高三第一轮复习专题练习——三角
2023年高考数学一轮复习考点微专题新高考地区专用考向17任意角、弧度制及任意角的三角函数(解析版)
考向17 任意角、弧度制及任意角的三角函数【2022·全国·高考真题(理)】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A 1133-B 1143-C 933-D 943-【答案】B【解析】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===, 则3OC =23CD = 所以(2223114322CD s AB OA -=+=+=故选:B .【2021·北京·高考真题】若点(cos ,sin )A θθ关于y 轴对称点为(cos(),sin())66B ππθθ++,写出θ的一个取值为___.【答案】512π(满足5,12k k Z πθπ=+∈即可)【解析】(cos ,sin )A θθ与cos ,sin 66B ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关y 轴对称,即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数()k k Z ∈赋值来求得所需的角. (2)确定()*,k k N kαα∈的终边位置的方法 先写出k α或k α的范围,然后根据k 的可能取值确定k α或kα的终边所在位置. (3)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出角α终边的位置.(4)判断三角函数值的符号,关键是确定角的终边所在的象限,然后结合三角函数值在各象限的符号确定所求三角函数值的符号,特别要注意不要忽略角的终边在坐标轴上的情况.v三角函数 定义域 第一象限符号 第二象限符号 第三象限符号 第四象限符号sin α R + + - -cos αR + - - +tan α,2k k Z πααπ⎧⎫≠+∈⎨⎬⎩⎭∣+ - + -1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα. (2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα 三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号 第四象限符号 αsin R + + - - αcosR+- - + αtan}2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. 4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP为正弦线;有向线段OM为余弦线;有向线段AT为正切线1.(2022·青海·海东市第一中学模拟预测(文))掷铁饼是一项体育竞技活动.如图,这是一位掷铁饼运动员在准备掷出铁饼的瞬间,张开的双臂及肩部近似看成一张拉满弦的“弓”.经测量,此时两手掌心之间的弧长是710π,“弓”所在圆的半径为1.05米,则这位掷铁饼运动员两手掌心之间的距离约为(参考数据:2 1.414≈,3 1.732≈)()A.1.819米B.1.485米C.1.649米D.1.945米【答案】A【解析】根据题意作图如下,由题意知:ADB的长为710π,D为ADB的中点,7201.053AOCππ∴∠==,322 1.05sin2.1 1.81932AB AC π∴==⨯=⨯≈,即所求距离约为1.819米. 故选:A.2.(2022·河南·模拟预测)如图,在平面直角坐标系中,已知点()0,2A ,点B 在第一象限内,AO AB =,120OAB ∠=︒,将△AOB 绕点O 逆时针旋转,每次旋转60°,则第2022次旋转后,点B 的坐标为( )A .()3,3 B .)3,3C .()23,0D .()23,0-【答案】B【解析】如图所示,过点B 作BH y ⊥轴与点H ,在直角ABH 中,90,18012060,2AHB BAH AB OA ∠=∠=-===, 所以cos 601,33AH AB BH AH ====因为30BOH ∠=,所以223OB BH ==(3,3)B ,由题意1234567(3,3),(23,0),(3,3),(3,3),(23,0),(3,3),(3,3)B B B B B B B ------,所以点的坐标6次一个循环,即周期为6, 又因为20223376=⨯,所以2022(3,3)B . 故选:B.3.(2022·北京·人大附中三模)半径为3的圆的边沿有一点A ,半径为4的圆的边沿有一点B ,A 、B 两点重合后,小圆沿着大圆的边沿滚动,A 、B 两点再次重合小圆滚动的圈数为( ) A .1 B .2C .3D .4【答案】D【解析】设A 、B 两点再次重合小圆滚动的圈数为n ,则236248n n k k ππππ⨯⨯==⨯⨯=,其中k 、N n *∈, 所以,43kn =,则当3k =时,4n =. 故A 、B 两点再次重合小圆滚动的圈数为4. 故选:D.4.(2022·江苏·常州高级中学模拟预测)已知角α的终边在直线3y x =-上,则310sin cos αα+的值为( )A .610-B .610C .0D .310-【答案】C【解析】由题知:cos 0α≠设角α的终边上一点(),3a a -()0a ≠,则22910r a a =+=.当0a >时,10r a =,310sin 10a ==α10cos 10a =α310sin 3103100cos αα+=-=. 当0a <时,10r a =,310sin 10a =-α10cos 10aα==- 310sin 3103100cos αα+=. 故选:C1.(2022·全国·模拟预测)已知()1,7P 是角α的终边上一点,则()sin 2πα-=( ) A .725-B .2425-C .725D .2425【答案】C【解析】()1,7P 是角α的终边上一点,由三角函数定义可得 22sin 5217α==+,22cos 5217α=+ 所以()7sin 2sin 22sin cos 2255252παααα-====. 故选:C.2.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=( )A 26+B 26-+C 26-D 26--【答案】D【解析】因为角θ的终边过点()1,1A -,由任意三角形的定义知:22sin θθ== 26sin()sin cos cos sin 666πππθθθ---=-=故选:D.3.(2022·上海市市西中学高三阶段练习)若圆锥的侧面展开图是半径为4,中心角为5π3的扇形,则由它的两条母线所确定的截面面积的最大值为( ) A 511B .4C .8D 2011【答案】C【解析】设圆锥的底面圆半径为r ,圆锥的高为h 则5π2π43r =⨯, 解得:103r =, 设截面在圆锥底面的轨迹2003AB a a ⎛⎫=<≤ ⎪⎝⎭,则截面等腰三角形的高22241644a ah =-=-, 所以截面面积22211616168224442a a a a S ah ⎛⎫==-=-≤= ⎪⎝⎭,当且仅当221644a a=-,即42a =等号成立,故选:C4.(2022·全国·高三专题练习(理))济南市洪家楼天主教堂于2006年5月被国务院列为全国重点文物保护单位.它是典型的哥特式建筑.哥特式建筑的特点之一就是窗门处使用尖拱造型,其结构是由两段不同圆心的圆弧组成的对称图形.如图2,AC 和BC 所在圆的圆心都在线段AB 上,若rad ACB θ∠=,AC b =,则AC 的长度为( )A .2sin2bθθB .2cos2bθθC .sin 2bθθ D .2cos2bθθ【答案】A【解析】过C 作CD AB ⊥,设圆弧AC 的圆心为O ,半径为R ,则AO CO R ==, 在ACD △中,2ACD θ∠=,所以sinsin22AD AC b θθ=⋅=,coscos22CD AC b θθ=⋅=,所以在直角三角形CDO 中,222CD DO CO +=,所以222cos sin 22b R b R θθ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,所以2sin 2b R θ=,而cos2sin =2sin cos =sin 222sin2b CDCOD b COθθθθθ∠==,所以COD θ∠=,所以2sin2b AC R θθθ==.故选:A.5.(2022·全国·高三专题练习(文))电影《流浪地球》中描述了使用发动机推动地球运动的场景.某科学兴趣小组提出了一套新装置:使用一条强度很大的长金属绳索绕地球赤道一周,一端连接强力发动机P 绷紧绳索,为地球提供动力.若绳索比地球赤道长2 cm ,则发动机距地面的高度约为(取地球半径为6 400 km ;当θ很小时,2111cos 2θθ-≈,31tan 3θθθ-≈.)( )A .9 cmB .11 cmC .9 mD .11 m【答案】C【解析】如右图.记地球半径为R ,绳索比地球赤道长2x=0.02,则tan 0.01,.cos R R x RR h θθθ-==⎧⎪⎨-=⎪⎩ 由题述近似可得321,31,2R x R h θθ⎧=⎪⎪⎨⎪=⎪⎩所以2339720m 9m 8h x R ==≈.故选:C6.(2022·全国·高三专题练习(理))若α为第一象限角,则sin 2α,cos2α,sin2α,cos2α中必定为正值的有( ) A .0个 B .1个C .2个D .3个【答案】B【解析】解:因为α为第一象限角,所以2α为第一或二象限角, 可得:sin20α>,而cos2α符号不确定, 又2α为第一或三象限角, sin 2α∴,cos 2α可以是正数,也可以是负数,它们的符号均不确定综上所述,必定为正值的只有sin 2α一个 故选:B .7.(2022·全国·高三专题练习)若角α是第一象限角,则2α是( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角【答案】C【解析】因为α是第三象限角,所以36036090,k k k Z α⋅<<⋅+∈, 所以18018045,2k k k Z α︒⋅<<⋅+∈,当k 为偶数时,2α是第一象限角, 当k 为奇数时,2α是第三象限角.故选:C .8.(2022·全国·高三专题练习)设θcos2θ=-,则2θ是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】B【解析】因为()180360270360Z k k k θ+⋅<<+⋅∈, 所以,()90180135180Z 2k k k θ+⋅<<+⋅∈,若k 为奇数,可设()21Z k n n =+∈,则()270360315360Z 2n n k θ+⋅<<+⋅∈,此时2θ为第四象限角;若k 为偶数,可设()2Z k n n =∈,则()90360135360Z 2n n k θ+⋅<<+⋅∈,此时2θ为第二象限角.cos2θ-,则cos02θ≤,故2θ为第二象限角. 故选:B.9.(2022·辽宁·鞍山一中模拟预测)角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .2425【答案】B【解析】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭,由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B10.(2022·全国·南京外国语学校模拟预测)己知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点()1,2P -,则πsin 26α⎛⎫+= ⎪⎝⎭( )A .B .CD 【答案】B【解析】角α的终边的经过()1,2P -,所以sinα=cos α== 所以4sin 22sin cos 5ααα==-,23cos 22cos 15αα=-=-,所以πππsin 2sin 2cos cos 2sin 666ααα⎛⎫+=+= ⎪⎝⎭故选:B .11.(2022·全国·高三阶段练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+)个A .0B .1C .2D .3【答案】C【解析】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫++++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以在sin cos αβ+,sin cos βγ+,sin cos γα+,若令π3α=,π4β=,π6γ=,则sin cos αβ+=+>sin cos βγ+=>sin cos 1γα+=<2个. 故选:C12.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin3,cos3P ,若02απ≤≤,则α=( )A .3B .32π- C .532π- D .32π-【答案】C【解析】解:因为角α的终边上一点()sin3,cos3P , 所以cos31tan 0sin 3tan 3α==<, 又cos30,sin30<>, 所以α为第四象限角, 所以23,Z 2k k παπ=+-∈,又因02απ≤≤, 所以532πα=-. 故选:C.13.(2022·北京·首都师范大学附属中学高三开学考试)“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若角α,β的终边关于y x =轴对称,则sin α=cos β,则2222sin sin cos sin =1αβββ+=+; 若22sin sin 1αβ+=,则22sin =cos αβ,则sin α=±cos β,则角α,β的终边关于y x =或y =-x 轴对称; 综上,“角α,β的终边关于y x =轴对称”是“22sin sin 1αβ+=”的充分不必要条件. 故选:A.14.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立, 所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=. 故答案为:10π15.(2022·浙江绍兴·模拟预测)勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.已知等边三角形的边长为1,则勒洛三角形的面积是_______.【答案】π32- 【解析】由题意得,勒洛三角形的面积为:三个圆心角和半径均分别为π3和1的扇形面积之和减去两个边长为1的等边三角形的面积,即221π1ππ33121sin 23232-⨯⨯⨯-⨯⨯⨯=.故答案为:π32-.16.(2022·山东潍坊·模拟预测)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若1sin 3α=,则sin()αβ-=___________. 【答案】79-【解析】因在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称, 则有2,Z 2k k παβπ+=+∈,即2,Z 2k k πβπα=+-∈,而1sin 3α=, 所以,Z k ∈,27sin()sin(22)cos 212sin 29k παβαπαα-=--=-=-+=-. 故答案为:79-17.(2022·上海青浦·二模)已知角α的终边过点()1,2P -,则tan α的值为_________. 【答案】2-【解析】解:因为角α的终边过点()1,2P -, 所以2tan 21y x α===--. 故答案为:-2.18.(2022·全国·模拟预测)已知α为第三象限角,且tan 2α=,则22sin 4cos sin πααα⎛⎫+ ⎪⎝⎭=-______. 10【解析】因为α为第三象限角,且tan 2α=,所以5cos α=,25sin α=,所以()()()()222sin sin cos 21042cos sin cos sin cos sin 2cos sin 2πααααααααααα⎛⎫++ ⎪⎝⎭===--+-. 故答案为:102. 19.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1; 211sin 1tan1-. 【解析】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC , 所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S , 故答案为:2sin1;211sin 1tan1-.1.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A .11332- B .11432- C .9332- D .9432- 【答案】B【解析】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===, 则3OC =,故23CD =-, 所以()22231143222CD s AB OA --=+=+=.故选:B .2.(2020·山东·高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D【解析】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D .3.(2020·全国·高考真题(理))若α为第四象限角,则( ) A .cos 2α>0 B .cos 2α<0 C .sin 2α>0 D .sin 2α<0【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D .方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .4.(2019·北京·高考真题(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cosβB .4β+4sinβC .2β+2cosβD .2β+2sinβ【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选B .5.(2015·山东·高考真题)终边在y 轴的正半轴上的角的集合是( )A .π2π,2x x k k Z ⎧⎫=+∈⎨⎬⎩⎭B .ππ2x x k ⎧⎫=+⎨⎬⎩⎭C .π2π,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭D .ππ,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭【答案】A【解析】终边在y 轴正半轴上的角的集合是π2π,2x k k Z ⎧⎫+∈⎨⎬⎩⎭故选:A6.(2011·全国·高考真题(理))已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ) A .45-B .35 C .35D .45【答案】B【解析】由已知条件可知,点()cos ,sin θθ在直线2y x =上,则sin 2cos θθ=,tan 2θ∴=, 所以,22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ--=-===-++.7.(2018·北京·高考真题(文))在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH【答案】C 【解析】 【详解】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时,cos ,sin x y αα==,tan yxα=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时,cos ,sin x y αα==,tan y xα=,sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C .8.(2014·全国·高考真题(文))已知角α的终边经过点(4,3)-,则cos α=A .45B .35C .35-D .45- 【答案】D【解析】【详解】试题分析:由题意可知x =-4,y =3,r =5,所以4cos 5x r α==-.故选D . 考点:三角函数的概念.9.(2021·北京·高考真题)若点(cos ,sin )A θθ关于y 轴对称点为(cos(),sin())66B ππθθ++,写出θ的一个取值为___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】(cos ,sin )A θθ与cos ,sin 66B ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称, 2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可). 10.(2020·浙江·高考真题)已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:111.(2017·北京·高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79- 【解析】【详解】试题分析:因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式12.(2012·山东·高考真题(文))如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为______________.【答案】()2sin 2,1cos2--【解析】【详解】如图,连结AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点.由题意知BP 的长为2.∵圆的半径为1,∴∠BAP =2,故∠DAP =2-2π. ∴DP =AP ·sin 22π⎛⎫- ⎪⎝⎭=-cos 2, ∴PC =1-cos 2, DA =APcos 22π⎛⎫- ⎪⎝⎭=sin 2. ∴OC =2-sin 2. 故OP =(2-sin 2,1-cos 2).。
2024届高三数学一轮复习--三角函数与解三角形第3练 两角和与差的正弦、余弦和正切公式(解析版)
【详解】因为
cos
4
5 ,所以 5
2 cos 2
2 sin 2
5 ,平方后可得 5
1 cos2 sin2 sin cos 1 ,整理得 1 1 sin 2 1 ,所以 sin 2 3 .
2
5
22
5
5
故选:D.
2.B
【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值
6
,则
tan
(
)
A. 3
B. 2 3
C. 6
D. 6 3
3.(2023·全国·高三专题练习)若
1 1
tan tan
π 4 π 4
1 2
,则
cos
2
的值为(
)
A.- 3 5
B. 3 5
C. 4 5
D. 4 5
4.(2023
秋·江苏泰州·高三泰州中学校考开学考试)已知
cos
12
【详解】因为
sin
3
sin
6
,所以
1 2
sin
3 cos 2
3 sin 1 cos ,
2
2
所以 3 1 cos 3 1 sin ,所以 tan 3 1 2 3 . 3 1
故选:B
3.A
【分析】由已知可得
tan
π 4
1 3
,进而求出
四个命题:
甲: tan 1 ;
2 乙: tan tan 7 : 3 ;
丙:
sin cos
5 4
;
丁: tan tan tan tan 5 : 3 .
如果其中只有一个假命题,则该命题是( )
A.甲
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)
B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)
专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
第14讲:数学高考一轮总复习(三角函数定义及同角三角函数)+强化练习
2kπ
3π 4
,
2kπ
π
k
Z
C.
2kπ
3π 4
,
2kπ
5π 4
k
Z
D.
2kπ
5π 4
,
2kπ
7π 4
k
Z
3.(2020·贵州高三其他模拟)已知点 P(sin cos, tan ) 在第一象限,则在 0, 2 内的 的取值范围
是( )
A.
(
,
3
)
(
,
5
)
24
4
C.
(
,
3
)
( 5
,
3
)
A.第一、二象限角 B.第二、三象限角 C.第三、四象限角 D.第一、四象限角
(2)(2020·山东高三专题练习)若 是第二象限角,则点 P sin, cos 在 ( )
A.第一象限 【举一反三】
B.第二象限
C.第三象限
D.第四象限
1.(2019·浙江高三专题练习)已知 sin 0 且 cos 0 ,则角 的终边所在的象限是( )
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=l,l 是以角α作为圆心角时 r
所对圆弧的长,r 为半径.
③弧度与角度的换算:360°=2π rad;180°=π rad;1°= π rad;1 rad=180度.
180
π
二.任意角的三角函数
1.定义:在平面直角坐标系中,设α的终边上任意一点 P 的坐标是(x,y),它与原点的距离是 r(r= x2+y2>0).
D. 3 5
【举一反三】
1.(2020·北京)在平面直角坐标系 xOy 中,角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,终
2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)
专题18 三角恒等变换【考点预测】知识点一.两角和与差的正余弦与正切 ①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±=;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式 ①sin22sin cos ααα=;②2222cos2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-; 知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα== sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,). 【方法技巧与总结】 1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±; 1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;; 2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3. 拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-; ④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意 特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明 题型二:给式求值 题型三:给值求值 题型四:给值求角题型五:正切恒等式及求非特殊角 【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+; ②倍角公式(2)S α,(2)C α,(2)T α.【答案】(1)证明见解析;(2)①答案见解析;②答案见解析 【解析】 【分析】在单位圆里面证明()C αβ-,然后根据诱导公式即可证明()C αβ+和()S αβ+,利用正弦余弦和正切的关系即可证明()T αβ+;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令2,k k απβ≠+∈Z . 如图,设单位圆与x 轴的正半轴相交于点1,0A ,以x 轴非负半轴为始边作角,,αβαβ-,它们的终边分别与单位圆相交于点()1cos ,sin P αα,()1cos ,sin A ββ,()()()cos ,sin P αβαβ--.连接11,A P AP .若把扇形OAP 绕着点O 旋转β角,则点,A P 分別与点11,A P 重合.根据圆的旋转对称性可知,AP 与11A P 重合,从而,AP =11A P ,∴11AP A P =. 根据两点间的距离公式,得:()()2222[cos 1]sin (cos cos )(sin sin )αβαβαβαβ--+-=-+-,化简得:()cos cos cos sin sin .αβαβαβ-=+ 当()2k k απβ=+∈Z 时,上式仍然成立.∴,对于任意角,αβ有:()cos cos cos sin sin αβαβαβ-=+. (2)①公式()C αβ+的推导: ()()cos cos αβαβ⎡⎤+=--⎣⎦()()cos cos sin sin αβαβ=-+-cos cos sin sin αβαβ=-.公式()S αβ+的推导:()sin cos 2παβαβ⎛⎫+=+- ⎪⎝⎭cos 2παβ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭cos sin sin cos αβαβ=+正切公式()T αβ+的推导:()()()sin tan cos αβαβαβ++=+sin cos cos sin cos cos sin sin αβαβαβαβ+=-tan tan 1tan tan αβαβ+=-②公式()2S α的推导:由①知,()sin2sin cos sin sin cos 2sin cos ααααααααα=+=+=. 公式()2C α的推导:由①知,()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-.公式()2T α的推导:由①知,()2tan tan 2tan tan2tan 1tan tan 1tan ααααααααα+=+==-⋅-.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数 22sin 26cos 343sin 26cos34+-; 22sin 39cos 213sin 39cos 21+-;()()22sin 52cos 1123sin 52cos112-+--;22sin 30cos 303sin 30cos30+-.(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论. 【答案】(1)选第四个式子,14;(2)证明见解析. 【解析】 【分析】(1)选第四个式子,由1sin 30,cos302︒=︒=(2)由题意,设一个角为α,另一个角为60α︒-,应用两角差的余弦公式展开三角函数,由同角正余弦的平方和关系化简求值 【详解】(1)由第四个式子:221331sin 30cos 303sin 30cos304444+-=+-= (2)证明:()()22sin cos 603sin cos 60αααα+---2211sin cos cos 22αααααα⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222133sin cos cos sin cos sin 442αααααααα=++-14=【点睛】本题考查了三角函数,利用特殊角的函数值求三角函数式的值,应用两角差余弦公式展开三角函数式及同角的正余弦平方和关系化简求值,属于简单题例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值【答案】(1)证明见解析;(2)6365. 【解析】(1)根据向量的数量积公式即可证明;(2)根据角的范围分别求出正弦和余弦值,利用两角和的余弦公式计算得出答案. 【详解】(1)由题意知:||||1OA OB ==,且OA 与OB 的夹角为αβ-, 所以·11cos()cos()OA OB αβαβ=⨯⨯-=-, 又(cos ,sin )OA αα=,(cos ,sin )OB ββ=, 所以·cos cos sin sin OA OB αβαβ=+, 故cos()cos cos sin sin αβαβαβ-=+.(2)π,π2α⎛⎫∈ ⎪⎝⎭且5tan 12α=-,则512sin ,cos 1313αα==-;π0,2β⎛⎫∈ ⎪⎝⎭,则,02πβ⎛⎫-∈- ⎪⎝⎭,又π,π2α⎛⎫∈ ⎪⎝⎭,()0,αβπ∴-∈,4cos(),sin()553αβαβ-=--=,()()()1245363cos cos cos cos sin sin 13513565βααβααβααβ⎛⎫=--=-+-=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭【点睛】本题主要考查平面向量的数量积的定义,考查平面向量数量积的坐标运算,考查两角和与差的余弦公式,属于中档题.例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【答案】(1)推导见解析;(2【解析】 【分析】(1)根据图象可知2212AP PP =,再展开化简,得到两角和的余弦公式;(2)首先令ββ=-,求()cos αβ-,再代入所证明的公式;首先根据二倍角公式和诱导公式化简为11sin 37.5cos37.5sin 75cos1522⋅==,再根据两角差的余弦公式化简. 【详解】(1)因为12(cos ,sin ),(cos ,sin ),(cos(),sin())P P P ααββαβαβ-++, 根据图象,可得2212AP PP =,即2212||AP PP =, 即2222(cos()1)sin ()(cos cos )(sin sin )αβαββαβα+-++=-++. 即cos()cos cos sin sin αββαβα+=-.(2)由(1)可得cos()cos cos sin sin αββαβα+=-, ① cos()cos cos sin sin αββαβα-=+ ②由①+②可得:2cos cos cos()cos()βααβαβ=++- 所以1cos cos [cos()cos()]2βααβαβ=++-,所以()111sin 37.5cos37.5sin 75cos15cos 4530222︒︒︒︒︒︒===-.()1cos 45cos30sin 45sin 302=+1122⎫==⎪⎪⎝⎭【点睛】本题考查两角和差余弦公式的证明,以及利用三角恒等变换求值,重点考查逻辑推理证明,公式的灵活应用,属于基础题型.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=( )A B C D 【答案】A 【解析】易知()()sin sin βααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sin αβ-,分别在()sin αβ-=和sin β,结合β的范围可确定最终结果.【详解】2sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57==304πβ<<,sin 0β∴>,sin β∴=不合题意,舍去;当()sin αβ-=sin β=.综上所述:sin β=故选:A . 【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13-C .23D .23-【答案】A 【解析】根据题意得到sin 152α⎛⎫︒- ⎪⎝⎭进而得到26cos 1529α⎛⎫︒-= ⎪⎝⎭,()1cos 303α︒-=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒-︒-=︒-⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒-=︒=︒+︒=︒= ⎪⎝⎭则226cos 151sin 15229αα⎛⎫⎛⎫︒-=-︒-= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒-=︒--︒-= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒-︒-⎣⎦ ()1cos 303α=︒-=, 故选A. 【点睛】本题主要考查二倍角公式,同角三角函数的基本关系,诱导公式,属于基础题.例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为( ).A .14B .78 C .14±D .78±【答案】C 【解析】 【分析】利用倍角公式以及诱导公式,结合已知条件,即可求得结果. 【详解】∵27cos(2)cos[2()]2cos ()13668x x x πππ-=-=--=-, ∴1cos()64x π-=±,∵1sin()cos[()]cos()32364x x x ππππ+=-+=-=±,故选:C. 【点睛】本题考查利用三角恒等变换解决给值求值问题,属基础题.(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=( )AB .12C .12-D. 【答案】AC 【解析】 【分析】利用三角恒等变换化简已知条件,结合同角三角函数的基本关系式,求得sin 3πβ⎛⎫- ⎪⎝⎭.【详解】依题意sin()sin 6πββ++=sin()sin 3233ππππββ⎛⎫-++-+= ⎪⎝⎭1cos()sin )3233πππβββ⎛⎫-+--= ⎪⎝⎭1sin )233ππββ⎛⎫--= ⎪⎝⎭)sin 2cos()133ππββ⎛⎫-+-⎪⎝⎭,)1sin cos()3πβπβ⎛⎫-- ⎪-=22sin cos 133ππββ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,)221sin 1sin 3πβπβ⎛⎫⎡⎤⎢⎥⎛⎫-+= ⎪⎝⎭-- ⎪⎦⎣,化简得(()(28sin 2sin 3033ππββ⎛⎫⎛⎫+----+= ⎪ ⎪⎝⎭⎝⎭,2,(24sin 2sin 033ππββ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,2sin 12sin 033ππββ⎡⎤⎡⎛⎫⎛⎫-+-= ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎣⎦⎣, 解得1sin 32πβ⎛⎫-=- ⎪⎝⎭或sin 3πβ⎛⎫-=⎪⎝⎭. 故选:AC例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos25β=,()4cos 5αβ+=,则cos α=___________.【解析】 【分析】 由,0,2,()4cos 5αβ+=,即可求得()sin αβ+,用二倍角公式即可求得sin β 和cos β ,用拼凑角思想可表示出()ααββ=+-,用三角恒等变换公式求解即可. 【详解】因为()4cos 5αβ+=,且,0,2,所以()3sin 5αβ+=.又因为23cos 212sin 5ββ=-=,解得sin β=则cos β==故()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦4355==. 例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为_____________.【答案】12##0.5 【解析】 【分析】由倍角公式以及诱导公式求解即可. 【详解】231cos 212sin 124442ππαα⎛⎫⎛⎫+=-+=-⨯=- ⎪ ⎪⎝⎭⎝⎭cos 2cos 2sin 242ππααα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭1sin 22α∴=故答案为:12例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【解析】 【分析】首先利用二倍角公式和辅助角公式,化简,再代入求值. 【详解】()()111sin 21cos2sin 2cos2222f θθθθθ=-+=--()112222θθθϕ⎫---⎪⎝⎭(其中cos ϕsin ϕ=, 当()f θ取最大值时,022πθϕ-=,∴022πθϕ=+0sin 2sin cos 2πθϕϕ⎛⎫=+= ⎪⎝⎭0cos2cos sin 2πθϕϕ⎛⎫=+=-= ⎪⎝⎭∴0sin 24πθ⎛⎛⎫+== ⎪ ⎝⎭⎝⎭⎝⎭【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+( )A .12 B .12-C .2D .-2【答案】D 【解析】 【分析】由2222sin cos2tan222sin 2sincos22sin cos tan 1222ααααααααα===++,可解得tan 2α,即可求解 【详解】3sin 2sincos225ααα==-,故2222sincos2tan32225sin cos tan 1222αααααα==-++, 可解得1tan23α=-或tan 32α=-,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=-,故1tan 221tan2αα-=-+, 故选:D例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭( )A .78-B .78C.D【答案】B 【解析】 【分析】根据题意得sin 6x π⎛⎫- ⎪⎝⎭的值,再根据2cos 212sin 36x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】因为sin sin 66x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫-=- ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=( )A. B.C .12D【答案】D【解析】 【分析】由已知α的取值范围,求出4πα-的取值范围,再结合1cos 42πα⎛⎫-= ⎪⎝⎭即可解得α的值,cos2α即可求解 【详解】 因为22ππα-<<,所以3444πππα-<-< 又1cos 42πα⎛⎫-= ⎪⎝⎭,所以43ππα-=-,所以12πα=-所以cos 2cos cos 66ππα⎛⎫=-==⎪⎝⎭故选:D例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325B .2325-C D . 【答案】B 【解析】 【分析】利用诱导公式化简,然后利用二倍角公式即得. 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】首先根据同角三角函数的基本关系求出()cos 45α︒+,再利用二倍角公式及诱导公式计算可得; 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。
三角函数的图象和性质(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)
考向19 三角函数的图象和性质【2022·全国·高考真题】记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1 B .32C .52D .3【2022·全国·高考真题(理)】设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦1.研究三角函数的性质(如周期性、单调性、最值、奇偶性、对称性等)的前提是用公式把已给函数化成同一个角同一种类型的三角函数形式(简称:同角同函)sin()y A wx φ=+或cos()y A wx φ=+,常见方法有:(1)用同角三角函数基本关系式或诱导公式将已给函数化成同函; (2)用倍角公式(升幂或降幂)将已给函数化成同角;(3)用两角和、差公式或辅助角公式sin cos a wx b wx +将已给函数化成同函. 2.研究三角函数的性质(如周期性、单调性、最值、奇偶性、对称性等)时,一般是把已给函数化成同同角同函型,但未必所有三角函数都能化成上述sin()y A wx φ=+或cos()y A wx φ=+的形式,有时会化简为二次函数型:22sin sin y a x b x c =++或22cos cos y a x b x c =++,这时需要借助二次函数知识求解,但要注意sin cos x x 或的取值范围.若将已给函数化简为更高次的函数,如22(1sin )cos (1sin )(1-sin )y x x x x =+=+,则换元后可通过导数求解.如:解析式中同时含有sin cos x x ±和sin cos x x ,令t =sin cos x x ±,由关系式22sin cos 12sin cos t x x x x =±=±()得到sin cos x x 关于t 的函数表达式.3.求三角函数的值域(最值),通常利用正余弦函数的有界性,一般通过三角变换化为下列基本类型:(1)sin y a x b =+,令sin t x =,则[],(1,1)y at b t =+∈-;(2)sin cos y a x b x c =++,引入辅助角tan ba φφ=(),化为22sin()y a b x c φ=+++; (3)2sin sin y a x b x c =++,令sin t x =,则[]2,(1,1)y at bt c t =++∈-; (4)sin cos sin cos y a x x b x x c =+±+(),令t =sin cos x x ±,则22sin cos 12sin cos t x x x x =±=±(),所以21()2t y a bt c -=±++; (5)sin cos a x by c x d+=+,根据正弦函数的有界性,既可用分析法求最值,也可用不等式法求最值,更可用数形结合法求最值.关于三角函数对称的几个重要结论; (1)函数sin y x =的对称轴为()2x k k Z ππ=+∈,对称中心为(,0)()k k Z π∈;(2)函数cos y x =的对称轴为()x k k Z π=∈,对称中心为(,0)()2k k Z ππ+∈;(3)函数tan y x =函数无对称轴,对称中心为(,0)()2k k Z π∈; (4)求函数sin()(0)y A wx b w φ=++≠的对称轴的方法;令()2wx k k Z πφπ+=+∈,得2()k x k Z wππφ+-=∈;对称中心的求取方法;令()wx k k Z φπ+=∈,得k x wπφ-=,即对称中心为()k b wπφ-,. (5)求函数)0()cos(≠++=w b wx A y ϕ的对称轴的方法;令)(Z k k wx ∈=+πϕ得wk x ϕππ-+=2,即对称中心为))(,2(Z k b wk ∈-+ϕππ1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数x y sin =,]20[π,∈x 的图象中,五个关键点是:3(00)(1)(0)(1)(20)22ππππ-,,,,,,,,,.(2)在余弦函数x y cos =,]20[π,∈x 的图象中,五个关键点是:3(01)(0)(1)(0)(21)22ππππ-,,,,,,,,,.注:正(余)弦曲线相邻两条对称轴之间的距离是2T;正(余)弦曲线相邻两个对称中心的距离是2T ; 正(余)弦曲线相邻两条对称轴与对称中心距离4T ; 3.)sin(ϕ+=wx A y 与)0,0)(cos(>>+=w A wx A y ϕ的图像与性质函数x y sin =x y cos = x y tan =奇函数(1)最小正周期:wT π2=. (2)定义域与值域:)sin(ϕ+=wx A y ,)ϕ+=wx A y cos(的定义域为R ,值域为[-A ,A ].(3)最值假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎩⎪⎨⎧-∈+-=+∈+=+;)(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππϕππϕ ②对于)ϕ+=wx A y cos(,⎩⎨⎧-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππϕπϕ (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎪⎩⎪⎪⎨⎧+==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2000000x wx y wx Z k k wx xx wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当ϕϕπϕϕϕππϕ ②对于)ϕ+=wx A y cos(,⎪⎪⎩⎪⎪⎨⎧+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1)cos()(000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当ϕϕππϕϕϕπϕ 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置.(5)单调性. 假设00>>w A ,. ①对于)sin(ϕ+=wx A y ,⎪⎩⎪⎨⎧⇒∈++∈+⇒∈++-∈+.)](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππϕππππϕ ②对于)ϕ+=wx A y cos(,⎩⎨⎧⇒∈+∈+⇒∈+-∈+.)](2,2[)](2,2[减区间增区间;Z k k k wx Z k k k wx πππϕπππϕ (6)平移与伸缩由函数x y sin =的图像变换为函数3)32sin(2++=πx y 的图像的步骤;方法一:)322(ππ+→+→x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想欺负”(相一期一幅)三角函数图像,使之变形.−−−−−→−=个单位向左平移的图像3sin πx y 的图像)3sin(π+=x y 12−−−−−−−−→所有点的横坐标变为原来的纵坐标不变的图像)32sin(π+=x y 2−−−−−−−−−→所有点的纵坐标变为原来的倍横坐标不变的图像)32sin(2π+=x y−−−−−→−个单位向上平移33)32sin(2++=πx y方法二:)322(ππ+→+→x x x .先周期变换,后相位变换,再振幅变换.的图像x y sin =12−−−−−−−−→所有点的横坐标变为原来的纵坐标不变−−−−−→−=个单位向左平移的图像62sin πx y 的图像)22sin()6(2sin ππ+=+=x x y 2−−−−−−−−−→所有点的纵坐标变为原来的倍横坐标不变−−−−−→−+=各单位向上平移的图像3)32sin(2πx y 3)32sin(2++=πx y注:在进行图像变换时,提倡先平移后伸缩(先相位后周期,即“想欺负”),但先伸缩后平移(先周期后相位)在题目中也经常出现,所以必须熟练掌握,无论哪种变化,切记每一个变换总是对变量x 而言的,即图像变换要看“变量x ”发生多大变化,而不是“角ϕ+wx ”变化多少.1.(2022·上海青浦·二模)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为1,2⎡⎤-⎣⎦,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦2.(2022·上海松江·二模)设函数()sin()(05)6f x x πωω=+<<图像的一条对称轴方程为12x π=,若1x 、2x 是函数()f x 的两个不同的零点,则12||x x -的最小值为( ) A .6πB .4π C .2π D .π3.(2022·青海玉树·高三阶段练习(文))若函数()()tan 08f x x πωω⎛⎫ ⎪⎝⎭=+>的图象与直线()y a a =∈R 的两相邻交点间的距离为2π,则ω=( ) A .14B .12C .1D .24.(2022·青海玉树·高三阶段练习(文))若函数()sin (0)3f x x πωω⎛⎫=-> ⎪⎝⎭图象的两个相邻最高点间的距离为π,则()f x 在下列区间中单调递增的区间是( ) A .π5π,1212⎡⎤-⎢⎥⎣⎦B .π0,2⎡⎤⎢⎥⎣⎦C .5π11π,1212⎡⎤⎢⎥⎣⎦D .ππ,63⎡⎤-⎢⎥⎣⎦5.(2022·青海·海东市教育研究室一模(理))已知定义在π0,4⎡⎤⎢⎥⎣⎦上的函数()()πsin 04f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 的最大值为5ω,则ω的取值最多有( )A .2个B .3个C .4个D .5个1.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( )A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈2.(2022·福建·福州三中高三阶段练习)函数()πsin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭在2π0,3⎛⎫⎪⎝⎭单调递增,在2π,2π3⎛⎫⎪⎝⎭单调递减,则ω的值为( ) A .12B .1C .2D .723.(2022·青海·海东市第一中学模拟预测(理))已知函数()()23sin cos cos 0f x x x x ωωωω+>,若函数f (x )在,2ππ⎛⎫⎪⎝⎭上单调递减,则实数ω的取值范围是( )A .13,32⎡⎤⎢⎥⎣⎦B .12,33⎡⎤⎢⎥⎣⎦C .10,3⎛⎤ ⎥⎝⎦D .20,3⎛⎤ ⎥⎝⎦4.(2022·上海长宁·二模)已知函数()sin cos f x x a x =+满足:()π6f x f ⎛⎫≤ ⎪⎝⎭. 若函数()f x 在区间[]12,x x 上单调,且满足12()()0f x f x +=,则12x x +的最小值为( )A .π6B .π3C .2π3D .4π35.(2022·青海·模拟预测(理))若3π-,3π分别是函数()()()sin 0,0f x x ωϕωϕπ=+><<的零点和极值点,且在区间,155ππ⎛⎫⎪⎝⎭上,函数()y f x =存在唯一的极大值点0x ,使得()01f x =,则下列数值中,ω的可能取值是( ) A .814B .994C .1054D .11746.(2022·全国·高三专题练习)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .37.(多选题)(2022·全国·模拟预测)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f x 21-C .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数8.(多选题)(2022·湖南·长沙县第一中学模拟预测)已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增 D .函数()f x 的值域为[-259.(多选题)(2022·福建省厦门集美中学模拟预测)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( ) A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立10.(多选题)(2022·全国·高三专题练习)已知函数()sin cos f x a x x =+(a 为常数,x ∈R )的图像关于直线π6x =对称,函数()cos sin g x a x x =-,则下面说法正确的是( ) A .将()f x 的图像向左平移2π个单位可以得到()g x 的图像 B .()g x 的图像关于点,06π⎛⎫⎪⎝⎭对称C .()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减D .()f x 的最大值为111.(2022·福建·三明一中模拟预测)已知函数2()322cos 1f x x x =-+,且方程()0f x a -=在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,则实数a 的取值范围是___________.12.(2022·北京八十中模拟预测)已知函数sin()(0)y x ωϕω=+>与直线12y =的交点中,距离最近的两点间距离为3π,那么此函数的周期是___________. 13.(2022·四川成都·模拟预测(理))已知函数()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,若03f π⎛⎫= ⎪⎝⎭,且()f x 在5,312ππ⎛⎫⎪⎝⎭上有最大值,没有最小值,则ω的最大值为______.14.(2022·北京·人大附中三模)已知函数()[)(]sin ,2,00,2xf x x xππ=∈-⋃,给出下列四个结论:①()f x 是偶函数; ②()f x 有4个零点; ③()f x 的最小值为12-;④()12f x x <的解集为1175,0,,26666πππππ⎛⎫⎛⎫⎛⎫--⋃⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.其中,所有正确结论的序号为___________.15.(2022·贵州贵阳·模拟预测(理))若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在[]0,π上有且仅有3个零点和2个极小值点,则ω的取值范围为______. 16.(2022·江西师大附中三模(理))定义在[0,]π上的函数1(3sin cos )cos (0)2y x x x ωωωω=-+>有零点,且值域1,2M ⎡⎫⊆-+∞⎪⎢⎣⎭,则ω的取值范围是__________.17.(2022·陕西·西安中学一模(理))函数(21)()sin ln 22x f x x π+=--的所有零点之和为_________.18.(2022·浙江绍兴·模拟预测)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.19.(2022·上海交大附中模拟预测)已知函数()()1cos 2f x x g x f x ωϕ⎛⎫==+ ⎪⎝⎭,,其中[]0,2πϕ∈(1)若12ω=且直线π2x =是()g x 的一条对称轴,求()g x 的递减区间和周期;(2)若21π3ωϕ==,,求函数()()()h x f x g x =-在π0,2⎛⎫⎪⎝⎭上的最小值;20.(2022·海南中学高三阶段练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π; 条件②:()00f =;条件③:()f x 图象的一条对称轴为4x π=.注:如果选择多组条件分别解答,按第一个解答计分.21.(2022·浙江·镇海中学模拟预测)设ABC 内角A ,B ,C 的对边分别为a ,b ,c ,函数()2sin()cos sin f x x A x A =-+.(1)若1(0),3,12f a b =-==,求ABC 的面积;(2)当512x π=时,()f x 取最大值,求()f x 在0,2π⎛⎫⎪⎝⎭上的值域.22.(2022·浙江省杭州学军中学模拟预测)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭满足:①()f x 的最大值为2;②06f π⎛⎫-= ⎪⎝⎭;()f x 的最小正周期为π.(1)求()f x 的解析式;(2)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调递增区间与最小值.1.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .32.(2022·全国·高考真题(理))设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦3.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增 4.(2021·北京·高考真题)函数()cos cos2f x x x =-是A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为985.(2021·全国·高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3π和2B .3π和2C .6π和2D .6π和26.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭7.(多选题)(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴 D .直线32y x =-是曲线()y f x =的切线 8.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.9.(2021·全国·高考真题(理))已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.10.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.。
高考数学一轮复习 第四篇 三角函数与解三角形 专题4.1 角与弧度制、三角函数的概念练习(含解析)-
专题4.1 角与弧度制、三角函数的概念【考试要求】1.了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性;2.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【知识梳理】1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r (弧长用l 表示) 角度与弧度的换算1°=π180 rad ;1 rad =⎝ ⎛⎭⎪⎫180π° 弧长公式弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.【微点提醒】1.若α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α. 2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.象限角的集合4.轴线角的集合【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.( )(2)锐角是第一象限角,反之亦然.( )(3)将表的分针拨快5分钟,则分针转过的角度是30°.( )(4)相等的角终边一定相同,终边相同的角也一定相等.( )【答案】 (1)× (2)× (3)× (4)×【解析】 (1)锐角的取值X 围是⎝ ⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角.(3)顺时针旋转得到的角是负角.(4)终边相同的角不一定相等.【教材衍化】2.(必修4P12例2改编)已知角α的终边过点P (8m ,3),且cos α=-45,则m 的值为()A.-12B.12C.-32D.32【答案】 A【解析】 由题意得m <0且8m(8m )2+32=-45,解得m =-12. 3.(必修4P4例1改编)在-720°~0°X 围内,所有与角α=45°终边相同的角β构成的集合为________.【答案】 {-675°,-315°}【解析】 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ).解得k =-2或k =-1,∴β=-675°或β=-315°.【真题体验】4.(2019·某某模拟)若sin θ·cos θ<0,tan θsin θ>0,则角θ是( ) A.第一象限角 B.第二象限角C.第三象限角D.第四象限角【答案】 D【解析】 由tan θsin θ>0,得1cos θ>0,故cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.5.(2019·日照一中质检)若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为________.【答案】 3【解析】 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =α·r ,所以α= 3.6.(2019·某某模拟)已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________.【答案】 -1【解析】 如图,由题意知,角α的终边在第二象限,在其上任取一点P (x ,y ),则y =-x ,由三角函数的定义得tan α=y x =-x x=-1.【考点聚焦】 考点一 角的概念及其集合表示 【例1】 (1)若角α是第二象限角,则α2是( ) A.第一象限角 B.第二象限角C.第一或第三象限角D.第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.【答案】 (1)C (2)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π 【解析】 (1)∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角; 当k 为奇数时,α2是第三象限角. (2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.【规律方法】 1.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.2.若要确定一个绝对值较大的角所在的象限,一般是先将角化为2k π+α(0≤α<2π)(k ∈Z )的形式,然后再根据α所在的象限予以判断.【训练1】 (1)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆NC.N ⊆MD.M ∩N =∅(2)已知角α的终边在如图所示阴影表示的X 围内(不包括边界),则角α用集合可表示为________.【答案】 (1)B (2)⎩⎨⎧⎭⎬⎫α|2k π+π4<α<2k π+56π,k ∈Z 【解析】 (1)由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N . (2)在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π, 所以,所求角的集合为⎩⎨⎧⎭⎬⎫α|2k π+π4<α<2k π+56π,k ∈Z . 考点二 弧度制及其应用【例2】 (经典母题)已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10 cm ,求扇形的面积. 【答案】见解析【解析】由已知得α=π3,R =10, ∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2). 【迁移探究1】 若例题条件不变,求扇形的弧长及该弧所在弓形的面积.【答案】见解析【解析】l =α·R =π3×10=10π3(cm), S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 【迁移探究2】 若例题条件改为:“若扇形周长为20 cm”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【答案】见解析【解析】由已知得,l +2R =20,即l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25, 所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad.【规律方法】1.应用弧度制解决问题的方法:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.2.求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.【训练2】 (一题多解)(2019·某某质检)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )A.6平方米B.9平方米C.12平方米D.15平方米【答案】 B【解析】 法一 如图,由题意可得∠AOB =2π3,OA =4,在Rt△AOD 中,可得∠AOD =π3,∠DAO =π6,OD =12AO =12×4=2,于是矢=4-2=2.由AD =AO ·sin π3=4×32=23,得弦AB =2AD =4 3. 所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2≈9(平方米). 法二 由已知,可得扇形的面积S 1=12r 2θ=12×42×2π3=16π3,△AOB 的面积S 2=12×OA ×OB ×sin ∠AOB=12×4×4×sin 2π3=4 3. 故弧田的面积S =S 1-S 2=16π3-43≈9(平方米). 考点三 三角函数的概念【例3】 (1)在平面直角坐标系中,若角α的终边经过点P ⎝⎛⎭⎪⎫sin π3,cos π3,则sin(π+α)=( ) A.-32B.-12C.12D.32(2)若sin αtan α<0,且cos αtan α<0,则角α是( ) A.第一象限角 B.第二象限角C.第三象限角D.第四象限角【答案】 (1)B (2)C【解析】 (1)易知sin π3=32,cos π3=12,则P ⎝ ⎛⎭⎪⎫32,12. 由三角函数的定义可得sin α=12⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=12, 则sin(π+α)=-sin α=-12. (2)由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角;由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角.综上可知,α为第三象限角.【规律方法】 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.三角函数线的应用问题的求解思路确定单位圆与角的终边的交点,作出所需要的三角函数线,然后求解.【训练3】 (1)(2019·某某一中月考)如图,在平面直角坐标系xOy 中,角α,β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫35,45和⎝ ⎛⎭⎪⎫-45,35,则cos(α+β)的值为( )A.-2425B.-725C.0D.2425(2)满足cos α≤-12的角α的集合为________. 【答案】 (1)A (2)⎩⎨⎧⎭⎬⎫α|2k π+23π≤α≤2k π+43π,k ∈Z 【解析】 (1)由三角函数的定义可得cos α=35,sin α=45,cos β=-45,sin β=35. 所以cos(α+β)=cos αcos β-sin αsin β=-2425. (2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的X 围,故满足条件的角α的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+23π≤α≤2k π+43π,k ∈Z .【反思与感悟】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP |=r 一定是正值.2.在解决简单的三角不等式时,利用单位圆及三角函数线是体现数学直观想象核心素养.【易错防X 】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.相等的角终边相同,但终边相同的角不一定相等.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.【分层训练】【基础巩固题组】(建议用时:35分钟)一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A.1个B.2个C.3个D.4个【答案】 C【解析】 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.2.下列与9π4的终边相同的角的表达式中正确的是( ) A.2k π+45°(k ∈Z ) B.k ·360°+94π(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z ) 【答案】 C【解析】 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A ,B ,易知D 错误,C 正确.3.(2019·某某区模拟)已知角α的终边经过点(m ,3m ),若α=7π3,则m 的值为( ) A.27 B.127C.9 D.19【答案】 B【解析】 ∵tan 7π3=3m m=m -16=3,∴m -1=33=27, ∴m =127,故选B.4.已知点M 在角θ终边的反向延长线上,且|OM |=2,则点M 的坐标为( )A.(2cos θ,2sin θ)B.(-2cos θ,2sin θ)C.(-2cos θ,-2sin θ)D.(2cos θ,-2sin θ)【答案】 C【解析】 由题意知,M 的坐标为(2cos(π+θ),2sin(π+θ)),即(-2cos θ,-2sin θ).5.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】 B【解析】 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,综上知θ2为第二象限角.6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=() A.-45B.-35C.35D.45【答案】 B【解析】 由题意知,tan θ=2,即sin θ=2cos θ.将其代入sin 2θ+cos 2θ=1中可得cos 2θ=15,故cos 2θ=2cos 2θ-1=-35.7.(2019·潍坊一模)若角α的终边过点A (2,1),则sin ⎝ ⎛⎭⎪⎫32π-α=( )A.-255 B.-55C.55D.255【答案】 A【解析】 由三角函数定义,cos α=25=255,则sin ⎝ ⎛⎭⎪⎫32π-α=-cos α=-255.8.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6B.2π3C.5π3D.11π6【答案】 D【解析】 由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 二、填空题9.(2019·某某徐汇区调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于________. 【答案】 3【解析】 由题意知m >0且sin θ=m 16+m 2=35,解得m =3. 10.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 【答案】 π3【解析】 设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.11.(2019·某某调研)设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α=________.【答案】 -43【解析】 因为α是第二象限角,所以cos α=15x <0,即x <0. 又cos α=15x =x x 2+16, 解得x =-3,所以tan α=4x =-43. 12.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值X 围是________.【答案】 (-2,3]【解析】 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 【能力提升题组】(建议用时:15分钟)13.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( )A.1B.2C.3D.4【答案】 A【解析】 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.14.(2018·全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D.1 【答案】 B 【解析】 由题意可知tan α=b -a 2-1=b -a , 又cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-(b -a )21+(b -a )2=23, ∴5(b -a )2=1,得(b -a )2=15,则|b -a |=55. 15.函数y =2sin x -1的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )【解析】 ∵2sin x -1≥0,∴sin x ≥12. 由三角函数线画出x 满足条件的终边X 围(如图阴影所示).∴x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).16.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2的终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 【答案】见解析【解析】(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限,其集合为⎩⎨⎧⎭⎬⎫α|2k π+π<α<2k π+3π2,k ∈Z . (2)由(1)知2k π+π<α<2k π+3π2,k ∈Z , 故k π+π2<α2<k π+3π4,k ∈Z ,故α2的终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0, sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号. 综上,tan α2sin α2cos α2取正号. 【新高考创新预测】17.(多填题)某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A ,B 两点的距离d (单位:cm)表示成t (单位:s)的函数,则d =________(其中t ∈[0,60]);d 的最大值为________cm.【答案】 10sin πt 6010 【解析】 根据题意,得∠AOB =t 60×2π=πt 30,故d =2×5sin ∠AOB 2=10sin πt 60(t ∈[0,60]).∵t ∈[0,60],∴πt 60∈[0,π],当t =30时,d 最大为10 cm.。
2024届高三数学一轮复习-三角函数与解三角形 第2练 同角三角函数的基本关系及诱导公式(解析版)
第2练同角三角函数的基本关系及诱导公式一、单选题
二、多选题
A.()f x 的值域为2,2⎡⎤-⎣⎦
B.()f x 的最小正周期为πC.π
6
ϕ=
D.将函数f (x )的图象向左平移14.(2023·全国·高三专题练习)2022的形成需要两股涌潮,一股是波状涌潮,鱼鳞一样的涌潮.若波状涌潮的图象近似函数而破碎的涌潮的图象近似()f x '(两潮有一个交叉点,且破碎的涌潮的波谷为A.2
ω=C.π4f x ⎛
⎫'+ ⎪⎝
⎭的图象关于原点对称
三、填空题
15.(2023·全国·高三专题练习)已知16.(2023·湖南衡阳·衡阳市八中校考模拟预测)已知π
四、解答题
(1)若AM BM =,求
AC
AM
的值;(2)若AM 为BAC ∠的平分线,且20.(2023·全国·高三专题练习)a c <,且ππsin cos 36A ⎛⎫⎛- ⎪ ⎝⎭⎝(1)求A 的大小;
(2)若sin sin 43sin a A c C +=
参考答案:。
2023年高考数学一轮复习(新高考地区专用)3-4-1 三角函数的性质(1)(精练)(含详解)
3.4.1 三角函数的性质(1)(精练)(基础版)1.(2022·广西南宁)下列四个函数,最小正周期是2π的是( ) A .sin 2y x =B .cos 2xy = C .sin 4y x =D .tan 3y x =2.(2021年湖南)下列函数中,周期为2π的奇函数为( )A .y =sin x 2cos x2 B .y =sin 2x C .y =tan 2x D .y =sin 2x +cos 2x3.(2022·江西景德镇)函数2π2sin tan()16y x x =+-+的最小正周期为( )A .2π B .πC .32π D .2π4.(2022·宁夏·青铜峡市宁朔中学)函数()cos sin f x x x =+ 的最小正周期为________. 5.(2022·陕西·西安市临潼区铁路中学)已知函数f (x )=sin(ωx +3π)(ω>0)的最小正周期为π,则ω=____. 6.(2022·全国·高三专题练习)求下列三角函数的周期: (1)y =3sin x ,x∈R ; (2)y =cos 2x ,x∈R ; (3)y =sin 1()34x π-,x∈R ; (4)y =|cos x|,x∈R .7(2021·上海·高三专题练习)求下列函数的周期: (1)cos 2sin 2cos 2sin 2x xy x x+=-; (2)66sin cos y x x =+.1.(2022·全国·单元测试)函数()1tan 36x f x ππ⎛⎫=+-⎪⎝⎭图象的对称中心的坐标为( ) A .16,0()2k k Z +⎛⎫∈ ⎪⎝⎭ B .13,0()2k k Z +⎛⎫∈ ⎪⎝⎭ C .16,1()2k k Z +⎛⎫∈⎪⎝⎭D .13,1()2k k Z +⎛⎫∈ ⎪⎝⎭2.(2022·安徽)“3πϕ=”是“函数()sin 2x f x ϕ⎛⎫=+ ⎪⎝⎭的图象关于3x π=对称”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2021·青海西宁)已知函数()sin 022f x x ππϕϕ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象过点30,2⎛⎫ ⎪ ⎪⎝⎭,则()f x 图象的一个对称题组一 周期题组二 对称性中心为( ) A .1,03⎛⎫ ⎪⎝⎭B .()1,0C .4,03⎛⎫ ⎪⎝⎭D .()2,04.(2022·浙江金华)下列函数中,关于直线6x π=-对称的是( )A .sin 3y x π⎛⎫=+ ⎪⎝⎭B .sin 23y x π⎛⎫=+ ⎪⎝⎭ C .cos 3y x π⎛⎫=+ ⎪⎝⎭ D .cos 23y x π⎛⎫=+ ⎪⎝⎭5(2022·全国·单元测试)函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像( )A .关于点,06π⎛⎫⎪⎝⎭对称 B .关于点,03π⎛⎫ ⎪⎝⎭对称C .关于直线6x π=对称 D .关于直线3x π=对称6.(2022·河北省)关于()4sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭有下列结论:∈函数的最小正周期为π; ∈表达式可改写成()4cos 26f x x π⎛⎫=- ⎪⎝⎭;∈函数的图象关于点,06π⎛⎫- ⎪⎝⎭对称; ∈函数的图象关于直线6x π=-对称.其中错误的结论是( ) A .∈∈B .∈∈C .∈D .∈∈7.(2021·北京市)最小正周期为π,且图象关于直线3x π=对称的一个函数是( )A .sin 26x y π⎛⎫=+ ⎪⎝⎭B .sin 26y x π⎛⎫=+ ⎪⎝⎭C .cos 26y x π⎛⎫=- ⎪⎝⎭D .sin 26y x π⎛⎫=- ⎪⎝⎭8.(2022·江西·南昌十五中)若函数()sin (0)3⎛⎫=-≠ ⎪⎝⎭f x x πωω的图象与()2cos()=+g x x a π的图象都关于直线6x π=对称,则||||+a ω的最小值为( )A .56B .76C .316D .3761.(2022·江西)下列函数中,既不是奇函数也不是偶函数的是( ) A .sin 2y x =B .cos 2y x =C .cos 21y x =+D .sin 21y x =+2.(2022·全国·高二课时练习)函数3sin(2)y x π=+是( ) A .周期为2π的奇函数 B .周期为π的偶函数 C .周期为π的奇函数D .周期为2π的偶函数 题组三 奇偶性3.(2021·全国·课时练习)下列函数中,最小正周期是π且是奇函数的是( ) A .sin 2y x =B .sin y x =C .tan2xy = D .cos 2y x =4.(2022·陕西·西安市临潼区铁路中学)下列函数中为周期是π的偶函数是( ) A .sin y x = B .sin ||y x = C .sin y x =-D .sin 1y x =+5.(2022·全国·高三专题练习)下列函数中,周期为2π的奇函数为( ). A .sin cos 22x x y =B .2sin y x =C .tan 2y x =D .sin 2cos2y x x =+6.(2022·新疆昌吉)已知函数()sin f x x x =,则下列关于函数3y f x π⎛⎫=+ ⎪⎝⎭的描述错误的是( )A .奇函数B .最小正周期为πC .其图象关于点(,0)π-对称D .其图象关于直线2x π=对称7.(2022·全国·课时练习)下列函数中,其图像关于原点对称的是( ). A .2sin y x =B .sin y x x =C .sin x y x =D .πsin 2y x x ⎛⎫=+ ⎪⎝⎭8.(2021·全国·课时练习)下列函数具有奇偶性的是( ) A .()()sin 0f x x x => B .()()2sin 0f x x x =<C .()1sinf x x= D .()f x =9.(2022·河南)“函数f (x )=sin2x +(a 2-1)cos x 为奇函数”是“a =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.(2022·全国·专题练习)函数f (x )=21sin cos 1sin x x x +-+是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数11.(2022·上海市)函数212cos 4y x π⎛⎫=-- ⎪⎝⎭是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 12.(2022·全国·高三专题练习)已知函数()2sin(2)f x x ϕ=+,则“2ϕπ=”是“()f x 为偶函数”的( )条件A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件13.(2022·全国·高三专题练习)函数f (x 的奇偶性为( ) A .奇函数 B .既是奇函数也是偶函数 C .偶函数 D .非奇非偶函数14.(2022·全国·高三专题练习)函数∈()sin cos f x x x =+,∈()sin cos f x x x =,∈21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .∈∈B .∈C .∈D .∈∈15.(2022·全国·高三专题练习)已知函数()()()2cos 2f x x x ϕϕ+++为奇函数,且存在00,3x π⎛⎫∈ ⎪⎝⎭,使得()02f x =,则ϕ的一个可能值为( )A .56πB .3πC .6π-D .23π-16.(2022·全国·高三专题练习)使函数()sin())f x x x ϕϕ=++为偶函数的ϕ的一个值为( ) A .23πB .3π C .3π-D .56π-17.(2022·全国·高三专题练习)已知函数()sin()(0,0,)f x A x A ωϕωϕ=+>>∈R .则“()f x 是偶函数“是“2ϕπ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件18.(2022·全国·高三专题练习)在下列四个函数中,周期为2π的偶函数为( ) A .2sin 2cos2y x x = B .22cos 2sin 2y x x =- C .sin 2y x x =D .22cos sin y x x =-19.(2022·安徽·淮南第一中学一模(理))已知函数()2cos 2cos 42x f x x π⎛⎫=-- ⎪⎝⎭,则下列说法正确的是( )A .14y f x π⎛⎫=-- ⎪⎝⎭为奇函数B .14y f x π⎛⎫=+- ⎪⎝⎭为奇函数C .14y f x π⎛⎫=-+ ⎪⎝⎭为偶函数D .14y f x π⎛⎫=++ ⎪⎝⎭为偶函数20.(2022·河南濮阳·高三开学考试(理))设0a <,若函数()()()3cos 4sin 4f x x a x a =+-+的图象关于原点对称,则a 的最大值为( ) A .6π-B .4π-C .3π-D .23π-1.(2022·内蒙古包头·高三期末(理))下列区间中,函数()2sin 3f x x π⎛⎫=+ ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭2.(2022·全国·高三专题练习)函数()tan 24f x x ππ⎛⎫=+ ⎪⎝⎭的单调递增区间为( )A .114,422k k ⎛⎫-+ ⎪⎝⎭,k Z ∈B .314,422k k ⎛⎫-+ ⎪⎝⎭,k Z ∈C .312,222k k ⎛⎫-+ ⎪⎝⎭,k Z∈ D .112,222k k ⎛⎫-+ ⎪⎝⎭,k Z ∈3.(2022·河北·模拟预测)(多选)下列四个函数中,以π为周期且在π0,2⎛⎫⎪⎝⎭上单调递增的偶函数有( )A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x =4.(2022·湖南·长沙市南雅中学高三阶段练习)在下列区间中,函数()2022cos 12f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.(2022·湖北武汉·高三期末)下列四个函数中,以π为最小正周期,其在,2ππ⎛⎫⎪⎝⎭上单调递减的是( )A .sin y x =B .sin y x =C .cos 2y x =D .sin 2y x =6.(2022·全国·高三专题练习)在下列函数中,同时满足:∈在0,2π⎛⎫⎪⎝⎭上单调递增;∈最小正周期为2π的是( ) A .tan y x =B .cos y x =C .tan2x y = D .tan y x =-7.(2022·山东·昌乐)若()cos 3f x x π⎛⎫=- ⎪⎝⎭在区间[],a a -上单调递增,则实数a 的最大值为__________.8.(2022·天津河西·高三期末)已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为4π,其图象题组四 单调性的一条对称轴为43x π=,则23f π⎛⎫'= ⎪⎝⎭______. 9.(2022·山东潍坊·模拟预测)已知函数()sin cos f x x x ωω=+(0>ω)在ππ,48⎡⎤-⎢⎥⎣⎦上单调递增,则ω的一个取值为________.3.4.1 三角函数的性质(1)(精练)(基础版)1.(2022·广西南宁)下列四个函数,最小正周期是2π的是( ) A .sin 2y x = B .cos 2x y =C .sin 4y x =D .tan 3y x =【答案】C【解析】A 选项:22T ππ==,错误;B 选项:2412T ππ==,错误; C 选项:242T ππ==,正确;D 选项:3T π=,错误.故选:C. 2.(2021年湖南)下列函数中,周期为2π的奇函数为( )A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x【答案】A【解析】 y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D都不正确,故选A.3.(2022·江西景德镇)函数2π2sin tan()16y x x =+-+的最小正周期为( )A .2π B .πC .32π D .2π【答案】B【解析】函数2ππ2sin tan()1tan()cos 2266y x x x x =+-+=--+,其中函数πtan()6y x =-的最小正周期为π,函数cos 2y x =的最小正周期为2ππ2T ==所以函数πtan()cos 226y x x =--+的最小正周期为π.故选:B.4.(2022·宁夏·青铜峡市宁朔中学)函数()cos sin f x x x =+ 的最小正周期为________. 【答案】2π【解析】因为()cos sin f x x x =+,所以22()2cos sin 2sin 224f x x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以1ω=,所以函数的最小正周期22T ππω==;故答案为:2π5.(2022·陕西·西安市临潼区铁路中学)已知函数f (x )=sin(ωx题组一 周期+3π)(ω>0)的最小正周期为π,则ω=____. 【答案】2 【解析】由2T ππω==,又ω>0,故2ω=.故答案为:2.6.(2022·全国·高三专题练习)求下列三角函数的周期: (1)y =3sin x ,x∈R ; (2)y =cos 2x ,x∈R ; (3)y =sin 1()34x π-,x∈R ; (4)y =|cos x|,x∈R .【答案】(1)2π ; (2)π ; (3)6π ; (4)π.【解析】(1)因为3sin(x +2π)=3sinx ,由周期函数的定义知,y =3sinx 的周期为2π. (2)因为cos2(x +π)=cos(2x +2π)=cos2x ,由周期函数的定义知,y =cos2x 的周期为π.(3)因为()111sin 6sin 2sin 343434x x πππππ⎡⎤⎛⎫⎛⎫+-=+-=- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,由周期函数的定义知,1sin 34y x π⎛⎫=- ⎪⎝⎭的周期为6π.(4)y =|cosx|的图象如图(实线部分)所示,由图象可知,y =|cos x|的周期为π.7(2021·上海·高三专题练习)求下列函数的周期:(1)cos 2sin 2cos 2sin 2x xy x x+=-; (2)66sin cos y x x =+.【答案】(1)2π;(2)2π【解析】(1)cos 2sin 2cos 2sin 2x xy x x+=-,将各项同时除以cos2x ,结合正切函数和角公式化简可得cos 2sin 21tan 2cos 2sin 21tan 2x x x y x x x ++==--tantan 241tan tan 24x x ππ+=-⋅tan 24x π⎛⎫=+ ⎪⎝⎭,∈函数的周期是2T π=. (2)由立方和公式及完全平方公式化简可得66sin cos y x x =+()()224224sin cos sin sin cos cos x x x x x x=+-+()22222231sin cos 3sin cos 1sin 24x x x x x ⎡⎤=⋅+-=-⎢⎥⎣⎦53cos 488x =+.所以函数的周期是242T ππ==.题组二 对称性1.(2022·全国·单元测试)函数()1tan 36x f x ππ⎛⎫=+-⎪⎝⎭图象的对称中心的坐标为( ) A .16,0()2k k Z +⎛⎫∈ ⎪⎝⎭ B .13,0()2k k Z +⎛⎫∈⎪⎝⎭ C .16,1()2k k Z +⎛⎫∈ ⎪⎝⎭D .13,1()2k k Z +⎛⎫∈ ⎪⎝⎭【答案】D 【解析】令()362x k k Z πππ-=∈,得13()2kx k Z +=∈, 故函数()1tan 36x f x ππ⎛⎫=+-⎪⎝⎭图象的对称中心的坐标为13,1()2k k Z +⎛⎫∈ ⎪⎝⎭.故选:D. 2.(2022·安徽)“3πϕ=”是“函数()sin 2x f x ϕ⎛⎫=+ ⎪⎝⎭的图象关于3x π=对称”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】由22x k πϕπ+=+,k Z ∈可得22x k πϕπ=-+,k Z ∈,即函数()sin 2x f x ϕ⎛⎫=+ ⎪⎝⎭的对称轴为22x k πϕπ=-+,k Z ∈;若3πϕ=,则23x k ππ=+,k Z ∈,能推出函数()f x 的图象关于3x π=对称;若函数()sin 2x f x ϕ⎛⎫=+ ⎪⎝⎭的图象关于3x π=对称,则223k ππϕπ=-+,k Z ∈,即3k πϕπ=+,k Z ∈;所以“3πϕ=”是“函数()sin 2x f x ϕ⎛⎫=+ ⎪⎝⎭的图象关于3x π=对称”的充分不必要条件,故选:A.3.(2021·青海西宁)已知函数()sin 022f x x ππϕϕ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象过点⎛ ⎝⎭,则()f x 图象的一个对称中心为( ) A .1,03⎛⎫⎪⎝⎭B .()1,0C .4,03⎛⎫ ⎪⎝⎭D .()2,0【答案】C【解析】由题知()0sin f ϕ==π02ϕ<<,所以π3ϕ=,则()ππsin 23f x x ⎛⎫=+ ⎪⎝⎭,令()ππ23x k k π+=∈Z ,则()223x k k =-∈Z ,当1k =时,43x =,即4,03⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,可验证其他选项不正确.故选:C.4.(2022·浙江金华)下列函数中,关于直线6x π=-对称的是( )A .sin 3y x π⎛⎫=+ ⎪⎝⎭B .sin 23y x π⎛⎫=+ ⎪⎝⎭C .cos 3y x π⎛⎫=+ ⎪⎝⎭D .cos 23y x π⎛⎫=+ ⎪⎝⎭【答案】D【解析】A.将6x π=-代入sin 3y x π⎛⎫=+ ⎪⎝⎭,得函数值为12,故6x π=-不是sin 3y x π⎛⎫=+ ⎪⎝⎭的一条对称轴;B.将6x π=-代入sin 23y x π⎛⎫=+ ⎪⎝⎭,得函数值为0,故6x π=-不是sin 23y x π⎛⎫=+ ⎪⎝⎭的一条对称轴;C.将6x π=-代入cos 3y x π⎛⎫=+ ⎪⎝⎭6x π=-不是cos 3y x π⎛⎫=+ ⎪⎝⎭的一条对称轴;D.将6x π=-代入cos 23y x π⎛⎫=+ ⎪⎝⎭,得函数值为1,故6x π=-是cos 23y x π⎛⎫=- ⎪⎝⎭的一条对称轴;故选:D.5(2022·全国·单元测试)函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像( )A .关于点,06π⎛⎫⎪⎝⎭对称 B .关于点,03π⎛⎫ ⎪⎝⎭对称C .关于直线6x π=对称 D .关于直线3x π=对称【答案】B 【解析】令2()3x k k Z ππ+=∈,得126x k ππ=-,所以对称点为1,026k ππ⎛⎫- ⎪⎝⎭.当1k =,为,03π⎛⎫⎪⎝⎭,故B 正确;令2()32x k k Z πππ+=+∈,则对称轴为212k x ππ=+, 因此直线6x π=和3x π=均不是函数的对称轴.故选B6.(2022·河北省)关于()4sin 2()3f x x x R π⎛⎫=+∈ ⎪⎝⎭有下列结论:∈函数的最小正周期为π; ∈表达式可改写成()4cos 26f x x π⎛⎫=- ⎪⎝⎭;∈函数的图象关于点,06π⎛⎫- ⎪⎝⎭对称; ∈函数的图象关于直线6x π=-对称.其中错误的结论是( ) A .∈∈ B .∈∈ C .∈ D .∈∈【答案】C【解析】结论∈:周期2T ππω==,故本结论正确;结论∈:()4sin 24sin 24cos 226266f x x x x πππππ⎛⎫⎛⎫⎛⎫=+-=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故本结论正确;结论∈:因为()4sin 2()0663f πππ⎛⎫-=⋅-+= ⎪⎝⎭,所以函数的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故本结论正确;结论∈:由∈的判断可知,函数函数的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故本结论不正确,综上,本题选C.7.(2021·北京市)最小正周期为π,且图象关于直线3x π=对称的一个函数是( )A .sin 26x y π⎛⎫=+ ⎪⎝⎭B .sin 26y x π⎛⎫=+ ⎪⎝⎭C .cos 26y x π⎛⎫=- ⎪⎝⎭D .sin 26y x π⎛⎫=- ⎪⎝⎭【答案】D【解析】函数sin 26x y π⎛⎫=+ ⎪⎝⎭的周期为:22412T πππω===,故排除A. 将3x π=代入sin 26y x π⎛⎫=- ⎪⎝⎭得:sin 236y ππ⎛⎫=⨯- ⎪⎝⎭=1,此时y 取得最大值,所以直线3x π=是函数sin 26y x π⎛⎫=- ⎪⎝⎭一条对称轴.故选D.8.(2022·江西·南昌十五中)若函数()sin (0)3⎛⎫=-≠ ⎪⎝⎭f x x πωω的图象与()2cos()=+g x x a π的图象都关于直线6x π=对称,则||||+a ω的最小值为( )A .56B .76C .316D .376【答案】B【解析】由题意可得(),()6326k k a n n ππππωπππ-=+∈+=∈Z Z ,即165(),()6k k a n n ω=+∈=-+∈Z Z ,故||||+a ω的最小值为17|1|66-+-=;故选:B.1.(2022·江西)下列函数中,既不是奇函数也不是偶函数的是( ) A .sin 2y x = B .cos 2y x = C .cos 21y x =+ D .sin 21y x =+【答案】D【解析】选项A: sin 2()sin 2x x -=-,则sin 2y x =为奇函数.排除; 选项B: cos 2()cos 2x x -=,则cos 2y x =为偶函数.排除; 选项C: cos 2()1cos 21x x -+=+,则cos 21y x =+为偶函数.排除;选项D: 令()sin 21f x x =+,ππ()sin 1042f ⎛⎫-=-+= ⎪⎝⎭,ππ()sin 1242f =+=则ππ()()44f f -≠,ππ()()44f f -≠-,则sin 21y x =+既不是奇函数也不是偶函数.可选.故选:D题组三 奇偶性2.(2022·全国·高二课时练习)函数3sin(2)y x π=+是( ) A .周期为2π的奇函数 B .周期为π的偶函数 C .周期为π的奇函数 D .周期为2π的偶函数 【答案】C【解析】函数3sin(2)3sin 2y x x π=+=-, 其最小正周期为22T ππ== 由()3sin 23sin 2x x --=,可得函数为奇函数.故选:C3.(2021·全国·课时练习)下列函数中,最小正周期是π且是奇函数的是( ) A .sin 2y x = B .sin y x = C .tan2x y = D .cos 2y x =【答案】A【解析】A 选项,sin 2y x =的最小正周期是π,且是奇函数,A 正确. B 选项,sin y x =的最小正周期是2π,且是奇函数,B 错误. C 选项,tan2xy =的最小正周期为2π,且是奇函数,C 错误. D 选项,cos y x =的最小正周期是π,且是偶函数,D 错误. 故选:A4.(2022·陕西·西安市临潼区铁路中学)下列函数中为周期是π的偶函数是( ) A .sin y x = B .sin ||y x = C .sin y x =- D .sin 1y x =+【答案】A【解析】对于A ,sin y x =为偶函数,且最小正周期为π,所以A 正确; 对于B ,sin y x =为偶函数,但不具有周期性,所以B 错误; 对于C ,sin y x =-为奇函数,所以C 错误;对于D, sin 1y x =+为非奇非偶函数,所以D 错误.综上可知,正确的为A 故选:A 5.(2022·全国·高三专题练习)下列函数中,周期为2π的奇函数为( ). A .sin cos 22x x y =B .2sin y x =C .tan 2y x =D .sin 2cos2y x x =+【答案】A【解析】对于选项A ,11sin cos 2sin cos sin 222222x x x x y x ==⨯⨯⋅=,则2221T πππω===,且()11sin sin 22x x -=-是奇函数,所以A 选项正确; 对于选项B ,21cos 2sin 2x y x -==,则222T πππω===,且()1cos 21cos 222x x ---=是偶函数,所以B 选项错误;对于选项C ,tan 2y x =,则2ππT ω==,且()tan 2tan 2x x -=-是奇函数,所以C 选项错误;对于选项D ,sin 2cos 22224y x x x x x π⎫⎛⎫=+==+⎪ ⎪⎪⎝⎭⎭,则222T πππω===()2244x x ππ⎡⎤⎛⎫-+-+ ⎪⎢⎥⎣⎦⎝⎭是非奇非偶函数,所以D 选项错误.故选:A.6.(2022·新疆昌吉)已知函数()sin f x x x =,则下列关于函数3y f x π⎛⎫=+ ⎪⎝⎭的描述错误的是( )A .奇函数B .最小正周期为πC .其图象关于点(,0)π-对称D .其图象关于直线2x π=对称【答案】B【解析】因为()sin 2sin 3f x x x x π⎛⎫==- ⎪⎝⎭,所以2sin 3f x x π⎛⎫+= ⎪⎝⎭,最小正周期为2π,故B 错误;2sin 3f x x π⎛⎫+= ⎪⎝⎭显然为奇函数,其图象关于点(,0)π-对称且关于直线2x π=对称,所以其它选项均正确;故选:B .7.(2022·全国·课时练习)下列函数中,其图像关于原点对称的是( ). A .2sin y x = B .sin y x x = C .sin xy x=D .πsin 2y x x ⎛⎫=+ ⎪⎝⎭【答案】D【解析】对于A :2sin y x =的定义域为R ,()()()22sin sin f x x x f x -=-==,所以2sin y x =是偶函数,图象不关于原点对称,故选项A 不正确;对于B :sin y x x =的定义域为R ,()()()()sin sin f x x x x x f x -=--==, 所以sin y x x =是偶函数,图象不关于原点对称,故选项B 不正确; 对于C :sin xy x=的定义域为{}|0x x ≠ 关于原点对称, ()()()sin sin x xf x f x xx--===-,所以sin x y x =是偶函数,图象不关于原点对称,故选项C 不正确;对于D :πsin 2y x x ⎛⎫=+ ⎪⎝⎭的定义域为R ,πsin cos 2y x x x x ⎛⎫=+= ⎪⎝⎭,()()()()cos cos f x x x x x f x -=--=-=-,所以πsin 2y x x ⎛⎫=+ ⎪⎝⎭是奇函数,图象关于原点对称,故选项D 正确; 故选:D.8.(2021·全国·课时练习)下列函数具有奇偶性的是( ) A .()()sin 0f x x x => B .()()2sin 0f x x x =<C .()1sin f x x= D .()f x =【答案】C【解析】对A ,函数的定义域为()0,∞+,不关于原点对称,无奇偶性,故A 错误; 对B ,函数的定义域为(),0-∞,不关于原点对称,无奇偶性;故B 错误;对C ,函数的定义域为()(),00,-∞⋃+∞,且()()11sin sin f x f x x x ⎛⎫-=-=-=- ⎪⎝⎭,故为奇函数,故C 正确;对D ,函数的定义域为{}22,x k x k k πππ≤≤+∈Z ,不关于原点对称,无奇偶性,故D 错误. 故选:C .9.(2022·河南)“函数f (x )=sin2x +(a 2-1)cos x 为奇函数”是“a =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】因函数()2()sin 21cos f x x a x =+-是定义域为R 的奇函数,则R ∀∈,f (x )+f (-x )=0,于是得22(1)cos 0a x -=,而cos x 不恒为0,则有210a -=,解得1a =±,因此,当a =1时,f (x )是奇函数,而f (x )是奇函数时,a 可以为-1,所以“函数f (x )=sin2x +(a 2-1)cos x 为奇函数”是“a =1”的必要不充分条件.故选:B10.(2022·全国·专题练习)函数f (x )=21sin cos 1sin x xx +-+是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数【答案】C【解析】由1+sin x ≠0得sin x ≠-1,所以2,2x k k Z ππ≠-+∈所以函数f (x )的定义域为|2,2x x k k Z ππ⎧⎫≠-+∈⎨⎬⎩⎭,不关于原点对称,也不关于y 轴对称,所以f (x )是非奇非偶函数.11.(2022·上海市)函数212cos 4y x π⎛⎫=-- ⎪⎝⎭是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 【答案】A【解析】2212cos 2cos 1cos 2sin 2442y x x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=--=---=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为()()()sin 2sin 2f x x x f x -=--==-,所以为奇函数,周期22T ππ==, 所以此函数最小正周期为π的奇函数,故选:A.12.(2022·全国·高三专题练习)已知函数()2sin(2)f x x ϕ=+,则“2ϕπ=”是“()f x 为偶函数”的( )条件A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A 【解析】当2ϕπ=时,()2sin 22cos 22f x x x π⎛⎫=+= ⎪⎝⎭,∈()()()2cos 22cos2f x x x f x -=-==,∈()f x 为偶函数. 当()f x 为偶函数时,2k πϕπ=+,k Z ∈,综上所述2ϕπ=是()f x 为偶函数的充分不必要条件,故选:A.13.(2022·全国·高三专题练习)函数f (x 的奇偶性为( ) A .奇函数 B .既是奇函数也是偶函数 C .偶函数 D .非奇非偶函数【答案】D【解析】由2sin x -1≥0,即sin x ≥12,得函数定义域为52,266k k ππππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.所以该函数不具有奇偶性,为非奇非偶函数.故选:D14.(2022·全国·高三专题练习)函数∈()sin cos f x x x =+,∈()sin cos f x x x =,∈21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .∈∈ B .∈C .∈D .∈∈【答案】D【解析】对于∈()sin cos f x x x =+,()4f x x π⎛⎫=+ ⎪⎝⎭,周期为π,但不是奇函数;对于∈()sin cos f x x x =,1()sin 22f x x =,周期为22T ππ==; 又()()11()sin 2=sin 222f x x x f x =-=---,故()sin cos f x x x =符合题意;对于∈21()cos 42f x x π⎛⎫=+- ⎪⎝⎭,211()cos cos 2sin 24222f x x =x =x ππ⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭,由∈推导过程可知:21()cos 42f x x π⎛⎫=+- ⎪⎝⎭周期是π且为奇函数,符合题意.故选:D15.(2022·全国·高三专题练习)已知函数()()()2cos 2f x x x ϕϕ+++为奇函数,且存在00,3x π⎛⎫∈ ⎪⎝⎭,使得()02f x =,则ϕ的一个可能值为( ) A .56π B .3π C .6π-D .23π-【答案】C【解析】()()()2cos 22sin 26x x f x x πϕϕϕ⎛⎫+++=++ ⎪⎝=⎭为奇函数,则()6k k Z πϕπ+=∈,可得()6k k ϕπ=π-∈Z ,所以排除BD 选项;对于A ,当56πϕ=时,()()2sin 22sin 2f x x x π=+=-, 当0,3x π⎛⎫∈ ⎪⎝⎭时,220,3x π⎛⎫∈ ⎪⎝⎭,()0f x <,不合题意;对于C ,当6πϕ=-时,()2sin 2f x x =,2sin 242f ππ⎛⎫== ⎪⎝⎭满足题意.故选:C.16.(2022·全国·高三专题练习)使函数()sin())f x x x ϕϕ=++为偶函数的ϕ的一个值为( ) A .23πB .3π C .3π-D .56π-【答案】D 【解析】()sin())2sin()3f x x x x πϕϕϕ=++=++函数()f x 为偶函数,所以32k ππϕ+=(k 为奇数),当1k =-时,ϕ=56π-.故选:D . 17.(2022·全国·高三专题练习)已知函数()sin()(0,0,)f x A x A ωϕωϕ=+>>∈R .则“()f x 是偶函数“是“2ϕπ=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】若2ϕπ=,则()sin()cos 2f x A x A x πωω=+=,()cos()cos ()f x A x A x f x ωω-=-==,所以()f x 为偶函数;若()sin()f x A x ωϕ=+为偶函数,则2k πϕπ=+,k Z ∈,ϕ不一定等于2π. 所以“()f x 是偶函数“是“2ϕπ=”的必要不充分条件.故选:B 18.(2022·全国·高三专题练习)在下列四个函数中,周期为2π的偶函数为( ) A .2sin 2cos2y x x = B .22cos 2sin 2y x x =- C .sin 2y x x = D .22cos sin y x x =-【答案】B【解析】A.2sin 2cos 2sin 4y x x x ==,函数是奇函数,周期242T ππ==,故A 不正确; B.22cos 2sin 2cos 4y x x x =-=,函数是偶函数,周期242T ππ==,故B 正确; C. 函数sin 2y x x =,满足()()f x f x -=,是偶函数,但不是周期函数,44f ππ⎛⎫= ⎪⎝⎭,3344f ππ⎛⎫=-⎪⎝⎭,即344f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以函数的周期不是2π,故C 不正确;D.22cos sin cos 2y x x x =-=,函数是偶函数,函数的周期22T ππ==,故D 不正确. 故选:B19.(2022·安徽·淮南第一中学一模(理))已知函数()2cos 2cos 42x f x x π⎛⎫=-- ⎪⎝⎭,则下列说法正确的是( )A .14y f x π⎛⎫=-- ⎪⎝⎭为奇函数B .14y f x π⎛⎫=+- ⎪⎝⎭为奇函数C .14y f x π⎛⎫=-+ ⎪⎝⎭为偶函数D .14y f x π⎛⎫=++ ⎪⎝⎭为偶函数【答案】C【解析】∈()2cos 2cos =cos cos 1422x f x x x x ππ⎛⎫⎛⎫=----- ⎪ ⎪⎝⎭⎝⎭cos sin 114x x x π⎛⎫=--=+- ⎪⎝⎭,∈124y f x x π⎛⎫=--=- ⎪⎝⎭为偶函数,故A 错误;1cos 22sin 242y f x x x ππ⎛⎫⎛⎫=+-=+-=-- ⎪ ⎪⎝⎭⎝⎭既不是奇函数也不是偶函数,故B 错误;12cos 4y f x x π⎛⎫=-+= ⎪⎝⎭为偶函数,故C 正确;12cos 2sin 42y f x x x ππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭为奇函数,故D 错误.故选:C.20.(2022·河南濮阳·高三开学考试(理))设0a <,若函数()()()3cos 4sin 4f x x a x a =+-+的图象关于原点对称,则a 的最大值为( ) A .6π-B .4π-C .3π-D .23π-【答案】D【解析】()()()3cos 4sin 4f x x a x a =+-+2cos 46x a π⎛⎫=++ ⎪⎝⎭,因为函数的图象关于原点对称,所以当0x =时,62a k πππ+=+,k Z ∈,解得:3a k ππ=+,k Z ∈,因为0a <,所以当1k =-时,a 的最大值23a π=-.故选:D 1.(2022·内蒙古包头·高三期末(理))下列区间中,函数()2sin 3f x x π⎛⎫=+ ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】D【解析】对于A 选项,当02x π<<时,3365x πππ<+<,则()f x 在0,2π⎛⎫⎪⎝⎭上不单调; 对于B 选项,当2x ππ<<时,54633x πππ<+<,则()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减;对于C 选项,当32x ππ<<时,411336x πππ<+<,则()f x 在3,2ππ⎛⎫ ⎪⎝⎭上不单调; 对于D 选项,当322x ππ<<时,117633x πππ<+<,则()f x 在3,22ππ⎛⎫⎪⎝⎭上单调递增.故选:D.2.(2022·全国·高三专题练习)函数()tan 24f x x ππ⎛⎫=+ ⎪⎝⎭的单调递增区间为( )A .114,422k k ⎛⎫-+ ⎪⎝⎭,k Z ∈B .314,422k k ⎛⎫-+ ⎪⎝⎭,k Z ∈C .312,222k k ⎛⎫-+ ⎪⎝⎭,k Z ∈D .112,222k k ⎛⎫-+ ⎪⎝⎭,k Z ∈【答案】C题组四 单调性【解析】令,2242k x k k Z ππππππ-+<+<+∈,解得3122,22k x k k Z -+<<+∈, 所以函数()f x 的单调递增区间为312,222k k ⎛⎫-+ ⎪⎝⎭,k Z ∈,故选:C3.(2022·河北·模拟预测)(多选)下列四个函数中,以π为周期且在π0,2⎛⎫⎪⎝⎭上单调递增的偶函数有( )A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x =【答案】CD【解析】cos 2y x =在π0,2⎛⎫⎪⎝⎭上不单调,故A 错误;sin 2y x =为奇函数,故B 错误;tan y x =图象如下图:故最小正周期为π,在π0,2⎛⎫⎪⎝⎭上单调递增,且为偶函数,故C 正确;sin y x =最小正周期为π,在π0,2⎛⎫⎪⎝⎭上单调递增,且为偶函数,则lg sin y x =也是以π为周期且在π0,2⎛⎫⎪⎝⎭上单调递增的偶函数,故D 正确.故选:CD4.(2022·湖南·长沙市南雅中学高三阶段练习)在下列区间中,函数()2022cos 12f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭ 【答案】D【解析】因为()2022cos 12f x x π⎛⎫=- ⎪⎝⎭,令22,12k x k k Z ππππ-+≤-≤∈,解得1122,1212k x k k Z ππππ-+≤≤+∈,所以函数的单调递增区间为112,2,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,当1k =时可得函数的一个单调递增区间为1325,1212ππ⎡⎤⎢⎥⎣⎦,因为3,22ππ⎛⎫ ⎪⎝⎭ 1325,1212ππ⎡⎤⎢⎥⎣⎦,所以函数在3,22ππ⎛⎫⎪⎝⎭上单调递增; 故选:D5.(2022·湖北武汉·高三期末)下列四个函数中,以π为最小正周期,其在,2ππ⎛⎫⎪⎝⎭上单调递减的是( )A .sin y x =B .sin y x =C .cos 2y x =D .sin 2y x =【答案】A【解析】sin y x =的最小正周期为π,在,2ππ⎛⎫⎪⎝⎭上单调递减,符合题意,故A 正确;sin y x =不是周期函数,故B 错误;cos 2y x =中,,2x ππ⎛⎫∈ ⎪⎝⎭,则2π,2πx ,故cos 2y x =中在,2x ππ⎛⎫∈ ⎪⎝⎭时不是单调函数,故C 错误;sin 2y x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则2π,2πx ,故sin 2y x =中在,2x ππ⎛⎫∈ ⎪⎝⎭时不是单调函数,故D 错误,故选:A.6.(2022·全国·高三专题练习)在下列函数中,同时满足:∈在0,2π⎛⎫⎪⎝⎭上单调递增;∈最小正周期为2π的是( ) A .tan y x = B .cos y x =C .tan2x y = D .tan y x =-【答案】C【解析】对于选项AD ,结合正切函数图象可知,tan y x =和tan =-y x 的最小正周期都为π,故AD 错误; 对于选项B ,结合余弦函数图象可知,cos y x =在0,2π⎛⎫⎪⎝⎭上单调递减,故B 错误;对于选项C ,结合正切函数图象可知,tan 2x y =在0,2π⎛⎫ ⎪⎝⎭上单调递增,且最小正周期212T ππ==,故C 正确.故选:C.7.(2022·山东·昌乐)若()cos 3f x x π⎛⎫=- ⎪⎝⎭在区间[],a a -上单调递增,则实数a 的最大值为__________.【答案】3π【解析】x ∈[],a a -,则,333x a a πππ⎡⎤-∈---⎢⎥⎣⎦,由题可知,[],,033a a πππ⎡⎤---⊆-⎢⎥⎣⎦,则3303a a a ππππ⎧--≥-⎪⎪⇒≤⎨⎪-≤⎪⎩,则a 的最大值为3π.故答案为:3π. 8.(2022·天津河西·高三期末)已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为4π,其图象的一条对称轴为43x π=,则23f π⎛⎫'= ⎪⎝⎭______.【答案】【解析】∈f (x )最小正周期为4π,∈2142ππωω=⇒=;∈f (x )图象的一条对称轴为43x π=,∈14,23k k πϕπ⨯+=∈Z , ∈2,3k k πϕπ=-∈Z ,02πϕ<<,1,.3k πϕ∴==∈()1cos 23f x x π⎛⎫=+ ⎪⎝⎭,()11sin 232f x x π⎛⎫=-+⋅ ⎪⎝⎭',∈211sin 32332f πππ⎛⎫⎛⎫=-⨯'+=-= ⎪ ⎪⎝⎭⎝⎭故答案为: 9.(2022·山东潍坊·模拟预测)已知函数()sin cos f x x x ωω=+(0>ω)在ππ,48⎡⎤-⎢⎥⎣⎦上单调递增,则ω的一个取值为________.【答案】1,答案不唯一【解析】()π4f x x ω⎛⎫=+ ⎪⎝⎭,当1ω=时,()π4f x x ⎛⎫=+ ⎪⎝⎭, πππ3π,,0,4848x x ⎡⎤⎡⎤∈-+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以()f x 在ππ,48⎡⎤-⎢⎥⎣⎦上单调递增,符合题意. 故答案为:1,答案不唯一。
2022届高三数学一轮复习三角函数之三角公式的化简与求值 题型方法归纳
高考数学专题—三角函数(三角公式的化简与求值)高中阶段三角函数公式主要包括:同角三角公式、诱导公式、两角和差公式、二倍角公式、和差化积与积化和差关系式。
(1)同角三角公式—主要用于正弦、余弦、正切之间的计算与推导(2)诱导公式—将角的三角函数值推广到全体实数(3)两角和差与二倍角公式—研究不同角度之间的公式一、三角函数求值与化简必会的三种方法(常用)(1)弦切互化法:主要利用公式tan α=;形如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切;(2)“1”的灵活代换法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等;(3)和积转换法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的关系进行变形、转化.例1、【2020年高考全国Ⅰ卷理数】已知,且,则A.B.C.D.【答案】A【解析】,得, 即,解得或(舍去),又.故选:A . 例2、cos 150−sin 150cos 150+sin 150=A,−√3 B,0 C√3 D,√33法一:利用两角和差公式,求出cos 150,sin 150因为cos 150=cos (450−300)=cos 450cos 30°−sin 450sin 300=√6+√24同理可得sin 150=√6−√24所以cos 15o −sin 150cos 150+sin 150=√6+√24−√6−√24√6+√24+√6−√24=√33故选D法二:利用利用同角的正弦与余弦平方和为1,求解。
因为sin 150>0,cos 150>0 所以令cos 150−sin 150cos 150+sin 150=t (t >0)t 2=cos 2150−2cos 150sin 150+sin 2150cos 2150+2cos 150sin 15°+sin 215°=1−sin 3001+sin 300=13故选D法三:利用平方差公式,将非特殊角转化为特殊角。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
2024届高三数学一轮复习-三角函数与解三角形 第1练 任意角和弧度制及三角函数的概念(解析版)
第1练任意角和弧度制及三角函数的概念一、单选题B.A.8π33.(2023·福建福州·福建省福州第一中学校考模拟预测)为解决皮尺长度不够的问题,实验小组利用自行车来测量A,B上与点A接触的地方标记为点直),直到前轮与点B接触.经观测,当前轮与点B接触时,标记点度为0.45m.已知前轮的半径为A.20.10m B.19.94m4.(2023秋·甘肃天水·高二天水市第一中学校考开学考试)种结构样式,多见于亭阁式建筑、园林建筑.如图所示的带有攒尖的建筑屋顶可近似看作一个圆锥,其底面积为9π,侧面展开图是圆心角为A.122π5.(2023·河北衡水·河北衡水中学校考模拟预测)A.32-6.(2023·全国·高一专题练习)已知角重合.若角α终边上一点A.32-7.(2023春·广东深圳·高二深圳外国语学校校考期末)在平面直角坐标系中,已知点为角α终边上一点,若二、多选题9.(2023春·江西九江·高一校考期中)如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是()A.若AOB α∠=,则 ACB α=B.若C.10sin y x =,则 0ACB x =D.若10.(2023春·湖北恩施·高一校联考期中)如图所示,以x 轴非负半轴为始边作锐角α,β,αβ-,它们的终边分别与单位圆相交于点P ,则下列说法正确的是()A. AP的长度为αβ-B.扇形11OA P 的面积为αβ-C.当1A 与P 重合时,12sin AP β=D.当3πα=时,四边形11OAA P 面积的最大值为11.(2023·全国·高三专题练习)如图,A ,B 是在单位圆上运动的两个质点.初始时刻,质点A 在(1,0)处,质点B 在第一象限,且AOB ∠=向运动,质点B 同时以rad /s 12π的角速度按逆时针方向运动,则(A.经过1s 后,扇形AOB B.经过2s 后,劣弧 AB 的长为C.经过6s 后,质点B 的坐标为D.经过22s 3后,质点A ,12.(2023秋·浙江杭州·高三浙江省杭州第二中学校考阶段练习)已知点点P 为圆C :2268x y x y +--+A.PAB 面积的最小值为C.∠PAB 的最大值为5π1213.(2023春·浙江衢州·高一校考阶段练习)0<φ<π)的图像与x 轴相邻两个交点之间的最小距离为与x 轴的所有交点的横坐标之和为A.123f π⎛⎫=- ⎪⎝⎭B.f (x )在区间,66ππ⎛⎫- ⎪⎝⎭内单调递增C.f (x )的图像关于点512π⎛- ⎝D.f (x )的图像关于直线x =14.(2023·全国·高二专题练习)在平面直角坐标系中,角与x 轴的非负半轴重合,终边经过点A.2±B.±1三、填空题16.(2023春·河南濮阳·高一濮阳一高校考阶段练习)已知圆锥侧面展开图的圆心角为底面周长为2π,则这个圆锥的体积为17.(2023·全国·高三专题练习)已知单位长度,再向下平移两个单位长度,得到为.18.(2023·安徽安庆·安庆市第二中学校考模拟预测)已知函数四、解答题(1)求扇形AOB的周长;(2)当点C在什么位置时,矩形参考答案:则有113l l r l R -==,所以1l =所以圆台的侧面积为(πR r +故选:C.3.D【分析】由题意,前轮转动了【详解】解:由题意,前轮转动了所以A ,B 两点之间的距离约为故选:D.4.D【分析】根据底面圆面积可求底面圆半径,从而可求底面圆周长,即可求扇形半径,再根据3如图所示:则圆锥的高h =则圆锥的体积2133V π=⨯⨯故选:D 5.C【分析】利用诱导公式,逆用正弦和角公式计算出答案.【详解】cos198cos132︒︒+cos18sin 42cos 42sin18=︒︒+︒故选:C 6.A【分析】计算得到1,2P ⎛- ⎝【详解】2π2πcos ,sin 33P ⎛对于A,PAB 面积的最小值为点12PAB M S AB y =⋅⋅= 对于B,连接,A C 交圆于22(31)42-=++-AC RC 对于C,当AP 运动到与圆Q ,2sin 4∠==QC CAQ AC ∠∠∠∴=+PAB CAQ CAN。
新高考数学一轮复习考点知识专题讲解与练习 25 三角函数的图象与性质
新高考数学一轮复习考点知识专题讲解与练习考点知识总结25 三角函数的图象与性质高考 概览本考点是高考必考知识点,常考题型为选择题、解答题,分值为5分、12分,中等难度考纲 研读1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性2.理解正弦函数、余弦函数在R 上的性质(如单调性,最大值和最小值,图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z )内的单调性一、基础小题1.函数y =3cos ⎝ ⎛⎭⎪⎫25x -π6的最小正周期是( )A .2π5B .5π2 C .2π D .5π 答案 D解析 由T =2π25=5π,知该函数的最小正周期为5π.故选D.2.已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b ],则b -a 的值是( )A .2B .3C .3+2D .2- 3 答案 B解析 因为函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,所以函数y =2cos x 的值域为[-2,1],所以b -a =1-(-2)=3,故选B.3.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈ZB .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π4≤x <k π+π2,k ∈ZC .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π3≤x <k π+π2,k ∈ZD .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π4≤x ≤k π+π4,k ∈Z答案 B解析 因为直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,所以a =12,故tan x ≥2a 即tan x ≥1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π+π4≤x <k π+π2,k ∈Z . 4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,π3B .⎣⎢⎡⎦⎥⎤π3,π2C .⎣⎢⎡⎦⎥⎤π2,2π3D .⎣⎢⎡⎦⎥⎤π3,π答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤-π3,a ,所以x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6,因为f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的值域是⎣⎢⎡⎦⎥⎤-12,1,所以由正弦函数的图象和性质可知π2≤a +π6≤7π6,解得a ∈⎣⎢⎡⎦⎥⎤π3,π.故选D.5.函数f (x )=sin 2x +sin x 在[-π,π]的图象大致是( )答案 A解析 显然f (x )是奇函数,图象关于原点对称,排除D ;在区间⎝ ⎛⎭⎪⎫0,π2上,sin 2x >0,sin x >0,即f (x )>0,排除B ,C.故选A.6.下列函数中同时具有以下性质的是( )①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数;④图象的一个对称中心为⎝ ⎛⎭⎪⎫π12,0.A.y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x +π3C .y =sin ⎝ ⎛⎭⎪⎫2x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π3答案 C解析 因为最小正周期是π,所以ω=2,排除A ;当x =π3时,对于B ,y =sin ⎝ ⎛⎭⎪⎫2×π3+π3=0,对于D ,y =sin ⎝ ⎛⎭⎪⎫2×π3-π3=32,又图象关于直线x =π3对称,从而排除B ,D ,经验证y =sin ⎝ ⎛⎭⎪⎫2x -π6同时具有性质①②③④,故选C. 7.(多选)下列关于函数y =tan ⎝ ⎛⎭⎪⎫x +π3的说法,正确的是( )A .在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增B .最小正周期是πC .图象关于⎝ ⎛⎭⎪⎫π4,0成中心对称D .图象关于直线x =π6成轴对称 答案 AB解析 令k π-π2<x +π3<k π+π2,解得k π-5π6<x <k π+π6,k ∈Z ,显然⎝ ⎛⎭⎪⎫-5π6,π6满足上述关系式,故A 正确;易知该函数的最小正周期为π,故B 正确;令x +π3=k π2,k ∈Z ,解得x =k π2-π3,k ∈Z ,任取k 值不能得到x =π4,故C 错误;正切曲线没有对称轴,因此函数y =tan ⎝ ⎛⎭⎪⎫x +π3的图象也没有对称轴,故D 错误.故选AB.8.(多选)已知函数f (x )=sin 4x -cos 4x ,则下列说法正确的是( ) A .f (x )的最小正周期为π B .f (x )的最大值为1 C .f (x )的图象关于y 轴对称D .f (x )在区间⎣⎢⎡⎦⎥⎤π4,π2上单调递减答案 ABC解析 ∵f (x )=sin 4x -cos 4x =sin 2x -cos 2x =-cos2x ,∴函数f (x )的最小正周期T =π,最大值为1,A ,B 正确;∵f (-x )=-cos (-2x )=-cos 2x =f (x ),∴f (x )为偶函数,其图象关于y 轴对称,C 正确;∵f 1(x )=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递减,故f (x )=-cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上单调递增,D 错误.故选ABC.9.函数y =sin 2x 的图象可由y =cos 2x 的图象向左平移φ个单位长度得到,则正数φ的最小值为________.答案 π2解析 函数y =sin 2x =1-cos2x 2=1+cos (2x +π)2的图象可由y =cos 2x =1+cos2x2的图象向左平移π2个单位长度得到,故正数φ的最小值为π2.二、高考小题10.(2022·北京高考)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98 D .偶函数,最大值为98 答案 D解析 因为f (-x )=cos (-x )-cos (-2x )=cos x -cos 2x =f (x ),且函数定义域为R ,所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,所以当cos x =14时,f (x )取最大值98.故选D.11.(2022·天津高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π3.给出下列结论:①f (x )的最小正周期为2π; ②f ⎝ ⎛⎭⎪⎫π2是f (x )的最大值; ③把函数y =sin x 的图象上所有点向左平移π3个单位长度,可得到函数y =f (x )的图象.其中所有正确结论的序号是( )A .①B .①③C .②③D .①②③ 答案 B解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫x +π3,所以最小正周期T =2π1=2π,故①正确;f ⎝ ⎛⎭⎪⎫π2=sin⎝ ⎛⎭⎪⎫π2+π3=sin 5π6=12≠1,故②不正确;将函数y =sin x 的图象上所有点向左平移π3个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,故③正确.故选B.12.(2022·全国Ⅱ卷)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .12 答案 A解析 由题意及函数y =sin ωx 的图象与性质可知,12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2.故选A.13.(2022·全国Ⅰ卷)关于函数f (x )=sin |x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( )A.①②④ B .②④ C .①④ D .①③ 答案 C解析 ①中,f (-x )=sin |-x |+|sin (-x )|=sin |x |+|sin x |=f (x ),∴f (x )是偶函数,①正确.②中,当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin x +sin x =2sin x ,函数单调递减,②错误.③中,当x =0时,f (x )=0,当x ∈(0,π]时,f (x )=2sin x ,令f (x )=0,得x =π.又f (x )是偶函数,∴函数f (x )在[-π,π]上有3个零点,③错误.④中,∵sin |x |≤|sin x |,∴f (x )≤2|sin x |≤2,当x =π2+2k π(k ∈Z )或x =-π2+2k π(k ∈Z )时,f (x )能取得最大值2,故④正确.综上,①④正确.故选C.14.(2022·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 根据题意,有f (x )=32cos2x +52,所以函数f (x )的最小正周期为T =2π2=π,且最大值为f (x )max =32+52=4.故选B.15.(2022·全国Ⅲ卷)函数f (x )=tan x1+tan 2x 的最小正周期为( )A .π4B .π2 C .π D .2π 答案 C解析 由已知得f (x )=tan x1+tan 2x=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x cos x =12sin 2x ,所以f (x )的最小正周期T =2π2=π.故选C.16.(2022·全国Ⅲ卷)关于函数f (x )=sin x +1sin x有如下四个命题: ①f (x )的图象关于y 轴对称; ②f (x )的图象关于原点对称; ③f (x )的图象关于直线x =π2对称; ④f (x )的最小值为2.其中所有真命题的序号是________. 答案 ②③解析 函数f (x )的定义域为{x |x ≠k π,k ∈Z },定义域关于原点对称,f (-x )=sin (-x )+1sin (-x )=-sin x -1sin x =-⎝ ⎛⎭⎪⎫sin x +1sin x =-f (x ),所以函数f (x )为奇函数,其图象关于原点对称,命题①错误,命题②正确;对于命题③,因为f ⎝ ⎛⎭⎪⎫π2-x =sin ⎝ ⎛⎭⎪⎫π2-x +1sin ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x ,f ⎝ ⎛⎭⎪⎫π2+x =sin ⎝ ⎛⎭⎪⎫π2+x +1sin ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,则f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x ,所以函数f (x )的图象关于直线x =π2对称,命题③正确;对于命题④,当-π<x <0时,sin x <0,则f (x )=sin x +1sin x <0<2,命题④错误.17.(2022·全国Ⅰ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.答案 -4解析 ∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令t=cos x ,则t ∈[-1,1],g (t )=-2t 2-3t +1.又函数g (t )图象的对称轴t =-34∈[-1,1],且开口向下,∴当t =1,即x =2k π(k ∈Z )时,f (x )有最小值-4.18.(2022·北京高考)函数f (x )=sin 22x 的最小正周期是________. 答案 π2解析由降幂公式得f (x )=sin 22x =1-cos4x 2=-12cos 4x +12,所以最小正周期T =2π4=π2.三、模拟小题19.(2022·浙江温州中学高三月考)函数f (x )=sin 2x +sin 3x 的最小正周期为( ) A .π B .2πC .3π D .6π答案 B解析 y =sin 2x 的最小正周期为π,函数y =sin 3x 的最小正周期为2π3,π与2π3的最小公倍数为2π,所以函数f (x )=sin 2x +sin 3x 的最小正周期为2π.故选B.20.(多选)(2022·湖南长沙第一中学模拟)已知函数f (x )=⎩⎨⎧|sin x |,sin x ≥cos x ,|cos x |,sin x <cos x ,则下列说法正确的是( )A .f (x )的值域是[0,1]B .f (x )是以π为最小正周期的周期函数C .f (x )在区间⎝ ⎛⎭⎪⎫π,3π2上单调递增D .f (x )在[0,2π]上有2个零点 答案 AD 解析 f (x )=⎩⎪⎨⎪⎧|sin x |,π4+2k π≤x ≤5π4+2k π(k ∈Z ),|cos x |,-3π4+2k π<x <π4+2k π(k ∈Z ), 作出函数f (x )的大致图象如图所示:由图可知f (x )的值域是[0,1],故A 正确;因为f (π)=|sin π|=0,f (2π)=|cos 2π|=1,所以f (2π)≠f (π).所以π不是f (x )的最小正周期,故B 错误;由图可知f (x )在区间⎝ ⎛⎭⎪⎫π,5π4上单调递增,在⎝ ⎛⎭⎪⎫5π4,3π2上单调递减,故C 错误;由图可知,在[0,2π]上,f (π)=f ⎝ ⎛⎭⎪⎫3π2=0,所以f (x )在[0,2π]上有2个零点,故D 正确.故选AD.21.(多选)(2022·福建福州高三调研)已知函数f (x )=sin (sin x )+cos (cos x ),下列关于该函数的结论中正确的是( )A .f (x )的一个周期是2πB .f (x )的图象关于直线x =π2对称 C .f (x )的最大值为2 D .f (x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数 答案 ABD解析 f (x +2π)=sin [sin (x +2π)]+cos [cos (x +2π)]=sin (sin x )+cos (cos x )=f (x ),故A 正确;f (π-x )=sin [sin (π-x )]+cos[cos (π-x )]=sin (sin x )+cos (-cos x )=sin (sin x )+cos (cos x )=f (x ),故B 正确;由于sin x ∈[-1,1],cos x ∈[-1,1],所以sin (sin x )<1,cos (cos x )≤1,故f (x )=sin (sin x )+cos (cos x )<2,C 错误;当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x ∈(0,1)且单调递增,故y =sin (sin x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,同理可判断,y =cos (cos x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,故f (x )是区间⎝ ⎛⎭⎪⎫0,π2上的增函数,D 正确.22.(2022·福建厦门高三模拟)用M I 表示函数y =sin x 在闭区间I 上的最大值,若正数a 满足M [0,a ]≥2M [a ,2a ],则M [0,a ]=________;a 的取值范围为________.答案 1 ⎣⎢⎡⎦⎥⎤5π6,13π12解析 作出函数y =sin x 的图象,如图所示:显然,M [0,a ]的值为1,∵M [0,a ]≥2M [a ,2a ],∴M [a ,2a ]的值为12,作出直线y =12与y =sin x 相交于A ,B ,C 三点,且A ⎝ ⎛⎭⎪⎫π6,12,B ⎝ ⎛⎭⎪⎫5π6,12,C ⎝ ⎛⎭⎪⎫13π6,12,由图象可得⎩⎪⎨⎪⎧5π6≤a ,2a ≤13π6⇒5π6≤a ≤13π12,故a 的取值范围为⎣⎢⎡⎦⎥⎤5π6,13π12.一、高考大题1.(2022·浙江高考)设函数f (x )=sin x +cos x (x ∈R ). (1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x , 所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝ ⎛⎭⎪⎫x +π2=cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin 2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)因为f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝ ⎛⎭⎪⎫x -π4=2sin x , 所以y =f (x )f ⎝ ⎛⎭⎪⎫x -π4=2sin x (sin x +cos x )=2(sin x cos x +sin 2x )=2⎝ ⎛⎭⎪⎫12sin2x -12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x -π4+22.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以当2x -π4=π2,即当x =3π8时,函数y =f (x )f ⎝ ⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且最大值为1+22.2.(2022·浙江高考)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值; (2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin (x +θ)是偶函数,所以对任意实数x 都有sin (x +θ)=sin (-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或θ=3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝ ⎛⎭⎪⎫x +π4=1-cos ⎝ ⎛⎭⎪⎫2x +π62+1-cos ⎝ ⎛⎭⎪⎫2x +π22=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝ ⎛⎭⎪⎫2x +π3.因此,所求函数的值域是⎣⎢⎡⎦⎥⎤1-32,1+32.二、模拟大题3.(2022·荆州模拟)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.(1)求函数f (x )的最大值及相应的x 的取值的集合; (2)求函数f (x )的图象的对称轴与对称中心.解 (1)当sin ⎝ ⎛⎭⎪⎫2x -π4=1时,2x -π4=2k π+π2,k ∈Z ,即当x =k π+3π8,k ∈Z 时,函数f (x )取得最大值,为2;则使函数f (x )取得最大值的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =3π8+k π,k ∈Z .(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+k π2,k ∈Z . 即函数f (x )的图象的对称轴为直线x =3π8+k π2,k ∈Z . 由2x -π4=k π,k ∈Z ,得x =π8+k π2,k ∈Z , 即函数f (x )的图象的对称中心为⎝ ⎛⎭⎪⎫π8+k π2,0,k ∈Z .4.(2022·安徽亳州高三质量检测)已知函数f (x )=cos x (sin x -3cos x ). (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤π3,2π3上的单调性.解 (1)由题意得f (x )=cos x sin x -3cos 2x=12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝ ⎛⎭⎪⎫2x -π3-32.所以f (x )的最小正周期为T =2π2=π,最大值为1-32.(2)令z =2x -π3,则函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ;单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z . 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得 -π12+k π≤x ≤5π12+k π,k ∈Z ;由π2+2k π≤2x -π3≤3π2+2k π,得5π12+k π≤x ≤11π12+k π,k ∈Z . 设A =⎣⎢⎡⎦⎥⎤π3,2π3,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π12+k π≤x ≤11π12+k π,k ∈Z . 易知A ∩B =⎣⎢⎡⎦⎥⎤π3,5π12,A ∩C =⎣⎢⎡⎦⎥⎤5π12,2π3,所以当x ∈⎣⎢⎡⎦⎥⎤π3,2π3时,f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π12上单调递增,在区间⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.5.(2022·信阳高三阶段考试)已知向量m =(3sin ωx -cos ωx ,1),n =⎝ ⎛⎭⎪⎫cos ωx ,12,设函数f (x )=m ·n ,若函数f (x )的图象关于直线x =π3对称且ω∈[0,2].(1)求函数f (x )的单调递减区间;(2)先列表,再用五点法画出f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,7π12上的大致图象.解 (1)f (x )=(3sin ωx -cos ωx ,1)·⎝ ⎛⎭⎪⎫cos ωx ,12=3sin ωx cos ωx -cos 2ωx +12=32sin2ωx -12cos 2ωx =sin ⎝ ⎛⎭⎪⎫2ωx -π6.∵函数f (x )的图象关于直线x =π3对称, ∴2ωπ3-π6=k π+π2,k ∈Z , ∴ω=32k +1,k ∈Z .又ω∈[0,2],∴ω=1,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π+π2≤2x -π6≤3π2+2k π,k ∈Z , 解得k π+π3≤x ≤k π+5π6,k ∈Z .∴函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6,k ∈Z . (2)列表如下:∴函数f (x )在区间⎣⎢⎡⎦⎥⎤-12,7π12上的大致图象如图所示.。
解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)
考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角专题复习姓名:一、三角比1. 在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34(,)55,则tan θ的值为2. 角θ的终边经过点(4,)P y ,且3sin 5θ=-,则tan θ=3. 已知角α的终边与单位圆221x y +=交于点01(,)2P y ,则cos2α=4. 设角α的始边为x 轴正半轴,则“α的终边在第一、二象限”是“sin 0α>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分又非必要条件5. 若1sin 4θ=,则3cos()2πθ+= 6. 已知tan 2θ=-,且(,)2πθπ∈,则cos 2πθ⎛⎫+=⎪⎝⎭7. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“sin A =”的 条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一) 8.已知sin 3cos 53cos sin αααα+=-,则tan α= ;2sin sin cos ααα-=9. 已知角θ的顶点在坐标原点,始边与x 轴的正半轴重合,若角θ的终边落在第三象限内,且3cos()25πθ+=,则cos2θ= 10. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a = 11.已知()1sin cos 05αααπ+=<<,则sin cos αα-= ;sin cos αα= ;12. 已知0πα<<2,02πβ-<<,1cos()43πα+=,cos 42πβ⎛⎫-= ⎪⎝⎭ (1)cos α= ; (2)cos 2βα⎛⎫+= ⎪⎝⎭13. 已知1cos()43πα+=,则cos(2)2πα-=二、解斜三角形(一)基础练习1. 若△ABC 中,4a b +=,30C ︒∠=,则△ABC 面积的最大值是2. 在ABC ∆中,A ∠、B ∠、C ∠所对边分别是a 、b 、c ,若::2:3:4a b c =, 则cos C =3. 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.4. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,若222()a b c -+=,则角B 的值为 (用反正切表示)5. 某船在海平面A 处测得灯塔B 在北偏东30°方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距 海里(精确到0.1海里)6. 如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为7. 已知ABC ∆的三个内角A 、B 、C 所对边长分别为a 、b 、c ,记ABC ∆的面积为S ,若22()S a b c =--,则内角A = (结果用反三角函数值表示)(二)边角互化8. 在△ABC 中,若60A =︒,a =sin sin sin a b cA B C+-=+-9.在△ABC 中,若cos cA b<,则△ABC 是 三角形. 10.△ABC 的内角,,A B C 的对边分别为,,a b c ,设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .三、三角函数的图像与性质 (一)三角函数的图像变换1. 将cos 2y x =图像向左平移6π个单位,所得的函数为2. 为了得到函数sin3cos3y x x =+(x R ∈)的图像,可以将函数y x =的图像 向 个单位长度.3. 已知曲线1:cos C y x =,22:sin 23C y x π⎛⎫=+⎪⎝⎭,则下面结论正确的是( ) A. 1C 上各点横坐标伸长到原来的2倍,纵坐标不变,再向右平移6π个单位长度,得到2C B. 1C 上各点横坐标伸长到原来的2倍,纵坐标不变,再向左平移12π个单位长度,得到2CC. 1C 上各点横坐标缩短到原来的12倍,纵坐标不变,再向右平移6π个单位长度,得到2CD. 1C 上各点横坐标伸长到原来的12倍,纵坐标不变,再向左平移12π个单位长度,得到2C4. 已知函数()()2sin 103f x x πωω⎛⎫=+-> ⎪⎝⎭的图像向右平移3π个单位后与原图像重合,则ω的最小值为 .变式. 设函数()sin f x x ω=(02ω<<),将()f x 图像向左平移23π单位后所得函数图像与原函数图像的对称轴重合,则ω=(二)三角函数的基本性质5.已知函数()2)cos(22)2f x x x ππ=-+-.(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调递增区间; (3)求函数()f x 的对称中心; (4)求函数()f x 在0,6x π⎡⎤∈⎢⎥⎣⎦上的最值.6. 函数()sin(2)f x x =-的最小正周期为7. 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为8. 函数2()13sin ()4f x x π=-+的最小正周期为9. 定义在R 上,且最小正周期为π的函数是( ).sin A y x = .cos B y x =.sin C y x =.cos2D y x =10. 函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,则函数()f x 的解析式为11. 函数sin 2y x =的图像与cos y x =的图像在区间[0,2]π,上交点的个数是 12. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈(三)三角二次复合13. 求函数2cos 212sin 1y x x =+-在,63x ππ2⎡⎤∈-⎢⎥⎣⎦上的最值.五、反三角与最简三角方程(补充三角方程)14. (1)方程()sin 0,2x x π=∈的解集为(2)方程cos 2x =的解集为 ;(3)方程tan x =的解集为 . 15. “4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 16. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 17. 下列关于函数sin y x =与arcsin y x =的命题中正确的是( )A. 它们互为反函数B. 都是增函数C. 都是周期函数D. 都是奇函数 18. “[,]22x ππ∈-”是“sin(arcsin )x x =”的( )条件 A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要三角解答题1. 已知2()cos 2cos 1f x x x x =+-,在ABC ∆中,a 、b 、c 分别是A 、B 、C 所对的边,若a =b =,且()2Af =c 的值.2. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B CA +-=; (1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;3. 已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点34(,)55P ,求()f α的值; (2)当[,]63x ππ∈-时,求()f x 的单调递增区间和值域.4. 已知向量,1)a x =r ,(cos ,1)b x =-r.(1)若a r ∥b r,求tan2x 的值;(2)若()()f x a b b =+⋅r r r ,求函数()f x 的最小正周期及当[0,]2x π∈时的最大值.5. 已知函数3()sin 2f x x x ωω=(其中0ω>). (1)若函数()f x 的最小正周期为3π,求ω的值,并求函数()f x 的单调递增区间; (2)若2ω=,0απ<<,且3()2f α=,求α的值.6. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =,△ABC 的面积2S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=u u u r u u u r u u u r u u u r ,求角C ;7. 已知函数221()cos ()42f x x x π+=+--(x R ∈); (1)求函数()f x 在区间[0,]2π上的最大值;(2)在ABC ∆中,若A B <,且1()()2f A f B ==,求BC AB的值;。