小学奥数火车过桥问题典型例题图文稿
数学奥数专题之火车过桥问题
数学奥数专题之火车过桥问题数学奥数专题之火车过桥问题例1、一列长300米的火车以每分1080米的速度通过一座大桥。
从车头开上桥到车尾离开桥一共需3分。
这座大桥长多少米?例2、某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度。
例3、.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?大胆闯关:1、一列长300米的火车,以每分1080米的速度通过一座长为940米的在桥,从车头开上桥到车尾离开桥需要多少分钟?2、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是多少米/秒,全长是多少米?3、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米。
4、一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的.速度?(得数保留整数)一列450米长的货车,以每秒12米的速度通过一座570米长的铁桥,需要几秒钟?5、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车。
快车每秒行18米,慢车每秒行10米。
如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。
6、李明和张忆在300米的环形跑道上练习跑步,李明每秒跑5米,张忆每秒跑3米,两人同时从起跑点出发同向而行,问出发后李明第一次追上张忆时,张忆跑了多少米?6、速度为快、中、慢的三辆汽车同时从同一地点出发,沿同一公路追赶前面一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时24千米,中速车每小时20千米,那么慢车每小时行多少千米?(选做题)7、周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙立刻转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?(选做题)。
小学四年级奥数配套课件 火车过桥问题
车队长:115×298=162(米) 车队有车(162+20)÷(20+6)=7(辆) 答:则这个车队一共有7辆车。
例题(三)(★ ★ ★ )
小胖站在铁路旁用两个秒表测一列火车的车速。他发现这列火车 通过一座660米的大桥需要40秒,以同样速度从他身边开过需要 10 秒,请你根据小胖提供的数据算出火车的车身长是 米。
知识链接
火车过静态物体 路程=速度×时间
例题一(★★)
一列火车长 150 米,每秒钟行 19 米。全车通过一座大桥用 50 秒, 大桥长度是多少米?
火车经过的距离=车长+桥长 桥长:50×19-150=800(米) 答:大桥长度是800米。
知识链接
火车过桥: 车长+桥长=车速×过桥时间
例题二(★★★)
第二个隧洞长1000×3-800=2200(米) 两个隧洞相距1000×6-800-120-2200=1800(米)
知识链接
注意单位换算
例题(七)(★ ★ ★ ★ )
已知某铁路桥长 800 米,一列火车从桥上通过,测得火车从开始上桥到完全下 桥共用 100 秒,整列火车完全在桥上的时间为 60 秒,求火车的速度和长度?
例题(五)(★ ★ ★ )
一列火车通过一座长 430 米的大桥用了 30 秒,它通过一条长 2180 米长的隧 道时,速度提高了一倍,结果只用了 50 秒,这列火车长 米。
时间 30秒 100秒
路程 430米+车长 2180米+车长
火车速度:(2180-430)÷(100-30)=25(千米) 火车长度:25×100-2180=320(米) 答:这列火车长320米。
五年级奥数火车过桥问题典型例题带答案解析
小学奥数五年级火车过桥典型例题带答案解析例题1:一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟,求这列火车的速度是多少米/秒,火车全长是多少米?解析:火车在40秒内所行路程=530米+一个车身长,在30秒内行的路程=380米+一个车身长。
火车通过桥,是从车头上桥算起到车尾离开桥;穿过山洞,是从车头进洞算起到车尾离洞。
而车身长度不变,桥比山洞长530-380=150(米),火车通过150米用的时间是40-30=10(秒),因此火车的速度是每秒行驶:150÷10=15(米),车身长15×40-530=70(米)或15×30-380=70(米)。
列式计算:火车的速度:(530-380)÷(40-30)=150÷10=15(米)火车的车身长:15×30-380=450-380=70(米)答:这列火车的速度是每秒15米,车身长是70米。
例题2:少先队员346人排成两路纵队去参观科技成果展览。
队伍行进的速度是每分钟行23米,前后两人都相距1米。
现在队伍需要通过一座长702米的桥,整个队伍从上桥到离桥共需几分钟?解析:把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.队伍完全过桥,是从队伍头上桥算起到队伍尾离开桥,车长求出后,根据队伍路程÷速度=时间,就可以求出过桥的时间了。
列式计算:队伍长:1×﹙346÷2-1﹚=1×﹙173-1﹚=172﹙米﹚过桥的时间:﹙702+172﹚÷23=874÷23=38﹙分钟﹚答:整个队伍从上桥到离桥共需要38分钟。
例题3:甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车,若两车齐尾并进,则甲车行26秒超过乙车,求两车车长各多少米?解析:火车完全过桥问题公式:火车过桥(或遂道)所用的时间=[桥长(遂道长)+火车身长]÷火车速度;火车完全在桥上行驶问题公式:火车过桥(或遂道)所用的时间=[桥长(遂道长)—火车身长]÷火车速度;两列火车相向而行公式:相遇到相离的时间=两火车车身长度之和÷两车速度和。
演示文稿五年级上册数学课件-奥数列车过桥问题通用版(共22张PPT)
例2:一列火车长500米,每秒行25米,它通过一座大 桥用了327秒,这座大桥长多少米?
提示:先把火车的路程求出来。 解答:
路程: 327 25 817(5 米) 路程=桥长+车长
桥长: 8175 500 767(5 米)
答:这座大桥长7675米。
第七页,共21页。
例3:有一列火车以每秒22米的速度通过一条2280米长
五年级上册数学课件-奥数列 车过桥问题通用版(共22张
PPT)
第一页,共21页。
考虑一下:列车过桥的路程是什么?
第二页,#43;车长
第三页,共21页。
主要题型
1、列车过桥
2、会车问题 3、超车问题
一车过一桥
一车过二桥
齐头并进 齐尾并进
第四页,共21页。
第五页,共21页。
过桥路程: 桥长:
720 2 144(0 米) 路程=桥长+车长
1440 360 108(0 米)
答:这座大桥长1080米。
第十二页,共21页。
第十三页,共21页。
例5:一列火车穿过一条长1260米的隧道用了60秒, 用同样的速度通过一条长2010米长的大桥用了90秒。
这列火车的速度和车长各是多少?
提示:画出示意图
示意图: 用
表示火车。
第十四页,共21页。
请问:这列火车通过隧道和大桥的路程差是什么? 路程差=两个桥的长度之差
例5:一列火车穿过一条长1260米的隧道用了60秒,用
同样的速度通过一条长2010米长的大桥用了90秒。这列
火车的速度和车长各是多少?
提示:由上图可知,先求出路程差和时间差,就可以求出车速。
的隧道,用了2分钟,你能计算出火车的长度吗?
奥数:火车过桥(问题详解版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?+=(米),已知火车的速度,那么火车穿越隧道所需时间为【分析】火车穿越隧道经过的路程为300150450÷=(秒).4501825【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】 8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A 领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】 8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).快车慢车慢车快车快车慢车慢车快车【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米?⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
小学奥数-火车过桥问题(新五)-ppt
谢谢欣赏
Thanks
汇报人姓名
车头上桥
路程=车长+桥长
火车的车长
车速×通过时间=车长+桥长
(440+120)÷20
通过时间=(桥长+车长)÷车 速
大桥长4400米
车长120米
一列火车长120米,每秒钟行20 米,全车通过440米的大桥,需 要多少时间?
思考:
一座大桥长2400米。一列火车以每 秒900米的速度通过大桥,从车头上桥 到车尾离开桥共需要3秒钟。这列火车 长多少米?
回顾:
路程 ÷ 速度 = 时 间 1200÷60=20( 分钟)
1.一个人以每分钟60米的速度通过一座长 1200米的大桥,需要几分钟?
1200 ÷20 = 60(米)
路程 ÷ 时间 =
一个人通过一座 长1200米的大
速度速度 × 时 间 = 路程
桥,需要20分钟,
平均每分钟多少
米?
一列火车长700米,以每分钟400米 的速度通过一座长1200米的大桥, 从车头上桥到车尾离开要多少分钟?
思考:
一列火车通过500米的大桥需40秒钟,以同样的速度穿过300米 的山洞需30秒钟。求这列火车的速 度是每秒多少米?车长多少米?
车程=桥长+车长
6
车速=(桥长+车
长)÷通过时间
5
总结:火车过桥问
2
题的一般数量关系
通过时间=(桥长
3
+车长)÷车速
桥长=车速×通过
4
时间-车长
900 × 3-2400
车长?米
=2700-2400
=300(米)
车长=车速×通过时间-桥长
添加标题
添加标题
奥数-火车过桥(规范标准答案版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).2秒间隔距离甲乙练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
奥数火车过桥(问题详解版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).2秒间隔距离甲乙练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
(完整版)小学奥数火车过桥问题典型例题
火车过桥问题1.某列火车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米,时速为72千米的列车相遇,错车而过需要几秒钟2.一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞用了20秒钟。
这列火车长多少米?3.一人以每分钟120米的速度读沿铁路边跑步,一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度4.铁路旁的一条与铁路平行的小路上,有一行人与汽车人同时向南行进,行人速度为3.6千米/时,汽车人速度为10.8千米/时,这是有一列火车从他们背后开过来,火车通过行人用22秒,通过汽车人用26秒钟。
这列火车的车身总长是多少?5.有两列火车,一列长102米,每秒行20米,一列长120米,每秒行17米,两车同向而行,从第一列车追击第二列车到两车离开需要多少秒?6.某人步行的速度为每秒2米,一列火车从后面在开来,超过他用了10秒,已知火车长90米,求火车的速度。
7.现有两列火车同时同方向齐头并进,行12秒后快车超过慢车,快车每秒行18米,慢车每秒行10米,如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。
8.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒,求这列火车的速度与车身长各是多少米9.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行,一列火车开来,全列车从甲身边开过用了10秒,3分后,乙遇到火车,全列火车从乙身边开过只用了9秒,火车离开乙多少时间后两人相遇?10.两列火车,一列长120米,每秒行20米,另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?11.甲乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离开甲后5分钟又遇见乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?12.快车长182米,每秒行20秒,慢车长1034米,每秒行18米,两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?13.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头浸入隧道到车尾离开隧道共需要多少时间?14.小明坐在行驶的列车上,从窗外看到迎面开来的火车经过用了6秒,已知货车车长168米,后来又从窗外看到列车通过一座180米长的桥用了12秒。
奥数:火车过桥标准答案版
火车过桥一、火车过桥四大类问题1、火车+树电线杆:一个有长度、有速度;一个没长度、没速度;解法:火车车长总路程=火车速度×通过时间;2、火车过桥隧道:一个有长度、有速度;一个有长度、但没速度;解法:火车车长+桥隧道长度总路程=火车速度×通过的时间;3、火车+人:一个有长度、有速度;一个没长度、但有速度;1、火车+迎面行走的人:相当于相遇问题;解法:火车车长总路程=火车速度+人的速度×迎面错过的时间;2火车+同向行走的人:相当于追及问题;解法:火车车长总路程=火车速度−人的速度×追及的时间;3火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长总路程=火车速度 人的速度×迎面错过的时间追及的时间;4、火车+火车:一个有长度、有速度;一个也有长度、有速度;1错车问题:相当于相遇问题;解法:快车车长+慢车车长总路程=快车速度+慢车速度×错车时间;2超车问题:相当于追及问题;解法:快车车长+慢车车长总路程=快车速度−慢车速度×错车时间;长度速度方向二、火车过桥四类问题图示 长度 速度 火车 车长车速 队伍队伍长间隔;植树问题 队速例题1提高长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道进入隧道直至完全离开要多长时间【分析】 火车穿越隧道经过的路程为300150450+=米;已知火车的速度;那么火车穿越隧道所需时间为4501825÷=秒.精英小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒;以同样速度从他身边开过需要10秒;请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长;火车10秒走过一个车身长;则火车30秒走660米;所以火车车长为6603220÷=米.例题2提高四、五、六3个年级各有100名学生去春游;都分成2列竖排并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米;年级之间相距5米.他们每分钟都行走90米;整个队伍通过某座桥用4分钟;那么这座桥长________米.【分析】100名学生分成2列;每列50人;应该产生49个间距;所以队伍长为49149249352304⨯+⨯+⨯+⨯=米;那么桥长为90430456⨯-=米.精英一个车队以5米/秒的速度缓缓通过一座长200米的大桥;共用145秒.已知每辆车长5米;两车间隔8米.问:这个车队共有多少辆车树 无 无 无 桥 桥长 无 无 人 无 人速 同向 反向 车 车长 车速同向反向【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725米;故车队长度为725−200=525米.再由植树问题可得车队共有车525−5÷5+8+1=41辆.例题3提高一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少 车身长多少米【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长;根据差不变的原则火车速度是:(846540)(5335)17-÷-=米/秒;车身长是:173554055⨯-=米.精英一列火车通过长320米的隧道;用了52秒;当它通过长864米的大桥时;速度比通过隧道时提高0.25倍;结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒;如果以原速行驶;则用时96×1+0.25=120秒;864−320÷120−52=8米/秒;车身长:52×8−320=96米.拓展1已知某铁路桥长960米;一列火车从桥上通过;测得火车从开始上桥到完全下桥共用100秒;整列火车完全在桥上的时间为60秒;求火车的速度和长度【分析】 完全在桥上;60秒钟火车所走的路程=桥长—车长;通过桥;100秒火车走的路程=桥长+车长;由和差关系可得:火车速度为()96021006012⨯÷+=米/秒;火车长:9601260240-⨯=米.拓展2一列火车的长度是800米;行驶速度为每小时60千米;铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟;求两座隧洞之间相距多少米【分析】 注意单位换算.火车速度60×1000÷60=1000米/分钟.第一个隧洞长1000×2−800=1200米;第二个隧洞长1000×3−800=2200米;两个隧洞相距1000×6−1200−2200−800=1800米.拓展3小明坐在火车的窗口位置;火车从大桥的南端驶向北端;小明测得共用时间80秒.爸爸问小明这座桥有多长;于是小明马上从铁路旁的某一根电线杆计时;到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米;小明算出了大桥的长度.请你算一算;大桥的长为多少米【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=米;火车速度为:4502518÷=米/秒;大桥的长为:18801440⨯=米.例题4提高两列火车相向而行;甲车每时行48千米;乙车每时行60千米;两车错车时;甲车上一乘客从乙车车头经过他的车窗时开始计时;到车尾经过他的车窗共用13秒.问:乙车全长多少米【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.精英一列快车和一列慢车相向而行;快车的车长是280米;慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒;那么坐在慢车上的人看见快车驶过的时间是多少秒【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同;所以两车的车长比等于两车经过对方的时间比;故所求时间为280118385⨯=秒例题5提高铁路旁边有一条小路;一列长为110米的火车以30千米/时的速度向南驶去;8点时追上向南行走的一名军人;15秒后离他而去;8点6分迎面遇到一个向北行走的农民;12秒后离开这个农民.问军人与农民何时相遇【分析】8点30分.火车每分行30100060500⨯÷=米;军人每分行115001106044⎛⎫⨯-÷=⎪⎝⎭米;农民每分行111105005055⎛⎫-⨯÷=⎪⎝⎭米.8点时军人与农民相距500+50×6=3300米;两人相遇还需3300÷60+50=30分;即8点30分两人相遇.精英铁路旁的一条与铁路平行的小路上;有一行人与骑车人同时向南行进;行人速度为3.6千米/时;骑车人速度为10.8千米/时;这时有一列火车从他们背后开过来;火车通过行人用22秒;通过骑车人用26秒;这列火车的车身总长是多少【分析】行人的速度为3.6千米/时=1米/秒;骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差;也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒;那么火车的车身长度可表示为x−1×22或x−3×26;由此不难列出方程.法一:设这列火车的速度是x米/秒;依题意列方程;得x−1×22=x−3×26.解得x=14.所以火车的车身长为:14−1×22=286米.法二:直接设火车的车长是x;那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1;这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13;所以可得:V车−1:V车−3=13:11;可得V车=14米/秒;所以火车的车长是14−1×22=286米;这列火车的车身总长为286米.拓展4甲、乙两辆汽车在与铁路并行的道路上相向而行;一列长180米的火车以60千米/时的速度与甲车同向前进;火车从追上甲车到遇到乙车;相隔5分钟;若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒;求乙车遇到火车后再过多少分钟与甲车相遇【分析】由火车与甲、乙两车的错车时间可知;甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时;火车追上甲车时;甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇;那么乙车遇到火车后1.25分钟与甲车相遇拓展5红星小学组织学生排成队步行去郊游;每分步行60米;队尾的王老师以每分行150米的速度赶到排头;然后立即返回队尾;共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题;需15060x -分;从排头返回队尾是相遇问题;需15060x +分.由101506015060x x +=-+;解得630x =米 拓展6甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行;恰好有一列火车开来;整个火车经过甲身边用了18秒;2分后又用15秒从乙身边开过.问:1火车速度是甲的速度的几倍 2火车经过乙身边后;甲、乙二人还需要多少时间才能相遇【分析】111倍;211分15秒.1设火车速度为a 米/秒;行人速度为b 米/秒;则由火车的长度可列方程()()1815a b a b -=+;求出11a b=;即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙;火车走了135秒;此段路程一人走需1350×11=1485秒;因为甲已经走了135秒;所以剩下的路程两人走还需1485−135÷2=675秒.例题6提高快车A 车长120米;车速是20米/秒;慢车B 车长140米;车速是16米/秒.慢车B 在前面行驶;快车A 从后面追上到完全超过需要多少时间【分析】 从“追上”到“超过”就是一个“追及”过程;比较两个车头;“追上”时A 落后B 的车身长;“超过”时A 领先B 领先A 车身长;也就是说从“追上”到“超过”;A 的车头比B 的车头多走的路程是:B 的车长A +的车长;因此追及所需时间是:A 的车长B +的车长÷A 的车速B -的车速.由此可得到;追及时间为:A 车长B +车长÷A 车速B -车速1201402016=+÷-()()65=秒. 精英快车长106米;慢车长74米;两车同向而行;快车追上慢车后;又经过1分钟才超过慢车;如果相向而行;车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件;可求出快车与慢车的速度差和速度和;再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180米快车与慢车的速度之差:180÷60=3米快车与慢车的速度之和:180÷12=15米快车的速度:15+3÷2=9米慢车的速度:15−3÷2=6米 拓展7从北京开往广州的列车长350米;每秒钟行驶22米;从广州开往北京的列车长280米;每秒钟行驶20米;两车在途中相遇;从车头相遇到车尾离开需要多少秒钟【分析】 从两车车头相遇到车尾离开时;两车行驶的全路程就是这两列火车车身长度之和.解答方法是:A 的车身长B +的车身长÷A 的车速B +的车速=两车从车头相遇到车尾离开的时间也可以这样想;把两列火车的车尾看作两个运动物体;从相距630米两列火车本身长度之和的两地相向而行;又知各自的速度;求相遇时间.两车车头相遇时;两车车尾相距的距离:350280630+=米两车的速度和为:222042+=米/秒;从车头相遇到车尾离开需要的时间为:6304215÷=秒.综合列式:350280222015+÷+=()()秒.例题7提高精英有两列同方向行驶的火车;快车每秒行33米;慢车每秒行21米.如果从两车头对齐开始算;则行20秒后快车超过慢车;如果从两车尾对齐开始算;则行25秒后快车超过慢车.那么;两车长分别是多少 如果两车相对行驶;两车从车头重叠起到车尾相离需要经过多少时间 快车慢车慢车快车快车慢车慢车快车【分析】 如图;如从车头对齐算;那么超车距离为快车车长;为:332120240-⨯=()米; 如从车尾对齐算;那么超车距离为慢车车长;为332125300-⨯=()米. 由上可知;两车错车时间为:300240332110+÷+=()()秒. 拓展8甲乙两列火车;甲车每秒行22米;乙车每秒行16米;若两车齐头并进;则甲车行30秒超过乙车;若两车齐尾并进;则甲车行26秒超过乙车.求两车各长多少米【分析】 两车齐头并进:甲车超过乙车;那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米;30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度;那么乙车的长度等于6×26=156米. 拓展9铁路货运调度站有A 、B 两个信号灯;在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列;其中乙车的的车长居中;最开始的时候;甲、丙两车车尾对齐;且车尾正好位于A 信号灯处;而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处;车头则冲着A 的方向.现在;三列火车同时出发向前行驶;10秒之后三列火车的车头恰好相遇.再过15秒;甲车恰好超过丙车;而丙车也正好完全和乙车错开;请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟【分析】8.75秒 例题8提高某列车通过250米长的隧道用25秒;通过210米长的隧道用23秒;若该列车与另一列长150米.时速为72千米的列车相遇;错车而过需要几秒钟【分析】 根据另一个列车每小时走72千米;所以;它的速度为:72000÷3600=20米/秒;某列车的速度为:250−210÷25−23=40÷2=20米/秒某列车的车长为:20×25−250=500−250=250米;两列车的错车时间为:250+150÷20+20=400÷40=10秒. 精英在双轨铁道上;速度为54千米/小时的货车10时到达铁桥;10时1分24秒完全通过铁桥;后来一列速度为72千米/小时的列车;10时12分到达铁桥;10时12分53秒完全通过铁桥;10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米【分析】 先统一单位:54千米/小时15=米/秒;72千米/小时20=米/秒;1分24秒84=秒;48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和;为:15841260⨯=米;列车的过桥路程等于列车与铁桥的长度之和;为:20531060⨯=米.考虑列车与货车的追及问题;货车10时到达铁桥;列车10时12分到达铁桥;在列车到达铁桥时;货车已向前行进了12分钟720秒;从这一刻开始列车开始追赶货车;经过2216秒的时间完全超过货车;这一过程中追及的路程为货车12分钟走的路程加上列车的车长;所以列车的长度为()2015221615720280-⨯-⨯=米;那么铁桥的长度为1060280780-=米;货车的长度为1260780480-=米. 补充1马路上有一辆车身长为15米的公共汽车由东向西行驶;车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑;甲由东向西跑;乙由西向东跑.某一时刻;汽车追上了甲;6秒钟后汽车离开了甲;半分钟之后;汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇 乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙【分析】 车速为每秒:181********⨯÷=米;由“某一时刻;汽车追上了甲;6秒钟后汽车离开了甲”;可知这是一个追及过程;追及路程为汽车的长度;所以甲的速度为每秒:56156 2.5⨯-÷=()米;而汽车与乙是一个相遇的过程;相遇路程也是汽车的长度;所以乙的速度为每秒:15522 2.5-⨯÷=()米.汽车离开乙时;甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()米;甲、乙相遇时间:80 2.5 2.516÷+=()秒.补充2甲、乙二人沿铁路相向而行;速度相同;一列火车从甲身边开过用了8秒钟;离甲后5分钟又遇乙;从乙身边开过;只用了7秒钟;问从乙与火车相遇开始再过几分钟甲乙二人相遇【分析】 火车开过甲身边用8秒钟;这个过程为追及问题:火车长=V 车−V 人×8;火车开过乙身边用7秒钟;这个过程为相遇问题火车长=V 车+V 人×7.可得8V 车−V 人=7V 车+V 人;所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路;由车速是人速的15倍;所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥;从车头上桥到车尾离桥用了1分钟;求这座桥长多少米【分析】 火车过桥时间为1分钟60=秒;所走路程为桥长加上火车长为60301800⨯=米;即桥长为180********-=米.练习2小红站在铁路旁;一列火车从她身边开过用了21秒.这列火车长630米;以同样的速度通过一座大桥;用了1.5分钟.这座大桥长多少米【分析】 因为小红站在铁路旁边没动;因此这列火车从她身边开过所行的路程就是车长;所以;这列火车的速度为:630÷21=30米/秒;大桥的长度为:30×1.5×60−630=2070米. 练习3一列火车长450米;铁路沿线的绿化带每两棵树之间相隔3米;这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米【分析】 第1棵树到第101棵树之间共有100个间隔;所以第1棵树与第101棵树相距3100300⨯=米;火车经过的总路程为:450300750+=米;这列火车每分钟行7500.51500÷=米.练习4一列火车长200米;通过一条长430米的隧道用了42秒;这列火车以同样的速度通过某站台用了25秒钟;那么这个站台长多少米【分析】 火车速度为:2004304215+÷=()米/秒;通过某站台行进的路程为:1525375⨯=米;已知火车长;所以站台长为375200175-=米.练习5小新以每分钟10米的速度沿铁道边小路行走;⑴ 身后一辆火车以每分钟100米的速度超过他;从车头追上小新到车尾离开共用时4秒;那么车长多少米 ⑵ 过了一会;另一辆货车以每分钟100米的速度迎面开来;从与小新相遇到离开;共用时3秒.那么车长是多少【分析】 ⑴这是一个追击过程;把小新看作只有速度而没有车身长长度是零的火车.根据前面分析过的追及问题的基本关系式:A 的车身长B +的车身长÷A 的车速B - 的车速=从车头追上到车尾离开的时间;在这里;B 的车身长车长也就是小新为0;所以车长为:100104360-⨯=()米;⑵这是一个相遇错车的过程;还是把小新看作只有速度而没有车身长长度是零的火车.根据相遇问题的基本关系式;A 的车身长B +的车身长÷A 的车速B +的车速=两车从车头相遇到车尾离开的时间;车长为:100103330+⨯=()米. 练习6一列快车和一列慢车相向而行;快车的车长是280米;慢车的车长是385米;坐在快车上的人看见慢车驶过的时间是11秒;那么坐在慢车上的人看见块车驶过的时间是多少秒【分析】 这个过程是火车错车;对于坐在快车上的人来讲;相当于他以快车的速度和慢车的车尾相遇;相遇路程和是慢车长;对于坐在慢车上的人来讲;相当于他以慢车的速度和快车的车尾相遇;相遇的路程变成了快车的长;相当于是同时进行的两个相遇过程;不同点在于路程和一个是慢车长;一个是快车长;相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=米/秒;然后再求另一过程的相遇时间280358÷=秒.练习7长180米的客车速度是每秒15米;它追上并超过长100米的货车用了28秒;如果两列火车相向而行;从相遇到完全离开需要多长时间【分析】 根据题目的条件;可求出客车与货车的速度差;再求出货车的速度;进而可以求出两车从相遇到完全离开需要的时间;两列火车的长度之和为:180100280+=米两列火车的速度之差为:2802810÷=米/秒货车的速度为:15105-=米两列火车从相遇到完全离开所需时间为:28015514÷+=()秒. 练习8某列火车通过342米的隧道用了23秒;接着通过234米的隧道用了17秒;这列火车与另一列长88米;速度为每秒22米的列车错车而过;问需要几秒钟【分析】 通过前两个已知条件;我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()米;车长:182334272⨯-=米;两车错车是从车头相遇开始;直到两车尾离开才是错车结束;两车错车的总路程是两个车身之和;两车是做相向运动;所以;根据“路程和÷速度和=相遇时间”;可以求出两车错车需要的时间为728818224+÷+=()()秒;所与两车错车而过;需要4秒钟.。
小学数学奥数火车过桥问题(含答案)
过车过桥问题基本公式:速度×时间=车长+桥长过桥时间=(桥长+列车长)÷速度;速度=(桥长+列车长)÷过桥时间;错车公式:错车时间=两辆车长之和÷两辆车车速之和基础例题:例题1:一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?分析列车过桥,就是从车头上桥到车尾离桥止。
车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。
练习:1.一列火车长240米,每秒行15米,这列火车从车头进入山洞到车尾离开山洞共用20秒,山洞长多少米?2.一列火车长200米,通过一条长430米的隧道用了42秒,这列火车通过一个站台的时候用了25秒,求这个站台有多长?3.一列火车通过长530米的桥需40秒,以同样的速度穿过某山洞需30秒。
已知这列火车全长70米,求这个山洞长多少米?例题二:1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?思考创新:1. 301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒。
列车的速度和长度各是多少?2.某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。
求火车的长度和速度。
错车类型:1.甲火车长290米,每秒行20米;乙火车车长250米,每秒行25米,两火车的车头刚好同时在长900米铁桥的两端相对开出,几秒后两车的车尾相错而过?2.甲火车长500米,每秒行20米;乙火车车长400米,每秒行25米,当两火车首相遇尾相离时,需要多少秒?巩固练习:1.已知甲车长106米,慢车长74米,辆车同向行驶,快车追上慢车时,又过了一分钟才超过慢车,如果相向而行的话,车头相接后经过12秒辆车才完全离开,求两辆列车的速度。
答案:例题1:分析列车过桥,就是从车头上桥到车尾离桥止。
奥数行程问题火车过桥及错车超车问题.doc
行程问题 -火车过桥与错车超车问题火车过桥问题火车过桥是一种特殊的行程问题。
需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长。
列车过桥问题的基本数量关系为:车速×过桥时间=车长 +桥长。
火车过桥问题:( 1)解题思路:先车速归一,再用公式“ 桥长之差÷时间之差=归一后的车速”,即S差=V t差,( 2)画示意图,分析求解。
列车所行路程为车头到车头或车尾到车尾的距离,而不是车头到车尾的距离。
( 3)与追及问题的区另:追及问题所用公式S差 =V 差t ,要求时间归一。
关于 S=Vt 公式的拓展初步探讨:(1)行程问题: S=vt(2)相遇问题: S和 =v和 t S vt(3)追及问题: S差 =v差 t(4)火车过桥: S差 =vt 差路程 =速度时间路程和 =速度和时间(时间归一,能求路程和)路程差 =速度差时间(时间归一,能求路程差)路程差 =车速度时间差(速度归一,求出车速)火车过桥好题精讲【例题 1】★一列列车长150 米 ,每秒钟行19 米。
问全车通过420 米的大桥,需要多少时间?【分析与解】如图,列车过桥所行距离为:车长+桥长。
( 420+ 150)÷ 19=30(秒)答:列车通过这座大桥需要30 秒钟。
【例题 2】★一列车通过 530 米的隧道要 40 秒钟,以同样的速度通过 380 米的大桥要用 30 秒钟。
求这列车的速度及车长。
【分析与解】列车过隧道比过桥多行(530- 380)米,多用(40-30)秒。
列车的速度是:( 530-380)÷( 40 -30) =15(米 / 秒)列车的长度是:15× 40-530=70 (米)答:列车每秒行15 米,列车长 70 米。
【例题 3】★★ 火车通过长为102 米的铁桥用了24 秒,如果火车的速度加快 1 倍,它通过长为 222 米的隧道只用了 18 秒。
求火车原来的速度和它的长度。
小学奥数行程火车过桥
行程问题——火车过桥①火车过人,人静止车长=火车速度×时间②火车过桥车长+桥长=火车速度×时间③火车过人,人运动相遇:车长=(火车速度+人速度)×时间追及:车长=(火车速度-人速度)×时间对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.一、火车过人(静止)【例1】一列火车18km/h的速度,驶向一条隧道,从车头入洞到全车进洞用了38秒钟,求火车的车身长度?二、火车过桥(静止)【例2】一列火车长150米,每秒钟行19米,全车通过长800米的大桥,需要多少时间?【例3】一条隧道长800米,某列火车从车头入洞到全车出洞共用75秒,已知火车的速度是17m/s,求这列火车长多少米?【练习】1、一列火车车身长500米,进入一条1600米的隧道,已知这列火车每分钟行驶900米,问这列火车从车头入洞到全车出洞需多长时间?2、一列火车车身长500米,进入一条1600米的隧道,已知这列火车从车头入洞到全车出洞共用了90秒,求这列火车行驶的速度。
【例4】一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞共用了20秒钟。
这列火车长多少米?【例5】一座铁路桥长1200米,一列火车开过大桥需75秒,火车开过路旁一根信号杆需15秒,求火车的速度和车长?【例6】一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?【练习】一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度?三、火车过人(运动)【例7】一个人以每分钟60米的速度沿铁路步行,一列长144米的火车对面而来,从他身边经过用了8秒,求火车的速度?【练习】一支队伍1200米长,以每分钟80米的速度行进。
四年级奥数火车过桥问题完整
火车过桥问题公式:火车过桥总路程=过桥时间= 车速=车长=桥长=例1:一列列车长150米,每秒行19米,全车通过420米的大桥,需要多长时间?练1:一列火车全车400米,以每小时40千米的速度通过一条长2.8千米的隧道,共需多少时间?例2:一列火车全长450米,每秒行驶16米,全车通过一条隧道需90秒。
求这条隧道长多少米?练1:一座大桥长2100米,一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟,这列火车长多少米?例3:一列火车通过180米长的桥用40秒,用同样的速度,穿过300米长的隧道用48秒,求这列火车的速度和列车长度。
练1:一列火车通过199米的桥需要80秒,用同样的速度通过172米的隧道要74秒,求列车的速度和车长。
练2:一列火车长600米,速度为每分1000米,铁路上有两条隧道,火车自车头进入第一隧道到车尾离开第一隧道用了3分钟,用从车头进入第二隧道到车尾离开第二隧道用了4分钟。
从车头进入第一隧道到车尾离开第二隧道共用了9分钟。
问两条隧道之间相距多少米?例4:少先队员346人排成两路纵队去参观科技成果展览。
队伍行进的速度是每分钟行23米,前后两人都相距1米。
现在队伍需要通过一座长702米的桥,整个队伍从上桥到离桥共需几分钟?练1:五年级394个学生排成两路纵队去郊游,每两个学生相隔0.5米,队伍以每分钟行61米的速度通过一座207米的大桥,一共需要多长时间?例5:一列火车长192米,从路边的一根电线杆旁经过用了16秒,这列火车以同样速度通过312米长的桥,需多长时间?练1:一列火车长800米,从路边的一颗大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。
求这座大桥的长度。
例6:一座大桥长1000米,一列火车从桥上通过,火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上为80秒。
求火车速度和车长?。
行程问题(火车过桥问题)三道典型例题(附解题思路及答案)
行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们再研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。
火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。
例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。
答案:(120+400)÷ 10=52(秒)答:火车通过桥需要52秒。
2、两列火车错车问题。
例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。
解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。
答案:(20+25)x8=360(米)答:乙车长360米。
例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。
答案:(200+250)÷(25+20)=10(秒)答:需要10秒。
3、两列火车超车问题。
例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。
追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。
答案: (250+200)十(25-20)=90(秒)答:需要90秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数火车过桥问题
典型例题
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
火车过桥问题
1.某列火车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车
与另一列长150米,时速为72千米的列车相遇,错车而过需要几秒钟
2.一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到
全车出洞用了20秒钟。
这列火车长多少米
3.一人以每分钟120米的速度读沿铁路边跑步,一列长288米的火车从对面开来,
从他身边通过用了8秒钟,求列车的速度
4.铁路旁的一条与铁路平行的小路上,有一行人与汽车人同时向南行进,行人速度
为3.6千米/时,汽车人速度为10.8千米/时,这是有一列火车从他们背后开过来,火车通过行人用22秒,通过汽车人用26秒钟。
这列火车的车身总长是多少5.有两列火车,一列长102米,每秒行20米,一列长120米,每秒行17米,两车
同向而行,从第一列车追击第二列车到两车离开需要多少秒
6.某人步行的速度为每秒2米,一列火车从后面在开来,超过他用了10秒,已知火
车长90米,求火车的速度。
7.现有两列火车同时同方向齐头并进,行12秒后快车超过慢车,快车每秒行18
米,慢车每秒行10米,如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。
8.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30
秒,求这列火车的速度与车身长各是多少米
9.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行,一列火车开
来,全列车从甲身边开过用了10秒,3分后,乙遇到火车,全列火车从乙身边开过只用了9秒,火车离开乙多少时间后两人相遇
10.两列火车,一列长120米,每秒行20米,另一列长160米,每秒行15米,两车
相向而行,从车头相遇到车尾离开需要几秒钟
11.甲乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离开
甲后5分钟又遇见乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇
12.快车长182米,每秒行20秒,慢车长1034米,每秒行18米,两车同向并行,
当快车车尾接慢车车尾时,求快车穿过慢车的时间
13.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头浸入
隧道到车尾离开隧道共需要多少时间
14.
15.小明坐在行驶的列车上,从窗外看到迎面开来的火车经过用了6秒,已知货车车
长168米,后来又从窗外看到列车通过一座180米长的桥用了12秒。
火车每小时行多少千米。