热交换器的选型和设计指南(20210201124748)
换热器设计指南汇总
换热器设计指南总那么目的为标准本企业工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。
范围本规定规定了管壳式换热器的选型、设计、校核及资料选择。
本规定合用于本企业所有的管壳式换热器。
标准性引用文件以下文件中的条款经过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的改正单或改正版均不合用本规定。
凡不注日期或改正号〔版次〕的引用文件,其最新版本合用于本规定。
GB150-1999钢制压力容器GB151-1999管壳式换热器HTRI设计手册Shell&tubeheatexchangers——JGC石油化工设计手册第3卷——化学工业第一版社〔2002〕换热器设计手册——中国石化第一版社〔2004〕换热器设计手册——化学工业第一版社〔2002〕ShellandTubeHeatExchangersTechnicalSpecification——SHESLL(2004)SHELLANDTUBEHEATEXCHANGERS——BP(1997)Shell andTubeExchangerDesignandSelection——CHEVRONCOP.(1989)HEATEXCHANGERS——FLUORDANIEL(1994) ShellandTubeHeatExchangers ——TOTAL〔2002〕管壳式换热器工程规定——SEI〔2005〕设计根基传热过程名词定义无相变过程加热:用工艺流体或其余热流体加热另一工艺流体的过程。
冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。
换热:用工艺流体加热或冷却此外一股工艺流体的过程。
沸腾过程在传热过程中存在着相的变化—液体加热沸腾后一局部变成汽相。
此时除显热传达外,还有潜热的传达。
池沸过程:用工艺流体、水蒸汽或其余热流体加热汽化大容积设备中的工艺流体过程。
流动沸腾:用工艺流体、水蒸汽或其余热流体加热汽化狭小流道中的工艺流体过程。
冷凝过程局部或所有流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。
换热器的选型和设计指南
换热器的选型和设计指南
热交换器选型与设计指南
一、热换器的选型
1、热换器类型
根据热换器工作的原理和结构特征,热换器可以分为流体直接交换器(Direct-Fluid Exchangers)、保温热换器(Heat-Preserving Exchangers)、热管(Heat Pipes)和热泵(Heat Pump)。
(1)流体直接交换器
流体直接交换器是最普遍的热换器类型,它是由连接在同一个容器内两个不同流体进行直接交换的,可以分为板式热换器(Plate Heat Exchanger)、管式热换器(Tube Heat Exchanger)、管壳式热换器(Tube-shell Heat Exchanger)、换热器(Exchanger)、板管式换热器(Plate-Tube Exchanger)等几种。
(2)保温热换器
保温热换器是通过在热换器内部设置一层隔热材料,使得一个流体和另一个流体不能直接接触,而是通过隔热材料进行热量交换的热换器,它包括直管保温器(Straight-TubeHeatPreservingExchanger)、折管保温器(Folded-TubeHeatPreservingExchanger)以及缠绕管保温器(Coil-TubeHeatPreservingExchanger)等几种。
(3)热管
热管是一种将热能以流体的形式进行输送的装置,它是由一段密封的
金属管束和一段或多段的循环管组成,通常将其称为柔性热管
( Flexible Heat Pipes),也可以称为硬性热管(Rigid Heat Pipes)。
(4)热泵。
换热器的选型和设计指南
换热器的选型和设计指南换热器是一种常见的工业设备,用于传递热量。
在选型和设计换热器时,有几个关键因素需要考虑,包括换热器的类型、工作条件、热介质性质、热量传递要求以及材料选择等。
本文将探讨这些因素,并提供选型和设计换热器的指南。
1.换热器类型选择换热器的类型多种多样,包括壳管式换热器、板式换热器、管束式换热器等。
在选择换热器类型时,需要考虑以下几个方面:-热量传递效率:不同类型的换热器有不同的热量传递效率,需要根据具体的热量传递要求选择。
-空间限制:不同类型的换热器对空间的要求也不同,需要考虑设备安装的实际情况。
-清洁维护:不同类型的换热器在清洁和维护方面也不同,这也需要考虑到。
2.工作条件考虑换热器的工作条件包括温度、压力和流量。
这些条件会对选型和设计产生影响,并需要根据不同的工况选择合适的换热器。
对于高温、高压或高流量的情况,需要选择能够承受这些条件的换热器,并进行合理的设计。
3.热介质性质分析热介质的物理性质对换热器的选型和设计也有影响。
例如,不同的热介质对应不同的热导率、比热容和粘度等物理特性,这些特性会对换热器的热量传递效果产生影响。
需要根据热介质的性质选择合适的换热器和传热方式。
4.热量传递要求根据具体的热量传递要求,选择合适的热量交换方式。
换热器可以采用对流、辐射或传导等方式进行热量传递。
不同的传热方式在热量传递效率和能耗方面也有差异,需要根据具体要求进行选择。
5.材料选择换热器的材料选择对其性能和使用寿命起着重要作用。
一些常用的换热器材料包括不锈钢、铜、铝和钛等。
需要根据热介质的特性、工作条件和预算等因素选择合适的材料。
此外,还需要考虑材料的耐腐蚀性能、尺寸稳定性和可焊性等因素。
在设计换热器时-设计热传导面积:根据热量传递要求和热介质的特性,设计合适的热传导面积,确保达到所需的热传递效果。
-流体力学分析:对流动的流体进行流体力学分析,考虑流体的流速、压降以及流体在换热器中的流动模式等,以确保热量传递效果和系统的稳定性。
热交换器的选型和设计的指南
热交换器的选型和设计指南1概述 (1)2换热器的分类及结构特点。
(1)3换热器的类型选择 (2)4无相变物流换热器的选择 (11)5冷凝器的选择 (13)6蒸发器的选择 (14)7换热器的合理压力降 (17)8工艺条件中温度的选用 (18)9管壳式换热器接管位置的选取 (19)10结构参数的选取 (19)11管壳式换热器的设计要点 (23)12空冷器的设计要点 (32)13空冷器设计基础数据 (35)1概述本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法。
2换热器的分类及结构特点。
表2- 1换热器的结构分类3换热器的类型选择换热器的类型很多,每种型式都有特定的应用围。
在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。
因此,针对具体情况正确地选择换热器的类型,是很重要的。
换热器选型时需要考虑的因素是多方面的,主要有:1)热负荷及流量大小2)流体的性质3)温度、压力及允许压降的围4)对清洗、维修的要求5)设备结构、材料、尺寸、重量6)价格、使用安全性和寿命在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。
所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。
针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。
因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。
对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。
3.1管壳式换热器管壳式换热器的应用围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100° C以下到1100° C高温。
热交换器设计说明书终极
0.00303
79 80 81
Gs tw
Gs
M2 23.16 AS 0.0355
假定
652.4 57
200 .4 10 6
℃ kg/( m•s)
w1
查参考文献 2 附录 9
热交换器课程设计说明书
2
82
壳侧换 热系数
rw
(m2•
K)/W
查参考文献 1 附录 C 查参考文献 2
0.00034 0.00017
氨的污 垢热阻 管壁热 阻
(m2•
K)/W
忽略
K [
72.24
P
P
24
参数 P、 R
R
t1'' t 2' 40 25 ' ' 120 25 t1 t 2
0.16
t1' t1'' 120 90 R '' ' 40 25 t2 t2
—
℃
2 0.98 70.8 1000
25 26 27
温差修 正系数 有效平 均温差 初选传 热系数 估算传 热面积
50
度
120
ls (0.2 ~ 1)D s (0.2 ~ 1) 0.5
51
ls
m
0.1 ~ 0.5m
0.3
ls 0.3m ,ls ,i 0.39m,ls ,o 0.39m
热交换器课程设计说明书
52
折流板 数目 折流板 管孔数 折流板 上管孔 直径 通过折 流板上 管子数 折流板 缺口处 管数
Ds 2h D 2h ) sin[ar cos( s )] DL DL
热交换器性能优化设计和能效评估
热交换器性能优化设计和能效评估热交换器作为一种常见的热能设备,在工业生产中起着至关重要的作用。
其性能的优化设计和能效的评估,对于提高设备运行效率,降低能源消耗具有重要意义。
本文将对进行深入探讨,从理论研究到实际应用,为热交换器的设计与改进提供有效参考。
首先,我们将从热交换器的基本原理和分类出发,对热交换器的工作原理进行详细介绍。
热交换器主要通过两种流体之间的热量传递来实现热能转换,根据其结构和工作方式可分为壳管式热交换器、板式热交换器等多种类型。
不同类型的热交换器具有各自的特点和适用场景,深入了解其原理对于后续的优化设计和能效评估具有重要指导意义。
接着,我们将介绍热交换器性能优化设计的相关方法和技术。
热交换器的性能优化设计旨在提高其传热效率和降低能量损失,关键在于合理设计热量传递面积、优化流体流动路径和提高传热系数等方面。
我们将结合实际案例,对热交换器性能优化设计的步骤和关键技术进行详细说明,为读者提供实用的设计指导。
随后,我们将重点讨论热交换器能效评估的方法和标准。
热交换器在运行过程中会产生一定的能量损耗,如何准确评估其能效对于制定节能改进方案至关重要。
我们将介绍热交换器能效评估的常用方法,包括传热系数计算、热效率测试和能量平衡分析等,并对各种评估指标的应用范围和适用性进行比较分析,为读者提供合理有效的评估方法。
最后,我们将以某工业热交换器的实际案例为例,对其性能优化设计和能效评估进行具体实践。
通过分析该热交换器的工作条件、热量传递效率和能源消耗情况,结合前期研究成果和相关理论知识,提出了一系列改进措施和节能建议,并对改进方案进行了实验验证,最终取得了显著的节能效果和性能提升。
梳理一下本文的重点,我们可以发现,热交换器性能优化设计和能效评估是一个综合性和复杂性较强的工程问题,在实际应用中具有重要价值和意义。
本文以此为主题,系统地介绍了热交换器的基本原理、性能优化设计方法、能效评估标准和实际应用案例,希望为相关领域的研究和实践提供一定的参考和借鉴。
热交换器的选型和设计指南三
热交换器的选型和设计指南三2010-01-26 20:15:11 来源:热泵热水器技术网浏览:136次11管壳式换热器的设计要点换热器的设计过程包括计算换热面积和选型两个方面。
有关换热器的选型问题,前面已经讲过了,下面主要介绍管壳式换热器的设计要点及如何分析计算结果、调整计算,而设计出满足工艺需要的、传热效率高的换热器。
11.1设计计算的基本模型及换热器的性能参数换热器的性能主要是通过下列公式来描述的。
a.冷、热两流体间热量平衡Qreq=(WCpΔT)hot=(WCpΔT)coldW--流体质量流量Cp--流体的比热hot--热流体cold--冷流体ΔT--进出口温度差b.传热率方程Qact=(A)(ΔTm)(1/ΣR)ΣR=(1/hi)o+(1/ho)o+(Rf)o+(Rw)oΣR--总热阻A--传热面hi、ho--分别为两流体的传热膜系数Rf--两流体的污垢热阻Rw--金属壁面热阻ΔTm--平均温度差O--通常换热计算以换热管外表面为基准c.传热率的估算Qact≥Qreqd.对压力降的限制条件(ΔPi)act≤(ΔPi)allow(ΔPo)act≤(ΔPo)allowΔP--压力降下标i表示管内下标o表示管外11.2换热器的计算类型换热器的计算类型常分为设计计算和校核计算两大类。
换热器计算一般需要三大类数据:结构数据、工艺数据和物性数据,其中结构数据的选择在换热器中最为重要。
在管壳式换热器的设计中包含有一系列的选择问题,如壳体型式、管程数、管子类型、管长、管子排列、折流板型式、冷热流体流动通道方式等方面的选择。
工艺数据包括冷、热流体的流量、进出口温度、进口压力、允许压降及污垢系数等。
物性数据包括冷、热流体在进出口温度下的密度、比热容、粘度、导热系数、表面张力。
a.设计计算 Design设计计算就是通过给定的工艺条件,来确定一台未知换热器的结构参数,并使其结构最优、尺寸最小。
对设计计算应先确定下列基本的几何参数:--管长--管间距--流向角--换热管外径及管壁厚b.校核计算 Rating校核计算就是评估一台已知换热器的传热性能,即通过校核设备的几何尺寸来看其是否能满足传热要求。
换热器的选型和设计指南
换热器的选型和设计指南换热器是一种用于传递热量的设备,广泛应用于各个行业和领域,包括化工、石油、电力、食品等。
换热器的选型和设计至关重要,直接影响设备的热效率和工作效果。
本文将从选型和设计的角度,提供一些指南和建议。
一、换热器的选型指南1.确定换热器的功能:在选择换热器之前,需要明确所需的热交换功能,例如加热、冷却、蒸发、凝结等。
同时还需考虑所需的传热方式,如对流传热、辐射传热等。
2.确定换热器的工作参数:根据具体的应用需求,确定换热器的工作参数,包括流体的温度、压力、流量等。
这些参数将直接影响换热器的尺寸、型号和材料选择。
3.选择适当的换热器类型:根据应用需求和流体性质,选择合适的换热器类型,包括壳管式换热器、板式换热器、管束式换热器等。
每种类型都有其适用的特点和限制,需要根据具体场景进行选择。
4.评估换热器的热性能:除了换热器类型,还需评估不同换热器的热性能,包括传热系数、压降、能耗等。
通过对不同类型和厂家的换热器性能进行比较,选择性能最佳的产品。
5.考虑维护和清洁:换热器在使用过程中需要进行维护和清洁,因此需要选择易于维护和清洁的换热器类型和结构。
同时还需考虑清洗液的使用、清洗方法等。
二、换热器的设计指南1.确定换热面积:根据流体的热交换需求和换热器的热传递特性,计算和确定所需的换热面积。
换热面积的大小将直接影响换热器的尺寸和材料成本。
2.确定流体流动方式:根据流体的性质和热交换需求,确定流体的流动方式,包括并流、逆流等。
不同的流动方式将影响换热器的传热效果和压降。
3.选择合适的材料:根据工作环境和流体的性质,选择合适的材料,包括换热管的材料、壳体材料等。
需要考虑材料的耐腐蚀性、强度和耐高温性能。
4.考虑换热器的安全性:换热器设计时需考虑安全因素,包括避免流体泄漏、冲击和爆炸等。
需要确保换热器的结构强度和密封性能,以及安装和使用过程中的安全措施。
5.优化换热器设计:通过计算和模拟,优化换热器的设计,包括优化流体流动路径、调整管束布置、增加换热面积等,以提高换热器的热效率和运行性能。
板式换热器选型设计原则及方法
板式换热器选型设计原则及方法单板面积的选择一般板式换热器选择首先是按流速确定角孔直径,角孔处流速一般控制在6m/s,当板片角孔确定后,板片的系列就能确定了。
角孔直接一定的情况下,不同的制造商有不同板型,有的就一~种,有些较多。
我知道的有一公司,在100mm角孔直接下,有多达7种板片。
面积大小有3个规格,流道宽度有2个。
至于单片面积的大下,我的经验是在满足工艺要求的情况下,应从价格上考虑。
从单片面积的造价比,越大越便宜,但是整机价格得考虑框架的价格,所以而个应综合考虑。
单片面积小,框架价格低,但是板片单价高。
并且单片面积太下,处除了占地大,一般也难达到单流程的板片布置。
(2)板间流速的选取基本同意楼主的观点,一般0.2m/s是下限,但是上限0.8m/s好象稍低了。
不过这得看制造商的板片波纹。
(3)流程的确定补充楼主观点:板式换热器流程在工业上一般都布置成单流程,这样在检修时可不用拆处接管。
在卫生和食品上,多流程的应用较多。
因为换热器一般都比较小。
(4)流向的选取一般的板式换热器都是取纯逆流布置的。
可拆式板式换热器在换热站的应用情况加热载体为 1.1MPa、230℃的蒸汽;供暖载体为热水,供水温度为92℃,回水温度为70℃,供水压力为0.5MPa、回水压力为0.14MPa。
因原管壳式换热器设备陈旧,维修量大,并且蒸汽的消耗量有逐年递增的趋势。
于是在2006年大修期间,将原管壳式换热器改造成板式换热器。
1、板式换热器板式换热器(plateheatexchangers,简称PHE)是一种新型高效换热器。
其发明始于1872年,最初主要用于食品工业,后来逐渐扩大至造纸、医药、冶金、矿山、机械制造、电力、船舶、采暖及石油化工等其它工业领域。
目前世界较知名的板式换热器生产厂家有瑞典的Alfa-laval(阿法拉伐)、SWEP(舒瑞普)、德国的GEA公司、英国的APV、日本的Hisaka(日版制作所)等。
板式换热器由一系列具有一定波纹形状的金属片叠装而成,由于其特殊结构,使得板式换热器具有以下优点。
板式换热器选型设计的基本原则
板式换热器选型设计的基本原则目录1.板式换热器选型三大原则 (1)2.板式换热器选用主要考虑参数 (2)3.板型选择 (2)4.流程和流道的选择 (3)5.板间流速的选取 (3)6.流向的选取 (3)7.压降校核 (4)8.其它注意事项 (4)1.板式换热器选型三大原则板式换热器选型需要遵循3个原则:板型、流程和流道和压降校核。
这三个方面也是板式换热器选型最重要的部分。
第一大原则:看板型1.板型或波纹式应根据换热场合的实际需要确定。
2.对于流量大、允许压降小的情况,应选用阻力小的板型,否则,应选用阻力大的板式。
3.根据流体压力和温度,确定是选择可拆卸式换热器还是钎焊式换热器。
4.在确定板型时,不宜选择单板面积过小的板,以避免板数过多、板间流量小、传热系数低。
对于较大的换热器,这个问题更应引起重视。
第二大原则:看流程和流道流程是指板式换热器中一种介质在同一流动方向上的一组并联的流道。
流道是指板式换热器中由相邻两块板组成的介质流道。
一般是将几个流道并联或串联,形成冷热介质通道的不同组合。
应根据传热和流体阻力计算确定流程组合形式,并满足工艺条件要求。
尽量使冷、热水通道中的对流换热系数相等或接近,以获得最佳的换热效果。
第三大原则:看压降校核在板式换热器的设计选型中,一般对压降有一定的要求,因此应进行校核。
如果校验压降超过允许压降,则需要重新计算设计和选型,直至满足工艺要求。
2.板式换热器选用主要考虑参数1.冷侧介质、热侧介质热交换介质和介质的物理参数与板式换热器板和垫片材料的选择以及板波纹形状有很大关系热交换介质的物理参数包括粘度、密度、比热、导热系数等2,冷侧进出口温度,热侧进出口温度3,冷侧介质和热侧介质所需压力损失用于选择有压降损失要求的板式换热器,设计和选择时应检查压力损失,如果压降超过允许范围,应重新选择、计算和审查热交换器,直到满足工艺要求4.流量或热交换面积5.工作条件和应用领域6.产品应用区域如果板式换热器用于供暖行业,还可以提供换热区域和应用区域。
换热器设计指南
换热器设计指南1总则1.1目的为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。
1.2范围1.2.1本法规规定了管壳式换热器的选择、设计、验证和材料选择。
1.2.2本规定适用于本公司所有管壳式换热器。
1.3规范性引用文件下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。
凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。
《钢制压力容器和管壳式热交换器HTRI设计手册》shell&tubeheatexchangers――jgc石油化工设计手册第三卷化学工业出版社(2002)换热器设计手册中石化出版社(2022)换热器设计手册化学工业出版社(2002)shellandtubeheatexchangerstechnicalspecification――shesll(2021)shellandtubehe atexchangers――bp(1997)外壳和管交换设计和选择——雪佛龙。
(1989)热交换器-氟丹尼尔(1994)管壳式热交换器-管壳式热交换器的总体(2002)工程法规-SEI(2022)2设计基础2.1传热过程中术语的定义2.1.1无相变过程加热:用工艺流体或其他热流体加热另一种工艺流体的过程。
冷却:用制冷剂(如工艺流体、冷却水或空气)冷却另一种工艺流体的过程。
热交换:用工艺流体加热或冷却另一个工艺流体流的过程。
2.1.2沸腾过程在传热过程中存在着相的变化―液体加热沸腾后一部分变为汽相。
此时除显热传递外,还有潜热的传递。
池沸腾过程:在大容量设备中,用工艺流体、蒸汽或其他热流体加热和汽化工艺流体的过程。
流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。
2.1.3冷凝过程部分或全部流体凝结成液相,热流体的显热和潜热被冷流体带走。
这种相变过程称为冷凝过程。
纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。
热交换器性能优化设计和能效评估
热交换器性能优化设计和能效评估热交换器作为热力设备的关键组件,其性能优化设计和能效评估具有重要意义。
本文将从热交换器的工作原理、性能参数、优化设计以及能效评估等方面进行深入研究,并提出相应的解决方案。
一、热交换器工作原理热交换器是一种用来实现两种或多种流体间传热传质的装置。
其基本工作原理是通过流体之间的接触,使得热量从高温的流体传递给低温的流体,从而达到平衡温度的目的。
常见的热交换器类型包括管壳式、管束式、板式等,具体设计方式取决于具体的应用场景和需求。
二、热交换器性能参数热交换器的性能参数对其工作效果和能效评估具有重要影响。
常见的性能参数包括传热系数、压降、热负荷、效能等。
1.传热系数:传热系数反映了热交换器传热效果的好坏,是衡量热交换器性能的重要指标。
传热系数的大小取决于流体的流速、流动形式以及传热界面的性质等因素。
2.压降:压降是指流体在热交换器内部通过过程中所产生的流体阻力。
压降的大小直接影响着热交换器的实际应用情况,过大的压降会导致能耗增加和设备损坏等问题。
3.热负荷:热负荷是指单位时间内通过热交换器的热量。
热负荷的大小决定了热交换器的尺寸和工作条件,对于热交换器的设计和优化具有指导意义。
4.效能:效能是指热交换器实际传热量与理论传热量之间的比值。
效能越高,代表热交换器的传热效率越高,能源利用效率也就越高。
三、热交换器性能优化设计为了提高热交换器的性能,需要从几个方面进行优化设计。
1.流体分配设计:流体分配设计是为了保证流体在热交换器内部的均匀分布,避免热交换器内部出现温度梯度过大的情况。
流体分配设计可以通过调整管道的布置方式、增加分配器和集流器以及采用适当的分配管道等方式来实现。
2.表面增加设计:为了增加热交换器的传热面积,可以采用一些表面增加设计。
例如,在板式热交换器中增加蓝色肋片来提高传热面积,或者在管式热交换器中增加填料来增加表面积。
3.热工水力设计:热工水力设计是为了优化热交换器内流体的流动方式和流速,提高传热系数。
换热器设计和选型指南
换热器设计和选型指南换热器是一种用于传递热量的设备,广泛应用于各个行业中。
在换热器的设计和选型过程中,有一些关键的要素需要考虑,本文将详细介绍换热器设计和选型的指导原则。
首先,在进行换热器设计和选型时,我们需要考虑到的第一个要素是换热负荷。
换热负荷是指单位时间内需要传递的热量大小,决定了换热器的尺寸和能力。
根据所需的换热负荷大小,我们可以选择合适的换热器类型和规格。
其次,在换热器的设计和选型过程中,我们还需要考虑到的要素是介质的物理性质。
各种介质的物理性质(如密度、热容、导热系数等)对换热器的设计和选型都有一定的影响。
在选择换热器时,需要充分考虑介质的物理性质,以确保热量能够有效地传递。
此外,在进行换热器设计和选型时,我们还需要考虑到的要素是工作条件。
换热器的工作条件包括温度、压力、流速等因素。
不同的工作条件可能对换热器的材料选择、结构设计等方面都有一定的要求。
因此,在进行换热器设计和选型时,需要充分考虑到工作条件的要求。
在换热器的设计和选型过程中,还需要考虑到的要素是换热器的效能。
换热器的效能指的是单位时间内传递的热量与单位时间内消耗的能量之比,是评价换热器性能优劣的重要指标。
在选择换热器时,需要充分考虑效能的要求,以确保换热器能够满足实际应用的需要。
此外,在进行换热器设计和选型时,还需要考虑到的要素是换热器的维护和清洁。
换热器的长期运行离不开定期的维护和清洁工作。
因此,在选择换热器时,需要充分考虑到维护和清洁的难易程度,以便能够方便地进行维护和清洁。
最后,在进行换热器设计和选型时,我们还需要考虑到的要素是经济性和环保性。
换热器的经济性主要包括设备造价、运行费用、能源消耗等因素,而环保性主要包括设备对环境的影响等方面。
在选择换热器时,需要充分考虑经济性和环保性的要求,以确保换热器能够在经济和环保的前提下进行工作。
综上所述,换热器设计和选型是一个复杂的过程,需要考虑到多个关键的要素。
在进行换热器设计和选型时,需要充分考虑到换热负荷、介质的物理性质、工作条件、效能、维护和清洁、经济性和环保性等因素。
板式热交换器选型计算
板式热交换器选型计算板式热交换器是目前常见的一种热交换设备,广泛应用于工业制造、能源、化工等领域。
在进行板式热交换器的选型计算时,需要考虑到诸多因素,包括传热系数、换热面积、压降、材料选择等等。
下面将从这几个方面来介绍板式热交换器的选型计算。
首先是传热系数的计算。
传热系数是影响板式热交换器换热效果的一个重要因素,可以通过Stanton数进行计算。
Stanton数与输送流体的流速、流量、温度差等有关。
在进行传热系数计算时,需要根据具体工况和流体流速等参数进行估算,可以根据经验公式进行计算。
其次是换热面积的计算。
换热面积是决定板式热交换器换热能力的重要指标,直接影响到换热器的选型。
换热面积的计算可以通过传热系数和传热功率来进行,在确定了传热系数后,可以根据需要的传热功率来计算出所需的换热面积。
接下来是压降的计算。
压降是指在流体通过板式热交换器时,由于阻力产生的压力降低。
压降的大小会影响到流体的流量和流速,进而影响到换热效果。
在进行压降的计算时,需要根据流体的性质和压降设计值,结合实际的工作条件进行计算。
最后是材料选择的问题。
板式热交换器的制作材料有很多种,包括不锈钢、钛合金、镍基合金等。
材料的选择需要根据流体的性质、工作温度、腐蚀性等因素来确定。
选择合适的材料可以保证板式热交换器的安全稳定运行。
除了以上几个方面的计算,还需考虑实际工艺、设备的可靠性、维护保养等其他因素,从而对板式热交换器进行综合评估和选型计算。
当然,这些计算只是初步的估算,还需要实际情况验证,并在设计过程中进行调整和优化。
总之,板式热交换器的选型计算是一个综合考虑多个因素的过程,需要根据具体工况和需求进行计算和优化。
通过合理的选型计算,可以提高板式热交换器的热效率,实现更好的换热效果。
热交换器设计选型
应用
在完成热量传递的同 时.换热设备还可以在生产 工艺流程中起到不同的作用。
例如控制介质的温度(加 热器、冷却器、余热锅炉等);
热交换器设计选型
应用
控制介质的压力(冷凝器、 再沸器、蒸发器等);
控制介质汽化的流量(蒸 发器、再沸器等);控制介质 冷凝的流量(冷凝器、冷凝冷 却器等)。
热交换器设计选型
换热器主要介绍内容
主要介绍目前广泛应 用且量多面广的钢制管壳 式换热器,而对其它型式 的换热器只作一定篇幅的 介绍。
热交换器设计选型
2.换热设备的分类及特点
换热设备有不同的分类方 法,而最常用的是根据作用 原理或传热方式来区分的。
热交换器设计选型
分类
直接接触式换热器(或混合式换 热器)
热交换器设计选型
间壁式换热器(表面式换热器)
间壁式换热器是工业生产 中应用最为广泛的换热器, 其形式多种多样,如常见的 管壳式换热器和板式换热器 都属于间壁式换热器。
热交换器设计选型
中间载热体式换热器
此类换热器是把两个间壁式换热器 由在其中循环的载热体连接起来的换 热器。载热体在高温流体换热器和低 温流体换热器之间循环,在高温流体 换热器中吸收热量,在低温流体换热 器中把热量释放给低温流体,如热管 式换热器。
热交换器设计选型
应用
在石油化工的许多生产操作 中部无一例外地必须应用换热设 备,如气体压缩输送的冷却、液 体原料贮路的防止凝固、反应过 程的冷却或加热、分离设备的汽 化或冷凝、直至循环水的降温、 环境温度的控制等等。
热交换器设计选型
应用
总之,在石油化工生产 中换热设备的应用最为广 泛。
热交换器设计选型
发展趋势
换热器设计指南.
换热器设计指南1 总则1.1 目的为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。
1.2 范围1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。
1.2.2本规定适用于本公司所有的管壳式换热器。
1.3 规范性引用文件下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。
凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。
GB150-1999 钢制压力容器GB151-1999 管壳式换热器HTRI设计手册Shell & tube heat exchangers——JGC石油化工设计手册第3卷——化学工业出版社(2002)换热器设计手册——中国石化出版社(2004)换热器设计手册——化学工业出版社(2002)Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997)Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994)Shell and Tube Heat Exchangers——TOTAL(2002)管壳式换热器工程规定——SEI(2005)2 设计基础2.1 传热过程名词定义2.1.1 无相变过程加热:用工艺流体或其他热流体加热另一工艺流体的过程。
冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。
换热:用工艺流体加热或冷却另外一股工艺流体的过程。
2.1.2 沸腾过程在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。
此时除显热传递外,还有潜热的传递。
池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热交换器的选型和设计指南1概述 (2)2换热器的分类及结构特点。
(2)3换热器的类型选择 (3)4无相变物流换热器的选择 (12)5冷凝器的选择 (14)6蒸发器的选择 (15)7换热器的合理压力降 (18)8工艺条件中温度的选用 (19)9管壳式换热器接管位置的选取 (19)10结构参数的选取 (20)11管壳式换热器的设计要点 (23)12空冷器的设计要点 (31)13空冷器设计基础数据 (34)1概述本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。
表2- 1换热器的结构分类3换热器的类型选择换热器的类型很多,每种型式都有特定的应用范围。
在某一种场合下性能很好的换热器,如果换到另一种场合可能传热效果和性能会有很大的改变。
因此,针对具体情况正确地选择换热器的类型,是很重要的。
换热器选型时需要考虑的因素是多方面的,主要有:1)热负荷及流量大小2)流体的性质3)温度、压力及允许压降的范围4)对清洗、维修的要求5)设备结构、材料、尺寸、重量6)价格、使用安全性和寿命在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安全性等方面加以考虑。
所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。
针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现降低成本的目的。
因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型式来有效地减少工艺过程的能量消耗。
对工程技术人员而言,在设计换热器时,对于型式的合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。
3.1管壳式换热器管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到41.5MPa,温度可以从-100 °C以下到1100 °C高温。
此外,它还具有容量大、结构简单、造价低廉、清洗方便等优点,因此它在换热器中是最主要的型式。
3.2特殊型式的换热器楚徉通左(kgf/cr^)表3 - 1特殊型式换热器的使用范围3.3特殊型式的换热管特殊型式的换热管包括有低翅管、 高通量管(UCC ) Thermoexcell-E 、C (日立)及槽管等。
3.4常用换热器下表中概括地描述了常用换热器的型式及应用条件和特点。
表3 -4换热器的类型及应用特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅 式换热器、螺旋板式换热器、蛇管式换热器和热管换热器等。
它们的使用是受设计温度和设 计压力限制的。
在下图中给出了特殊型式的换热器的适用范围,可供参考。
700-1—600-式ft500400300-20010040 5Q!■*护:ft (SUS ;70kgF/cniOD-?0从上表中可以看出在换热器选型时,我们应同时考虑是否选用特殊型式的换热器和采用什么样的换热管为好。
当然,我们通常一般首先考虑选用管壳式换热器。
另外,认真研究技术规定中的设计要求也是很必要的,而后再选取能最好发挥其特点的合适的换热器。
3.5管壳式换热器封头和管程数的选取因管壳式换热器最为常用,下表3-5中给出了其封头选取的一般要求,表3-6,3-7 中给出了换热器的管程数限制值。
表3 — 5 TEMA端部型式的选取污垢系数:mt °C /W见附图一(1)C :化学清洗;M机械清洗,包括高压水力喷射清洗。
⑵A :当管侧或壳侧腐蚀裕度为3.0mn时,首选封头型式(3) B :常用的、较为经济的封头型式。
(4) 只用于管内侧可用高压水喷射清洗的冷却水系统。
(5) 一般使用S形型头,除非有特殊要求时选T型封头。
⑹当壳侧污垢系数w 0.00035时,可以使用不可拆端盖。
⑺当壳侧污垢系数w 0.00035并且管侧可用高压水喷射清洗时,T型封头可使用不可拆端盖。
(8) B或C:常用型式,比A型经济。
(9) M或N:常用型式,比L型经济。
(10) L :当管侧腐蚀裕度为3.0mm寸,首选封头型式。
表3-6各类换热器管程数限制表3 —7最大管程数3.6据不同的工艺条件来安排物流下表从不同的工艺条件出发给出了换热器的一般选型准则。
从换热器经济设计的角度考虑,对管、壳式换热器应首先着重考虑物流的安排问题,如果两流体温度交叉(即:高温流体的出口温度低于冷流体的出口温度),应考虑选流动型式为逆流的换热器。
尽管对管壳式换热器可以选F型壳体,但因纵向隔板间会发生热量和流体泄漏,因此多数情况下不推荐使用此种型式的壳体。
表3-8工艺条件和物流的安排3.7冷却系统中换热器的选取在许多工业过程中,产生的大量热量需要通过冷却系统来排出。
过去经常以水作为冷却剂。
随着工业的发展,冷却水需求量急剧增加,引起供水困难,因而发展了空气冷却。
对一个化工系统,一般包括有水冷系统和空冷系统,或者是这两者的组合系统。
当来自冷却器或冷凝器的工艺流体的出口温度较高时,应该考虑选择空气冷却器。
通常空冷器比其它类型的换热器经济,设备回收期短,当工艺流体的出口温度高于大气环境温度15°C 20°C或更高时,选择空冷器比较理想。
当然对空冷器需做包括结构价格、耗电等因素等在内的综合费用分析。
而使用水冷系统时也应考虑包括供水、处理、循环使用及废水处理等费用。
根据技术经济比较,在气候适宜的地方,当工艺物料的最低温度大于65°C,选用空冷最为合适;而当工艺物料的最低温度小于50 °C,则宜用水冷;在这两温度之间,则应作详细的经济分析,以确定用何种型式。
一般来说,当工艺流体温度较低时,使用空冷器和管壳式水冷器的混合系统比较合理,通常高于60°C的部分热量用空冷器取走,其余部分热量用水冷器取走。
3.7.1选用空冷器的原则1)冷却水供应困难,水冷的运行费用过高;2)水冷引起结垢和腐蚀严重;3)水冷引起环境污染,特别是化工厂,将热水排入环境的热污染也应注意。
3.7.2符合下列条件时,选用空冷更为有利:1)空气进口温度设计值< 38 °2)热流体出口温度与空气进口温度之差> 15 C 3)有效对数平均温差>40°C4)热流体凝固温度< 0 C5)热流体出口温度的允许波动范围》 3 5 C6)管侧允许压力降> 10kpa7)管内介质的传热膜系数< 2300w/m2K8)冷却水污垢系数> 0.0002m2. C/W4无相变物流换热器的选择4.1无相变流动的换热器应遵循表3 -8中的通用规则。
4.2在大多数情况下,单相流动可以选用特殊型式的换热器,这些换热器可以达到节省设备结构造价和降低能耗的目的。
在设备选型时可参考下表中不同类型换热器的传热系数值。
常用换热器的总传热系数Kcal/(h.m 24.3对水-水系统(包括海水)首选板式换热器。
板式换热器在价格、重量、紧凑性方面都是最好的。
但要注意污垢系数应小于任何管壳式换热器,它的传热性能通常决定于厂商提供的板片形式。
4.4当冷却器出口温度高于大气环境温度15°C20°C或更高时,考虑用空冷器。
4.5对管壳式换热器,经常使用低翅管来增强壳侧的传热。
一般壳侧传热系数会有两倍或三倍的提高。
特别当壳侧传热系数低于管侧一半时,采用低翅管特别有效。
当某一流体在管侧的传热系数过低时,则考虑变换管侧流动为壳侧流动,并选用低翅管。
当流体较脏时,会有很多未知因素造成换热器的严重结垢,因此不要使用低翅片换热管。
5冷凝器的选择5.1 一个冷凝器的传热性能很大程度上取决于换热器的型式、流体的分布以及冷凝侧的工艺条件。
对冷凝器的选取应在考虑了3-8表中的通用选型规定外,并同时考虑下表中的工艺条件冷凝器选型指南5.2当冷凝器的冷凝温度高于环境温度15°C20°C或更高时,考虑使用空冷器。
5.3特殊类型的换热器有时也可用做冷凝器,下表中给出了几个常用的实例。
5.4对可能会有冷冻发生的冷凝器,当物流在壳侧冷凝时,通常要考虑加大管间距,并需要注意考虑金属温度、冷凝液流动和不凝气的放空等问题。
也可使用专门的防冻剂冷凝器或刺刀式和带有冷凝液排出箱的冷凝器。
5.5在冷凝器中为了强化传热,也常常使用强化传热管,如:低翅管、Thermonexcell-C(日立)和槽式管(垂直使用)。
低翅管较普遍地用于工艺装置中。
而其它两种则更多地用于空调生产中。
这些管可强化传热,提高传热系数两倍至五倍。
但应高度重视它们的结垢问题。
6蒸发器的选择6.1蒸发器或再沸器可以分成(1)内置式、(2)釜式、(3)卧式热虹吸式、(4)立式热虹吸式、(5)强制循环式。
在下表中列出了各种蒸发器的特点。
蒸发器的类型及特点6.2对蒸发器或再沸器,传热性能可能会因设备型式的选择、沸腾侧的工艺条件而有很大变化。
因此,在选择一个合适的蒸发器或再沸器时,除了要考虑前面所说的通用规则外,还应考虑下表中所列的操作压力、设计温差、污垢系数及混合液沸腾范围在内的工艺条件。
蒸发器或再沸器选型指南工艺条件再沸器类型B(best):最好;G(good):好的;F(fair): 尚好,但可选更好的;Rd(riskydesign): 危险的,除非小心设计,但在有些工况下可做其它更好的选择;R(risky):由于数据不充分,冒险;P(poor):不好的操作;E:(operable)可行,但是增加了不必要的费用。
6.3对卧式循环式的蒸发器或再沸器,为了避免在壳侧两相流动的流体气-液相分离,推荐使用G 型壳体或H型壳体,而当使用E型壳体或J型壳体时,应选择横向流动,并尽量使管长与壳径之比等于5或小于5。
6.4对立式热虹吸再沸器,有两种形式的出口接管。
(1)塔侧面与再沸器顶部相连型式,(2)塔和再沸器直接相连的型式。
对纯组份的沸腾,(1)、(2)两种接管型式均可。
而对混合物的沸腾,最好选用(1)形式的接管。
热虹吸再沸器的循环是靠入口和出口管道之间的水力静压差来维持的。
为了达到较高的循环率并且很好地控制它,应该减小管道中的压力降。
这就需要慎重地选择管道直径、材料、布置方式、阀门、弯头及其它管件。
6.5当在立式或卧式热虹吸再沸器中,热介质为单相流时,逆流和平行流动都是可行的,应通过对温度差、循环率和传热性能的综合考虑来选择何种为最好。
6.6特殊型式的换热器用于蒸发器或再沸器的情况并不多,在下表中列出了几个应用实例。
6.7高热通量管(UCC)、Thermonexcell-E(日立)等特殊型式的换热管也常用于蒸发器中,一般可提高传热系数10到20倍。
当平均温差较小(Tm v 10°C)、沸腾传热系数低时,应考虑利用以上特殊型式的换热管。