整式的乘法复习课

合集下载

整式的乘法进阶复习教学课件

整式的乘法进阶复习教学课件
B 11 C 9或−11
D − 9或11
2
分析: + − 1 +25
2
2

= + − 1 + ±5
2
2

= +2 ∙ ±5 ∙ + ±5

由此可得: − 1 = ±10

= − 9或11
习题展示
1.已知22 + 3 − 6 = 0, 求代数式3 2 + 1 2 + 1 2 − 1 的值.
式平方的形式,那么加上的这个单项式可以是什么?
这节课你有哪些收获?选取一道你
认为有价值的题目进行分析,从考
查知识点、数学思想,反思拓展三
个方面去分析这个问题。
课前准备:

、(− ) =



2、(− − ) =
3、将6.18× 化为小数是:
4、下列代数运算正确的是( )




A ( ) =
B () =4
C ∙ = D (+1) = +1


5、计算 ( + )( − )+ 等于( )
完全平方公式:( ± ) = ± +
科学记数法: × ≤ < ,为整数
思想方法归纳
一、转化思想:
转化思想在整式运算中应用广泛,如单项式乘单
项式要转化为同底数幂相乘,单项式乘多项式要
转化为单项式乘单项式等,通过转化,把未知问
题转化为已知问题,把复杂问题转化为简单问题。
A B C
D −
归纳知识点
同底数幂的乘法: ∙ =+

整式的乘法复习课件

整式的乘法复习课件

04
整式乘法的常见错误与纠正
运算顺序的错误
总结词
详细描述
纠正方法
运算顺序错误是整式乘法中常见的问 题之一,主要表现在运算的先后顺序 不正确。
在进行整式乘法时,运算的顺序应该 是先乘方、再乘除、最后加减。如果 运算顺序不正确,会导致计算结果出 现偏差。例如,在进行(a+b)(a-b)的 计算时,应该先进行括号内的加减运 算,再进行乘法运算,得到的结果是 a^2 - b^2。如果先进行乘法运算, 得到的结果将是a^2 + ab - ab b^2,这是错误的。
整式的乘法复习ppt课 件
contents
目录
• 整式乘法的基本概念 • 整式乘法的运算技巧 • 整式乘法的应用实例 • 整式乘法的常见错误与纠正 • 整式乘法的练习题与解析
01
整式乘法的基本概念
整式的定义与表示
整式是由常数、变量、加法、减法、 乘法和乘方等运算构成的代数式。
整式中的字母表示变量,可以是实数 或复数。
在进行整式乘法时,要严格按照先乘 方、再乘除、最后加减的顺序进行运 算,避免因为运算顺序的错误导致结 果不正确。
符号处理的错误
总结词
符号处理错误是整式乘法中常见的问题之一,主要表现在对负号的处理不正确。
详细描述
在进行整式乘法时,负号的处理非常重要。如果对负号处理不当,会导致计算结果出现偏 差。例如,在进行(-a)(-b)的计算时,应该将两个负号相乘得到正号,得到的结果是ab。 如果对负号处理不当,得到的结果将是-ab,这是错误的。
纠正方法
在进行整式乘法时,要特别注意 同类项的合并,严格按照运算法 则进行计算,避免因为合并同类 项错误导致结果不正确。
05
整式乘法的练习题与解析

整式的乘法和乘法公式_复习课课件

整式的乘法和乘法公式_复习课课件

2
a + 2ab +b
2
2
想一想 下列计算是否正确?如不正确,应
如何改正?
(-x+6)(-x-6) = -x - 6 2 2 2 = (-x) - 6 =x - 36 2 (2) (-x-1)(x+1) = -x- 1 2 = -(x+1)(x+1) = -(x+1) 2 2 =- ( x + 2x + 1) = -x - 2x -1 2 (3) (-2xy-1)(2xy-1) =1-2xy
1

1


a ·a = a ( am )n = amn 幂的乘方 n 积的乘方 ( ab ) = an b n 2 2 平方差公式 (a+b)(a-b) = a - b 2 2 2 完全平方公式 (a+b) = a + 2ab +b
同底数幂的乘法
m+n
m
n
二次三项型乘法公式
(x+a)(x+b)= x +(a+b)x+ab
(1)
2
=(-1) -(2xy) =1-4x y
2
2
2 2
练习一
(1)(3x+2) (3x-2)=
(2)(3+2a)(-3+2a)=
(3)
(4a-b)2
=
2= (4)(-3a+b)
(5)
(-x-2y)2=
பைடு நூலகம்
练 习

(1) (2) (3)
2 2
(a+b) - (a-b) = 4ab
2
2 2
(a+b) +(a-b) = 2a +2b

整式复习课(2)

整式复习课(2)
一、首项有负常提“负” 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4 =-(a2-2ab+b2-4) =- ( (a-b)2-22 ) =-(a-b+2)(a-b-2) 这里的“负”,指“负号”。
二、各项有公先提“公” 例2、因式分解8a4-2a2 解:8a4-2a2=2a2(4a2-1) =2a2(2a+1)(2a-1) 这里的“公”指“公因式”。
四、括号里面分到“底”。 例4 因式分解x4-3x2-4 解:x4+3x2-4=(x2+4)(x2-1) =(x2+4)(x+1)(x-1) 这里的“底”,指分解因式,必须进行到每一 个多项式因式都不能再分解为止。其中包含提公 因式要一次性提“干净”,不留“尾巴”,并使 每一个括号内的多项式都不能再分解。 如上例中许多同学易犯分解到 x4+3x2-4=(x2+4)(x2-1)而不进一步分 解的错误。
3、
xx y y y x
4、 m 5、
9a b 16a b
2
x y
3
2
x y
2
6、
3x 12x y 6 xy
2
2
三、用简便方法计算:
13 13 19 15 1、 17 17
2001 2 2001 1999 2、 3 2 2001 2001 2002
3 2
四、已知:
1 3 3 2 2 3 a b , ab , 求a b 2a b ab 2 8
的值。
五、利用因式分解说明:
36 6
7
能被140整除。
12
《整式的乘法》复习(2)
学习目标
1.掌握和运用乘法公式。 2.能准确地运用简单的因式分 解.

整式的乘法复习课 PPT课件

整式的乘法复习课 PPT课件

较复杂时, 可以竖式对 齐,方便合 并同类项.
10x2 30x 10n
x4 3 mx3 n 3m 10x2 mn 30x 10n
4.解答题:
*(6)已知 xm 2,xn 3 (m、n为正整数),求
1 x3m2n 的值. 9
构造 xm、xn
7 a12 7 a6 2 99
构造a6
7 92 63. 9
4.解答题:
(5)已知二次三项式 x2 mx 10 和 x2 3x n 的乘积
中不含 x2 项和 x3 项.求 m、n 的值.
分析: 不含 x2 项和 x3 项,指含 x2 项和含 x3项的
系数为零.
先乘除,后加减
( ) 解 原式 12 x4 12 x4 8x2 y 3x2 y 2y2
必须添加括号
12 x4 12 x4 5x2 y + 2 y2
去括号,注意符号
5x2 y 2 y2
再合并同类项
3.计算下列各题:
(5) 1.5 2011 2 2012
解 原式 ( 6a2b2 3abc 2abc c2) 添加括号
6a2b2 abc c2
_6a2b2 + abc+ c2
合并同类项 去括号 注意符号
3.计算下列各题:
(4)12 x4 4x2 y 3x2 2 y

2x x2 x3 x3 x2 3x+15
移项,合并
2x 3x 15 5x 15
x3
注意符号, 不要漏乘.
所以,原方程的解是 x 3.
写出结论
4.解答题:

整式的乘法和乘法公式_复习课课件

整式的乘法和乘法公式_复习课课件
n n n
n
(1)0.125 (2 )
15
15 3
m=3,2n=5, (2)已知2
3m+2n+2的值. 求2
(1) ( y x)

3 2
( x y)
2 3
555,4444,5333 (2)试比较3
的大小.
计算:
(1) (-2a 2 +3a + 1) •(- 2a)3
(2) 5x(x2+2x +1) - 3(2x + 3)(x - 5) (3) (2m2 – 1)(m – 4) -2 ( m2 + 3)(2m – 5) 注意点: 1、计算时应注意运算法则及运算顺序 2、在进行多项式乘法运算时,注意不要漏 乘,以及各项符号是否正确。
计算:
(1) (2)
2)-(1-x2)2 (1-x)(1+x)(1+x 2+32)2-(x+3)2(x-3)2 (x
① (2x-1)2-(3x+1)(3x-1)+2(x-1)2
②(x+4y-6z)(x-4y+6z)
③ (x-2y+3z)2
计算:(1)98×102
(2)2992
(3) 20062-2005×2007
1、若10x=5,10y=4,求102x+3y+1 的值.
2、计算:0.251000×(-2)2001
3.(9)
1004
注意点: (1)指数:相加
1 670 ( ) 27
转化 转化 底数相乘 幂的乘方 转化 同底数
(2)指数:乘法
(3)底数:不同底数
逆用公式 ab) a (

整式的乘法和乘法公式复习课课件

整式的乘法和乘法公式复习课课件
整式的乘法和乘法公式复 习课课件
• 整式的乘法复习 • 乘法公式复习 • 整式的乘法与乘法公式的应用 • 整式的乘法和乘法公式的注意事项 • 练习与巩固
01
整式的乘法复习
单项式乘单项式
总结词
直接相乘,系数相乘,同底数幂 相乘。
详细描述
单项式与单项式相乘时,只需将 它们的系数相乘,并将相同的字 母的幂相加。例如,$2x^3y$与 $3xy^2$相乘得到$6x^4y^3$。
提高练习题
提高练习题1
计算 (x + y)^2(x - y)^2。
提高练习题2
化简 (a^2 - b^2) / (a^2 + ab + b^2)。
提高练习题3
求 (a^2 + 2ab + b^2) / (a^2 - b^2) 的值。
综合练习题
1 2
综合练习题1
计算 ((x + y)(x - y))^2。
VS
公式范围
整式的乘法公式有一定的适用范围,如完 全平方公式适用于任意实数a、b的情况; 平方差公式适用于任意实数a、b(a≠b) 的情况等。
公式推导和证明方法
推导方法
整式的乘法公式可以通过基本的运算法则进 行推导,如通过同底数幂的乘法法则推导出 幂的乘方公式;通过单项式乘以多项式的法 则推导出分配律等。
02
乘法公式复习
平方差公式
总结词
理解平方差公式的结构特点
总结词
掌握平方差公式的应用
详细描述
平方差公式是整式乘法中的重要公式之一,表示 两个平方数的差等于它们的线性组合的平方。这 个公式在代数和几何中都有广泛的应用,是解决 数学问题的关键工具。
详细描述

整式的乘法复习课件

整式的乘法复习课件

(6) 10 10 10 10 8
5
(7) x x x x 2 x
( 8) y y y y y 2 y
4
3
5
2. 幂的乘方
即: 填空:
底数不变,指数相乘
(a ) a
m n
mn
(1) (10 ) 10
3 5 2 3
3 2
6
( 2) ( x ) x
( x 2 y 1)( x 2 y 1) ( x 2 y )
解:原式= ( x 2 y ) 1 ( x 2 y )
2 2 2
2 2 2
2
理清运算关系,注意运算顺序,巧用运算律和乘法公式
x 4 xy 4 y 1 ( x 4 xy 4 y )
一、幂的运算
1.同底数幂的乘法 底数不变,指数相加
(1) x x x
2 5 6 6
2
3 7
12
( 2) x x x x
5 4 3 2 5
6
12
( 3) a a a
2 3
( 4) y y y y
4
( 5) m m m
2 3
n n
2 2
2 4
( 2) ( 2a b ) 16a 8b12
n
2 3 4
( 3) ( 3 10 ) 27 106
(4) 若x 3, y 2, 则( xy) x y 2 3 6 (5) 若10 2,10 3, 则10 (10 ) (10 ) 2 3 108 4 5 4 5 6 5 0 . 75 [ 0 . 75 ( )] 0 . 75 ( 1 ) 0.75 (6) 0.75 ( ) 3 3

整式的乘法复习课件

整式的乘法复习课件
(ab)n = an· bn (m,n都是正整数)
bn = (ab)n 反向使用: an·
试用简便方法计算:
(1) 23×53 = ; (2×5)3
= 103 = (-5)×[(-5)×(-2)]15 = -5×1015 = [2×4×(-0.125)]4
(2) (-5)16 × (-2)15
(3) 24 × 44 ×(-0.125)4
x - x 4x + 1 x x -1 + 2x x +1
2 3 2
2
2
计算:
随堂 练习
(1)(x−2y)(x+5y)
(2)x (x -1) + 2x(x - 2x + 2)
2 2
(一)填空:
1.已知xm=4,xn=8(m,n是整数),则 8 . x3m-n= 2.(-x3)÷(-x)2· (-x4)=
x y
深入探索
(1)已知2x+5y-3=0,求 4x ·32y的值 (2)已知 2x =a, 2y =b,求 22x+3y 的值 (3)已知 22n+1 + 4n =48, 求 n 的值 (4)若(9n)2 = 38 ,则n为______
乘法公式与因式分解复习
乘 法 公 式 与 因 式 分 解
(1) x + xy + y
2
2
2
(2) x 2 - 5x + 25
(3) a + 2ab - b
2
(4) x 2 - 2ab + y 2
(6) x2 - 4 y 2
(5) - 4 x2 - y 2 + 4 xy
例2:
完 全 平 方 公 式 的 逆 用

整式的乘法复习课件

整式的乘法复习课件

典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。

第一章整式的乘除复习(教案)

第一章整式的乘除复习(教案)
最后,总结回顾环节,我觉得可以更加互动一些。下次我会尝试让同学们自己来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的归纳总结能力。
3.重点难点解析:在讲授过程中,我会特别强调整式的乘法法则和除法步骤这两个重点。对于难点部分,如合并同类项和运用平方差、完全平方公式,我会通过具体的例题和对比分析来帮助大家理解。
(三)实践活动
1.ห้องสมุดไป่ตู้组讨论:学生们将分成若干小组,每组讨论一个涉及整式乘除的实际问题。
2.实验操作:为了加深对整式乘除的理解,我们将进行一个简单的数学实验,通过实际操作来演示整式乘除的基本原理。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的运算法则:重点掌握系数相乘、相同字母相乘、不同字母相乘的法则,并能够熟练运用。
-多项式乘以多项式的运算法则:强调先用一个多项式的每一项乘以另一个多项式的每一项,然后合并同类项。
-平方差公式和完全平方公式的应用:熟练掌握(a+b)(a-b)=a^2-b^2和(a+b)^2=a^2+2ab+b^2等公式,并能解决相关问题。
(二)新课讲授
1.理论介绍:首先,我们要复习整式的乘法和除法的基本概念。整式的乘法是指将两个或多个整式相乘,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。整式的除法则是指将一个整式除以另一个整式,关键是找到商和余数。这些运算是解决许多数学问题的基础。
2.案例分析:接下来,我们通过一个具体的案例来分析整式的乘除在实际中的应用。例如,解决几何图形面积问题时,可能会涉及到整式的乘法和除法运算。
3.培养数学建模意识:将现实生活中的问题转化为整式的乘除运算,使学生体会数学建模的过程,提高解决实际问题的能力。

《整式的乘法复习》课件

《整式的乘法复习》课件

学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04

基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。

整式的乘除复习课件

整式的乘除复习课件

运算步骤:首先确定系数相乘,然 后相同字母的幂相乘,最后将剩余 的字母和指数不变。
注意事项:注意相同字母的幂相乘 时,底数不变,指数相加。
举例说明:例如单项式2x^3与单项 式3y^2相乘,结果是6x^3y^2。
单项式与多项式的乘法
定义:单项式与多项式相乘,就是单项式中的每一项与多项式中的每一项相乘 运算顺序:先乘方,再乘除,最后加减 乘法分配律:$(a+b)(m+n)=am+an+bm+bn$ 注意事项:注意符号和指数的运算
巩固练习题及解析
整式的乘除运算规则练习 常见错误分析 解题技巧分享 综合应用题解析
学生自我评价与反馈
学生自我评价:对整式的乘除运算的掌握程度进行自我评价,包括概念理解、运算技 巧等方面。
反馈内容:针对复习内容提出自己的疑问和建议,以便教师更好地了解学生的学习情 况,为后续教学提供参考。
巩固练习:提供一些与整式的乘除运算相关的练习题,让学生通过练习巩固所学知识, 提高解题能力。
除法法则:多项式 除以多项式时,按 照除法的分配律和 结合律进行计算, 即先计算括号内的 除法,再计算乘法, 最后进行加法或减 法。
注意事项:在多 项式除以多项式 时,需要注意除 数不能为零,且 结果是一个商式 和一个余式的形 式。
举例:以多项式 a(x) = 2x^3 + 3x^2 - 4x + 5 和 b(x) = x^2 x + 2 为例,进 行多项式除以多 项式的运算。
添加副标题
整式的乘除复习课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 整式乘法运算
02 整式乘除的回顾 04 整式除法运算

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

(2) (- 4x) (2x2+3x-1)
解:原式=(- 4x) •2x2+(- 4x)•3x+(- 4x)•(-1) = - 8x3- 12x2+4x
(3) ab ( ab2 - 2ab)
解:原式= a2b3–2 a2b2 单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式; ②单项式的乘法运算。
(7)-5a3b2c·3a2b=-15a5b3c (8)a3b·(-4a3b)=-4a6b2 (9)(-4x2y)·(-xy)=4x3y2 (10)2a3b4(-3ab3c2)=-6a4b7c2 (11)-2a3·3a2=-6a5 (12)4x3y2·18x4y6=72x7y8
2.计算:(-a)2 ·a3 ·(-2b)3 -(-2ab)2 ·(-3a)3b
谢 谢 观 看!
4.若n为正整数,x3n=2,2x2n ·x4n+x4n ·x5n的值。
解:2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
5 已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
情境引入 x
mx
1 8
x
x
3x 4
1 8
x
mx
第一幅的面积是 x(mx)
这是两个单项式相乘, 结果可以表达得更简
第二幅的面积是 (mx)( 3 x ) 单些吗?
4
光的速度约为3×105千米/秒,太阳光照射到
地球上需要的时间大约是5×102秒,你知道地
球与太阳的距离约是多少千米吗?

第十四章_整式的乘法与因式分解_复习课件

第十四章_整式的乘法与因式分解_复习课件
其中a, b既可以是数, 也可以是代数式.
即两个数的和与这两个数的差的积,等于这两个 数的平方差。这个公式叫(乘法的)平方差公式
说明:平方差公式是根据多项式乘以多 项式得到的,它是两个数的和与同样的 两个数的差的积的形式。
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
法则:多项式除以单项式,先把这个多项 式的每一项除以这个单项式,再把所得的商 相加。
(1)已知a 2

1 a2
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 , 则z应为多少?
x x x (4) 2002 =
1999 3
·
(5)
(
1 7
)1997
·7
1998
=
7
(6) (-abc )2·(-ab) =-a3b3c2
4.单项式与单项式相乘的法则:
单项式与单项式相乘,把它们 的系数、相同字母分别相乘,对于 只在一个单项式里含有的字母,则 连同它的指数作为积的一个因式。
5 .多项式与多项式相乘:
(4) 1 x3m y2n x2m1y2 3 x2m1y3) (0.5x2m1y2 )
3
4
定义 把一个多项式化成几个整式的积的形式,象
这样的式子变形叫做把这个多项式因式分解
或分解因式。

与整式乘法的关系: 互为逆过程,互逆关系
分解因式 方法

公 二次三项型乘法公式 式
(x+p)(x+q)= x2+(p+q)x+pq
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----------------复习课
单项式 多项式单项式 多项式Fra bibliotek学习目标
• 1、理解同底数幂的乘法、积的乘方、 幂的乘方和乘法公式
• 2、会运用以上知识进行整式的乘法 运算
• 3、灵活运用同底数幂的乘法、积的 乘方、幂的乘方和乘法公式进行整 式的化简
多项式的乘法
用一个多项式里的每一项乘另一个
1、2x2·(x2+3xy-y2) – xy(6x2 – 4y2)+y2(2x2 – 4xy + y2)
2x4 +y4
2、an(an + a n - 1 – 3)
答案:a2n + a 2n – 1 – 3an
1、化简:
(2x2-1)(x2+2)-(2x2+3)(x2-2) 4x2+4
2、化简: (x-1)(x-2)+(2x-1)(x+5)-(x-5)(x+3)
计算:1、(3a2b3)2·(- 2ab3c)2
解:原式=(9a4b6) (4a2b6c2) =(9×4)(a4·a2) (b6·b6) ·c2 =36a6b12c2
2、(2x3y)(- 2xy) + (- 2x2y)2 0 3、〔- 2(a – b)〕3·3 (b – a)
24(a – b)4
单项式与多项式相乘,就是用单项式去乘多项式里 的_每__一__项_____,再把所得的积__相__加____
5、解方程:2x(x-1)-x(3x+2)=-x(x-2)-12; X = 2 6、一个多项式除以(x2-2x-3),商为x2+2x-3,求这 个多项式. X4 – 10x2 + 9 7、若a+b+c=s,ab+bc+ca=t,求a2+b2+c2的值. S2 – 2t 8、若a-b=m,b-c=n,求a2+b2+c2-ab-bc-ca的值.
多项式里的每一项再把所得的积相加
单项式乘以多项式
特殊多项式的 乘法
乘法公式


平方差公式
乘 法
完全平方公式

(立方和、立方差公式) 分

同底数幂的乘法

幂的乘方 积的乘方
单项式 运用乘法的交换、结合律 的乘法
同底数幂的乘法: 底数不变,指数相加 即:am·an=a m+n(m、n都是正整数)
填空:
. -(a+b-c)6
-(a-b-c)4
x·x m-1+x2·x m-2-3·x3·x m-3 -x m
幂的乘方 底数不变,指数相乘
即:(a m)n = a mn (m,n都是正整数)
再 2、填空:
回 首
(1)(103)2= 106 ;(2)(x3)4= x12 ; (3)(-x3)5= -x15 ;(4)(-x5)3= -x15 ;
14、先化简,再求值: 2x2+8x+12 (3a+1)(2a-3)-6(a+2)(a-1),其中a=-3 38
乘法公式: (a+b)2=a2+2ab+b2 (a – b)2 = a2 – 2ab + b2 (a+b)(a – b)=a2 – b2
另: (a+b+c)2=a2+b2+c2+2ab+2bc+2ac (a+b)(a2 – ab+b2)=a3+b3 (a – b)(a2+ab+b2) = a3 – b3 (a+b)2+(b+c)2+(c+a)2=2(a2+b2+c2+ab+bc+ca)
(1)x·x2= x3 ; (3)a2·a5= a7 ; (5)m6·m6= m12 ;
(6)10·102·21x055= (7)x2·x3+x·x4= ;
(2)x3·x2·x= x6 ; (4)y5·y4·y3= y12 ;
108

2y5
(8)y4·y+y·y·y3= ;
1、103×100×10+100×100×10010000×10×10 106
2、计算:
(x+y)2·(x+y)5 (x+y)7 (x-y)5·(x-y)·(x-y)6
(x-y)5·(x-y)3·(x-y)5 (x-y)13 (s+t)·(s+t)2·(s+t)3·(s+t)4 (s+t)10
(x-y)12
(a+b-c)3·(c-a-b)3 (a-b-c)·(b+c-a)2·(c-a+b)
(5x2+y2)(y2-5x2) Y4 – 25x4 a4-(a-b)(a+b)(a2-b2) b4 (m+n+1)(m+n-1)-(m+n)2 -1
1、31000的末位数是 1 .2、a 2n+1·a n+3 =a 3n+4.
3、(xm·xm+x m+2·x m-2+x m+n·x m-n)2 9x 4m 4、(-1.2×102)2×(5×103)3×(2×104)2 7.2×1023
m2+n2+mn
(5)(-x2)3= -x6 ;(6)(-x)2= x2 .
积的乘方 积的乘方,等于把积中的每一个因式
分别乘方,再把所得的幂相乘。
即:(ab) n = a n b n (n为正整数)
1)x30=x3·x27 =(x3·x12 )2=[x·(-x3)·(-x2 )3]
3;
6
72
(2)若xn=3,yn=2,则(xy)n1=3
,(x2y3)n=

(3)若1284·83=2n,则n=
; 7
(4)若2 x+3·3 x+3=36 x--82,则x= ;
(5)若x3n=-2,则x9n= ; 108
(6)若10x=2,10y=3,则10 2x+3y= .
1、计算: [-(a2)3]2·(ab2)3·(-2ab) -2a16b7 2、若x2n=5,求(3x3n)2-4(x2)2n的值. 1025 3、已知4x=2 3x-1,求x的值。 X=1 4、已知a2n=3,a3m=5,求a 6n+9m的值。 3375 5、(a2)3·(b3)2·(ab)4= a10b.10 6、若a2n=5,则2a6n-4= 246. 7、0.1256×26×46= 1 . 8、(x n+1)2·(x2)n-1= X 4n
相关文档
最新文档