历年中考试题不等式与不等 式组分类汇编及答案

合集下载

中考数学总复习《不等式与不等式组》专项测试题-附参考答案

中考数学总复习《不等式与不等式组》专项测试题-附参考答案

中考数学总复习《不等式与不等式组》专项测试题-附参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.若不等式组 {2x −3>1,x ≤a的整数解共有 4 个,则 a 的取值范围是 ( ) A . 6≤a <7 B . 6<a ≤7 C . 6<a <7 D . 6≤a ≤72. a ,b 为实数,且 a >b ,则下列不等式的变形正确的是 ( )A . a +b <b +xB . −a +2>−b +2C . 3a >3bD . a 2<b 2 3.不等式组 −2x ≤6 的解集在数轴上表示正确的是 ( )A .B .C .D . 4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有 10 支水银温度计,若干支额温枪.水银温度计每支 5 元,额温枪每支 230 元,如果总费用超过 1000,那么额温枪至少有 ( )A . 3 支B . 4 支C . 5 支D . 6 支5.“x 的 3 倍与 5 的差大于 9”列出的不等式是 ( )A . 3x −5≤9B . 3x −5≥9C . 3x −5<9D . 3x −5>9 6.解不等式x+23>1−x−32 时,去分母后结果正确的为 ( )A . 2(x +2)>1−3(x −3)B . 2x +4>6−3x −9C . 2x +4>6−3x +3D . 2(x +2)>6−3(x −3)7.下列结论中,正确的是 ( )A .若 a ≠b ,则 a 2≠b 2B .若 a >b ,则 a 2>b 2C .若 a 2=b 2,则 a =±bD .若 a >b ,则 1a >1b8.如图,天平托盘中的每个砝码的质量都是 1 千克,则图中显示物体质量范围是 ( )A.大于2千克B.大于3千克C.大于2千克且小于3千克D.大于2千克或小于3千克二、填空题(共5题,共15分)9.将数轴上x的范围用不等式表示:.10.不等式2x−1>3的解集为.11.代数式−3x+5的值不大于4,用不等式表示为.12.用不等式表示“x与y的一半的和是非负数”.13.一个含有未知数的不等式的组成这个不等式的解集.三、解答题(共3题,共45分)14.解不等式组{5x≤3x+2①x−2<2x+1②请结合题意填空,完成本题的解答.(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上分别表示出来:原不等式组的解集为.15.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到2本.这些书有多少本?共有多少人?16.如果关于x的方程1+x2−x =2mx2−4的解,也是不等式组{1−x2>x−22(x−3)≤x−8的解,求m的取值范围.参考答案1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】D6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】 9≤a <1210. 【答案】 x >211. 【答案】 −3x +5≤412. 【答案】 x +12y ≥013. 【答案】所有的解14.【答案】(1)x ≤1(2)x >−3(3)(4)−3<x ≤1 15.【答案】解:设有x 个学生,那么共有(3x+8)本书,则: {3x +8−5(x −1)≥03x +8−5(x −1)<2解得5.5<x ≤6.5所以x=6,共有6×3+8=26本.答:有26本书,6个学生.16.【答案】解: 1+x 2−x =2mx 2−4方程两边同时乘以 (x +2)(x −2) 得x 2−4−x 2−2x =2mx =−m −2∵x ≠±2∴−m −2≠±2 ;解①得, x <53解②得, x ≤−2∴不等式组的解集为 x ≤−2 ; ∵关于 x 的方程 1+x 2−x =2m x 2−4的解,也是不等式组 {1−x 2>x −22(x −3)≤x −8的解 ∴{−m −2≤−2−m −2≠−2∴m 的取值范围 m >0 . 故答案是: m >0。

中考数学试题不等式与不等式组试卷及参考答案与试题解析

中考数学试题不等式与不等式组试卷及参考答案与试题解析

中考数学试题不等式与不等式组试卷及参考答案与试题解析(共6小题)【命题方向】本部分知识是初中阶段的重点知识,也是各地中考的必考内容之一。

考查的题型以解答题为主,也有少量的选择题及填空题。

【备考攻略】解这部分题的关键是掌握不等式基本性质三,同时解应用问题卓越要分析题中的数量关系,正确列出不等式求解。

﹣,并把它的解集在数轴上表示出≤x46.解不等式x﹣1来.(47.解不等式:4(x﹣1)>5x﹣6..解不等式组:. 48,并写出它的所有非负整数解..解不等式组49..解不等式组:50.51.解不等式组:小题)6不等式与不等式组(共.【命题方向】本部分知识是初中阶段的重点知识,也是各地中考的必考内容之一。

考查的题型以解答题为主,也有少量的选择题及填空题。

【备考攻略】解这部分题的关键是掌握不等式基本性质三,同时解应用问题卓越要分析题中的数量关系,正确列出不等式求解。

﹣,并把它的解集≤(2014?北京)解不等式x﹣146.x 在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.菁优网版权所有【分析】去分母、去括号,移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:)不等式的两边同时加上或减去同一个数或整式不等号1(.的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.47.(2011?北京)解不等式:4(x﹣1)>5x﹣6.【考点】解一元一次不等式.菁优网版权所有【分析】根据不等式的解法,去括号,移项,合并同类项,把x的系数化为1解不等式,注意不等式的两边同时除以同一个负数时,要改变不等号的方向.【解答】解:去括号得:4x﹣4>5x﹣6,移项得:4x﹣5x>4﹣6,合并同类项得:﹣x>﹣2,把x的系数化为1得:x<2,∴不等式的解集为:x<2.【点评】此题主要考查了不等式的解法,一定要注意符号的变化,和不等号的变化情况.(2016?北京)解不等式组:.48.【考点】解一元一次不等式组.菁优网版权所有根据不等式性质分别求出每一个不等式的解集,再【分析】.根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,>,得:x>1解不等式4x,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(2015?北京)解不等式组.,并写出它的所49 有非负整数解.解一元一次不等式组;一元一次不等式组的整数【考点】解.菁优网版权所有计算题.【专题】分别求出不等式组中两不等式的解集,找出解集的【分析】公共部分确定出不等式组的解集,即可确定出所有非负整数解.,解:【解答】﹣x≥2;①由得:<,由②得:x 2≤x <,∴不等式组的解集为﹣.3,2,1,0则不等式组的所有非负整数解为:【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.(2013?北京)解不等式组:.. 50【考点】解一元一次不等式组.菁优网版权所有【专题】计算题.【分析】先求出两个不等式的解集,再求其公共解.解:,【解答】解不等式①得,x>﹣1,<,x ②解不等式得,<. 1所以,不等式组的解集是﹣<x【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2012?北京)解不等式组:..51【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.菁优网版权所有【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解:,【解答】∵解不等式①得:x>1,解不等式②得:x>5,∴不等式组的解集为:x>5.【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,解此题的关键是根据找不等式组解集的规律找出不等式组的解集.。

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组一、单选题(共14题;共42分)1.(3分)(2022·北部湾)不等式 2x −4<10 的解集是( )A .x <3B .x <7C .x >3D .x >7【答案】B【解析】【解答】解: ∵2x −4<10 ,∴2x <14 , ∴x <7 . 故答案为:B.【分析】根据移项、合并同类项、系数化为1的步骤进行求解. 2.(3分)(2022·山西)不等式组{2x +1≥34x −1<7的解集是( )A .x ≥1B .x <2C .1≤x <2D .x <12【答案】C【解析】【解答】解:2x +1≥3,解得:x ≥1;4x −1<7,解得:x <2; ∴不等式组的解集为:1≤x <2; 故答案为:C .【分析】利用不等式的性质及不等式组的解法求出解集即可。

3.(3分)(2022·娄底)不等式组{3−x ≥12x >−2的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【解答】解:∵ 不等式组{3−x ≥1①2x >−2②中,解①得,x≤2, 解②得,x >-1,∴不等式组的解集为-1<x≤2, 数轴表示如下:故答案为:C.【分析】分别求出两个不等式的解集,根据同大取大,同小取小,大小小大中间找,大大小小无解了,取其公共部分可得不等式组的解集,然后根据解集的在数轴上的表示方法:大向右,小向左,实心等于,空心不等,进行判断.4.(3分)(2022·株洲)不等式4x −1<0的解集是( ).A .x >4B .x <4C .x >14D .x <14【答案】D【解析】【解答】解:4x−1<0移项得:4x<1不等号两边同时除以4,得:x<14故答案为:D.【分析】根据移项、系数化为1的步骤可得不等式的解集.5.(3分)(2022·邵阳)关于x 的不等式组{−13x >23−x12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】【解答】解:解不等式−13x >23−x ,−13x +x >23, ∴23x >23, ∴x >1,解不等式12x −1<12(a −2),得12x <12(a −2)+1,∴x <a ,∴不等于组的解集为1<x <a , ∵不等式组有且只有三个整数解, ∴不等式组的整数解应为:2,3,4, ∴4<a≤5, ∴a 的最大值应为5 故答案为:C.【分析】分别求出两个不等式的解集,结合不等式组有且只有三个整数解可得a 的范围,据此可得a 的最大值.6.(3分)(2022·嘉兴)不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】【解答】解:∵3x +1<2x ,∴x <-1,∴不等式解集表示在数轴如下,.故答案为:B.【分析】先解一元一次不等式,求得解集,再根据“小于朝左拐,无等号画空心点”,将不等式的解集表示在数轴上即可.7.(3分)(2022·衡阳)不等式组{x+2≥12x<x+3的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【解答】解:{x+2≥1①2x<x+3②由①得x≥-1由②得x<3∴不等式组的解集为-1≤x<3,故答案为:A.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,再观察各选项,可得答案.8.(3分)(2022·武威)不等式3x−2>4的解集是()A.x>−2B.x<−2C.x>2D.x<2【答案】C【解析】【解答】解:3x-2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故答案为:C.【分析】根据移项、合并同类项、系数化为1的步骤进行求解.9.(3分)(2022·滨州)把不等式组{x−3<2xx+1 3≥x−12中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【答案】C【解析】【解答】解:{x−3<2x①x+13≥x−12②解①得x>−3,解②得x≤5,∴不等式组的解集为−3<x≤5,在数轴上表示为:,故答案为:C.【分析】利用不等式的性质及不等式组的解法求解并在数轴上画出解集即可。

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

B. m> n
C.n﹣m>0
D.1﹣2m<1﹣2n
【解答】解:A、m﹣2>n﹣2,∴不符合题意;
B、 m< n,∴不符合题意;
C、m﹣n>0,∴不符合题意; D、∵m>n, ∴﹣2m<﹣2n, ∴1﹣2m<1﹣2n,∴符合题意; 故选:D. 9.关于 x 的一元一次不等式 x﹣3≥0 的解集在数轴上表示为( )
故答案为:0.
21.满足不等式组
> 的整数解是 2 .
【解答】解:


解不等式①得:x≤2.5,
解不等式②得:x>1,
∴原不等式组的解集为:1<x≤2.5,
∴该不等式组的整数解为:2,
故答案为:2.
22.不等式组
< 的解集是 x> .
【解答】解:解不等式 3x+4≥0,得:x ,
解不等式 4﹣2x<﹣1,得:x> ,

A.
B.
C.
D.
> 【解答】解:

所以不等式组的解集为﹣1<x<2, 在数轴上表示为:
, 故选:C. 12.把不等式 x﹣1<2 的解集在数轴上表示出来,正确的是( )
A.
B.
第 11 页 共 24 页
C.
D. 【解答】解:移项得,x<1+2, 得,x<3. 在数轴上表示为:
故选:D.
13.不等式 2x﹣4<10 的解集是( )


27.不等式组
的解集为


28.某品牌护眼灯的进价为 240 元,商店以 320 元的价格出售.“五一节”期间,商店为让
利于顾客,计划以利润率不低于 20%的价格降价出售,则该护眼灯最多可降价
元.
第 4 页 共 24 页

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练含答案一、单选题1.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b 2.不等式5x ≥的解集在数轴上表示正确的是( )A .B .C .D . 3.一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3- 4.若a b >,则下列各式正确的是( )A .33a b -<-B .0a b -<C .33a b <D .a b >5.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.不等式组 21352x x ->-⎧⎨->⎩的整数解有( ) A .3个 B .4个 C .5个 D .6个 7.若m <n ,则下列不等式正确的是( )A .m ﹣2>n ﹣2B .44m n >C .﹣6m >﹣6nD .﹣8m <﹣8n 8.下列语句或式子中正确的是( )A .任何实数的零次幂都等于1B .5的倒数的相反数是-5C .1111()()a b a b ab ---++=D .若a<b ,则a 2<b 29.已知不等式30x a +≥的负整数解恰好是3-,2-,1-.那么a 满足条件( ) A B CD10.若点P (2m +1,312m -)在第四象限,则m 的取值范围是( ) A .m <13 B .m >12- C .1123m -<< D .1123m -≤≤ 11.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小12.不等式组21013x x ->⎧⎨+≤⎩的解集表示在数轴上正确的是( ) A . B .C .D .13.不等式ax -2<0的解集在数轴上表示如图,那么a 的取值范围是( )A .1a <B .2a <C .1a =D .2a =14.下列不等式的解集中,不包括-3的是( )A .3x ≤-B .3x ≥-C .4x ≤-D .4x >- 15.若0<x <1,则x,2x ,3x 的大小关系是( )A .x <2x <3xB .x <3x <2xC .3x <2x <xD .2x <3x <x 16.(天津市和平区普通中学2018届初三数学中考复习综合练习题)如果m<n<0,那么下列式子中错误的是A .m −9<n −9B .−m>−nC .1m <1nD .m n>1 17.若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1 18.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是( ) A .x≥40 B .x≤50 C .40<x <50 D .40≤x≤50 19.下列说法中,错误的一项是( )A .由a (m 2+1)<b (m 2+1)成立可推a <b 成立B .由a (m 2﹣1)<b (m 2﹣1)成立可推a <b 成立C .由a (m +1)2<b (m +1)2成立可推a <b 成立D .由a (m +b )<b (m +a )成立可推am <bm 成立20.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组二、填空题21.x 的3倍与5的差小于6,用不等式表示为________.22.如果关于x 的一元二次方程210kx +=有两个不相等的实数根,则k 的取值范围是________.23.不等式11x -的非负整数解是__.24.已知一次函数()1123y a x a =-+-,如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的______半轴.(填正或负)25.若不等式|x +1|+|x ﹣2|>a 对任意实数x 恒成立,则a 的取值范围是_____.26.不等式组31432x x -<⎧⎨+≥⎩的解集是___________. 27.不等式2x ﹣1≤3x +2的负整数解的和是 ___.28.若点P (1﹣a ,1)在第二象限,则(a ﹣1)x <1﹣a 的解集为______.29.不等式7x+21>0的解集为_____30.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________.31.不等式2﹣x >0的解集是_____.32.把一些书分给几名同学,如果每人分4本,那么余3本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有本______. 33.若不等式组841x x x m +>-⎧⎨≤⎩的解集为x<3,则m 的取值范围是____________. 34.如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是________.35.不等式组2421x x -<⎧⎨-≥⎩的解集是______. 36.当_________时,34x x -++有最小值,最小值是_________;37.如果(1)20m m x +-<是关于x 的一元一次不等式,则m=_______38.若不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,且使关于x 的分式方程6mx x -=436x x +- 有整数解,那么符合条件的所有整数m 的值之和是______.39.在橙子收获旺季,某果园开展现场采摘现场销售活动,每天接待到果园采摘橙子的游客络绎不绝.果园里有A 、B 、C 三种不同品种的橙子,第一周A 、B 、C 三种橙子的采摘重量之比为4:3:5,第一周C 品种橙子的单价是A 、B 品种橙子的单价之和的3倍,第一周C 品种橙子的单价小于21元且不低于3元.第二周继续接待采摘三种橙子的游客,本周A 、C 品种橙子的采摘重量之比为2:3,B 品种橙子的采摘重量比第一周下降了15,A 品种橙子的单价与第一周相同,B 品种橙子的单价比第一周增加1倍,C 品种橙子的单价是第一周的4倍.两周结束后,经统计,第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额多1090元,第一周三种橙子的总采摘重量与第二周三种橙子的总采摘重量之差不低于166斤且小于196斤,则这两周C 种橙子的总销售额一共为 _____元,(A 、B 、C 三种不同品种橙子的单价为每斤整数元,以及每次采摘重量都是整数斤)三、解答题40.下面是小明解不等式532122x x ++-<的过程: ①去分母,得5132x x +-<+,①移项、合并同类项,得22x,①两边都除以-2,得1x >.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是___________________________________________________;(3)第①步的依据是___________________________________________;(4)该不等式的解集应该是________________. 41.解不等式组4+6>13(1)5x x x x --≤-⎧⎨⎩①② 请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式①,得_____;(3)把不等式①和①的解集在数轴上表示出来.(4)原不等式组的解集为_____.42.下面是小红同学解不等式5117263x x -≤-的过程,请认真阅读并完成相应任务. 解:5111214x x -≤-,.............第一步5121114x x -≤-,.............第二步73x -≤-....................第三步37x ≤........................第四步 任务一:填空.(1)以上解题步骤中,第___步是去分母,去分母的依据是___;(2)第___步出现错误,这一步错误的原因是___,这一步正确的结果是___,依据是___.任务二:除了任务一中出现的错误外,请根据平时的学习经验,就解不等式时还需要注意的事项给其他同学提一条建议.43.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式3x ≥ (选填“是”或“不是”3x ≤的“云不等式”).(2)若关于x 的不等式20x a -≥与不等式1211x x ->-互为“云不等式”且有2个公共的整数解,求a 的取值范围.44.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 45.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 46.2021年体育实验考试期间,商城县某初中组织本校332名九年级考生和8名领队教师到商城高中参加考试,学校准备租用45座甲种客车和30座的乙种客车.若租用1辆甲种客车和2辆乙种客车共需租金1650元;若租用2辆甲种客车和1辆乙种客车共需租金1800元.(1)求甲乙两种客车每辆的租金各是多少元?(2)为了保证安全,学校要求每辆车上至少要有一名领队教师陪同,在总租金不超过5200元的情况下,有多少种租车方案?并求出最省钱的租车方案.47.为应对新型冠状病毒,某药店老板到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌的数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?48.2019年4月29日至2019年10月7日,2019年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种. 具体如下表:小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).(1)若他们端午节去北京世园会参观购买门票共用去1360元,问买了普通票和优惠票各几张(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?49.清明节,除了扫墓踏青之外,传统时令小吃——青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的54倍,4月份鲜花牛奶青团和芒果青团总计销售60000个,且鲜花牛奶青团和芒果青团销售量之比为5:7,鲜花牛奶青团销售额为250000元.(1)求鲜花牛奶青团和芒果青团的售价?(2)5月份正值知味观店庆,决定再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的32,且不多于鲜花牛奶青团的2倍,其中,鲜花牛奶青团每个让利a元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的78,知味观如何设计生产方案使总销售额最大?参考答案:1.D【分析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.【详解】A .根据不等式的基本性质1可知,44a b +>+,此选项正确,不符合题意; B .根据不等式的基本性质1和2可知,2323a b +>+,此选项正确,不符合题意; C .根据不等式的基本性质1可知,66a b ->-,此选项正确,不符合题意;D .根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a<-3b ,故D 错误;故选D .【点睛】本题考查了不等式的基本性质,解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.2.C【分析】不等式的解集在数轴上表示的方法:①定点,根据不等式中的实数确定数轴上的点(“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示);①定向,根据不等号方向确定(>,≥向右画;<,≤向左画),按要求操作即可得出.【详解】解:根据5和≥确定在数轴上取对应的数字为5的实心点,然后方向向右,从而得到:,故选:C .【点睛】本题考查了不等式的解集在数轴上表示的方法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.D【分析】由一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),利用一次函数图象上点的坐标特征即可得出关于m 的方程,解之即可得出m 的值,由y 的值随着x 的值的增大而减小,利用一次函数的性质可得出m -2<0,解之即可得出m <2,进而可得出m =-3.【详解】解:①一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),①m 2-3=6,即m 2=9,解得:m =-3或m =3.又①y 的值随着x 的值的增大而减小,①m -2<0,①m <2,①m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.4.A【分析】根据不等式的性质和绝对值的定义,结合“a b >”,依次分析各个选项,选出正确的选项即可.【详解】解:A 、若a b >,则33a b -<-,正确,该选项符合题意;B 、若a b >,则0a b ->,原变形错误,该选项不符合题意;C 、若a b >,则33a b >,原变形错误,该选项不符合题意; D 、若a 和b 同为负数,若a b >,a b <,该选项不符合题意;故选:A .【点睛】本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.5.A【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由①,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A . 【点睛】此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【详解】解:解不等式213x ->-得:1x >-,解不等式52x ->得:3x <,所以,不等式组的解集是13x -<<,所以,不等式组的整数解有0、1、2共3个.故选:A .【点睛】本题主要考查了一元一次不等式组整数解的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.C【分析】根据不等式的基本性质,逐项判断即可.【详解】解:A 、①m <n ,①m ﹣2<n ﹣2,①选项A 不符合题意;B 、①m <n ,①44m n <,①选项B 不符合题意; C 、①m <n ,①﹣6m >﹣6,①选项C 符合题意;D 、①m <n ,①﹣8m >﹣8n ,①选项D 不符合题意.故选:C .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.C【分析】根据零次幂,相反数,负指数幂,不等式一一判定即可.【详解】A.0的零次幂没有意义,故错误;B. 5的倒数的相反数是-15,故错误; C. ()()1111a b a b ab---++=,正确; D.当a ,b 都为负数时,不等式不成立,故错误.故选C【点睛】本题考查了相反数,不等式的性质,熟练掌握概念和性质是解题的关键. 9.D【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】解不等式30x a +≥,得:3a x ≥-, 根据题意得:433a -<-≤-, 解得:912a ≤<.故选D . 【点睛】本题考查了不等式的整数解,根据x 的取值范围正确确定3a -的范围是解题的关键.在解不等式时要根据不等式的基本性质.10.C【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:①点P (2m +1,312m -)在第四象限. ①2103102m m +>⎧⎪⎨-<⎪⎩. 解得1123m -<<. 故选:C .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.11.A【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y . 在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.A【分析】先求出不等式组的解集,再表示在数轴上即可解答;【详解】解:210x ->,解得:12x >; 13x +≤,解得:2x ≤;①原不等式组的解集为:122x <≤, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组及解集在数轴上的表示,掌握相关知识并正确求解是解题的关键.13.D【分析】先根据题意得出不等式的解集,进而可得出结论.【详解】①数轴上点1处是空心圆点,且折线向左,①不等式的解集为x <1,解不等式ax-2<0得,x <2a, ①2a=1, 解得a=2.故选D . 【点睛】本题考查的是在数轴上表示不等式的解集,熟知不等式解集的表示方法是解答此题的关键.14.C【分析】不包括-3即-3不在解集内,由此可得出答案.【详解】解:根据题意,不包括-3即-3不在解集内,只有C选项,x≤ -4,不包括-3.故选C.【点睛】本题考查不等式的解集,熟练掌握是解题的关键.15.C【详解】试题分析:当0<x<1时,则3x<2x<x.本题可以利用特殊值法来进行比较.考点:数的大小比较16.C【详解】A、根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.m<n两边减去9,得到:m−9<n−9,成立;B、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时乘以−1得到−m>−n,成立;C、由m<n<0,可设m=−2,n=−1,验证1m>1n,不成立.D、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时除以负数n得到mn>1,成立.故选C.17.C【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【详解】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、①a>b,①a+1>b+1,①b+1>b﹣1,①a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是关键.18.D【分析】设大约需x分钟才能将污水抽完,利用总的抽水量超过1200t而不足1500t列出不等式组解决问题.【详解】设大约需x 分钟才能将污水抽完,由题意得:301200{301500x x ≥≤ , 解得:40≤x≤50.故选D .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.B【分析】根据不等式的基本性质逐一判断即可.【详解】解:①m 2+1>0,则不等式的两边同时除以m 2+1,则不等式不变号,①A 正确;①a (m 2﹣1)<b (m 2﹣1)中,m 2﹣1可以是正数也可以是负数或0,①B 错误; ①a (m +1)2<b (m +1)2成立,①(m +1)2≠0,可得(m +1)2>0,则不等式的两边同时除以(m +1)2,则不等式不变号,①C 正确;①a (m +b )<b (m +a )可以化为am +ab <bm +ab ,则不等式的两边同时减去ab ,则不等式不变号,①D 正确;故选:B .【点睛】本题考查不等式的基本性质;熟练掌握不等式的基本性质是解题的关键. 20.D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤. 所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.21.356x <【分析】根据运算的顺序列不等式即可.【详解】解:x 的3倍与5的差小于6,用不等式表示为:356x <,故答案为:356x <.【点睛】本题考查列一元一次不等式,解题关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.22.113k -≤<且0k ≠【分析】根据一元二次方程的定义和根的判别式得出0k ≠,310k +≥,(2410k ∆=-⨯>,据此求解即可 【详解】解:关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根, ①0k ≠,310k +≥且(2410k ∆=-⨯>, 解得:113k -≤<且0k ≠, 故答案是:113k -≤<且0k ≠.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.23.0x =,1,2【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x +,合并同类项得:2x ,故不等式的非负整数解是0x =,1,2.故答案为:x =0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.24.正【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,从而得到103a ->,即可求解.【详解】解:①函数值y 随着自变量x 的增大而减小,①120a -<, 解得:12a >, ①103a ->, ①这个函数图像与y 轴的交点M 位于y 轴的正半轴.故答案为:正【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.25.a <3.【分析】根据绝对值的几何意义,求得|x +1|+|x ﹣2|的最小值为3,从而得到实数a 的取值范围.【详解】解:①|x +1|+|x ﹣2|表示数轴上的x 对应点到﹣1、2对应点的距离之和, ①它的最小值为3,①不等式|x +1|+|x ﹣2|>a 对任意的实数x 恒成立,①a <3,故答案为:a <3.【点睛】本题主要考查了绝对值的意义,以及绝对值不等式的解法.解题的关键是利用绝对值不等式的几何意义,体现了数形结合的思想.26.513x -≤< 【分析】分别求出两个不等式的解集,再进行求解即可.【详解】解:解314x -<得53x <, 解32x +≥得1x ≥-,①不等式组的解集为:513x -≤<,故答案为:513x -≤<. 【点睛】本题考查了不等式组的求解,正确的计算是解决本题的关键.27.6-.【分析】先求出不等式的解集,找出不等式的负整数解即可.【详解】解:2132x x -≤+,①233x x -≤,①3x -≤,①3x ≥-;①负整数解有:3-,2-,1-;①负整数解的和是:3(2)(1)6-+-+-=-;故答案为:6-.【点睛】本题主要考查一元一次不等式的整数解,不等式的性质,解一元一次不等式等知识点的理解和掌握,能求出不等式的解集是解此题的关键.28.x <﹣1【分析】根据点P 在第二象限得出a >1,据此知a ﹣1>0,再将不等式两边都除以a ﹣1即可得答案.【详解】解:①点P (1﹣a ,1)在第二象限,①1﹣a <0,则a >1,①a ﹣1>0,①不等式(a ﹣1)x <1﹣a 的解集为x <﹣1,故答案为:x <﹣1.【点睛】本题考查了第二象限内点的坐标特征,不等式的性质,解不等式,系数化为1的过程中,在解不等式时,一定要先判断两边所除的式子的符号.29.x >-3【分析】先移项、然后按不等式的基本性质进行解答即可.【详解】解:7x+21>07x >-21x >-3故答案为x>-3.【点睛】本题主要考查了解一元一次不等式,掌握不等式的基本性质是解答本题的关键.30.32 a<【分析】据已知不等式的解集,结合x的系数确定出2a-3为负数,求出a的范围即可.【详解】解:①不等式(2a-3)x<1的解集是123xa>-,①2a-3<0,①32a<,即a的取值范围是32a<,故答案为32a<.【点睛】本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.31.x<2【分析】利用不等式的基本性质解出不等式的解集即可【详解】根据不等式的基本性质将2﹣x>0变形为2>x,故不等式2﹣x>0的解集是x<2【点睛】主要考查一元一次不等式的解法32.19【分析】设共有x名同学分书,则这批书共有(4x+3)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设共有x名同学分书,则这批书共有(4x+3)本,依题意,得436(1) 436(1)2x xx x+>-⎧⎨+≤-+⎩,解得:7292x≤<,又①x为正整数,①x=4,①4x+3=19.故答案为:19.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.33.m≥3【分析】化简不等式组得3x x m <⎧⎨≤⎩,根据不等式组的解集为x<3,即可得出m 的取值范围. 【详解】解:解不等式组得3x x m <⎧⎨≤⎩, ①不等式组解集为x<3,①m≥3.故答案为:m≥3.【点睛】本题主要考查的是不等式组的解集,掌握不等式组的解集是解题的关键.34.52k <- 【分析】解出方程的解为522k x --=,再根据题意得到5202k -->,转化为解一元一次不等式即可解答.【详解】解:325x k x +=- 解得522k x --= 关于x 的方程325x k x +=-的解是正数,5202k --∴> 520k ∴-->52k ∴<- 故答案为:52k <-. 【点睛】本题考查方程的解、解一元一次方程、解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.35.3x ≥【分析】先求出每一个不等式的解集,后确定不等式组的解集.【详解】①2421x x -<⎧⎨-≥⎩①②①解不等式①,得x >-2,解不等式,①,得x ≥3,①不等式组的解集为x ≥3,故答案为:x ≥3.【点睛】本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键. 36. 43x -≤≤ 7【分析】根据题意以及绝对值的非负性,再利用分类讨论的数学思想可以解答本题.【详解】当x >3时,34x x -++=34217x x x -++=+>;当43x -≤≤时,34x x -++34x x =-++=7;当x <-4时,34x x -++=34=217x x x ----->.∴当43x -≤≤时,34x x -++有最小值7.故答案为:43x -≤≤;7.【点睛】本题考查了绝对值相关最值的求解,涉及不等式运算,解答本题的关键是明确绝对值的定义,利用分类讨论的数学思想解答.37.1【分析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】①(1)20m m x +-<是关于x 的一元一次不等式,①1m +≠0且|m|=1,①m =1.故答案是:1.【点睛】考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.38.11【分析】根据不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立确定出m 的范围,再由m 是整数得到m 的值,分式方程去分母后将m 的值代入检验,使分式方程的解为整数即可.【详解】①3x <6,①x <2,①不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,①不等式(m-1)x <m+5的解集是51m x m +<-, ① 521m m +≥-, 解之得1<m≤7,①m 是整数,①m=2,3,4,5,6,7, ①6mx x -=436x x +-, ①mx=3x-18+4x , ①187x m=- , ①分式方程6mx x -=436x x +- 有整数解, ①m=2, 185x =,舍去;m=3, 92x =,舍去;m=4, 6x =,是增根,舍去;m=5, 9x =;m=6, 18x =;m=7,x 无解,舍去;①5+6=11.故答案为11.【点睛】本题主要考查的是分式方程的解法,一元一次不等式组的解法的有关知识,熟练掌握分式方程的解法是解答本题的关键.39.2880【分析】设第一周A 、B 、C 三种橙子的采摘重量分别为4m 斤、3m 斤、5m 斤,第一周A 、B 单价分别为x 元,y 元;设第二周A 、C 三种橙子的采摘重量分别为2m 斤、3m 斤;则第一周C 品种橙子的单价为3(x +y )元,第二周A 、B 、C 三种橙子的单价分别为x 元,2y 元;12(x +y )元,通过第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额。

中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.若不等式(1)1a x a 的解集是1x <,则a 必满足( ) A .1a <-B .1a >-C .1a <D .1a >2.判断下列各式中不等式有( )个(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -. A .2B .3C .4D .63.x 与3的和的一半是负数,用不等式表示为( ) A .1302x +> B .1302x +<C .()1302x +> D .()1302x +< 4.若关于x 的方程311x ax +=-的解是正数,则a 的取值范围是( ) A .a >﹣1 B .a >﹣1且a ≠0 C .a <﹣1 D .a <﹣1且a ≠﹣35.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .41x x >⎧⎨≤-⎩B .41x x ≤⎧⎨>-⎩C .41x x >⎧⎨>-⎩D .41x x <⎧⎨≥-⎩6x 的取值范围是( ) A .4x ≥B .>4xC .4x ≤D .4x <7.若a >b ,则下列不等式不成立的是( ) A .a +m >b +m B .a (m 2+1)>b (m 2+1) C .22a b -<-D .a 2>b 28.如果不等式组7x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .7m >B .7m ≥C .7m <D .7m ≤9.如果a b >,那么下列式子一定正确的是( ) A .22a b >B .55a b -<-C .510ba > D .22ab ->+10.若a b > ,则下列不等式变形错误的是A .11a b +>+B .22a b > C .D .11.若m <n ,则下列各式中正确的是() A .m -2>n -2B .2m >2nC .-2m >-2nD .22m n > 12.下列说法不正确的是( ) A .2x =-是不等式21x ->的一个解 B .2x =-是不等式21x ->的一个解集 C .728x x ->+与15x <的解集不相同D .3x <-与721x ->的解集相同13.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( ) A .9件B .10件C .11件D .12件14.若整数a 使关于x 的分式方程2311a x x+=--的解为正数,且使关于y 的不等式组21324()0y yy a +⎧->⎪⎨⎪-⎩的解集为2y <-,则符合条件的所有整数a 之和为( ) A .3 B .5 C .7 D .915.对于题目:“已知点A (﹣6,4),B (3,4),若抛物线2121y x x a=-+与线段AB 恰有一个公共点,求a 的取值范围”,嘉嘉的结果是4a ,淇淇的结果是1a >,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .嘉嘉、淇淇的结果合在一起才正确D .嘉嘉、淇淇的结果合在一起也不正确16.适合|2a+5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个17.若()11a x a +>+的解集是1x <,则a 必须满足是( ) A .a<0B .1a >-C .1a <-D .1a ≤18.已知,a b c 、、是实数,且a b >,则以下四个式子中,正确的是( ) A .ac bc >B .22a b -->C .11a b>D .11a b -+-+>19.不等式组30312x x +≥⎧⎨-≤⎩的解集是( )A .x ≤﹣1B .x ≥3C .﹣3≤x ≤1D .﹣3≤x <120.关于x ,y 的方程组21431x y p x y p +=+⎧⎨+=-⎩的解满足x y ≤,则p 的范围是( )A .p ≤52B .p ≥52C .p ≥-52D .p ≤-52二、填空题21.用不等式表示:y 的3倍与1的和大于8;_____________.22.语句“x 的18与y 的和不超过5”可以表示为 _____.23.如果关于x ,y 的二元一次方程组22522x y m x y m +=+⎧⎨+=-+⎩的解满足1x y +>,那么m 的取值范围是_______.24.已知关于x 、y 的方程组3522323x y m x y m +=+⎧⎨+=-⎩的解满足不等式23x y +≥,则m 的取值范围为___.25.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.26.解不等式组()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩,它的解集为___________________.27.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.28.如图所示的不等式的解集是________.29.不等式组1123(7)x x x ≥⎧⎨--⎩>的整数解的和为_____.30.已知式子413a -的值小于2,则a 的最大整数值是_______. 31.不等式组2352x x -≥⎧⎨->-⎩的解集是__________.32.不等式组1012x x x ->⎧⎪⎨+≥⎪⎩的解集是________.33.若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 34.若3x my n =⎧⎨=+⎩和121x m y n =+⎧⎨=-⎩都是方程y =kx +k +1的解,且k <7,则n 的取值范围是______.35.不等式组253(3)121035x x x +<+⎧⎪-⎨+≥⎪⎩的整数解有________个.36.定义运算[x ]表示求不超过x 的最大整数.如[0.5]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣2.5]=﹣3.若[﹣2.5]•[2x ﹣1]=﹣6,则x 的取值范围是 _____. 37.不等式组1221113x x x⎧-≥⎪⎨⎪--⎩>的解集是________.38.已知||4(5)21k k x y ---=是关于x ,y 的二元一次方程,则1k +________(填“是”或“不是”)不等式221x x +<-的解.39.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3 个整数解,那么a 的取值范围是_____.40.据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题41.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.42.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?43.下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 213232x x -->-1. 解:2(2x -1)>3(3x -2)-6……第一步 4x -2>9x -6-6……第二步 4x -9x >-6-6+2……第三步 -5x >-10……第四步 x >2……第五步(1)任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;①第______步开始出现错误,这一步错误的原因是______. (2)任务二:请直接写出该不等式的正确解集.44.解不等式组: 215238x x x x +-⎧<⎪⎨⎪≥-⎩并将解集在如图所示的数轴上表示出来.45.解不等式组: ()12221x x x ->⎧⎪⎨+≥-⎪⎩①②46.解不等式或不等式组,并在数轴上表示解集. (1)5341x x +>-; (2)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩.47.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同. (1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.48.某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?49.萧红中学校去年在商场购买甲、乙两种不同品牌的篮球则买甲种篮球花费1500元,购买乙种篮球花费4000元,购买乙种篮球的数量是购买甲种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花50元(1)求每个甲种篮球和每个乙种篮球的单价各是多少元?(2)为响应国家“五育并举”的号召.今年学校决定再次购买甲、乙两种篮球共60个.恰逢商场这两种篮球的售价进行调整.两种篮球售价比去年购买时提高了20%、乙种篮球售价比去年购买时降低了20%.如果今年购买甲、乙两种篮球的总费用不超过10350元,那么学校今年至少可购买多少个乙种篮球?50.一次函数y=-3x+b的图像经过点(-1,2).(1)求这个一次函数表达式;(2)若点A(2m,y1),B(m-1,y2)在该一次函数的图像上,且y1<y2,求实数m的取值范围.参考答案:1.A【分析】由不等式(1)1a x a 的解集是1x <,不等式的方向发生了改变,从而可得:1a +<0,于是可得答案.【详解】解:不等式(1)1a x a 的解集是1x <,1a ∴+<0,a ∴<1-,故选:A .【点睛】本题考查的是不等式的基本性质,不等式的解集,掌握“不等式的两边都除以同一个负数,不等号的方向要改变.”是解题的关键 2.C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -中(1)1>0a +;(3)89<;(4)31x x -≤;(6)>1x y -是不等式,共4个,故选C .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠. 3.D【分析】理解:和的一半,应先和,再一半;负数,即小于0. 【详解】根据题意得:12(x +3)<0.故选D .【点睛】本题考查了列不等式.解题的关键是找准关键字,把文字语言转换为数学语言. 4.D【分析】先求出方程的解,根据解是正数列出不等式,即可解答 【详解】在方程两边同乘x ﹣1得:3x+a=x ﹣1, 解得:x=-1-a2①方程的解是正数,①102112aa --⎧>⎪⎪⎨--⎪≠⎪⎩解得a <﹣1且a≠﹣3. 故选D .【点睛】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式 5.D【分析】根据不等式的解集在数轴上的表示方法即可得出. 【详解】解:由数轴可知,4x <且1x ≥-,①这个不等式组可能是41x x <⎧⎨≥-⎩故答案为:D .【点睛】本题考查了不等式组的解集在数轴上的表示方法,解题的关键是熟知数轴表示不等式组解集的方法. 6.C【分析】根据二次根式的非负性质列出不等式来求解. 【详解】解:①①40x -≥, ①4x ≤. 故选:C .【点睛】本题主要考查了二次根式有意义的条件,理解二次根式的非负性质是解答关键. 7.D【详解】A. ①a >b , ①a+m >b+m ,故正确; B. ①a >b ,① a (m 2+1)>b (m 2+1),故正确; C. ①a >b ,①-22ab <-,故正确;D. ①a=1,b=-2时,满足a >b ,但 a 2<b 2,故不正确; 故选D .8.B【分析】根据不等式组无解,判断m 与7的大小关系.【详解】解:①不等式组7x x m <⎧⎨>⎩无解,①m ≥7, 故选:B .【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 9.B【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不妨设a =-1,b =-2,则a 2<b 2,本选项不一定成立,故本选项不符合题意; B .①a >b ,①-5a <-5b ,故本选项符合题意; C .不妨设a =-5,b =-10, 则510ab=,故本选项不符合题意; D .不妨设a =1,b =2,则a -2<b +2,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 10.D【详解】试题分析:根据不等式的基本性质依次分析各选项即可作出判断. A .11a b +>+,B .22a b>,C .,均正确,不符合题意;D .,故错误,本选项符合题意.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成. 11.C【详解】若m <n ,不等两边都乘以—2,不等号方向改变得, -2m >-2n,①答案是C.-2m >-2n.故答案为 C.点睛:本题考查不等式的性质,不等式两边同加或同减同一个数,不等号方向不变;不等式两边同乘同一个正数,不等号方向不变;不等式两边同乘同一个负数,不等号方向改变.12.B【分析】利用不等式解与解集的定义判断即可.【详解】解:A、x=-2是不等式-2x>1的一个解,说法正确,不符合题意;B、x=-2是不等式-2x>1的一个解,原说法错误,符合题意;C、x-7>2x+8的解集为x<-15与x<15的解集不相同,说法正确,不符合题意;D、x<-3与-7x>21的解集相同,说法正确,不符合题意,故选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.13.C【分析】购买5件需要15元,30元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【详解】设可以购买x(x为整数)件这样的商品.3×5+(x-5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选C.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.14.B【分析】解分式方程,检验根得出a的范围;根据分式方程的解为正数,列出不等式求得a的范围;解不等式组,根据解集为y<-2,的出a的范围;根据a为整数,得出a的值,最后求和即可.【详解】解:分式方程的两边都乘以(x-1)得:2-a=3(x-1),解得53ax-=,①x-1≠0,①51 3a-≠,①a ≠2,①方程的解为正数, ①503a ->, ①a<5且a ≠2;21?324()0?y y y a +⎧->⎪⎨⎪-≤⎩①②, 解不等式①得:y<-2,解不等式①得:y ≤a ,①不等式组的解集为y<-2,①a ≥-2.①-2≤a<5且a ≠2①整数a 的和为(-2)+(-1)+0+1+3+4=5;故选:B .【点睛】本题考查了分式方程的解,一元一次不等式组的解集,考核学生的计算能力,注意分式方程一定要检验.15.D【分析】分两种情况进行分析讨论:a >0与a <0,根据抛物线的顶点位置和开口方向,结合题意,列出不等式求解即可.【详解】解:当a >0时,1-a <1,①抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段AB 恰有一个公共点,则()()22162614132314a a⎧--⨯-+≥⎪⎪⎨⎪⨯-⨯+<⎪⎩, 解得,a >1;当a <0时,1-a >1,若1<1-a <4,即-3<a <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段AB 无交点;若1-a =4,即a =-3时,抛物线的顶点在线段AB 上,此时抛物线与线段AB 只有一个公共点;若1-a >4,即a <-3时,抛物线的对称轴在直线x =-3的左边,顶点在直线y =4的上方, 若抛物线与线段AB 恰有一个公共点,则()()2216261132314a a⎧--⨯-+>⎪⎪⎨⎪⨯-⨯+≤⎪⎩, 解得,a <一4,综上,a <-4或a =-3或a >1.故嘉嘉、淇淇的结果合在一起也不正确,故选:D .【点睛】题目主要考查二次函数的基本性质及解不等式组,理解题意,根据题意列出不等式组是解题关键.16.A【详解】①|2a +5|+|2a -3|=8,①250230a a +>⎧⎨-<⎩ , ①5322a -<<, ①整数a 的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.17.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++∴11 aa b+=+,①10a+<,①a<1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.18.D【分析】分别利用不等式的基本性质判断得出即可.【详解】A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得-2a<-2b,原变形错误,故这个选项不符合题意;C、由a>b,得11a b>或11a b<,原变形错误,故这个选项不符合题意;D、由a>b,得-1+a>-1+b,原变形正确,故这个选项符合题意;故选:D.【点睛】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.19.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:30 312 xx+≥⎧⎨-≤⎩①②解不等式①,得:x≥﹣3,解不等式②,得:x≤1,则不等式组的解集为:﹣3≤x≤1.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.D【分析】根据x y≤,列出不等式,即可求出p的取值范围.【详解】方程组21 431 x y px y p+=+⎧⎨+=-⎩①②①×2得:4x+2y=2p+2①,①-①得:-y=p+3,解得:y=-p-3,把y=-p-3代入①得:x=p+2,①方程组得解为:23x p y p =+⎧⎨=--⎩; ①方程组的解满足条件x y ≤,①p+2≤-p-3解得:p≤52- 故选:D .【点睛】本题考查了解一元一次不等式,以及解二元一次方程组,弄清题意是解题的关键.21.318y +>.【分析】关系式为:y 的3倍18+>,把相关数值代入即可.【详解】解:根据题意,可列不等式:318y +>,故答案为:318y +>.【点睛】考查列一元一次不等式,根据关键词得到相应的关系式是解决本题的关键.22.18x +y ≤5 【分析】x 的18即x 乘18,与y 的和不超过5,就是小于或等于5,据此解答即可. 【详解】解:语句“x 的18与y 的和不超过5”可以表示为18x +y ≤5. 故答案为:18x +y ≤5. 【点睛】本题主要考查了不等式的意义,关键是明白不超过5,就是小于或等于5. 23.4m >-##-4<m【分析】直接把两个方程相加,求出,根据1x y +>得出关于m 的不等式,解之即可.【详解】解:22522x y m x y m +=+⎧⎨+=-+⎩, 直接把两个方程相加,得337x y m +=+,①73m x y ++=, ①1x y +>, ①713m +>, ①4m >-.故答案为:4m >-.【点睛】本题考查了解二元一次方程组、一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.2m ≤【分析】先利用加减消元法解二元一次方程组,求得用m 表示的x 、y ,根据方程组的解满足不等式x +2y ≥3可得关于m 的不等式,解不等式即可.【详解】解:3522323x y m x y m +=+⎧⎨+=-⎩①②, ①×2-①×3,得:134y m =-,将134y m =-代入①,得:721x m =-,①方程组的解为721134x m y m =-⎧⎨=-⎩, ①方程组的解满足不等式x +2y ≥3,①()72121343m m -+-≥,解得:2m ≤,故答案为:2m ≤.【点睛】本题主要考查了解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组的基本方法和解不等式的基本步骤是解题的关键.25.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.26.3<x≤4【分析】先分别解出各不等式的解集,再找到其公共解集即可求解. 【详解】解()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩①② 解不等式①得x >3;解不等式①得x≤4故不等式组的解集为3<x≤4故答案为:3<x≤4.【点睛】此题主要考查不等式组的求解,解题的关键是熟知不等式的求解方法. 27.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:①正比例函数()2y m x =+中,y 随x 的增大而增大,①2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.28.x ≤2【分析】本题考查不等式的解集在数轴上表示,左边表示小于,实心圆点表示等于.【详解】解:由图得,x ≤2.故答案为x ≤2.29.10【详解】试题解析:解不等式1−2x >3(x −7),得:225x <, 则不等式组的解集为2215x ≤<, ①不等式组的整数解的和为1+2+3+4=10,故答案为1030.1 【分析】根据题意列一元一次不等式4123a -<,解此不等式的解集为74a <,再找到其中最大的整数解即可.【详解】解:由题意得,4123a -<, 416a ∴-<,47a <,74a ∴<, ∴a 的最大整数值是1,故答案为:1.【点睛】本题考查解一元一次不等式、不等式的整数解等知识,准确解出一元一次不等式的解集是解答本题的关键.31.57x ≤【分析】先求出两个不等式的解集,再求其公共解.【详解】2352x x ①②-≥⎧⎨->-⎩, 由①得,x≥5,由①得,x<7,所以,不等式组的解集是:5≤x <7.故答案为5≤x <7.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 32.12x <≤【分析】分别求出两个不等式的解集,即可求解.【详解】解①1012x x x ->⎧⎪⎨+≥⎪⎩①②, 解不等式①得① 1x >解不等式①得①2x ≤,①不等式组的解集为12x <≤ 故答案为① 12x <≤【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.33.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠ ①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.34.n <11【分析】将方程的解代入方程中,得到关于k 、m 、n 的方程组,可求k =n -4,根据k <7即可求n 的取值范围.【详解】解:由题意可得:()312111n km k n k m k +=++⎧⎨-=+++⎩解得:k =n -4①k <7①n -4<7①n <11故答案为:n <11【点睛】本题考查了二元一次方程的解,求出k =n -4是本题的关键.35.4 【分析】先解不等式组,得到该不等式组的解集为445x -<≤,即可得到其整数解的个数.【详解】解:253(3)121035x x x +<+⎧⎪⎨-+≥⎪⎩①②, 解不等式①可得:4x >-;解不等式①可得:45x ≤, 所以该不等式组的解集为:445x -<≤, 所以该不等式组的整数解为3-,2-,1-,0,共4个,故答案为:4.【点睛】本题考查不等式组的整数解,正确解一元一次不等式组是解题的关键. 36.1.52x ≤<【分析】根据题意得出﹣3•[2x ﹣1]=﹣6,即[2x ﹣1]=2,据此可得2≤2x ﹣1<3,解之即可.【详解】解:根据题意,得:﹣3•[2x ﹣1]=﹣6,①[2x ﹣1]=2,则2≤2x ﹣1<3,解得1.52x ≤<.故答案为:1.52x ≤<.【点睛】本题主要考查解一元一次不等式组,解题的关键是根据新定义列出关于x 的不等式组.37.-5<x≤-4【分析】先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法即可求得解集. 【详解】解不等式1x 22-≥得:x≤-4, 解不等式11-x >1-3x 得:x>-5,所以不等式组的解集是:-5<x≤-4,故答案为-5<x≤-4.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组解集的确定方法是关键. 不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 38.不是【分析】先根据二元一次方程的定义求出k 值,从而得k +1的值,再把k +1代入不等式检验,即可求解.【详解】解:①||4(5)21k k x y ---=是关于x ,y 的二元一次方程, ①5041k k -≠⎧⎨-=⎩,解得:k =-5, ①k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,①-2>-9,①k +1不是不等式221x x +<-的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.39.-3≤a <-2.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式3-2x >2,得:x <12 ,解不等式x-a >0,得:x >a ,则不等式组的解集为a <x <12,①不等式组恰有3个整数解,①不等式组的整数解为-2、-1、0,则-3≤a <-2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.40.28.25【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,①《长津湖》与《铁道英雄》的日销售量和为450本,①a +b =450,即b =450-a ,①《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ①22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,①《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,①5060m n <+≤ ,①《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,①()()332205ma nb mb na +-+= ,①b =450-a ,①()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,①()()13503135032205n a m a ma na ---+-= ,①()()413502205m n a --= ,①180230a ≤<,①413500a -<,①0m n -< ,即m n < ,①当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,①此时3na 的值最小,则m 最大,①180230a ≤<,①a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,①5060m n <+≤,①50 3.560m m <++≤,即23.2528.25m <≤ ,①m 最大,①28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.41.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①② 由①得,3x >,由①得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.42.(1)最多可以购买甲种树苗40棵;(2)该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵【分析】(1)设购买甲种树苗x 棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,由总费用不超过500元,列出不等式,即可求解.【详解】解:(1)设购买甲种树苗x 棵,由题意可得:()30202303400x x ++≤,解得:40x ≤,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,依题意得:()302024500m m +≤﹣, 解得:2m ≤.又①m 为正整数,①m 可以取1,2,①该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.【点睛】本题考查的是一元一次不等式的应用,正确理解题目意思是解决本题的关键. 43.(1)①乘法分配律;①五,不等式两边都除以-5,不等号的方向没有改变(2)x <2【分析】(1)①由题意可得依据乘法分配律(运算律)进行变形的;①由题意根据不等式的基本性质3进行分析即可;(2)由题意根据不等式的基本性质3进行分析计算即可.(1)解:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;①第五步开始出现错误,这一步错误的原因是不等式两边都除以-5,不等号的方向没有改变;故答案为:乘法分配律;五,不等式两边都除以-5,不等号的方向没有改变;(2)213232x x -->-1. 解:2(2x -1)>3(3x -2)-64x -2>9x -6-64x -9x >-6-6+2-5x >-10x <2该不等式的正确解集是x <2.【点睛】本题考查解一元一次不等式,注意掌握其一般步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.44.3<x ≤4【分析】先解每个不等式,再将不等式解集表示在数轴上,再取公共解集即可.【详解】解:21{5238x x x x +-<≥-①②,由①得:x >3,由②得:x ≤4,将解集在数轴上表示出来如下:∴原不等式组的解集为:3<x ≤4.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的一般步骤和正确的取不等式组的解集.45.34x <≤【分析】分别求不等式的解,再找公共部分,就是不等式组的解.【详解】解:由①式得:3x >.由①式得:4x ≤.①不等式组的解集为: 34x <≤.【点睛】本题主要考查解一元一次不等式组,掌握“同小取小”, “同大取大”, “大小小大取中间”,“小小大大无解”是关键.46.(1)x >−4,数轴见详解;(2)x ≤1,数轴见详解【分析】(1)根据解一元一次不等式的方法,可以求得该不等式的解集,然后在数轴上表示出其解集即可;(2)先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示即可.【详解】解:(1)5x +3>4x −1,移项,得5x −4x >−1−3,合并同类项,得x >−4,其解集在数轴上表示如下,。

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.解不等式x−32<2x+13−1,下列去分母正确的是 ( )A . 3(x −3)<2(2x +1)−1B . 2(x −3)<3(2x +1)−6C . 3(x −3)<2(2x +1)−2D . 3(x −3)<2(2x +1)−62.关于 x 的不等式组 {x −1≤3,a −x <2有 5 个整数解,则 a 的取值范围是 ( )A . 1<a ≤2B . 1<a <2C . 1≤a <2D . −1≤a <03.如果 a >b ,那么下列不等式不一定成立的是 ( )A . a −3>b −3B . −2a <−2bC . a 2<b 2D . a 2>b 24.不等式组 {x −1>0,5−2x ≥1的解集在数轴上表示正确的是 ( ) A . B . C .D . 5.不等式x+12>2x+13−1 的正整数解的个数是 ( )A . 0 个B . 4 个C . 6 个D . 7 个 6.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1那么 a =−3;③如果不等式组的整数解只有 −2,−1,0那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④7.a,b为实数,且a>b,则下列不等式的变形正确的是( )A.a+b<b+x B.−a+2>−b+2C.3a>3b D.a2<b28.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是( )A.八折B.八四折C.八五折D.八八折二、填空题(共5题,共15分)9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元,这批电话手表至少有块.10若关于x的不等式x−m2≥−1的解集如图所示,则m的值为.11.将不等式“−2x>−2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.12.“b与15的和小于27”,用不等式表示为.13.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.三、解答题(共3题,共45分)14.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多 2 万元.(1) 求甲、乙两种机器每台各多少万元?(2) 如果工厂购买机器的预算资金不超过 34 万元,那么你认为该工厂有哪几种购买方案?15.关于 x 的不等式组 {x <3a +2,x >a −4无解,求 a 的取值范围.16.若点 P 的坐标为 (x−13,2x −9),其中 x 满足不等式组 {5x −10≥2(x +1),12x −1≤7−32x, 求点 P 所在的象限.参考答案1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】A8. 【答案】B9. 【答案】10510. 【答案】0<a<211. 【答案】不等式两边都乘以(或除以)同一个负数,不等号的方向改变12. 【答案】b+15<2713. 【答案】2014. 【答案】(1) 甲型机器每台7万元,乙型机器每台5万元.(2)方案1:购买乙型机器6台;方案2:购买甲型机器1台,乙型机器5台;方案3;购买甲型机器2台,乙型机器4台.15. 【答案】a≤−3.16. 【答案】点P在第四象限。

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。

中考数学不等式与不等式祖专题训练50题-含答案

中考数学不等式与不等式祖专题训练50题-含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.截至6月10日24时,广东新冠病毒疫苗累计接种超过6340万人,若接种人数为x ,x 为自然数,则“超过6340万”用不等式表示为( ) A .x <6340万B .x ≤6340万C .x >6340万D .x ≥6340万2.贵阳市今年5月份的最高气温为,270C 最低气温为180C ,已知某一天的气温为tC ,则下面表示气温之间的不等关系正确的是( )A .1?827t <<B .1?827t ≤<C .1?827t <≤D .1?827t ≤≤3.不等式组3122x x -≥⎧⎨-⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.将“x 的2倍与5的和不是正数”用不等式表示为( ) A .250x +>B .250x +≥C .250x +<D .250x +≤5.将不等式组 422113x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示出来应是( )A .B .C .D .6.在“中国共产党建党百年知识竞赛”中共有20道题,每一题答对得10分,答错或不答都扣5分.墩墩得分要超过90分,设他答对了x 道题,则根据题意可列不等式为( )A .105(20)90x x --≥B .105(20)90x x -->C .10(20)90x x --≥D .10(20)90x x -->7.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >①内错角相等,两直线平行; ①若33x y ->-,则x y >;①三角形的一个外角大于任何一个与之不相邻的内角; ①若1a <-,则21a > A .1个B .2个C .3个D .4个9.关于x ,y 的方程组3249x y ax y -=⎧⎨+=⎩,已知40a ,则x y +的取值范围为( )A .02x y <+<B .13x y -<+<C .04x y <+<D .12x y -<+<10.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A .18千克B .22千克C .28千克D .30千克11.如果点()391M m m --,在第二象限,则m 的取值范围是( ) A .1m <B .3m <C .13m <<D .3m >12.若关于x ,y 的方程组2822mx y x y +=⎧⎨-=-⎩的解为整数,且关于x 的不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则满足条件的非负整数m 的值有( ) A .4个B .3个C .2个D .1个13.不等式组315,26x x ->⎧⎨≤⎩的解集在数轴上表示正确的是( )A .AB .BC .CD .D14.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥D .0x ≤,0y ≤15.不等式215x +>的解集是( ) A 2x <BCD 3x >16.对于任意实数x ,现规定[]x 表示不大于x 的最大整数,例如][2122],1[1=-=-...若325x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .7x ≥ B .12x ≤ C .712x ≤< D .712x <≤17.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1 C .x =1 D .无解18.已知a b <,则下列不等式一定成立的是( ) A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <19.已知二次函数2243y x x =-++,当3m x m ≤≤+时,函数y 的最大值为5,则m 的取值范围是( ) A .1m ≥-B .2m ≥-C .21m -≤≤D .12m -≤≤20.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤4二、填空题21.不等式210x ->的解集是______.22.不等式组372510x x -<⎧⎨-≤⎩的解集是________.23.不等式组12x x m ≤≤⎧⎨>⎩无解,求m 的取值范围______.24.不等式组31534x x -<⎧⎨+>⎩的解是____________.25.若不等式组1241x ax +>⎧⎨-≤⎩有解,则a 的取值范围是________.262=成立,则x 的取值范围是___________. 27.不等式10->的解集是____________.28.把“a 的3倍与2的和不小于6”用不等式表示得______. 29.不等式13-3x >0的正整数解是______________________ . 30.不等式215x -≤的正整数解的个数有_______个.31.若0m n<<,则2{22x mx nx n>>-<的解集为.32.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:_____.33.不等式-3x-1≥-10的正整数解为______________34.不等式3x-7<0的非负整数解是________________.35.如果x=2是不等式2x a2->3的一个解,则a的取值范围______.36.若关于x的分式方程11222kx x--=--的解是正数,则k的取值范围是______.37.设a,b是任意两个实数,max{a,b}表示a,b两数中较大的数.例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{﹣4,﹣3}=﹣3.若max{3x+1,﹣x+2}=﹣x+2,则x的取值范围是_____.38.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩,则满足条件的m的整数值为________.39.我国已研制出新型新冠疫苗一一重组亚单位疫苗(CHO细胞),预计4月初开始接种.3月底我市部分小区率先开始了新型新冠疫苗接种预约,这部分小区平均每个小区有144名业主申报,其中申报人数低于120名的小区平均每个小区有112名业主申报,申报人数不低于120名的小区平均每个小区有168名业主申报.根据统计结果发现,若每个小区同时新增20名业主申报,则此时申报人数低于120名的小区平均每个小区有116名,申报人数不低于120名的小区平均每个小区有180名业主申报,且该市这部分小区个数高于100,且低于130,则这部分小区有______个.40.已知﹣1<a<0___.三、解答题41.解不等式组:12256xx x+⎧⎨≤+⎩,并把它的解集在数轴上表示出来.42.已知整数x同时满足不等式211132x x+--<和3x-4≤6x-2,并且满足方程3(x+a)-5a+2=020212a-的值43.解不等式组:12 382xx+<⎧⎨-<-⎩44.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?45.解不等式组(121(1)2-⎛⎫∏++ ⎪⎝⎭(2)32123x xxx>-⎧⎪+⎨>⎪⎩46.(1)解方程:31122xx x-+=--(2)解不等式组:426,{21136x xx x≥-++<+.47.某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?48.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?49.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元.(1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品.50.春节将至,洪崖洞的某礼品店准备将腊肉、香肠、野生葛根粉以礼盒形式销售,腊肉、香肠、野生葛根粉的成本之比为4:5:7.商家打算将3斤腊肉、2斤香肠、4斤野生葛根粉作为甲礼盒;将4斤腊肉、2斤香肠、4斤野生葛根粉作为乙礼盒;将2斤腊肉、4斤香肠、4斤野生葛根粉作为丙礼盒.已知每个礼盒的成本价是这三种年货的成本价之和,每个甲礼盒在成本价的基础上提高20%之后进行销售,每个乙礼盒的利润等于2斤野生葛根粉的成本价,每个丙礼盒的售价为1斤腊肉成本价的18倍.腊月二十九当天,该礼品店销售了40个甲礼盒,销售乙礼盒与丙礼盒的数量之和不少于55个,不超过58个.该礼品店通过核算,当天订单的利润率为25%,则腊月二十九当天一共销售了______个礼盒.参考答案:1.C【分析】根据关键词“超过”就是大于,然后列出不等式即可. 【详解】解:由题意得:x >6340万, 故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词语,选准不等号. 2.D【详解】【分析】根据题意,用不等式表示.【详解】一天的最高气温为270C ,最低气温为180C ,一天的气温为t 0C ,用不等关系表示为1827t ≤≤. 故选D【点睛】本题考核知识点:不等式. 解题关键点:用不等式表示题意. 3.C【分析】先求出不等式组的解集,再根据解集中是否含有等号确定圆圈的虚实,方向,表示即可.【详解】① 不等式组3122x x -≥⎧⎨-⎩①>②中,解①得,x ≤2, 解①得,x >-1,①不等式组3122x x -≥⎧⎨-⎩①>②的解集为-1<x ≤2,数轴表示如下:故选C .【点睛】本题考查了一元一次不等式组的解集的数轴表示方法,熟练掌握解不等式的基本要领,准确用数轴表示是解题的关键. 4.D【分析】根据题意可直接列出不等式排除选项.【详解】解:由题意得:250x +≤; 故选D .【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键. 5.B【分析】分别求出两个不等式的解集,即可求解. 【详解】解:422113x x -<⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >, 解不等式①得:3x ≤, ①不等式组的解集为13x <≤,把不等式组的解集在数轴上表示出来,如下: 故选:B【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 6.B【分析】设他答对了x 道题,根据题意列出不等式即可求解. 【详解】解:设他答对了x 道题,则根据题意可列不等式为, 105(20)90x x -->,故选B .【点睛】本题考查了列一元一次不等式,理解题意,找到不等关系是解题的关键. 7.C【详解】解:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,说法正确,不符合题意;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,说法正确,不符合题意;C .当c =0时,若a b >,则不等式22ac bc >不成立,符合题意;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,说法正确,不符合题意 故选C . 8.A【分析】根据平行线的判定可以判断①;根据不等式的性质可以判定①①;根据三角形外角的性质可以判定①.【详解】解:①内错角相等,两直线平行,故①是真命题,不符合题意; ①若33x y ->-,则x y <,故①是假命题,符合题意;①三角形的一个外角大于任何一个与之不相邻的内角,故①是真命题,不符合题意; ①若1a <-,则21a >,故①是真命题,不符合题意; 故选A .【点睛】本题主要考查了,判断命题真假,平行线的判定,不等式的性质,三角形外角的性质,熟知相关知识是解题的关怀. 9.B【分析】两方程相加、化简可得3x y a +=+,结合40a 知133a -<+<,据此可得答案.【详解】解:3249x y ax y -=⎧⎨+=⎩,3339x y a ∴+=+, 3x y a ∴+=+,40a -<<,133a ∴-<+<,即x y +的取值范围为13x y -<+<, 故选:B .【点睛】本题考查的是解一元一次不等式组,根据方程组得出3x y a +=+,并结合a 的取值范围得出3a +的范围是解题的关键. 10.A【详解】解:设小明的体重为m 千克,依题意得m+50<70 解得m <20即小明的体重<20千克①18<20①小明的体重可能是18千克. 故选A . 11.A【分析】根据点P (3m -9,1-m )在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解之即可得m 的取值范围. 【详解】解:①点P (3m -9,1-m )在第二象限, ①坐标符号是(-,+),①39010m m -<⎧⎨->⎩,解得m <1. 故选:A .【点睛】本题考查各象限内点的坐标的符号,解决本题的关键是转化为不等式或不等式组的问题. 12.C【分析】解方程组得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x +<-得8x >,结合4x m <且不等式组无解知2m ≤,继而从在2m ≤的非负整数中找到使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的个数.【详解】解:解方程组2822mx y x y +=⎧⎨-=-⎩得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x+<-,得:8x >, 又4x m <且不等式组无解,48m ∴≤, 解得2m ≤,在2m ≤的非负整数中使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的有0、2共2个, 故选:C .【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组,并根据不等式组无解得出m 的取值范围. 13.C【详解】31526x x ->⎧⎨≤⎩①②, 解①得,2x >;解①得,3x ≤;①原不等式组的解集是23x <≤,故选C.14.C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果.【详解】解:根据题意得,20x y ≥,①20x ≥,①0y ≥,①0xy ≤,①0x ≤,故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.15.C【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:2x >5-1,合并同类项,得:2x >4,系数化为1,得:x >2,故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.C【详解】①325x +⎡⎤=⎢⎥⎣⎦,①3235x +≤<,解得712x ≤<. 17.D【详解】21 3......{3 4......x x +≤+>①②解不等式①,得x≤1,解不等式①,得x>1,所以不等式组无解集;故选D .18.A【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.19.C【分析】先根据二次函数的解析式确定对称轴及最大值,再结合图象判断:当自变量m +3在对称轴上或在对称轴右侧即m +3≥1时且自变量m 在对称轴上或在对称轴左侧即m ≤1时,函数能取到最大值5,由此列出不等式组,解不等式组即可.【详解】解:()22243=215y x x x =-++--+,①对称轴是x =1,①﹣2<0,①函数的最大值为5.又①当m ≤x ≤m +3时,函数y 的最大值为5, ①311m m +≥⎧⎨≤⎩, 解得:﹣2≤m ≤1.故选:C .【点睛】本题考查二次函数的最值问题,熟练掌握二次函数的图象和性质是解题的关键. 20.C【详解】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围. 详解:2011,3x a x x +>⎧⎪⎨--≤⎪⎩①② 解不等式①,得 2a x ;>- 解不等式①,得1x ≤;原不等式组的解集为12a x -<≤. ①只有4个整数解,①整数解为:2,101--,,, 322a ∴-≤-<-, 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围.21.5x -<【分析】不等式两边都除以-2即可得出答案;【详解】解:210x ->,不等式两边都除以-2得:5x -<故答案为:x <-5【点睛】本题考查了解不等式,熟练掌握不等式的性质是解题的关键22.x <3【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:372510x x -<⎧⎨-≤⎩①②, 由①得:x <3,由①得:x ≤15,①不等式的解为:x <3,故答案是:x <3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.23.2m ≥【分析】根据不等式组12x x m ≤≤⎧⎨>⎩无解,可得12x ≤≤与x >m 在数轴上没有公共部分,即可求解. 【详解】不等式组12x x m≤≤⎧⎨>⎩无解, 12x ∴≤≤与x >m 在数轴上没有公共部分,2m ∴≥,故答案为:2m ≥.【点睛】本题考查了一元一次不等式组无解的情况,熟练掌握知识点是解题的关键. 24.1<x <2【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:31534x x -<⎧⎨+>⎩①②, 解不等式①,得x <2,解不等式①,得x >1,所以 原不等式组的解集为1<x <2,故答案为:1<x <2.【点睛】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.25.72a < 【分析】先解不等式组,再根据题意,“大小小大”列关于a 的不等式求解.【详解】解:1241x a x +>⎧⎨-≤⎩①②, 由①得:-1x a >,由①得:25x ≤,52x ≤①不等式组有解, ①5-12a <, 解得:72a <, 故答案为:72. 【点睛】本题考查了含参数不等式组的问题,首先要先解不等式组,再根据题意列出参数所满足的不等式,再进行计算求解.26.1x ≥【分析】根据二次根式有意义的条件分别求出等号两边被开方数中x 的范围,再取其公共部分即可.2(–10)x ≥,则x 为任意实数;2要满足10x -≥,则1x ≥,所以1x ≥.故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,属于基本知识题型,熟知二次根式的被开方数非负是解题关键.27.x <【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以x <故答案为:x <【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.28.3a +2≥6##236a +≥【分析】由“a 的3倍与2的和不小于6”得出关系式为:a 的3倍+2≥6,把相关数值代入即可.【详解】解:①a 的3倍为3a ,①a 的3倍与2的和不小于6:3a +2≥6.故答案为:3a +2≥6.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.29.36125402x y x y +=⎧⎪⎨=⨯⎪⎩【详解】先求出不等式解集,再找出满足条件的正整数解即可.解:1330x ->的313x ->-133x < 满足条件的正整数解为:1,2,3,4故答案为x=1,2,3,430.3【分析】先求出不等式的解,再找出其正整数解即可得.【详解】215x -≤,251x ≤+,26x ≤,3x ≤,则不等式的正整数解为1,2,3,共有3个,故答案为:3.【点睛】本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键. 31.无解.【详解】试题考查知识点:解不等式组思路分析:根据条件确定2m 、2n 、-2n 的大小关系具体解答过程:①0m n <<①2m <2n <0<-2n①x >-2n >0,x <2n <0没有交集①x >-2n 与x <2n 没有交集①原不等式组无解试题点评:32.2800×10x ﹣2000≥2000×5%. 【分析】设最低可打x 折,根据品牌手机的利润率不低于5%,可列出不等式求解.【详解】设这种品牌的电脑打x 折销售,依据题意得:2800200020005%10x ⨯-≥⨯, 故答案为:2800200020005%10x ⨯-≥⨯. 【点睛】本题考查了一元一次不等式的应用,根据利润=售价-进价,可列不等式求解. 33.1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,①不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.34.0,1,2【分析】先确定不等式的解集,后确定非负整数解.【详解】①3x -7<0,①x <73,①要确定非负整数解,①0≤x <73, ①非负整数解有0,1,2;故答案为:0,1,2.【点睛】本题考查了一元一次不等式的解集和特解问题,规范求不等式的解集是解题的关键.35.a <-2.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.【详解】解:①22x a ->3, ①2x-a >6,2x >a+6,则x >62a +, ①x=2是不等式的一个解, ①62a +<2, 解得a <-2,故答案为:a <-2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.37.14x ≤##0.25x ≤ 【分析】根据max {3x +1,﹣x +2}=﹣x +2,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:①max {3x +1,﹣x +2}=﹣x +2,①3x +1≤﹣x +2,解得:14x ≤, 故答案为:14x ≤. 【点睛】本题考查了解一元一次不等式,解题的关键是根据max {3x +1,﹣x +2}=﹣x +2,找出关于x 的一元一次不等式.38.-3和-2【分析】根据题意,先求出方程组的解,然后解代入不等式组,即可求出m 的取值范围,然后得到m 的整数解即可.【详解】解:由题意得:x-2y=m 2x+3y=2m+4⎧⎨⎩①② 由①2-⨯①,解得:4y=7, 把4y=7代入①,得:8x=m+7, 把8x=m+7,4y=7代入不等式组,得: 843(m+)+07784m++5>077⎧⨯≤⎪⎪⎨⎪⨯⎪⎩③④, 解不等式①,得:4m -3≤,解不等式①,得:m>-4,①不等式组的解集为:4-4m -3<≤, ①满足条件的m 的整数解有:-3和-2,故答案为:-3和-2.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,解题的关键是熟练掌握解方程组和解不等式组的方法和步骤.39.112【分析】先设低于120名的有x 个小区,不低于120名的有y 个小区,每个小区增加20名业主,则设低于120名的会在x 个小区的基础上减少e 个,根据“这部分小区平均每个小区有144名业主参加”可知一共有()144x y +名业主,再根据增加20户前与后两种情况的等量关系列式,可以得到x ,y 含有e 的关系式,再结合“该市这部分小区个数高于100,且低于130”即可得出答案.【详解】解:设低于120名的有x 个小区,不低于120名的有y 个小区,再设每个小区增加20名业主后,低于120名的会在x 个小区的基础上减少e 个小区,不低于120名的会在y 个小区的基础上增加e 个小区①增加20名业主后,低于120名的有()x e -个小区,不低于120户的有()y e +个小区, 由题意得:()144112168x y x y +=+,①43x y =①,同时有:()()()()11618020144x e y e x y x y -++=+++,化简得:34x y e -=①,由①①解得: 2.4 3.2x e y e ==,,①x ,y ,e 都是正整数,且100130x y <+<①100 5.6130e <<,①20e =,①4864x y ==,,①112x y +=故答案为:112.【点睛】本题主要考查方程与实际问题,能够读懂题意,找到等量关系并准确的表达出来是解题的关键.40.2a- 【分析】根据题意得到10a a->,10a a +<,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式==①10a -<<,①201a <<, ①1a a>, 210a +>, ①10a a->,2110a a a a ++=<,原式112a a a a a ==---=- 故答案为:2a -. 【点睛】本题考查二次根式的化简和不等式的性质,解题关键是熟练掌握二次根式的性质.41.﹣2≤x ≤1,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x +1≤2,得:x ≤1,解不等式2x ≤5x +6,得:x ≥﹣2,则不等式组的解集为﹣2≤x ≤1,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查在数轴上表示不等式组的解集,熟练掌握,即可解题.42.0【分析】先解两个不等式,确定解集的公共部分,再确定不等式组的整数解,把整数解代入方程解方程求解a 的值,从而可得答案.【详解】解:由两个不等式组成不等式组:2111323462x x x x +-⎧-<⎪⎨⎪-≤-⎩①② 解不等式①,得x <1,解不等式①,得x ≥-23①不等式组的解集为-23≤x <1①整数x 为0,①3(0+a )-5a +2=0,解得a =1202121120a -=+-=【点睛】本题考查的是一元一次不等式组的解法,求一个数的立方根,一元一次方程的解与解法,代数式的值,掌握以上知识是解题的关键.43.1x <【分析】直接根据一元一次不等式的解法进行求解即可. 【详解】解: 12382x x +<⎧⎨-<-⎩①② 解不等式①,得:1x <;解不等式①,得2x <;∴不等式组的解集为1x <.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握不等式组的解法是解题的关键.44.(1)购进甲种花卉每盆16元,乙种花卉每盆8元;(2)10≤x ≤12.5,故有三种购买方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【分析】(1)根据题意设购进甲种花卉每盆x 元,乙种花卉每盆y 元,列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,利用一次函数的性质得到哪种方案获利最大,最大利润是多少.【详解】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,20507204030880x y x y +=⎧⎨+=⎩, 解得:168x y =⎧⎨=⎩, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)设甲种花卉购进m 盆,则 80016688001688m m m m -⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得,10≤m ≤12.5,又m 为整数,m ∴=10,11,12,故有三种购买方案,由利润W=80016614100,8m m m -+⨯=+ 40,∴>W 随m 的增大而增大,故当m =12时, 80016768m -=, 即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.45.(1)5;(2) 115x -<<. 【分析】(1)分别计算算数平方根,0指数幂,负指数幂,再把结果相加减;(2)依据解不等式的步骤分别计算两个不等式,求公共解.【详解】(1)原式2145=-+=(2)32(1)12(2)3x x x x >-⎧⎪+⎨>⎪⎩ 分别解两个一元一次不等式,过程如下:解①得,32x x ->-22x >-1x >-解①得,16x x +>51x <,15x < ①115x -<< 【点睛】本题考查0指数幂,算术平方根,负指数幂,解不等式组.(1)中熟记0指数幂,算术平方根,负指数幂的计算公式并能正确运用是解题的关键;(2)在解不等式时,需注意去分母和系数化为1时,要用到等式的性质2或者性质3,应注意不等号的方向改不改变.46.(1)解得x=2,检验,无解;(2)33x ≤<-【详解】试题分析:(1) 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2) 先求出①的解集,再求出①的解集,求两者的公共部分.试题解析: (1)31 122x x x-+=-- 去分母得:3−x −1=x −2,移项合并得:2-2x =-2,解得:x =2,经检验x =2是分式方程的增根,原方程无解. (2)426, 2x x 1136x x ①②≥-⎧⎪⎨++<+⎪⎩由①得,2x ≥-6所以x ⩾−3由①得,4+2x <x +1+6。

2020年中考数学《不等式与不等式组》真题汇编(带答案)

2020年中考数学《不等式与不等式组》真题汇编(带答案)

2020年中考数学《不等式与不等式组》专题复习(名师精选全国真题,值得下载练习)一.选择题1.(2019•上海)如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.43.(2019•日照)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.4.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a 的取值范围为()A.1<a≤2B.1<a<2 C.1≤a<2 D.1≤a≤25.(2019•云南)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2C.a>2 D.a≥2 6.(2019•绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种7.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<148.(2019•呼和浩特)若不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>﹣B.m<﹣C.m<﹣D.m>﹣9.(2019•广元)不等式组的非负整数解的个数是()A.3 B.4 C.5 D.6 10.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.711.(2019•聊城)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2 12.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89 13.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种14.(2019•重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13 B.14 C.15 D.1615.(2019•德州)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.016.(2019•台湾)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A.2150 B.2250 C.2300 D.2450二.填空题17.关于x的不等式组的解集是2<x<4,则a的值为.18.(2019•铜仁市)如果不等式组的解集是x<a﹣4,则a的取值范围是.19.(2019•大庆)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax ﹣3a﹣1<0的解,则实数a的取值范围是.20.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.21.(2019•鄂州)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是.22.(2019•宜宾)若关于x的不等式组有且只有两个整数解,则m 的取值范围是.23.(2019•达州)如图所示,点C位于点A、B之间(不与A、B重合),点C 表示1﹣2x,则x的取值范围是.24.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.三.解答题25.(2019•济南)解不等式组,并写出它的所有整数解.26.(2019•青海)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?27.(2019•锦州)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A 型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?28.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?29.(2019•赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?30.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B 两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?参考答案一.选择题1.解:∵m>n,∴﹣2m<﹣2n,故选:D.2.解:解不等式2x﹣6+m<0,得:x<,解不等式4x﹣m>0,得:x>,∵不等式组有解,∴<,解得m<4,如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.故选:C.3.解:解不等式①得:x≥﹣3,解不等式②得:x<1,故不等式组的解集为:﹣3≤x<1,在数轴上表示为:故选:C.4.解:解①得:x≥﹣1,解②得:x<a,∵不等式组的整数解有3个,∴不等式组的整数解为﹣1、0、1,则1<a≤2,故选:A.5.解:解关于x的不等式组得∴a≥2故选:D.6.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.7.解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.8.解:解不等式﹣1≤2﹣x得:x≤,∵不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x ﹣1)+5>5x+2(m+x)成立,∴x<,∴>,解得:m<﹣,故选:C.9.解:,解①得:x>﹣2,解②得x≤3,则不等式组的解集为﹣2<x≤3.故非负整数解为0,1,2,3共4个故选:B.10.解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.11.解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.12.解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.13.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.14.解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.15.解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.16.解:设阿慧购买x盒桂圆蛋糕,则购买(10﹣x)盒金爽蛋糕,依题意有。

专题21不等式与不等式组(1) 中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)  中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·广东中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤2.(2020·广西河池中考真题)不等式组1224x x x +>⎧⎨-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.(2020·辽宁朝阳中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .94.(2020·辽宁铁岭中考真题)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .55.(2020·黑龙江鹤岗中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-6.(2020·内蒙古呼伦贝尔中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .77.(2020·内蒙古赤峰中考真题)不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( )A .B .C .D .8.(2020·内蒙古鄂尔多斯中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)9.(2020·云南中考真题)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-10.(2020·江苏宿迁中考真题)若a >b ,则下列等式一定成立的是( ) A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |11.(2020·辽宁沈阳中考真题)不等式26x ≤的解集是( ) A .3x ≤B .3x ≥C .3x <D .3x >12.(2020·云南昆明中考真题)不等式组1031212x x x +>⎧⎪⎨+-⎪⎩,的解集在以下数轴表示中正确的是( )A .B .C .D .13.(2020·四川眉山中考真题)不等式组121452(1)x x x x +≥-⎧⎨+>+⎩的整数解有( )A .1个B .2个C .3个D .4个14.(2020·四川雅安中考真题)不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .15.(2020·重庆中考真题)若关于x 的一元一次不等式组()21321? 2x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .016.(2020·重庆中考真题)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为( ) A .5 B .4C .3D .217.(2020·吉林长春中考真题)不等式23x +≥的解集在数轴上表示正确的是( ) A .B .C .D .18.(2020·湖南益阳中考真题)将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .19.(2020·海南中考真题)不等式21x -<的解集是( ) A .3x <B .1x <-C .3x >D .2x >20.(2020·广西玉林中考真题)把二次函数2(0)y ax bx c a =++>的图象作关于x 轴的对称变换 ,所得图象的解析式为2(1)4y a x a =--+,若()10m a b c -++≤,则m 的最大值为( )A .4-B .0C .2D .621.(2020·内蒙古中考真题)下列命题正确的是( )A .若分式242x x --的值为0,则x 的值为±2. B .一个正数的算术平方根一定比这个数小. C .若0b a >>,则11a ab b ++>. D .若2c ≥,则一元二次方程223x x c ++=有实数根.22.(2020·湖北黄石中考真题)不等式组13293x x -<-⎧⎨+≥⎩的解集是( )A .33x -≤<B .2x >-C .32x -≤<-D .3x ≤-23.(2020·四川宜宾中考真题)不等式组20211x x -<⎧⎨--≤⎩的解集在数轴上表示正确的是( )A .B .C .D .24.(2020·四川宜宾中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种25.(2020·山西中考真题)不等式组26041x x ->⎧⎨-<-⎩的解集是( )A .5x >B .35x <<C .5x <D .5x >-二、解答题26.(2020·西藏中考真题)解不等式组:122(1)6x x +<⎧⎨-⎩并把解集在数轴上表示出来.27.(2020·甘肃金昌中考真题)解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.28.(2020·江苏淮安中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-. ……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.29.(2020·辽宁抚顺中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?30.(2020·江苏苏州中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.31.(2020·广西河池中考真题)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg ;乙店的香蕉价格为5元/kg ,若一次购买6kg 以上,超过6kg 部分的价格打7折.(1)设购买香蕉xkg ,付款金额y 元,分别就两店的付款金额写出y 关于x 的函数解析式; (2)到哪家店购买香蕉更省钱?请说明理由.32.(2020·辽宁铁岭中考真题)某中学为了创设“书香校园”,准备购买,A B 两种书架,用于放置图书.在购买时发现,A 种书架的单价比B 种书架的单价多20元,用600元购买A 种书架的个数与用480元购买B 种书架的个数相同.(1)求,A B 两种书架的单价各是多少元?(2)学校准备购买,A B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?33.(2020·江苏泰州中考真题)(1)计算:11()602π-⎛⎫-+︒ ⎪⎝⎭(2)解不等式组:311442x x x x -≥+⎧⎨+<-⎩34.(2020·黑龙江鹤岗中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.35.(2020·内蒙古赤峰中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天36.(2020·江苏镇江中考真题)(1)解方程:23xx+=13x++1;(2)解不等式组:427 3(2)4x xx x+>-⎧⎨-<+⎩37.(2020·内蒙古鄂尔多斯中考真题)(1)解不等式组3(1)52(1)237(2)22x xxx-<+⎧⎪⎨--⎪⎩,并求出该不等式组的最小整数解.(2)先化简,再求值:(2211-211aa a a--+-)÷22a a-,其中a满足a2+2a﹣15=0.38.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.39.(2020·四川绵阳中考真题)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?40.(2020·江苏南通中考真题)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.41.(2020·辽宁营口中考真题)先化简,再求值:(41xx--﹣x)÷21xx--,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·山东烟台中考真题)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?43.(2020·黑龙江大庆中考真题)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%?至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.44.(2020·四川雅安中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)45.(2020·山东威海中考真题)解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩46.(2020·湖南永州中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元. (1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?47.(2020·湖北荆州中考真题)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(0m15<≤且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.48.(2020·湖北荆州中考真题)先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;49.(2020·宁夏中考真题)解不等式组:53(1)?21511?32x xx x--⎧⎪⎨-+-<⎪⎩①②50.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b定义为[]n b如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?51.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1140元;如果购买A 种物品45件,B 种物品30件,共需840元. (1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7000元,那么A 种防疫物品最多购买多少件?52.(2020·贵州毕节中考真题)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?53.(2020·内蒙古呼和浩特中考真题)(1)计算:22|1|3-⎛⎫- ⎪⎝⎭;(2)已知m是小于0的常数,解关于x的不等式组:41713142x xx m->-⎧⎪⎨-<-⎪⎩.54.(2020·湖南郴州中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案55.(2020·广东广州中考真题)解不等式组:212541 x xx x-+⎧⎨+<-⎩.56.(2020·广东深圳中考真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?57.(2020·内蒙古通辽中考真题)某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B 型打七五折,那么该专卖店至少需要准备多少货款?58.(2020·内蒙古通辽中考真题)用※定义一种新运算:对于任意实数m 和n ,规定23m n m n mn n =--※,如:2121212326=⨯-⨯-⨯=-※.(1)求()2-(2)若36m ≥-※,求m 的取值范围,并在所给的数轴上表示出解集.59.(2020·黑龙江穆棱朝鲜族学校中考真题)某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案? (3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.60.(2020·湖南娄底中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?61.(2020·陕西中考真题)解不等式组:362(5)4x x >⎧⎨->⎩62.(2020·江苏盐城中考真题)解不等式组:21134532x x x -⎧≥⎪⎨⎪-<+⎩.63.(2020·湖北省直辖县级单位中考真题)(1)先化简,再求值:22244422a a a a a a-+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.三、填空题64.(2020·四川攀枝花中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.65.(2020·湖南湘西中考真题)不等式组13121xx ⎧-⎪⎨⎪+≥-⎩的解集为______________.66.(2020·辽宁大连中考真题)不等式5131x x +>-的解集是______.67.(2020·辽宁鞍山中考真题)不等式组21321x x -≤⎧⎨-<⎩的解集为________.68.(2020·黑龙江鹤岗中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______.69.(2020·山东滨州中考真题)若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.70.(2020·四川绵阳中考真题)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.71.(2020·四川绵阳中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本) 72.(2020·江苏宿迁中考真题)不等式组120x x >⎧⎨+>⎩的解集是_____.73.(2020·四川凉山中考真题)关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是________________.74.(2020·广西中考真题)如图,数轴上所表示的x 的取值范围为_____.75.(2020·吉林中考真题)不等式317x +>的解集为_______.76.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件: (1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.77.(2020·宁夏中考真题)若二次函数22y x x k =-++的图象与x 轴有两个交点,则k 的取值范围是_____.78.(2020·贵州毕节中考真题)不等式362x x -<-的解集是_______.79.(2020·青海中考真题)分解因式:2222ax ay-+=________;不等式组24030xx-⎧⎨-+>⎩的整数解为________.。

初中数学--不等式与不等式组--中考试题(含答案)

初中数学--不等式与不等式组--中考试题(含答案)

初中数学 不等式与不等式组 中考试题(含答案)一、填空题1.(2009年北京市)不等式325x +≥的解集是.2.(2009年泸州)关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是3.(2009年吉林省)不等式23x x >-的解集为.4、(2009年遂宁)把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .5.(2009年云南省)不等式组40320x x ->⎧⎨+>⎩的解集是 .6.(2009年包头)不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7.(2009年莆田)甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.(2009年南充)不等式5(1)31x x -<+的解集是 .9.(2009年南充)不等式5(1)31x x -<+的解集是 .1-.(2009年甘肃白银)不等式组103x x +>⎧⎨>-⎩,的解集是 .11.(2009年宁波市)不等式组6020x x -<⎧⎨->⎩的解是 .12.(2009年义乌)不等式组210x ox -≤⎧⎨>⎩的解是13、(2009江西)不等式组23732x x +>⎧⎨->-⎩,的解集是 .14(2009年湘西自治州)3.如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)15.(2009年烟台市)如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16.(2009年宁波市)不等式组6020x x -<⎧⎨->⎩的解是 .17.(2009年新疆乌鲁木齐市)某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .18.(2009年孝感)关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = ▲ .19.(2009年厦门市)已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.20.(2009武汉).如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .21.(2009烟台)如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .22.(2009年凉山州)若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .23.(2009年湖南长沙)已知关于x的不等式组521x ax-⎧⎨->⎩≥,只有四个整数解,则实数a的取值范围是.24.(2009年包头)函数y=x的取值范围是( B )A.2x>-B.2x-≥C.2x≠-D.2x-≤25.(2009年崇左)不等式组221xx-⎧⎨-<⎩≤的整数解共有()A.3个B.4个C.5个D.6个二、选择题26:(2009年泸州)不等式组2131xx-<⎧⎨≥-⎩的解集是A.2x< B.1-≥x C.12x-≤<D.无解27.(2008年福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm28.(2009年长春)不等式260x-<的解集是()A.3x>B.3x<C.3x>-D.3x<-29.(2009 年佛山市)据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t(℃)的变化范围是()A.33t>B.24t≤C.2433t<<D.2433t≤≤30.(2009宁夏)3.把不等式组21123xx+>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是()B A.B.C.D.31.(2009年济南)不等式组213351xx+>⎧⎨-⎩≤的解集在数轴上表示正确的是()11- 11- 11- 11-1 2A.B.1 232.(2009年莆田)不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )3311223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )34.(2009年河南)不等式﹣2x <4的解集是 【 】 A .x >﹣2 B.x <﹣2 C. x >2 D. x <235.(2009年广西南宁)不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )36.(2009年娄底)下列哪个不等式组的解集在数轴上表示如图2所示 ( )-1 01 2A .-1 01 2 B .-1 01 2 C .-1 01 2 D .-1 0 1 2 A-1 01 2 B .-1 01 2 C .-1 01 2 D .A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩37(2009恩施市)如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( ) A .3a > B .a ≥3 C .a ≤3 D .3a <38. (2009年烟台市)如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<39.(2009年天津市)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.40.(2009年牡丹江市)若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<<41. 2009年重庆市江津区)不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )yOB A42.(2009年郴州市)不等式26x ≤的解集为( ) A .3x ≥ B . 3x ≤ C . 13x ≥ D . 13x ≤43.(2009年内蒙古包头)不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .44.(2009年甘肃定西)不等式组103x x +>⎧⎨>-⎩,的解集是 .45. (2009武汉)3.不等式2x ≥的解集在数轴上表示为( )46.(2009年上海市)2.不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<47.(2009湖北省荆门市)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <1 1- 02 3A .1 1- 02 3B .1 1- 02 3C .1 1- 02 3D .48.(2009年深圳市)不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,249.(2009河池)15.一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )50.(2009柳州)3.若b a <,则下列各式中一定成立的是() A .11-<-b a B .33ba >C . ba -<- D .bc ac <51.(2008年福州)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm52. (2009年北京市)不等式325x +≥的解集是.53.(2009年宁德市)不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解54.(2009湖南邵阳)不等式组13x x ⎧-⎪⎨⎪⎩<≤,的解集在数轴上可以表示为( )A .B .C .D .55.(09湖北宜昌)如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0ABCD56.(09湖南怀化)不等式组260,58x x x +>⎧⎨+⎩≤ 的解集在下列数轴上表示正确的是( )57.(2009烟台)如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .58.(2009年娄底)下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩59 (2009年益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是60.(2009恩施市)如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a < 61.(2009临沂)若x y >,则下列式子错误的是( )B . 3 1 0 2 4 5 D .3 1 0 24 5A . 3 1 0 2 4 5C . 3 1 0 2 4 5A .33x y ->-B .33x y ->-C .32x y +>+D .33x y >62.(2009 年佛山市)据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤ 63.(2009临沂)若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y >64.(2009东营)不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )65. 2009年重庆市江津区)不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )66(2009年山西省) 式组21318x x --⎧⎨->⎩≥的解不等集在数轴上可表示为( )ABC-3 10 D-1 367.(2009年邵阳市)不等式组⎩⎨⎧≤-31<xx的解集在数轴上可以表示为()68(2009年清远)不等式2x-≤的解集在数轴上表示正确的是()A.B.C.D.69.(2009年日照)不等式组⎪⎩⎪⎨⎧≥--+2321123x,xx>的解集在数轴上表示正确的是()70.(2009年广西梧州)不等式组2201xx+>⎧⎨--⎩≥的解集在数轴上表示为()A.B.C.D.71(2009年崇左)不等式组221xx-⎧⎨-<⎩≤的整数解共有()A B C D0 1 2 3 4 0 1 2 3 4A BC DA .3个B .4个C .5个D .6个三、 解答题72.(2009年衡阳市)解下列不等式组,并把解集在数轴上表示出来.⎩⎨⎧≥+-<- x x x )2(33)1(2)1(0273(2009年黄冈市)13.解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤74.(2009年达州)解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.75(2009年广西钦州)(1)解不等式:13x -1<0,并把它的解集在数轴上表示出来; 76.(2009年山东青岛市)(1)化简:2211x x x x +-÷;(2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤77.(2009年淄博市) 解不等式:5x –12≤2(4x -3)78(2009年台州市)解不等式组⎩⎨⎧->+<-.)1(215,02x x x79.(2009年重庆)解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②80(2009年湖北荆州)16.解不等式:322x x -≥- 81(2009年常德市)解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥82.(2009年安顺)解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。

2021年全国各省市数学中考分类汇编不等式与不等式组含答案

2021年全国各省市数学中考分类汇编不等式与不等式组含答案

2021年年年年年年年年年年年年年年年年年年年年年年年年年一、选择题1. (2021·安徽省)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( )A. a >b >cB. c >b >aC. a −b =4(b −c)D. a −c =5(a −b)2. (2021·辽宁省阜新市)不等式组{2−2x ≤4x +1>3的解集,在数轴上表示正确的是( )A. B.C.D.3. (2021·湖南省湘潭市)不等式组{x +1≥24x −8<0的解集在数轴上表示正确的是( )A.B.C.D.4. (2021·重庆市)不等式x ≤2在数轴上表示正确的是( )A.B.C.D.5. (2021·贵州省遵义市)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( )A. 5×2+2x ≥30B. 5×2+2x ≤30C. 2×2+2x ≥30D. 2×2+5x ≤306. (2021·江苏省南通市)若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a的取值范围是( )A. 7<a <8B. 7<a ≤8C. 7≤a <8D. 7≤a ≤87. (2021·广西壮族自治区桂林市)将不等式组{x >−2x ≤3的解集在数轴上表示出来,正确A.B.C.D.8. (2021·广西壮族自治区南宁市)定义一种运算:a *b ={a,a ≥bb,a <b,则不等式(2x +1)*(2-x )>3的解集是( )A. x >1或x <13 B. −1<x <13 C. x >1或x <−1D. x >13或x <−19. (2021·内蒙古自治区包头市)定义新运算“⨂”,规定:a ⨂b =a -2b .若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A. −1B. −2C. 1D. 210. (2021·山东省济宁市)不等式组{x +3≥2x−12−x >−2的解集在数轴上表示正确的是( )A.B.C.D.11. (2021·黑龙江省)若关于x 的分式方程2x−bx−2=3的解是非负数,则b 的取值范围是( )A. b ≠4B. b ≤6且b ≠4C. b <6且b ≠4D. b <612. (2021·内蒙古自治区呼和浩特市)已知关于x 的不等式组{−2x −3≥1x 4−1≥a−12无实数解,则a 的取值范围是( )A. a ≥−52B. a ≥−2C. a >−52D. a >−213. (2021·广西壮族自治区贵港市)不等式1<2x -3<x +1的解集是( )A. 1<x <2B. 2<x <3C. 2<x <4D. 4<x <514. (2021·浙江省嘉兴市)已知点P (a ,b )在直线y =-3x -4上,且2a -5b ≤0,则下列不等式一定成立的是( )A. a b ≤52B. a b ≥52C. b a ≥25D. b a ≤2515. (2021·吉林省)不等式2x -1>3的解集是( )A. x >1B. x >2C. x <1D. x <2二、填空题16. (2021·辽宁省丹东市)不等式组{2x −1<3x >m 无解,则m 的取值范围______ .17. (2021·辽宁省大连市)不等式3x <x +6的解集是______ .18. (2021·黑龙江省哈尔滨市)不等式组{3x −7<2x −5≤10的解集是______ .19. (2021·天津市)不等式组{12x −1<03x +8≥−x的解集是__.20. (2021·湖北省襄阳市)不等式组{x +2≥4x −12x >1−x的解集是______ .21. (2021·湖北省荆门市)关于x 的不等式组{−(x −a)<31+2x 3≥x −1恰有2个整数解,则a 的取值范围是______ .22. (2021·湖南省益阳市)已知x 满足不等式组{x >−1x −2≤0,写出一个符合条件的x 的值______ .23. (2021·黑龙江省)已知关于x 的不等式组{3(x −a)≥2(x −1)2x−13≤2−x 2有5个整数解,则a 的取值范围是______ .24. (2021·贵州省黔东南苗族侗族自治州)不等式组{5x +2>3(x −1)12x −1≤7−32x的解集是______ . 25. (2021·山东省东营市)不等式组{2x−13−5x+12≤15x −1<3(x +1)的解集为__________.26. (2021·黑龙江省)关于x 的一元一次不等式组{2x −a >03x −4<5无解,则a 的取值范围是______ .27. (2021·湖南省张家界市)不等式{x >22x +1≤7的正整数解为______ .28. (2021·黑龙江省绥化市)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买A ,B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是______ 元.29. (2021·黑龙江省双鸭山市)关于x 的一元一次不等式组{2x −a >03x −4<5有解,则a 的取值范围是______ .30. (2021·吉林省长春市)不等式组{2x >−1x ≤1的所有整数解为______ .三、解答题31. (2021·广西壮族自治区百色市)解不等式组{5x ≥8+x1+2x 3>x −2,并把解集在数轴上表示出来.32. (2021·安徽省)解不等式:x−13-1>0.33. (2021·贵州省遵义市)(1)计算(-1)2+|√2-2|+√8-2sin45°;(2)解不等式组:{x −1≥2①2x +3<13②.34. (2021·贵州省毕节市)x 取哪些正整数值时,不等式5x +2>3(x -1)与2x−13≤3x+16都成35. (2021·江苏省徐州市)(1)解方程:x 2-4x -5=0;(2)解不等式组:{2x −1≤3x +2>3x +8.36. (2021·辽宁省阜新市)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天1000元,乙公司安装费每天500元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过18000元,则最多安排甲公司工作多少天?37.(2021·湖南省郴州市)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?38.(2021·山东省)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x 的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.39.(2021·黑龙江省牡丹江市)某商场计划购进一批篮球和足球,其中篮球的单价比足球多30元.已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球的售价为150元,足球的售价为110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场共有几种货方案?哪种方案商场获利最大?(3)某希望小学为庆祝中国共产党成立100周年,举行百人球操表演,准备购买(2)中商场购进的这100个篮球和足球,商场知晓后决定从中拿出30个球赠送给这所希望小学,这样,希望小学相当于七折购买这批球.请直接写出商场赠送的30个球中篮球和足球的个数.40.(2021·江苏省南通市)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500-300)×0.7=410(元);去B超市的购物金额为:100+(500-100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.参考答案1.D2.C3.D4.D5.D6.C7.B8.C9.B10.B11.B12.D13.C14.D15.B16.m≥217.x<318.x<319.-2≤x<220.1<x≤1321.5≤a<622.023.-1<a≤0324.−5<x≤4225.-1≤x<226.a≥627.328.33029.a<630.0、131.解:解不等式5x≥8+x,得:x≥2,解不等式1+2x>x-2,得:x<7,3则不等式组的解集为2≤x<7,将不等式组的解集表示在数轴上如下:32.解:x−13-1>0,去分母,得 x -1-3>0,移项及合并同类项,得 x >4.33.解:(1)原式=1+2-√2+2√2-2×√22=3+√2-√2 =3;(2)解不等式①,得:x ≥3, 解不等式②,得:x <5, 则不等式组的解集为3≤x <5.34.解:根据题意解不等式组{5x +2>3(x −1)①2x−13≤3x+16②, 解不等式①,得:x >-52, 解不等式②,得:x ≤3, ∴-52<x ≤3,故满足条件的正整数有1、2、3.35.解:(1)x 2-4x -5=0,(x -5)(x +1)=0, x -5=0或x +1=0, 解得:x 1=5,x 2=-1;(2){2x −1≤3①x +2>3x +8②, 解不等式①,得x ≤2,解不等式②,得x <-3,所以不等式组的解集是x <-3.36.解:(1)设乙公司每天安装x 间教室,则甲公司每天安装1.5x 间教室, 根据题意得:36x −361.5x =3,解得:x =4,经检验,x =4是所列方程的解,则1.5x =1.5×4=6, 答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y 天,则乙公司工作120−6y 4 天, 根据题意得:1000y +120−6y 4×500≤18000,解这个不等式,得:y ≤12,答:最多安排甲公司工作12天.37.解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元, 由题意得:800x ×3=1700−800x−25,解得:x =40,经检验,x =40是原方程的解,则x -25=15,答:A 奖品的单价为40元,则B 奖品的单价为15元;(2)设购买A 种奖品的数量为m 件,则购买B 种奖品的数量为(100-m )件,由题意得:{40×0.8×m ≥72040×0.8×m +15×0.8×(100−m)≤1700, 解得:22.5≤m ≤25,∵m 为正整数,∴m 的值为23,24,25,∴有三种方案:①购买A 种奖品23件,B 种奖品77件;②购买A 种奖品24件,B 种奖品76件;③购买A种奖品25件,B种奖品75件.38.解:(1)设乙队每天能完成绿化面积为am2,则甲队每天能完成绿化面积为2am2 根据题意得:400 a −4002a=5解得a=40经检验,a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2 (2)由(1)得80x+40y=1600整理的:y=-2x+40(3)由已知y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.539.解:设足球单价为x元,则篮球单价为(x+30)元,由题意得:360 x =480x+30,解得:x=90,经检验:x=90是原分式方程的解,则x+30=120,答:足球单价为90元,则篮球单价为120元;(2)设购买篮球x个,则购买足球(100-x)个,由题意得:120x+90(100-x)≤10350,解得:x ≤45,∵篮球不少于40个,∴40≤x ≤45,∴有6种方案:设商场获利w 元,由题意得:w =(150-120)x +(110-90)(100-x )=10x +2000,∵10>0,∴w 随x 的增大而增大,∴x =45时,w 有最大值,100-45=55(个),答:商场共有6种货方案,购买篮球45个,购买足球55个,商场获利最大; (3)设商场赠送的30个球中篮球m 个,足球(30-m )个,由题意得:110×[55-(30-m )]+150×(45-m )=(150×45+110×55)×0.7, 解得:m =272,∵m 是正整数,∴m =13或14,30-m =17或16,答:商场赠送的30个球中篮球13个和足球17个或篮球14个和足球16个.40.解:(1)由题意可得,当x ≤300时,y A =0.9x ;当x >300时,y A =0.9×300+0.7(x -300)=0.7x +60,故y A ={0.9x(x ≤300)0.7x +60(x >300); 当x >100时,y B =100+0.8(x -100)=0.8x +20;y B ={100(x ≤100)0.8x +20(x >100); (2)由题意,得0.9x >0.8x +20,解得x >200,∴200<x ≤300时,到B 超市更省钱;0.7x +60>0.8x +20,解得x <400,∴300<x <400,到B 超市更省钱;0.7x +60=0.8x +20,解得x =400,∴当x =400时,两家超市一样;0.7x +60<0.8x +20,解得x >400,∴当x >400时,到A 超市更省钱;综上所述,当200<x<400到B超市更省钱;当x=400时,两家超市一样;当x>400时,到A超市更省钱.。

中考数学总复习《不等式与不等式组》专项测试卷-带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(共8题,共40分)1.若不等式组 {2x −3>1,x ≤a 的整数解共有 4 个,则 a 的取值范围是 ( )A . 6≤a <7B . 6<a ≤7C . 6<a <7D . 6≤a ≤72. a ,b 为实数,且 a >b ,则下列不等式的变形正确的是 ( ) A . a +b <b +x B . −a +2>−b +2 C . 3a >3bD . a2<b23.不等式组 −2x ≤6 的解集在数轴上表示正确的是 ( ) A . B . C .D .4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有 10 支水银温度计,若干支额温枪.水银温度计每支 5 元,额温枪每支 230 元,如果总费用超过 1000,那么额温枪至少有 ( )A . 3 支B . 4 支C . 5 支D . 6 支5.已知整数 k 使得关于 x ,y 的二元一次方程组 {kx −y =12,3x −y =3的解为正整数,且关于 x的不等式组 {3x −k ≥0,12x −2<1有且仅有四个整数解,则所有满足条件的 k 的和为 ( )A . 4B . 9C . 10D . 156.已知 a,b,c 为有理数,且 a +b +c =0,b ≥−c >|a| 则 a,b,c 与 0 的大小关系是 ( ) A . a <0 b >0 c <0 B . a >0 b >0 c <0C . a ≥0 b <0 c >0D . a ≤0 b >0 c <07.某商店搞促销:某种矿泉水原价每瓶 5 元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买 ( ) 瓶矿泉水时,第二种方案更便宜. A . 5B . 6C . 7D . 88.如图,一个运算程序,若需要经过两次运算才能输出结果,则 x 的取值范围为 ( )A . x >1B . 1<x ≤7C . 1≤x <7D . 1≤x ≤7二、填空题(共5题,共15分)9.据某气象台发布信息,2020 年 6 月 12 日该地最高气温是 32∘C ,最低气温是 25∘C ,则当天气温 t ℃ 的变化范围是 .10.在平面直角坐标系中,若点 P (1−m,5−2m ) 在第二象限,则整数 m 的值为 .11.鱼缸里养 A ,B 两种鱼,A 种鱼的生长温度 x ∘C 的范围是 20≤x ≤28,B 种鱼的生长温度 x ∘C 的范围是 19≤x ≤25,那么鱼缸里的温度 x ∘C 应该控制在 范围内.12.在一次数学知识竞赛中,竞赛题共 30 题.规定:答对一道题得 4 分,不答或答错一道题倒扣 2 分,得分不低于 60 分者得奖.得奖者至少应答对 道题.13.若不等式组 {x −a >2,b −2x >0 的解集是 −1<x <1,则 (a +b )2021= .三、解答题(共3题,共45分)14.若数 a 使关于 x 的分式方程 2x−1+a1−x =3 的解为正数,且使关于 y 的不等式组{y+23−y2>1,2(y −a )≤0的解集为 y <−2,求符合条件的所有整数 a 的和.15.为了弄清废旧电池对环境的危害,小明借读了一本与此相关的 500 页的科普书,计划 10 天内读完,前 5 天因种种原因只读了 100 页,那么从第 6 天起平均每天至少要读多少页,才能按计划读完这本书?16.已知关于 x ,y 的方程组 {x +2y =2m −5,x −2y =3−4m 的解满足 x <1和y <2.(1) 求实数 m 的取值范围; (2) 化简 ∣3m −8∣+∣m +2∣.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】 −1≤x <3 10.【答案】 211.【答案】 20≤x ≤25 12.【答案】 113.【答案】 −114.【答案】分式方程的两边都乘 (x −1),得 2−a =3(x −1),解得 x =5−a 3.∵x −1≠0 ∴5−a 3≠1 ∴a ≠2. ∵ 分式方程的解为正数 ∴5−a 3>0 ∴a <5 且 a ≠2.{y+23−y2>1, ⋯⋯①2(y −a )≤0. ⋯⋯②解不等式①得 y <−2 解不等式②得 y ≤a . ∵ 不等式组的解集为 y <−2 ∴a ≥−2.∴−2≤a <5 且 a ≠2.∴ 整数 a 的和为 (−2)+(−1)+0+1+3+4=5.15.【答案】设从第 6 天起平均每天读 x 页.100+5x ≥500,解得x ≥80.答:从第 6 天起平均每天至少要读 80 页,才能按计划读完这本书. 16.【答案】(1) 解方程组可得 {x =−m −1,y =3m−42.∵x <1,y <2 ∴{−m −1<1,3m−42<2,解得 −2<m <83∴m 的取值范围是 −2<m <83.(2) ∵−2<m <83 ∴3m −8<0 m +2>0 ∴∣3m −8∣+∣m +2∣=8−3m +m +2=−2m +10.。

方程与不等式之不等式与不等式组真题汇编

方程与不等式之不等式与不等式组真题汇编

方程与不等式之不等式与不等式组真题汇编一、选择题1.不等式组30213x x +⎧⎨->⎩…的解集为( ) A .x >1B .x≥3C .x≥﹣3D .x >2【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】 解:30213x x +>⎧⎨->⎩①②, 由①得,x ≥﹣3,由②得,x >2,故此不等式组的解集为:x>2.故选:D .【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.2.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:32212203y y y a --⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1y y a >-⎧⎨⎩…, 由不等式组至少有四个整数解,得到-1<y ≤a ,解得:a ≥3,即整数a =3,4,5,6,…,2-322a x x=--, 去分母得:2(x -2)-3=-a ,解得:x =72a -, ∵72a -≥0,且72a -≠2, ∴a ≤7,且a ≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为4,5,6,7,之和为22. 故选:C .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a ≤- 【答案】B【解析】【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.4.关于 x 的不等式组21231x x a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为( )A .-2≤a <-1B .-2<a≤-1C .-3≤a <-2D .-3<a≤-2【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】 解:21231x x a -⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72, 解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .6.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.7.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有三个整数解,则实数a 的取值范围是( )A .15<a ≤18B .5<a ≤6C .15≤a <18D .15≤a ≤18【答案】A【解析】【分析】解不等式组,由有且只有三个整数解确定出a 的范围即可.【详解】 解不等式组得:23x a x >⎧⎪⎨<⎪⎩,即2<x <3a , 由不等式组有且只有三个整数解,得到整数解为3,4,5,∴5<3a ≤6, 解得:15<a≤18,故选:A .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握解不等式组的方法是解本题的关键.8.关于x ,y 的方程组32451x y m x y m +=+⎧⎨-=-⎩的解满足237x y +>,则m 的取值范围是( ) A .14m <- B .0m < C .13m > D .7m >【答案】C【解析】通过二元一次方程组进行变形可得到关于2x+3y 与含m 的式子之间的关系,进一步求出m 的取值范围.【详解】32451x y m x y m +=+⎧⎨-=-⎩①② ①-②,得2x+3y=3m+6∵2x+3y>7∴3m+6>7∴m>13【点睛】此题考查含参数的二元一次方程,重点是将二元一次方程组进行灵活变形,得到与其他已知条件相联系的隐藏关系,进而解题.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0 【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.12.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】 ∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--,得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-. 解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.14.若关于x 的不等式组无解,且关于y 的分式方程有非正整数解,则符合条件的所有整数k 的值之和为( )A .﹣7B .﹣12C .﹣20D .﹣34【答案】B【解析】【分析】先根据不等式组无解解出k 的取值范围,再解分式方程得y =,根据方程有解和非正整数解进行综合考虑k 的取值,最后把这几个数相加即可.【详解】∵不等式组无解, ∴10+2k >2+k ,解得k >﹣8.解分式方程,两边同时乘(y +3),得 ky ﹣6=2(y +3)﹣4y ,解得y =.因为分式方程有解,∴≠﹣3,即k +2≠﹣4,解得k ≠﹣6. 又∵分式方程的解是非正整数解,∴k +2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k=﹣3,﹣4,﹣5,﹣8,﹣14.又∵k>﹣8,∴k=﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B.【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.15.不等式组213,1510 520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【解析】【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x-<得x>-1,解151520x x++-≥得3x≤,∴不等式组的解集是13x-<≤,故选:D.【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键. 16.不等式组354xx≤⎧⎨+>⎩的最小整数解为()A.-1 B.0 C.1 D.2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354xx≤⎧⎨+>⎩①②解①得x≤3,解②得x>-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x的范围是本题的关键.17.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.18.不等式组26020x x +>⎧⎨-≥⎩的解集在数轴上表示为( ) A .B .C .D . 【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020x x +>⎧⎨-≥⎩①②, 由①得:3x >-;由②得:2x ≤,∴不等式组的解集为32x -<≤,表示在数轴上,如图所示:故选:C .【点睛】考核知识点:解不等式组.解不等式是关键.19.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.20.已知关于x的不等式组的解集在数轴上表示如图,则b a的值为()A.﹣16 B.C.﹣8 D.【答案】B【解析】【分析】求出x的取值范围,再求出a、b的值,即可求出答案.【详解】由不等式组,解得.故原不等式组的解集为1-b x-a,由图形可知-3x2,故,解得,则b a=.故答案选B.【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.。

最新初中数学方程与不等式之不等式与不等式组全集汇编附答案(3)

最新初中数学方程与不等式之不等式与不等式组全集汇编附答案(3)

最新初中数学方程与不等式之不等式与不等式组全集汇编附答案(3)一、选择题1.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6 【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.2.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有三个整数解,则实数a 的取值范围是( )A .15<a ≤18B .5<a ≤6C .15≤a <18D .15≤a ≤18【答案】A【解析】【分析】解不等式组,由有且只有三个整数解确定出a 的范围即可.【详解】 解不等式组得:23x a x >⎧⎪⎨<⎪⎩,即2<x <3a , 由不等式组有且只有三个整数解,得到整数解为3,4,5,∴5<3a ≤6, 解得:15<a≤18,故选:A .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握解不等式组的方法是解本题的关键.3.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.4.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤< 【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.不等式组30213xx+⎧⎨->⎩…的解集为()A.x>1 B.x≥3C.x≥﹣3 D.x>2【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:30213xx+>⎧⎨->⎩①②,由①得,x≥﹣3,由②得,x>2,故此不等式组的解集为:x>2.故选:D.【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.6.不等式组21512xx①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.7.不等式26x -≥0的解集在数轴上表示正确的是( )A .B .C .D . 【答案】B【解析】【分析】先求解出不等式的解集,再表示在数轴上【详解】解不等式:2x-6≥02x≥6x≥3 数轴上表示为:故选:B【点睛】本题考查不等式的求解,需要注意,若不等式两边同时乘除负数,则不等号需要变号8.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.9.不等式组30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】【详解】解:30240x x -≥⎧⎨+>⎩①②, 解不等式①得,x ≤3解不等式②得,x >﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.10.若a b <,则下列各式中一定成立的是( )A .a b -<-B .11a b -<-C .33a b >D .ac bc <【答案】B【分析】关键不等式性质求解.【详解】∵a <b ,∴a b ->-,11a b -<-,33a b <, ∵c 的符号未知 ∴,ac bc 大小不能确定.【点睛】考核知识点:不等式性质.理解不等式性质是关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.不等式组3433122x x x -≥⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是( ) A . B . C .D .【答案】A【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).【详解】3433122x x x -≥⎧⎪⎨-<+⎪⎩①② 解①,得1x ≤-解②,得5x >-所以不等式组的解集是51x -<≤-在数轴表示为故选:A【点睛】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【解析】【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可.【详解】由关于y 的不等式组,可整理得 ∵该不等式组解集无解,∴2a +4≥﹣2即a ≥﹣3 又∵得x = 而关于x 的分式方程有负数解∴a ﹣4<0∴a <4于是﹣3≤a <4,且a 为整数∴a =﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a 的和为0.故选B .【点睛】 本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.14.2222(2)(3)(5)(7)9x x x x ----≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】 ()()()()222223579x x x x ----, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.如果,0a b c ><,那么下列不等式成立的是( )A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选:D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.16.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】B【解析】【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.17.不等式x ﹣2>的解集是( ) A .x <﹣5B .x >﹣5C .x >5D .x <5【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】去分母得:4x ﹣8>6x +2,移项、合并同类项,得:﹣2x >10,系数化为1,得:x <﹣5.故选A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1- B .0 C .1 D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.关于x 的不等式412x -≥-的正整数解有( )A .0个B .1个C .3个D .4个【答案】C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.。

历年中考试题不等式与不等式组分类汇编及答案推荐文档

历年中考试题不等式与不等式组分类汇编及答案推荐文档

历年中考试题分类汇编——不等式与不等式组、选择题1、(2007浙江金华)不等式H > :的解集在数轴上表示正确的是()A4、(2007山东枣庄)不等式2x-7<5-2 x的正整数解有()B一3 0A.-3 0B.■J III-30C.QD.2、(2007四川内江)不等式1 ' '■的解集在数轴上表示出来应为3、(2007湖南岳阳)在下图中不等式一1v x< 2在数轴上表示正确的是((A)1 个(B)2 个(C)3 个(D)4 个-2-10123-2-10123A.0 12 3 4 5C.B.r1 0 25、(2007 福建福州)解集在数轴上表示为如图1 所示的不等式组是()DA、0 B 、-3 C、-2 D、-1A.B. C .D .6、(2007湖北天门)关于」x的不等式2x—a<- -1的解集如图2所示,则a的取值是()。

B解:x< ,又不等式解为:x<- 1所以二—1解得:a= —37、(2007 云南双柏)不等式的解集是()CA.B.C.D.8、(2007山东东营)不等式2x—7<5—2x 的正整数解有()B(A) 1 个( B) 2个( C) 3 个( D) 4 个9、(2007浙江台州)不等式的解集为()A 组x <2D.无解12A.B. C.10、 (2007四川德阳)把一个不等式组的解集表示在数轴上,如图 3所示,则该不等式组的解集为( 0 图3 A. B.C.11、 D.A 4-8(2007湖北黄冈)将不等式 的是()C L2的解集在数轴上表示出来,正确II12、( 2007江苏南京)不等式组日)D的解集疋A. B.C.D.(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集则该不等式组的解集为()。

Bz+l>0(2007浙江宁波)把不等式组°的解集表示在数轴上,正确的是)C(2007山东临沂)直线11: y= k1X+ b与直线I 2:y = k?x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+ b>k2X的解为()。

历年中考试题不等式与不等式组分类汇编及答案

历年中考试题不等式与不等式组分类汇编及答案

历年中考试题分类汇编——不等式与不等式组一、选择题1、(2007浙江金华)不等式S 的解集在数轴上表示正确的是()A1丨丨I L i-2 -1 0 1 2 3A.-2 -I 0 1 2 3B・2、(2007四川内江)不等式-门」「二的解集在数轴上表示出来应为()0 12 3 4 5D.1 v x<2在数轴上表示正确的是()3、(2007湖南岳阳)在下图中不等式一A4、(2007山东枣庄)不等式2x-7<5-2 x的正整数解有()B(A) 1 个(B) 2个(C) 3个(D) 4 个学习好资料 欢迎下载<15、(2007福建福州)解集在数轴上表示为如图 1所示的不等式组是( )Dx>-3xC 2a 4-1 解:x < j ,又不等式解为:x <— 1,所以]二—1,解得:a = — 37、( 2007云南双柏)不等式.[的解集是( )CC.1D.:[8、 ( 2007山东东营)不等式2x — 7<5— 2x 的正整数解有()B(A ) 1 个(B ) 2个(C ) 3个(D ) 4个-30 2 图1\>-3z<-3\<-3B .2C .A.(2007湖北天门)关于6、 )。

BB 、一 3x 的不等式2x — a <- 1的解集如图2所示,则a 的C 、一 2D 、一 1a 4-1学习好资料欢迎下载,2 <0,9、(2007浙江台州)不等式组的解集为()A学习好资料欢迎下载<1C.D.无解 10、 (2007四川德阳)把一个不等式组的解集表示在数轴上,如图 3所示,则该不等式组的解集为( 0 1 2 A. B.C.z+8 <4x-l11、 (2007湖北黄冈)将不等式L2的解集在数轴上表示出来,正确的是()C 2 兀 > —1亠ZL1 ,・[)r0 30 312、 (2007江苏南京)不等式组的解集是集是A.1x <一一B.11--<xD. 1学习好资料 欢迎下载13、(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集 则该不等式组的解集为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年中考试题分类汇编——不等式与不等式组一、选择题1、(2007浙江金华)不等式的解集在数轴上表示正确的是( )A2、(2007四川内江)不等式的解集在数轴上表示出来应为( )D3、(2007湖南岳阳)在下图中不等式-1<x≤2在数轴上表示正确的是( )A4、(2007山东枣庄)不等式2x-7<5-2x的正整数解有( )B(A)1个 (B)2个 (C)3个 (D)4个5、(2007福建福州)解集在数轴上表示为如图1所示的不等式组是( )DA.B.C.D.6、(2007湖北天门)关于x的不等式2x-a≤-1的解集如图2所示,则a 的取值是( )。

BA、0B、-3C、-2D、-1解:x≤,又不等式解为:x≤-1,所以=-1,解得:a=-3。

7、(2007云南双柏)不等式的解集是( )CA. B.C. D.8、(2007山东东营)不等式2x-7<5-2x的正整数解有( )B(A)1个 (B)2个 (C)3个 (D)4个9、(2007浙江台州)不等式组的解集为( )AA.B.C.D.无解10、(2007四川德阳)把一个不等式组的解集表示在数轴上,如图3所示,则该不等式组的解集为( )AA.B.C.D.11、(2007湖北黄冈)将不等式的解集在数轴上表示出来,正确的是()C12、(2007江苏南京)不等式组的解集是( )DA.B.C.D.13、(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )。

BA、x<4B、x<2C、2<x<4D、x>214、(2007浙江宁波)把不等式组的解集表示在数轴上,正确的是( )C15、(2007山东临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为( )。

BA、x>-1B、x<-1C、x<-2D、无法确定二、填空题1、(2007山东济南)不等式的解集是 .x>-2、(2007浙江湖州)不等式x-2>0的解集是 。

x>23、(2007湖北宜昌)不等式组的解是 .<x<44、(2007湖北咸宁)不等式组的整数解是_________________。

解:不等式组的解为:-1<x≤2,整数解为:0,1,25、(2007山东德州)不等式组的整数解是 .2 6、(2007湖北天门)已知关于x的不等式组的整数解共有6个,则a的取值范围是 。

解:不等组解为:a<x<,不等式x<的6个整数解为:1,0,-1,-2,-3,-4,故-5≤a<-47、(2007广东梅州)不等式组的解为 .8、(2007贵州遵义)不等式组的解集是 .-1≤x<39、(2007湖北孝感)如图,一次函数的图象经过A、B两点,则关于x的不等式的解集是 . x<2三、解答题1、(2007浙江台州)解不等式:解:(1),,所以.2、(2007重庆)解不等式组:解:3、(2007浙江义鸟)解不等式:解:不等式(1)的解集为x>-2不等式(2)的解集为x≤1∴不等式组的解为-2<x≤14、(2007四川乐山)解不等式组,并将解集在数轴上表示出来.解:解不等式①得解不等式②得不等式组的解集为其解集在数轴上表示为:5、(2007山东威海)解不等式组,并把它的解集表示在数轴上:解:解不等式①,得;解不等式②,得.在同一条数轴上表示不等式①②的解集,如图:所以,原不等式组的解集是6、(2007江苏苏州)解不等式组:.解:由,得x>0;由≤4一x,得x≤3.∴原不等式组的解集为0<x≤3.7、(2007四川成都)解不等式组并写出该不等式组的整数解解:解不等式,得.解不等式,得.原不等式组的解集是.原不等式组的整数解是.8、(2007江苏盐城)解不等式组,并把其解集在数轴上表示出来。

9、(2007上海)解不等式组:并把解集在数轴上表示出来.解:由,解得.由,解得.不等式组的解集是.解集在数轴上表示正确.10、(2007南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别电视机洗衣机进价(元/18001500台)售价(元/20001600台)计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)解:(1)设商店购进电视机x台,则购进洗衣机(100-x)台,根据题意,得,解不等式组,得 ≤x≤.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y元,根据题意,得y=(2000-1800)x+(1600-1500)(100-x)=100x+10000. ∵ 100>0,∴ 当x最大时,y的值最大.即 当x=39时,商店获利最多为13900元11、(2007四川绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题意,得4x + 2(8-x)≥20,且x + 2(8-x)≥12,解此不等式组,得 x≥2,且 x≤4, 即 2≤x≤4.∵ x是正整数, ∴ x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车乙种货车方案一2辆6辆方案二3辆5辆方案三4辆4辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.12、(2007湖南怀化)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?解:设搭配种造型个,则种造型为个,依题意,得:,解这个不等式组,得:,是整数,可取,可设计三种搭配方案:①种园艺造型个 种园艺造型个②种园艺造型个 种园艺造型个③种园艺造型个 种园艺造型个.(2)方法一:由于种造型的造价成本高于种造型成本.所以种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:(元)方法二:方案①需成本:(元)方案②需成本:(元)方案③需成本:元应选择方案③,成本最低,最低成本为元13、(2007河北省)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号A型B型C型进 价(单位:90012001100元/部)预售价(单位:120016001300元/部)(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.解:(1)60-x-y; (2)由题意,得 900x+1200y+1100(60-x-y)= 61000,整理得y=2x-50.(3)①由题意,得 P= 1200x+1600y+1300(60-x-y)- 61000-1500,整理得 P=500x+500.②购进C型手机部数为:60-x-y =110-3x.根据题意列不等式组,得解得 29≤x≤34.∴ x范围为29≤x≤34,且x为整数.(注:不指出x为整数不扣分)∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.2007。

相关文档
最新文档