CEA ,∴BO EA =AB CE ,即84=t CE
.∴CE =12B t .当∠OCD =180°时,点C 在线段OD 上.∵EF ⊥BG ,BO ⊥BG ,∴CE ∥BO ,∴△CDE ∽△ODB ,∴CE OB =DE DB ,即12t 8=4t +8,∴12
t 2+4t -32=0,解得t 1=45-4,t 2=-45-4(不合题意,舍去).∴当t =45-4时,∠OCD =180°.。