2013高教社杯全国大学生数学建模竞赛-B题论文

合集下载

2013全国数学建模竞赛B题优秀论文

2013全国数学建模竞赛B题优秀论文

基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。

附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01 ,09,13, 10,08,12,14,17,16,04。

针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。

我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。

针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。

经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。

关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。

近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

2013B数学建模国赛论文

2013B数学建模国赛论文

dist Oder
跳变距离,与英文字母之间的行距和字母大小相关
存储图片拼合顺序的矩阵 拼接正确数目比 标准化处理后的变量 样本与聚类中心的欧式距离 效率因子
(0)
z ij
min F
(t)
五、模型的建立与求解
一、模型一的建立与求解 1.1 基于 canny 边缘检测算子的二值化处理 Canny 边缘检测是高斯函数的一阶导数,是对信噪比与定位能力的乘积的最优化 逼近算子,广泛运用于图像处理和模式识别问题中。在本题中,需要通过获取每个字 的边界来获取其位置信息,所以利用 Canny 算子进行边缘检测,确定每个字的边界。 Canny 算子的边缘检测最优性与以下标准有关: (1)好的信噪比,即非边缘点判为边缘点或将边缘点判为非边缘点的概率低。信噪 比越大,则边缘提取质量越好。 (2)好的定位性能,即检测出的边缘点要尽可能在实际边缘的中心。 (3)对单一边缘具有唯一响应,并且对虚假边缘响应应得到最大抑制。 算法步骤如下:
M [ x, y ] G x ( x, y ) 2 G y ( x, y ) 2
[ x, y ] arctan(Gx ( x, y ) / G y ( x, y )) M [ x, y ] 反映了图像的边缘强度, [ x, y ] 反映了图像的边缘方向。使得 M [ x, y ] 取得局部 最大值的方向角 [ x, y ] ,就反映了边缘的方向。
三、模型假设
1.假设每一个字体的大小可有一个正方形将其完全包含,而且这个正方形的长宽是固 定值。 2.假设和每个包含字的正方形都并行排列 (其底边在一条直线上) , 即不可能出现正方 形的底边在这条直线的下方或者是上方。 3.假设人工干预所做的处理都是有效的
3
四、符号说明

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

大学生数学建模竞赛B题优秀论文

大学生数学建模竞赛B题优秀论文

关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。

首先,我们基于层次分析法建立了模型一。

模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。

对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。

模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。

我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。

考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。

最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。

模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。

然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。

评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。

修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。

基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。

本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。

最新高教社杯全国大学生数学建模竞赛b题汇总

最新高教社杯全国大学生数学建模竞赛b题汇总

2013高教社杯全国大学生数学建模竞赛B题车道被占用对城市道路通行能力的影响摘要车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

对于问题一,本文提高结果的精准度,结合两种方法进行研究,且两种方法的结果十分吻合。

由于实际通行能力是建立在基本通行能力和可能通行能力之上的,所以在求解实际通行能力之前,需要算出基本通行能力和可能通行能力,针对问题一创建了一张流程图,并借助软件加以拟合。

对实际通行能力计算,得出实际通行能力的变化过程,根据GREENSHIELD K-V线性算法得出道路越堵,车速越慢,则实际通行能力就越差,反之就会较好。

对于问题二,因为所占的车道不同,并且给的条件中有说明左转车流比例和右转车流比例不同,那只需验证两者是否存在显著性差异,运用配对样本t检验的方法就是要先满足这一方法的两个前提条件,首先必须验证是否满足正态分布,经过SPSS软件的验证可以得出符合正态分布。

然后再进行配对,从配对的结果中可以看出存在显著性差异,再结合左右转的车流量比例,更加可以看出存在显著性差异。

对于问题三,主要是对所推出来的回归方程的判断和分析因变量和各因子之间的关系,在本问中要先求出排队长度,排队长度是根据堵塞密度,进出车辆数之间的差值来求解,再根据最小二乘法来判断所假设的这一模型是否符合多元线性回归关系,本问中得出符合多元线性回归关系。

再在排队长度和最小二乘法的基础之上,运用SPSS软件,在进行结果分析时得出实际通行能力对于排队长度没有影响,所以可以剔除,而事故持续时间和上游车流量对排队长度都有明显的影响,然后得出他们的相关系数,求出最后的相关方程式。

对于问题四,题目中给出了事故发生点到上游路口的距离为140米,并且上游车流量为1500pcu/h,结合视频1中多次出现的120米这一个顶点,推算出120米内大概最大的堵塞车流量,然后按比例分配推算出140米的最大堵塞车流量,视频1中的可以通过加权平均来求出平均的实际通行能力,则事故持续时间就是要靠140米的最大堵塞车流量和平均实际通行能力来计算,最后得出事故持续时间为2.37min。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题【最新版】目录一、数学建模国赛 2013 年 b 题概述二、题目背景与要求三、题目分析与解题思路四、解答过程与结果五、总结与启示正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞赛活动,旨在培养学生的创新意识、团队协作精神和实际问题解决能力。

2013 年的 b 题是关于传染病传播的动力学模型,要求参赛选手运用数学方法对传染病的传播进行建模和预测。

【二、题目背景与要求】传染病在全球范围内造成了巨大的经济损失和人员伤亡。

因此,研究传染病的传播规律,预测疫情发展趋势,对制定防控措施具有重要意义。

2013 年 b 题要求参赛选手建立一个传染病传播的动力学模型,并根据实际数据进行参数估计和模型验证,最终预测疫情在未来一段时间内的传播情况。

【三、题目分析与解题思路】传染病传播的动力学模型主要包括三个基本要素:感染者、易感者和康复者。

根据题目给出的数据,我们需要建立一个包含这三个要素的数学模型,并利用相关数学方法对模型进行求解。

【四、解答过程与结果】解答过程主要包括以下几个步骤:1.根据题目描述,确定感染者、易感者和康复者之间的转换关系。

2.根据实际数据,建立初始值和边界条件。

3.利用微分方程等数学方法,求解模型。

4.对模型进行参数估计和模型验证。

5.根据模型预测疫情在未来一段时间内的传播情况。

通过以上步骤,我们可以得到传染病在未来一段时间内的传播趋势,从而为政府和相关部门制定防控措施提供科学依据。

【五、总结与启示】数学建模国赛 2013 年 b 题的解答过程充分体现了数学方法在解决实际问题中的应用价值。

通过参加此类竞赛,学生可以提高自己的数学素养、团队协作精神和创新能力。

数学建模美赛B题论文

数学建模美赛B题论文

2013建模美赛B题思路数学建模美赛B题论文摘要水资源是极为重要生活资料,同时与政治经济文化的发展密切相关,北京市是世界上水资源严重缺乏的大都市之一。

本文以北京为例,针对影响水资源短缺的因素,通过查找权威数据建立数学模型揭示相关因素与水资源短缺的关系,评价水资源短缺风险并运用模型对水资源短缺问题进行有效调控。

首先,分析水资源量的组成得出影响因素。

主要从水资源总量(供水量)和总用水量(需水量)两方面进行讨论。

影响水资源总量的因素从地表水量,地下水量和污水处理量入手。

影响总用水量的因素从农业用水,工业用水,第三产业及生活用水量入手进行具体分析。

其次,利用查得得北京市2001-2008年水量数据,采用多元线性回归,建立水资源总量与地表水量,地下水量和污水处理量的线性回归方程yˆ=-4.732+2.138x1+0.498x2+0.274x3根据各个因数前的系数的大小,得到风险因子的显著性为rx1>rx2>rx3(x1, x2,x3分别为地表水、地下水、污水处理量)。

再次,利用灰色关联确定农业用水、工业用水、第三产业及生活用水量与总用水量的关联程度ra =0.369852,rb= 0.369167,rc=0.260981。

从而确定其风险显著性为r a>r b>r c。

再再次,由数据利用曲线拟合得到农业、工业及第三产业及生活用水量与年份之间的函数关系,a=0.0019(t-1994)3-0.0383(t-1994)2-0.4332(t-1994)+20.2598;b=0.014(t-1994)2-0.8261t+14.1337;c=0.0383(t-1994)2-0.097(t-1994)+11.2116;D=a+b+c;预测出2009-2012年用水总量。

最后,通过定义缺水程度S=(D-y)/D=1-y/D,计算出1994-2008的缺水程度,绘制出柱状图,划分风险等级。

我们取多年数据进行比较,推测未来四年地表水量和地下水量维持在前八年的平均水平,污水处理量为近三年的平均水平,得出2009-2012年的预测值,并利用回归方程yˆ=-4.732+2.138x1+0.4982x2+0.274x3计算出对应的水资源总量。

2013年数学建模美赛B题论文

2013年数学建模美赛B题论文

2013建模美赛B题思路摘要水资源是极为重要生活资料,同时与政治经济文化的发展密切相关,北京市是世界上水资源严重缺乏的大都市之一。

本文以北京为例,针对影响水资源短缺的因素,通过查找权威数据建立数学模型揭示相关因素与水资源短缺的关系,评价水资源短缺风险并运用模型对水资源短缺问题进行有效调控。

首先,分析水资源量的组成得出影响因素。

主要从水资源总量(供水量)和总用水量(需水量)两方面进行讨论。

影响水资源总量的因素从地表水量,地下水量和污水处理量入手。

影响总用水量的因素从农业用水,工业用水,第三产业及生活用水量入手进行具体分析。

其次,利用查得得北京市2001-2008年水量数据,采用多元线性回归,建立水资源总量与地表水量,地下水量和污水处理量的线性回归方程yˆ=-4.732+2.138x1+0.498x2+0.274x3根据各个因数前的系数的大小,得到风险因子的显著性为r x1>r x2>r x3(x1, x2,x3分别为地表水、地下水、污水处理量)。

再次,利用灰色关联确定农业用水、工业用水、第三产业及生活用水量与总用水量的关联程度r a=0.369852,r b= 0.369167,r c=0.260981。

从而确定其风险显著性为r a>r b>r c。

再再次,由数据利用曲线拟合得到农业、工业及第三产业及生活用水量与年份之间的函数关系,a=0.0019(t-1994)3-0.0383(t-1994)2-0.4332(t-1994)+20.2598;b=0.014(t-1994)2-0.8261t+14.1337;c=0.0383(t-1994)2-0.097(t-1994)+11.2116;D=a+b+c;预测出2009-2012年用水总量。

最后,通过定义缺水程度S=(D-y)/D=1-y/D,计算出1994-2008的缺水程度,绘制出柱状图,划分风险等级。

我们取多年数据进行比较,推测未来四年地表水量和地下水量维持在前八年的平均水平,污水处理量为近三年的平均水平,得出2009-2012年的预测值,并利用回归方程yˆ=-4.732+2.138x1+0.4982x2+0.274x3计算出对应的水资源总量。

2013年高教社杯全国大学生数学建模竞赛B题优秀论文资料

2013年高教社杯全国大学生数学建模竞赛B题优秀论文资料

碎纸片的拼接复原摘要本文主要解决碎纸片拼接复原问题。

利用附件所给碎纸片的数据,运用蚁群优化算法、Adaboost算法、Harris角点检测算法,利用Matlab软件编程求解,得到碎纸片拼接复原结果。

针对问题一,依据文字所在行的几何特征,先将文字进行二值化处理,得到文字的数据信息。

运用蚁群优化全局匹配方案完成整体匹配,利用回溯的Best-First搜索算法,得到最佳候选匹配对,由于碎纸片形状相似,Best-First搜索算法会大大降低拼接效率,最后建立蚁群优化算法模型对复原结果进行优化,得到中、英文拼接复原图(见附录一)及顺序表(见表2、表3)。

针对问题二,先对附件3、附件4中的碎纸片进行像素特征分析,将每一个矩形像素特征区域的白色区域设为0、黑色区域设为1,利用Adaboost算法对碎纸片进行分类处理,再依据矩形像素特征进行匹配,得到拼接复原中文、英文图片。

对每次匹配循环进行人工干预得出碎纸片的拼接复原顺序图(见附录二)及顺序表(见表4、表6)。

针对问题三,在对比经典角点检测算法的基础上,利用附件5中图片的信息,运用Harris角点检测的多层匹配图像拼接算法,得到图片的角点信息。

采用标准互相关联法和互信息法对Harris角点进行粗匹配,之后根据特征点周围的边缘信息过滤为匹配点,再用RANSAC进行精确匹配,得到一幅完整的拼接复原图像。

最后,运用神经网络边缘检测算法进行优化,快速的获取准确的碎纸片的拼接复原顺序图(见附录三)及顺序表(见表8、表9)。

关键词:蚁群优化算法 Adaboost算法 Harris角点检测神经网络1 问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

2013全国大学生数学建模竞赛B题

2013全国大学生数学建模竞赛B题

将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

2013年全国数学建模B题省一等奖

2013年全国数学建模B题省一等奖

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写) B我们的参赛报名号为(如果赛区设置报名号的话):024B03所属学校(请填写完整的全名):山东科技大学参赛队员(打印并签名) :1. 张鑫2. 吕彦全3. 孙红华指导教师或指导教师组负责人(打印并签名):赵文才(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题摘要:一、数学建模国赛简介1.数学建模国赛背景2.2013 年数学建模国赛B 题内容二、2013 年数学建模国赛B 题解析1.题目背景及要求2.问题一解析3.问题二解析4.问题三解析三、数学建模竞赛对参赛者的意义1.提升实际问题解决能力2.增强团队协作能力3.培养创新思维四、数学建模竞赛的准备与建议1.积累建模知识与技能2.加强团队配合与沟通3.注重实际问题分析与解决正文:数学建模国赛是一项在我国有着广泛影响力的学科竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育的发展。

2013 年的数学建模国赛B题,以一道实际问题为背景,要求参赛者运用数学方法解决实际问题。

2013 年数学建模国赛B 题的内容是:“输电线路的优化设计”。

该题目要求参赛者针对一个实际的输电线路工程,通过建立数学模型,分析并提出优化方案。

具体包括三个问题:1.根据给定的线路参数,计算输电线路的总电阻;2.分析不同输电线路的设计方案,确定最优设计方案;3.建立输电线路的运行维护模型,预测线路的运行状态。

通过参与数学建模竞赛,参赛者能够提升自己的实际问题解决能力。

在竞赛过程中,他们需要针对实际问题,灵活运用数学知识和方法,寻求问题的解决方案。

此外,数学建模竞赛也非常注重团队协作,参赛者需要与队友紧密配合,共同完成竞赛任务。

这不仅能够增强团队协作能力,还能培养参赛者的创新思维。

对于想要参加数学建模竞赛的同学们,有以下几点建议:1.积累建模知识与技能:熟练掌握常用的数学建模方法和工具,例如线性规划、动态规划、图论等;2.加强团队配合与沟通:与队友共同学习、讨论和解决问题,提高团队协作效率;3.注重实际问题分析与解决:在平时的学习和生活中,多关注实际问题,培养自己分析问题和解决问题的能力。

数学建模国赛对于参赛者来说,既是一次挑战,也是一次锻炼和成长的机会。

2013高教社杯全国大学生数学建模竞赛

2013高教社杯全国大学生数学建模竞赛

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):A1106所属学校(请填写完整的全名):龙岩学院参赛队员(打印并签名) :1. 蔡素琴2. 王宝行3. 曾俊杰指导教师或指导教师组负责人(打印并签名):指导组(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道占用后通行能力的优化方案摘要本文就所给的视频资料针对交通事故占道对实际通行能力的影响问题,先后建立了无向赋权图、随机排队理论、集结波与消散波模型、车流波动模型。

对各个问题进行分析、求解。

对于问题(1),结合所给的视频1,对其中的数据进行多次、合理采样,并用图表表示事故所处横断面实际通行能力的变化过程。

数学建模2013年b题

数学建模2013年b题

数学建模2013年b题
一、题目背景介绍
数学建模2013年b题涉及到的背景知识如下:
1.题目背景:题目来源于现实生活中的某个实际问题,需要运用数学知识进行分析和解决。

2.知识点:题目涉及到的数学知识点包括线性规划、微分方程、概率论等。

二、数学建模方法概述
数学建模方法是指运用数学理论与方法对现实问题进行抽象、简化和求解的过程。

在本题中,我们需要根据题目背景,选择合适的数学方法进行建模和求解。

三、解题步骤与方法详解
1.步骤一:阅读题目,理解题意,提炼关键信息。

2.步骤二:根据题目背景和关键信息,选择合适的数学方法进行建模。

3.步骤三:建立数学模型,列写出相应的数学方程。

4.步骤四:求解数学方程,得到模型解。

5.步骤五:检验模型解的合理性,并对模型进行优化。

6.步骤六:根据模型解分析实际问题,撰写论文。

四、模型检验与优化
1.模型检验:检验模型解是否符合实际情况,可以通过与实际数据进行对比来验证。

2.模型优化:根据实际问题的变化,对模型进行调整和改进,以提高模型的准确性和实用性。

五、应用实例与分析
以下是一个与应用实例相关的问题:
某企业在生产过程中,需要对生产流程进行优化,以降低成本、提高效益。

我们可以通过数学建模方法,对企业生产流程进行分析,找到最优的生产策略。

六、总结与展望
1.总结:通过对2013年数学建模b题的分析,我们了解了如何运用数学建模方法解决实际问题,并掌握了线性规划、微分方程等数学知识。

2.展望:未来,我们可以将所学知识应用于更多实际问题,为各行各业提供有益的决策支持。

2013年全国数学建模B题一等奖论文

2013年全国数学建模B题一等奖论文

(由由由由由由)第十届华为杯全国研究生数学建模竞参学校南京师范大学参参队号103190031.佟德宇队员姓名2.顾燕3.贾泽慧(由由由由由由)第十届华为杯全国研究生数学建模竞参题 目 功率放大器非线性特性及预失真建模摘 要针对问题一中求解输入输出信号之间的非线性功放特性函数问题, 采用了不同的多项式函数, 运用最小二乘法或正则化后的最小二乘法进行拟合求解. 并用参数NMSE 来评价所建模型的准确度. 结果发现在逼近函数选为函数基的情况下, 采用正则化后的最小二乘法得出的模型准确度最好, 其对应的参数NMSE=-68.6294.同时考虑计算量和模型准确度, 在由多项式变形函数逼近功放的模型基础上, 来进行预失真模型的建立. 根据题中给出的原则和约束, 可知预失真模型的表达式与功放模型的表达式是类似的, 从而可建立相应的预失真模型.:-11()()()K k k k z t h x t x t ==∑K=4时, 整体模型的放大倍数g=1.8693, 参数NMSE=-32.5819, EVM=2.3491; K=5时, g=1.8473, 参数NMSE=-37.1398, EVM=1.3900; K=7时, g=1.8326, 参数NMSE=-46.0624, EVM=0.4976.针对问题二, 直接将功放的输入输出与题目中所提的“和记忆多项式”模型进行拟合, 运用正则化后的最小二乘法进行求解, 这很好的保证了模型的可解性. 本题只考虑功放模型次数为5的情形. 当记忆深度为7时, 得NMSE=-45.8394; 当记忆深度为3时, 得NMSE=-44.5315. 预失真模型的建立与问题一类似, 文中以框图的方式建立了预失真处理的模型实现示意图, 并对次数为5、记忆深度为3的情形, 求解出整体模型的放大倍数g=9.4908, 参数NMSE=-37.8368, EVM=0.0128.针对问题三, 将所给的离散的、有限的输入输出数据作为随机过程的样本函数,通过其傅立叶变换得到功率谱参度函数. 文中分别给出了输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号的功率谱参度图形. 可解出它们的ACPR 分别为-155.6610、-74.3340、-104.4904, 最后对结果进行分析评价, 得出采用预失真补偿的功率放大器的输出信号效果比无预失真补偿的效果好. 关键字:最小二乘法、Tikhonov正则化、Fourier变换一、问题重述信号的功率放大是电子通信系统的关键功能之一, 其实现模块称为功率放大器( PA, Power Amplifier), 简称功放. 功放的输出信号相对于输入信号可能产生非线性变形, 这将带来无益的干扰信号, 影响信信息的正确传递和接收, 此现象称为非线性失真.功放非线性属于有源电子器件的固有特性, 研究其机理并采取措施改善, 具有重要意义. 目前已经提出了各种技术来克服功放的非线性失真, 其中预失真技术是被研究的较多的一项技术, 其最新的研究成果已经被运用于实际的产品中, 但在新算法、实现复杂度、计算速度、效果精度等方面仍有相当的研究价值.预失真的基本原理是:在功放前设置一个预失真处理模块, 这两个模块的合成总效果使整体输入-输出特性线性化, 输出功率得到充分利用.文中给出了NMSE 、EVM 等参数评价所建模型其准确度, 以及ACPR 表示信道的带外失真的参数.根据数据文件中给出的某功放无记忆效应、有记忆效应的复输入输出测试数据:(1)我们建立此功放的非线性数学模型()G ⋅, 并用NMSE 来评价所建模型的准确度.(2)根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 计算线性化后最大可能的幅度放大倍数, 建立预失真模型. 并运用评价指标参数NMSE/EVM 评价预失真补偿的计算结果.(3)应用问题二中所给的数据, 计算功放预失真补偿前后的功率谱参度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号), 并用图形的方式表示了这三类信号的功率谱参度. 最后用相邻信道功率比ACPR 对结果进行分析.二、模型假设1、假设题中所给的功放输入输出数据采样误差为0.2、假设题中所给的功放输入输出数据具有代表性、一般性.3、假设存在这样的预失真处理器, 能够做到将输入数据变为模型求解所得的预失真 处理输出结果.三、基本知识§3.1 最小二乘方法最小二乘方法[][]12产生于数据拟合问题, 它是一种基于观测数据与模型数据之间的差的平方和最小来估计数学模型中参数的方法. 输入数据t 与输出数据y 之间大致服从如下函数关系(,)y x t φ=,式中n x R ∈为待定参数. 为估计参数x 的值, 要先经过多次试验取得观测数据1122(,),(,),,(,)m m t y t y t y , 然后基于模型输出值和实际观测值的误差平方和21((,))m i ii y x t φ=−∑最小来求参数x 的值, 这就是最小二乘问题. 一般地, m n .引入函数()(,), 1,2,,i i i r x y x t i m φ=−= ,并记12()((), (), , ())m r x r x r x r x = ,则最小二乘问题即为n min ()()T x Rr x r x ∈. 如果最小二乘问题中的模型函数估计准确, 那么最小二乘问题的最优值是很靠近零的. 因此()r x 常称作残量函数.对于线性最小二乘问题, 残量函数可以表示为()r x b Ax =−,从而线性最小二乘问题可以表示为2min n x R b Ax ∈−. (3.1.1) 若A 是列满秩的, 且考虑到二次凸函数的稳定点即为最小值点, 可以直接得到x 的求解公式, 即()1T T x A A A b −=. (3.1.2) 而对于复数域上的线性最小二乘问题n 2min x C b Ax ∈−, 也可以直接得到x 的求解公式, 即为()-1T x A A A b =, (3.1.3) 其中, T A 表示A 的共轭转置.§3.2 Tikhonov 正则化在使用最小二乘方法进行参数估计的时候, 由于A 不一定是列满秩的, 故T A A 不一定是可逆的, 此时就不能够用上面所推得的公式进行直接的求解了. 为了克服这个困难,考虑Tikhonov 正则化[]3方法, 即给目标函数加上一个正则项(即一个邻近项)2k k x x λ−.此时, 最小二乘问题转化为n 221min +k k k x C x b Ax x x λ+∈=−−.其中k x 是第k 步迭代得到的解, k λ可以选为一个常数或一个单调下降趋于0的数列. 迭代的终止准则为1k k x x ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 这时问题22min n k k x C b Ax x x λ∈−+− 是可以直接求解的, 给出x 的求解公式为()()1T k k k x A A I A b x λλ−=++.显然, 此时即使A 非列满秩, 问题也是可以求解的.四、问题分析问题一题中已给出了某功放无记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 功放的特性函数可以用多项式来表示, 也可以用空间中的一由正交函数基来表示. 然后采用最小二乘法或正则化后的最小二乘法, 将这些情况都进行求解, 得出功放的特性函数()G⋅. 并在最后用参数NMSE(归一化均方误差)来评价所建模型的准确度.接着, 在前面所建模型的基础上, 选择一个计算量适当, 且准确度较好的()G⋅的一个拟合模型. 然后根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 建立预失真模型, 使得整体模型线性化后放大倍数尽可能的大. 通过对优化模型的分析可知, 对预失真特性函数()F⋅的求解可以转化为对1Gg−⎛⎞⎜⎟⎝⎠的求解, 且预失真模型的表达式与功放模型的表达式是类似的. 在求解1Gg−⎛⎞⎜⎟⎝⎠时, 可以对求解所用模型的次数进行不同的选取,分别得出整体模型的g和NMSE、EVM的值, 用来评价预失真补偿的结果.问题二题中已给出了某功放有记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 本文直接将功放的输入输出与题目中所提的“和记忆多项式”模型来进行拟合, 在使用最小二乘方法求解时, 我们对目标函数加了一个正则项, 以保证求解的可实现性.预失真处理器模型的建立与问题一类似, 且给出了以框图的方式建立的预失真处理的模型实现示意图.问题三问题二中所给的输入输出数据是离散的、有限的, 在这种情况下计算功率谱参度的函数可以用自相关函数法或对随机过程{}()x t的样本函数作傅立叶变换得到, 文中采取第二种方法来求解.五、模型建立与求解§5.1 问题一的模型与求解§5.1.1 无记忆功放的特性函数()G⋅模型建立文章中已给出某功放无记忆效应的复输入输出测试数据, 这些数据是对功放输入)(tx/输出)(t z进行离散采样后得到的, 它们的值为分别为()x n/()z n(采样过程符合Nyquist采样定理要求).对于问题一, 根据文章中所给的某功放无记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论,可以采用1、多项式的形式2、多项式的变形的形式3、空间中的一由正交函数基的线性由合来表示4、正则化下, 空间中的一由正交函数基的线性由合来表示下面将这些情况都进行建模, 来拟合功放的特性函数()G ⋅, 并在最后进行比较选择优者.所求得的模型的数值计算结果业界常用NMSE 、EVM 等参数评价其准确度, NMSE 的具体定义如下. 采用归一化均方误差 (Normalized Mean Square Error, NMSE) 来表征计算精度, 其表达式为211021ˆ|()()|NMSE 10log |()|N n N n z n z n z n ==−=∑∑ . (5.1.1) 如果用z 表示实际信号值, ˆz表示通过模型计算的信号值, NMSE 就反映了模型与实际模块的接近程度. 显然NMSE 的值越小, 模型的数值计算结果就越准确.误差矢量幅度 (Error Vector Magnitude, EVM)定义为误差矢量信号平均功率的均方根和参照信号平均功率的均方根的比值, 以百分数形式表示. 如果用X 表示理想的信号输出值, e 表示理想输出与整体模型输出信号的误差, 可用EVM 衡量整体模型对信号的幅度失真程度:EVM 100%= . (5.1.2)模型一 多项式的形式首先根据函数逼近的Weierstrass 定理, 对解析函数采用简单的多项式来表示, 可表示为∑==Kk k k t x h t z 1)()(. (5.1.3)因为此时是要将观测数据与形式已经固定的函数(5.1.3)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 211min ()N K k k h C n k z n h x n ∈==−∑∑, (5.1.4) 其中, ()x n 和()z n 为文章中所给的输入和输出测试数据, 这些数据是对功放输入()x t 、输出()z t 进行离散采样后得到的(采样过程符合Nyquist 采样定理要求),N 为功放输入输出数据的总个数.将问题(5.1.4)与( 3.1.1)进行对应, 由( 3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中232323 (1) (1) (1) (1) (2) (2) (2) (2) () () () ()K K K x x x x x x x x A x N x N x N x N ⎡⎤…⎢⎥…⎢⎥=⎢⎥⎢⎥⎢…⎥⎣⎦, ()12,,,TK h h h h =…, ()()()()1,2,,Tz z z z N =….结果当3K =时, (见附录2.1.1)该表达式中的系数为123 2.908532278399690.060653883258900.213775998314930.43417026083854 0.198185637666730.27826757408010h ih i h i=−=−=+.根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 13.4414169873254 3k =−=.当5k =时, (见附录2.1.2 )表达式中的系数为12345 2.908037719327826 - 0.063527494375989i0.343519806629302 - 0.388942747664566i0.541211413428411 - 0.144422960285135i -0.399744749427209 - 0.558463329513045i-0.271952185146638 + 0.1205591h h h h h =====40060622i根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -21.544782705381238 5k ==.模型二 多项式的变形同时我们也考虑了多项式变形[]4的情形来对其进行表示, 其表示式为-11()()()K k k k z t h x t x t ==∑. (5.1.5)因为此时是要将观测数据与形式已经固定的函数(5.1.5)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 2-111min ()()N K k k h C n k z n h x n x n ∈==−∑∑ (5.1.6)其中N 为所给功放输入输出数据的总个数, K 为表达式的次数. 将问题(5.1.6)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中212121(1) (1)(1) (1)(1) (1)(1)(2) (2)(2) (2)(2) (2)(2) () ()() ()() ()()K K K x x x x x x x x x x x x x x A x N x N x N x N x N x N x N −−−⎡⎤…⎢⎥⎢⎥…=⎢⎥⎢⎥⎢⎥…⎢⎥⎣⎦,()123,,,,TK h h h h h =…, ()()()()()1,2,3,,Tz z z z z N =…. 分别考虑当3k =, 5k =时, 该表达式的具体形式(即确定表达式的系数).结果当3k =时, (见附录2.1.3 )表达式中的系数为123 3.051183005392040.00000000000001 0.006071903393980.00000000000005 1.170159412626470.00000000000004h ih i h i=−=+=−−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 29.7446547565428 3k =−=.当5k =时, (见附录2.1.4 )表达式中的系数为12345 2.967983597251020.00000000000080 0.309931644197600.00000000000873 0.153664636905190.00000000002804 3.424500445954250.00000000003458 2.208212395486470.00000000001446h ih ih i h ih i=−=+=−−=−+=−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 45.379717608769994 5k =−=模型三 空间中的一由正交函数基的线性由合最后根据函数逼近理论, 可采用空间中的一由正交函数基[]4的线性由合来表示该特性函数(参考文献3中的方法), 其表达式为()z t h =Ψ, (5.1.7)其中正交矩阵12[() () ()]k x x x ψψψΨ= ,11()!()(1)(1)!(1)!()!kl l k k l k l x x x l l k l ψ−+=+=−−+−∑. 因为此时是要将观测数据与形式已经固定的函数(5.1.7)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立 n 2min h C z h ∈−Ψ (5.1.8) 其中()123,,,,TK h h h h h =…, ()()()()()1,2,3,,T z z z z z N =…, ()()()12[() ()()]k x n x n x n ψψψΨ= ,()()()11()!()(1)(1)!(1)!()!k l l kk l k l x n x n x n l l k l ψ−+=+=−−+−∑, N 为功放的输入输出数据的总个数. 将问题(5.1.8)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为 ()-1T T h z =ΨΨΨ. 由于计算量较大, 我们选取7=k 来进行拟合, 得出表达式中的系数.结果(见附录2.1.5)当7=k 时, 表达式中的系数为12345 3.287412936081622-7.322701472967097-015-0.091488124421954-2.16460963736731-015-0.066219774105875 5.035305939565804-0160.038056322596937 2.726632938529483-0160.01014165858755-1.2h e ih e ih e ih e i h ===+=+=6758894247527231-016-0.005283612035716-2.653720342429833-016-0.001265433154276-1.923256069376669-016e ih e ih e i==.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -60.5675309366592 7k ==模型四 模型三正则化模型建立对于模型三, 由于所给的数据较多, 很难避免本文3.2节中所提到的T ΨΨ奇异的情况, 故对(5.1.8)再进行一个Tikhonov 正则化. 即对(5.1.8)加一个正则项2k k h h λ−.问题转变为()1221min K M k k k h C h z h h h λ⋅×+∈=−Ψ+−. (5.1.9) 其中k h 是第k 步迭代得到的解(计算机运行求解时是要给其赋一个初始值的), 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 问题(5.1.9)是可以直接求解的, 得到h 的求解公式为()()()1T Tk k k h I z n h λλ−=ΨΨ+Ψ+. (5.1.10)此处, 我们仍选取7=k 来进行拟合, 其中一些参数选取为800111, 1, 0.8, 10k k h i λλλε−+=+===.则可得出表达式(5.1.7)中的系数.结果(见附录2.1.6)123456 3.2873994140515280.000008426827987-0.0914922453118830.000002568107767-0.066218825186175-0.000000591359660.038056824724197-0.0000003129219510.010141412616440.000000153287355-0h ih ih ih i h ih =+=+===+=7.0052839775157310.000000227764411-0.0012655686759970.000000084456122ih i+=+根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -68.6293523598994 7k ==模型一~模型四的总评价对四种模型下参数NMSE 的大小进行比较发现, 当选用一由正交函数基, 并运用正则化后的最小二乘方法来对功放特性函数进行拟合时(即模型四), NMSE 的值是最小的. 也就是说2121ˆ|()()||()|Nn Nn z n zn z n ==−∑∑在模型四下是最靠近0的, 故模型四是逼近效果最好的.但模型四的计算复杂度是很大, 由所得的NMSE 参数可发现模型二的计算精度也是不错的, 但其计算的复杂度比模型四要小很多, 故选择模型二来求解功放特性函数. 且在下面的无记忆功放模型的预失真处理建模中, 功放特性函数是由模型二得出的.§5.1.2四种模型的输入输出幅度比较图与评价下面将实际的与拟合的复输入输出幅度值进行作图, 以便更直观的看出模型的逼近效果.图5.1 模型一k=3实际与拟合功放输入/输出幅度散点图 图5.1模型一k=5实际与拟合功放输入/输出幅度散点图图5.3模型二k=3实际与拟合功放输入/输出幅度散点图 图5.4 模型二k=5实际与拟合功放输入/输出幅度散点图图5.5 模型三实际与拟合的功放输入/输出幅度散点图图5.6模型四实际与拟合的功放输入/输出幅度散点图根据观察比较发现, 当用正交的函数基或对其实行一个正则化(即模型三和模型四), 来对功放特性函数进行拟合的时候, 拟合情形的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果是最佳的.k=时, 其散点图的逼近效果也是很好的.同时可观察到但模型二中的次数5§5.1.3 预失真处理模型建立选定-11():()()()Kk k k G z n b x n x n =⋅=∑的阶数5K =, 通过上面的算法可以得到当F 取不同阶数的情况下, g, NMSE, EVM 的结果及图像表5.1 F 取不同阶数情况下g, NMSE, EVM 的结果F 的阶数Kg NMSE EVM 4 1.86932497973065-32.5819077399852 2.34911681195961% 5 1.84730161996524-37.1398119663279 1.38998272147897% 7 1.83264461869445-46.06241433950440.497598752653887%由表5.1的结果可以看出当F 的阶数越高时, 得到的g 的值越小(说明线性化后的幅度放大倍数越小), NMSE 、EVM 的值越小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.7理想信号与所建模型得到的输出信号对比(K=4) 图5.8理想信号与所建模型得到的输出信号对比(K=5)图5.9理想信号与所建模型得到的输出信号对比(K=7)根据观察发现, 当K 的取值越大时, 所建模型的输入输出幅度散点图与理想的输入输出幅度散点图的逼近效果越好.§5.2 问题二的模型与求解§5.2.1 有记忆功放的特性函数()G ⋅模型建立对于问题二, 根据文章中所给的某功放有记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G ⋅. 此时功放不仅与此时刻输入有关, 而且与此前某一时间段的输入有关, 其可以由为101111022220212()()()(1)()()(1)()K Mk km M k m M z n h x n m h x n h x n h x n M h x n h x n h x n M ===−=+−++−++−++−+∑∑ 01 ()(1)()K K K K K KM h x n h x n h x n M ++−++− , 0,1,2,,n N = .式中M 表示记忆深度, km h 为系数. 具有记忆效应的功放模型也可以用更一般的V olterra级数[][]56表示, 由于V olterra 级数太复杂, 简化模型有Wiener 、Hammersteint 等[][]47. 由于常用复值输入-输出信号, 上式也可表示为便于计算的“和记忆多项式”模型-110()(-)|(-)|K Mk km k m z n h x n m x n m ===∑∑ 0,1,2,,n N = (5.2.1)模型建立本文采用“和记忆多项式”模型(5.2.1)式来进行拟合. 我们用最小二乘法来求解, 由于本问中所给的输入输出的数据个数非常大, 故现在选取其中的一部分来进行拟合, 求得功放过程的模型. 我们选取输入输出数据的次数n 为1M +的倍数的数据来进行拟合, 最小二乘公式即为()()12-1(1)|10min (-)|(-)|K M K Mk km h CM nk m n Nz n h x n m x n m ××∈+==≤−∑∑∑ (5.2.2) 其中N 是指所有的功放的输入数据总个数, K 表示所选模型的最高次数, M 表示记忆深度(本文在求解模型时是事先给定的), ()x n 是第n 个复输入值, ()z n 是第n 个复输出值, km h 为系数, ()102001222212,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….由于所给的数据较多, 即便是选取了部分数据进行拟合,但仍很难避免3.2节中所提到的A A 奇异的情况, 故对(5.2.2)再进行一个Tikhonov 正则化. 即对(5.2.2)加一个正则项2k k h h λ−,则问题转变为()()122-11(1)|10min (-)|(-)|K M K Mk k km k k h CM nk m n Nh z n h x n m x n m h h λ××+∈+==≤=−+−∑∑∑ (5.2.3) 其中k h 是第k 步迭代得到的解, 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.当给定一个记忆深度M 后, 我们可以将问题(5.2.3)化成如下形式的问题, 即()22min nk k h Cz n Ah h h λ∈−+− (5.2.4) 其中A 是一个()()()()/11N M K M +×⋅+的复矩阵, 即1111(1) (1)(1) (1)(1) (1) (1)(1) (22) (22)(22) (22)(22) (2) (1)(1) K K K K x M x M x M x M x M x x x x M x M x M x M x M x M x x A −−−−+++++++++++=……………… ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦而()102001121112,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….考虑到二次凸函数的稳定点即为最小值点, 问题(5.2.4)是可以直接求解的, h 的求解公式为()()()1Tk kk h A A I A z n h λλ−=++. (5.2.5)本题中已给出有记忆功放输入输出数据的总个数为73920N =, 并分别取 87, 5, 10M K ε−===和 83, 5, 10M K ε−===这两种情况. 这样就可以根据(5.2.5)求得h .结果(见附录2.2.1、2.2.2)当7,5M K ==时, 由于系数共有40个, 即h 是一个401×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE -45.839408840847 7,5M K ===.当3,5M K ==时, 由于系数共有20个, 即h 是一个201×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE 44.5315001961471 3,5M K =−==.§5.2.2有记忆功放模型的输入输出幅度图下面将实际与拟合的复输入输出幅度进行作图, 以便更直观的看出模型的逼近效果.图5.10 M=7实际与拟合功放输入/输出幅度散点图 图5.11 M=3实际与拟合功放输入/输出幅度散点图总评价根据观察比较发现, 尽管在用“和记忆多项式”模型进行拟合时, 我们只选取了一部分输入输出测量数据进行模型的建构. 但通过对上面两图的观察, 当对所有的输入测量数据进行作图时, 可发现拟合得到的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果还是很好的.§5.2.3 预失真处理模型建立上面已求得功放特性函数()G ⋅的模型, 采用“和记忆多项式”模型-110()(-)|(-)|K Mk kmk m z n hx n m x n m ===∑∑建立的功放模型. 下面建模的总体原则是使预失真和功放的联合模型呈线性后误差最小. 在此模型中, 有两个约束需要考虑:(1)输出幅度限制:即模型中的预失真处理的输出幅度不大于给出的功放输入幅度最大值.(2)功率最大化:即模型的建立必需考虑尽可能使功放的信号平均输出功率最大, 因此预失真处理后的输出幅度需尽可能提高.0≤下面我们将给出解决该优化问题的算法: 给定判断容限step1选定-110(): ()(-)|(-)|KMk km k m G z n h x n m x n m ==⋅=∑∑的阶数为5K =. 因数据量很大且算法较复杂, 本文对F 进行多次计算, 发现当阶数为5K =的时候与更高阶相比, 效果就已经很好了, 故下面只给出阶数为5K =时g, NMSE, EVM 的结果.本文取定记忆深度为 3M =, 现根据算法5.2可求得9.490829228013789g =,由于系数一共有20个, 即h 是一个201×的向量, 故将此结果放到附录中.根据上面所建模型以及(5.1.1)、(5.1.2)式, 可求出该模型的NMSE 、EVM 值如下:.NMSE -37.836849855461956EVM 0.012827957346961== 3,5M K ==由所得数据, 可以发现在该算法下, 得到的g 的值比较大(说明线性化后的幅度放大倍数大), NMSE 、EVM 的值较小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.13 M=3, K=5实际与拟合功放输入/输出幅度散点图观察图5.13发现, 该情况下所建模型的输入输出幅度散点图与理想的输入输出幅度散点图逼近效果还是较好的. 故该模型是可行的.§5.3 问题三的模型与求解 §5.3.1背景知识功率谱的概念是针对功率有限信号的, 所表现的是单位频带内信号功率随频率的变化情况. 保留了频谱的幅度信息, 但是丢掉了相位信息, 所以频谱不同的信号其功率谱是可能相同的. 功率谱是随机过程的统计平均概念, 平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换, 对于一个随机过程而言, 频谱也是一个“随机过程”(随机的频域序列).功率谱参度(PSD), 它定义了信号或者时间序列的功率如何随频率分布. 这里功率可能是实际物理上的功率, 或者更经常便于表示抽象的信号, 被定义为信号数值的平方, 也就是当信号的负载为1欧姆(ohm)时的实际功率.由于平均值不为零的信号不是平方可积的, 所以在这种情况下就没有傅立叶变换. 维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法. 如果信号可以看作是平稳随机过程, 那么功率谱参度就是信号自相关函数的傅立叶变换. 信号的功率谱参度当且仅当信号是广义的平稳过程的时候才存在; 如果信号不是平稳过程, 那么自相关函数一定是两个变量的函数, 这样就不存在功率谱参度, 但是可以使用类似的技术估计时变谱参度. 随机信号是时域无限信号, 不具备可积分条件, 因此不能直接进行傅氏变换. 一般用具有统计特性的功率谱来作为谱分析的依据. 功率谱与自相关函数是一个傅氏变换对.一般的功率谱参度都是针对平稳随机过程的, 由于平稳随机过程的样本函数一般不是绝对可积的, 因此不能直接对它进行傅立叶分析. 可以有三种办法来重新定义谱参度,来克服上述困难.1. 用相关函数的傅立叶变换来定义谱参度;2. 用随机过程的有限时间傅立叶变换来定义谱参度;3. 用平稳随机过程的谱分解来定义谱参度.§5.3.2 模型建立计算功率谱参度函数通常有两种方法[]8. 一种叫做标准的自相关函数法, 其表达式为:(1)0()4()cos 2d x x G f R f τπττ∞=∫ (5.3.1)其中()x R τ表示某个各态历经的随机过程{}()x t 的自相关函数;另一种叫做直接法, 即是直接对随机过程{}()x t 的样本函数作傅立叶变换得到功率谱参度函数, 其表达式为:2(2)202()lim ()d T j ftx T G f x t e t Tπ−→∞=∫ (5.3.2)在计算机上计算功率谱参度函数时, 要求输入的数据必须是离散数值, 所以要对连续观测的数据记录必须做离散化处理. 这叫做数据采样. 离散化的数据值叫做采样数据. 实际计算时, 要求参加运算的采样数据的个数是有限的(即是说, 在有限的时间区段0-T 上进行计算). 在记录是离散的、有限的情况下, 计算功率谱参度函数的公式可以分别近似地表示为:1(1)01()22cos 2cos 2M x r M r G f t R R fr t R fM t ππ−=⎡⎤=Δ+Δ+Δ⎢⎥⎣⎦∑ (5.3.3)和21(2)202()N j fi t x i i G f t x e N t π−−Δ==ΔΔ∑ (5.3.4)这里, 将(5.3.4)式整理为()()21P f X f N=(5.3.5) 其中()X f 是()x n 的傅里叶变换, 在计算过程中可以直接调用FFT 函数.另外由题意可设出, per F 表示每个点上的频率, 其表达式为sper F F N=. M 表示每个信道所含的点的个数, 其表达式为0perF M F =.其中0F 表示每个传输信道上的频率. 故传输信道就只包含M 个点, 相邻信道也只包含M 个点.由于非线性效应产生的新频率分量由对邻道信号有一定的影响, 现用相邻信道功率比(Adjacent Channel Power Ratio, ACPR)表示信道的带外失真的参数, 衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度. 其定义为。

2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)

2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)

%
(1-2b)
化学不完全燃烧热损失是由于烟气中残留有诸如 CO ,H 2 ,CH 4 等可燃气体成分而 未释放出燃烧热就随烟气排出所造成的热损失。 气体不完全燃烧产物为 CO , H 2 , CH 4 等可燃气体,则其热损失应为烟气中各可燃 气体体积与它们的体积发热量乘积的总和。 题中说明过量空气系数对化学不完全燃烧热损失影响较小,故可视为常数处理。所 以,化学不完全燃烧热损失与过量空气系数没有直接关系,故可以假设化学不完全燃烧 热损失 q3 为一常数,即: q3 K (1-3) 5.1.4 机械不完全燃烧热损失 q4 的计算 机械不完全燃烧热损失是由于进入炉膛的燃料中, 有一部分没有参与燃烧或未燃尽 而被排出炉外引起的热损失。论其实质,是包含在灰渣(包括灰渣、漏煤、烟道灰、 飞 灰以及溢流灰、冷灰渣等)中的未燃尽的碳造成的热量的损失。对层燃炉而言,主要由 灰渣、漏煤、和飞灰三项组成。 在实际中因为漏煤的含量相对较少所以本文不考虑漏煤的量,对于运行中的锅炉, 分别收集它的每小时的灰渣和飞灰的质量 Ghz 和 G fh (kg/h) ,同时分析出它们所含可燃 物质的质量百分数 Chz 和 C fh (%)和可燃烧的发热量 Qhz 和 Q fh (kJ/kg)则灰渣和飞灰损
q2 q3 q4 q5 q6 I py
Qgy Qr H Wy Ghz G fh ahz a fh ahz
y
py hz
Ay (c ) hz
hz gl
5.模型的建立和求解
5.1 问题一:确定锅炉运行的最佳过量空气系数 5.1.1 问题的分析 因为 q 2 q3 q 4 先减少后增加,有一个最小值,与此最小值对应的空气系数称为最 佳过量空气系数。 所以首先要求出 q2 、q3 和 q4 的表达式。 然后求得 q 2 q3 q 4 的表达式, 在对这个表达式进行求导,让导数等于 0 这就是最佳过量空气系数。 5.1.2 排烟热损失 q2 的计算 由于技术经济条件的限制,烟气离开锅炉排入大气时,烟气温度比进入锅炉的空气 温度要高得多,排烟所带走的热量损失简称为排烟热损失。 排烟热损失可按如下公式计算[3]: (1-1) Q2 I py pyVk0 (ct ) amb kJ / kg

2013全国大学生数学建模竞赛B题参考答案

2013全国大学生数学建模竞赛B题参考答案

2013高教社杯全国大学生数学建模竞赛B题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题要求对数据提取合适的特征、建立合理有效的碎纸片拼接复原模型。

可以考虑的特征有邻边灰度向量的匹配、按行或按列对灰度求和、行距等。

关于算法模型,必须有具体的算法过程(如流程图、算法描述、伪代码等)及设计原理。

虽然正确的复原结果是唯一的,但不能仅从学生提供的复原效果来评定学生解答的好坏,而应根据所建的数学模型、求解方法和计算结果(如复原率)三方面的内容做出评判。

另一方面,评判中还需要考虑人工干预的多少和干预时间节点的合理性。

问题1. 仅有纵切文本的复原问题由于“仅有纵切”,碎纸片较大,所以信息特征较明显。

一种比较直观的建模方法是:按照某种特征定义两条碎片间的(非对称)距离,采用最优Hamilton路或最优Hamilton圈(即TSP)的思想建立优化模型。

关于TSP的求解方法有很多,学生在求解过程中需要注意到非对称距离矩阵或者是有向图等特点。

还可能有种种优化模型与算法,只要模型合理,复原效果好,都应当认可。

本问题相对简单,复原过程可以不需要人工干预,复原率可以接近或达到100%。

问题2. 有横、纵切文本的复原问题一种较直观的建模方法是:首先利用文本文件的行信息特征,建立同一行碎片的聚类模型。

在得到行聚类结果后,再利用类似于问题1中的方法完成每行碎片的排序工作。

最后对排序后的行,再作纵向排序。

本问题的解法也是多种多样的,应视模型和方法的合理性、创新性及有效性进行评分。

例如,考虑四邻近距离图,碎片逐步增长,也是一种较为自然的想法。

问题3. 正反两面文本的复原问题这个问题是问题2的继续,基本解决方法与问题2方法相同。

但不同的是:这里需要充分利用双面文本的特征信息。

该特征信息利用得好,可以提升复原率。

在阅卷过程中,可以考虑学生对问题的扩展。

例如,在模型的检验中,如果学生能够自行构造碎片,用以检验与评价本队提出的拼接复原模型的复原效果,可考虑适当加分。

2013全国大学生数学建模比赛B题_答案

2013全国大学生数学建模比赛B题_答案

2013全国大学生数学建模比赛B题_答案在2013年全国大学生数学建模比赛中,B题的答案涉及了复杂的数学问题和模型建立。

本文将对B题的答案进行详细解析,包括问题的分析、数学模型的建立和结果的分析。

一、问题分析B题要求解答电气设备故障诊断问题。

在现代电气系统中,电气设备的故障可能导致整个系统的崩溃,因此及时准确地诊断故障是非常重要的。

本题给出了一组电气设备的故障数据,要求通过建立数学模型,诊断出可能的故障原因。

二、数学模型的建立1. 数据预处理首先,我们需要对给出的故障数据进行预处理,以便更好地分析和建立模型。

预处理包括数据清洗、异常值检测和数据归一化等步骤。

2. 特征选择在建立数学模型之前,我们需要选择合适的特征来描述电气设备的故障情况。

特征选择的原则是能够最大程度地包含有用的信息,同时减少冗余和噪声。

常用的特征选择方法包括相关系数分析、主成分分析和信息增益等。

3. 模型建立根据问题的要求,可以采用多种数学模型进行建立,如贝叶斯网络、支持向量机和神经网络等。

不同的模型有着不同的优劣势,在实际应用中需要根据具体情况选择合适的模型。

4. 模型训练和优化在建立好数学模型之后,需要使用给出的故障数据进行模型的训练和优化。

训练的目标是根据已知的故障数据,提高模型的准确性和泛化能力。

优化的过程包括参数调整和模型选择等。

三、结果分析经过模型的训练和优化,我们得到了电气设备故障的诊断结果。

在结果的分析中,我们需要评估模型的精度和可靠性,同时根据实际情况提出相应的改进策略。

四、小结通过对2013全国大学生数学建模比赛B题的答案进行详细解析,我们了解了电气设备故障诊断的数学建模过程。

建立数学模型涉及到数据预处理、特征选择、模型建立和结果分析等步骤。

这些步骤的正确和合理运用,对于解决实际问题具有重要意义。

注:本文仅为示例,实际的答案可能涉及更多细节和公式推导。

请根据具体题目要求进行解答。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

2013年全国数学建模B题

2013年全国数学建模B题

2013年全国数学建模B题1、首先运用MATLAB的imread语句将图片转化为参数,每一张图片都得到一个1980*72的矩阵,抽取每个矩阵的第1列和第72列,共得到38列数据,并对其进行编号排序,运用MATLAB进行分布聚类分析,分为18类,得到各自的搭配图形,最后进行人工编排和绘图。

程序如下:(1)clc;clear allclose allI=imread('D:\B\附件1\010.bmp');I_gray=double(I);[m,n] = size(I);a=0.3;A=0;T1=0;S=0;for i=1:mfor j=1:nA=A+I_gray(i,j)endendA=A*0.9;while(S<A)T1=T1+1;for i=1:mfor j=1:nif(I_gray(i,j)==T1)S=S+I_gray(i,j);endendendendT2=zeros(m,n);T3=zeros(m,n);M=3;N=3;for i=M+1:m-Mfor j=N+1:n-Nmax=1;min=255;for k=i-M:i+Mfor l=j-N:j+Nif I_gray(k,l)>maxmax=I_gray(k,l);endif I_gray(k,l)<minmin=I_gray(k,l);endendendT2(i,j)=(max+min)/2;T3(i,j)=max-min;endendT4=medfilt2(T2,[M,N]);T5=(T1+T4)/2;I_bw=zeros(m,n);for i=1:mfor j=1:nif I_gray(i,j)>(1+a)*T1I_bw(i,j)=255;endif I_gray(i,j)<(1-a)*T1I_bw(i,j)=0;endif (1-a)*T1<=I_gray(i,j)<=(1-a)*T1 if T3(i,j)>a*T1if I_gray(i,j)>=T4(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endelse if I_gray(i,j)>=T5(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endendendendendsubplot(1,2,1),imshow(I)subplot(1,2,2),imshow(I_bw)(2)julei=data';julei2=zscore(julei);y=pdist(julei2);z=linkage(y);dendrogram(z,'average')[x,cmap]=imread('000.bmp '); %读取图像的数据阵和色图阵image(x);colormap(cmap);axis image off %保持宽高比并取消坐标轴2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碎纸片的拼接复原摘要本文利用Manhattan距离,聚类分析,图像处理等方法解决了碎纸片的拼接复原问题。

由于碎纸机产生的碎纸片是边缘规则且等大的矩形,此时碎纸片拼接方法就不能利用碎片边缘的尖角特征等基于边界几何特征的拼接方法,而要利用碎片内的字迹断线或碎片内的文字位置搜索与之匹配的相邻碎纸片。

拼接碎片前利用数学软件MATLAB软件对碎片图像进行数据化处理,得到对应的像素矩阵,后设置阈值对像素矩阵进行二值化处理,得到相应的0-1矩阵。

下面分别对三个问题的解决方法和算法实现做简单的阐述:问题一,分别对附件1和附件2的碎片数据进行处理得到相应的0-1矩阵,依次计算某个0-1矩阵最右边一列组成向量与其他所有0-1矩阵的最左边向量的Manhattan距离,可以得到某个最小距离值、说明最小距离值对应的碎片是可与基准碎片拼接的,最终得到碎片拼接完整的图像。

问题二,同样对于附件3和附件4中的碎片数据进行处理得到相应的数值矩阵,并计算得到每个碎片顶部空白高度和文字高度,即指每行像素点都为255的行数、一行中存在像素点为非255的行数,根据空白高度和文字高度对碎片进行聚类分类,聚类阀值取3像素,得到11组像素矩阵,进而得到11类可能在同一行的碎片类。

其中对附件4中的英文的处理中,我们还采用水平像素投影累积的方法,进一步分类出可能在同一行的碎片类。

用问题一的方法,计算Manhattan 距离可以对每一类碎片按次序排列好,得到11行已经排列好的碎片,再应用曼哈顿距离在竖直方向上进行聚合得到完整的图像。

问题三,首先,对于附件5中的碎片数据我们采用正反相接,本文将b面最左边的一列像素拼接到a面最右边的一列像素的下面,构成360×1的向量,再把其他的碎片采用相同的办法得到360×1的向量,再用问题一的方法,计算出各碎片之间的Manhattan距离。

其次,根据每个碎片顶部的空白高度或者文字高度对碎片进行区间分类,得到22组矩阵,然后应用曼哈顿距离将得到的22组矩阵聚成两类,每类各包含两面的11组矩阵,最后利用Manhattan距离在竖直方向上进行聚合得到完整的图像。

本文最后,我们根据算法的效率实现进行了改进和优化,实现算法的移植性、灵活性、运行效率等得以提升。

关键词:曼哈顿距离,聚类分析,二值化处理一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

二、问题分析我们从附件中的碎片数据可知由于碎纸机产生的碎纸片边缘是规则的,此时碎纸片计算机拼接方法就不能利用碎片边缘的尖点特征、尖角特征、面积特征等基于边界几何特征的拼接方法,而要利用碎片内的字迹断线或碎片内的文字内容是否匹配搜索与之匹配的相邻碎纸片并进行拼接。

首先,我们对碎片内图像进行数据化处理,得到对应的像素值矩阵;然后,我们设置阈值对像素值矩阵进行二值化处理得到相应的数值矩阵;最后,由于曼哈顿距离公式计算快、数值小,数值矩阵与数值矩阵之间应用最小曼哈顿距离对碎纸片进行拼接复原。

问题一中碎纸机破碎纸片只有纵切,每页纸被切为19条碎片,经过处理可以得到19个数值矩阵。

对于每个数值矩阵,我们依次取出最左边一列从上至下各格的值组成一个向量,同样我们依次取出最右边一列从上至下各格的值组成一个向量。

计算出每一数值矩阵的左边向量与所有非同源数值矩阵的右边向量的曼哈顿距离,再将得到的距离值进行排序,当某个距离值最小时、说明相应的左边向量与右边向量的匹配率最大,则该距离对应的左、右边认为是可拼接的。

若得到的最小距离值不止一个,则此时需要进行人工干预。

问题二是对碎纸机既纵切又横切的情形进行讨论,比问题一多了横切条件,此时每页纸被切为209个碎片。

首先,我们利用文件最左边碎片与最上面碎片的特殊性对这209个碎片进行聚类,得到两类特殊的碎片,分别是文件最左边一列碎片和最上面一行碎片,然后类似于问题一的处理方法,应用最小曼哈顿距离对每一类碎片按正确顺序拼接,此后对其余碎片再应用最小曼哈顿距离逐一进行拼接,直至剩余所有的碎片都拼接上。

问题三中,题目要求考虑双面打印文件的碎纸拼接复原问题的解决方案,此时每页纸虽然也是被切为209个碎片,但每个碎片却有正反两面,因此经过处理得到418个数值矩阵,,此时我们分别对每一面各自进行类似问题一的处理,然后综合每一面的聚类情况再应用最小曼哈顿距离对双面碎纸片进行拼接复原。

三、模型假设1. 假设碎纸机破碎纸片(纵切或横切)得到的碎纸片是规则且边缘是整齐的等大的矩形;2.假设我们对文档碎纸片拼接复原不考虑碎片边缘的尖点特征、尖角特征、面积特征等基于边界几何特征;3.假设附件中给出的所有中、英文文件中的文字排版是按标准格式排版的。

4.假设附件中给出的所有中、英文字符都是统一格式,且内容为普通文章。

四、符号说明五、模型建立与求解5.1 问题一(曼哈顿距离)➢ 模型一的建立题目要求对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切)建立碎纸片拼接复原模型和算法,并且要对中、英文各一页文件的碎片数据分别进行拼接复原。

首先,我们利用数学软件MATLAB 软件将19条碎片数据化,得到19个像素值矩阵,像素值的变化范围是从0变化到255,此时我们设置127τ=为阈值对像素值矩阵进行二值化处理,当矩阵某位置像素值小于等于τ时,则将对应位置的数值设为0;当矩阵某位置像素值大于τ时,则将对应位置的数值设为127。

这样我们就得到19个二值化了的数值矩阵iA ,对于每个数值矩阵iA ,我们依次取出最左边一列从上至下各格的值组成一个向量,记为iX ,同样的我们依次取出最右边一列从上至下各格的值组成一个向量,记为i Y 。

计算出每一数值矩阵的左边向量与所有非同源数值矩阵的右边向量的曼哈顿距离(,)i j d X Y 。

➢ 模型一的求解对于得到的向量12(,,...,)(1,2,...,)Ti i i ik X x x x k m ==和向量12(,,...,)(1,2,...,)Ti i i ik Y y y y k n ==,两向量的曼哈顿距离为1(,)||(,1,2,...,)ni j ik jk k d X Y x y i j m i j ==-=≠∑且。

可求出附件1碎片与碎片之间的曼哈顿距离,如下表所示。

表1 附件1碎片与碎片间的曼哈顿距离从而可得到附件1碎片序号按复原后顺序如下表所示。

表2 附件1碎片序号复原后顺序附件1碎片复原图片如附录中图8.1所示。

同法可求出附件2碎片与碎片之间的曼哈顿距离,如下表所示。

表3 附件2碎片与碎片间的曼哈顿距离从而可得到附件2碎片序号按复原后顺序如下表所示。

表4 附件2碎片序号复原后顺序附件2碎片复原图片如附录中图8.2所示。

问题一人工干预情况如下表所示。

表5 问题一人工干预情况5.2 问题二(Manhattan 距离)➢ 模型二的建立在中文文件中,两个连续的汉字中间的空白间隔所占像素宽度与其左边或者右边的汉字所占像素宽度的比值最大的约为213,则对于每一行文字,碎纸机纵切未切到文字的概率为213,对于每两行文字碎纸机纵切未切到文字的概率为4169,而对于每三行文字碎纸机纵切未切到文字的概率更小,可以忽略不计,所以对于总共209个碎片,每个碎片上面的文字至少有两行(碎片上不完整的一行也算一行),所以出现某个碎片上面的文字完全没被碎纸机切割到(即文字完整无缺)的概率至多为4169,我们把这样的碎片称之为干扰碎片。

我们知道,整篇文件的最上面一行字的上边缘是空白的,我们可以利用此特殊性对209个碎纸片进行聚类,可以得到一个特殊的类,即碎纸片上边缘为空白的类,此类碎纸片个数大于等于11;出现个数大于11的情形即为混入上面提到的干扰碎片,此概率最大不超过4169,可知此类碎纸片应该拼接在文件最上面一行,应用最小曼哈顿距离对此类碎片按正确顺序拼接。

同理可聚类出另一个特殊的类,即碎纸片左边缘为空白、拼接在文件最左边一列的类,并且也应用最小曼哈顿距离对此类碎片按正确顺序拼接。

然后以此拼接好的第一行和第一列碎片为基准,再应用最小曼哈顿距离拼接其余剩下的碎片,最后拼接复原出原中文文件。

在英文文件中,一个英文单词中两个连续的英文字母中间的空白间隔所占像素宽度与其左边或者右边的英文字母所占像素宽度的比值最大的约为111,则对于每一行英文单词,碎纸机纵切未切到英文单词的概率为111,对于每两行英文单词碎纸机纵切未切到英文单词的概率为1121,而对于每三行英文单词碎纸机纵切未切到英文单词的概率为,然后同上述中文文件的分析过程可知,此时对拼接在文件最左边一列归类时混入上面提到的干扰碎片的概率最大不超过,最后拼接复原出原英文文件。

➢模型二的求解我们利用SPSS软件根据每个碎片顶部空白高度或者文字高度的不同,应用聚类分析方法将碎片聚成11类,结果如下图所示。

图1 根据碎片顶部文字高度聚类图2 根据碎片顶部空白高度聚类结合上面的聚类图,可得出附件3的乱序矩阵,如下表所示。

表6 附件3的乱序矩阵同样的方法可得出附件4的乱序矩阵,如下表所示。

表7 附件4的乱序矩阵然后我们先求出附件3碎片与碎片之间的曼哈顿距离,从而得到附件3碎片序号按复原后顺序如下表所示。

表8 附件3碎片序号复原后顺序附件3碎片复原图片如附录中图8.3所示。

同法我们再求出附件4碎片与碎片之间的曼哈顿距离,从而得到附件4碎片序号按复原后顺序如下表所示。

表9 附件4碎片序号复原后顺序附件4碎片复原图片如附录中图8.4所示。

问题二人工干预情况如下表所示。

5.3 问题三(曼哈顿距离)➢模型三的建立问题三在问题二的基础上继续加大碎片拼接复原难度,此时我们对双面碎纸片进行类似问题一的处理,得到418个数值矩阵,我们根据每个碎片顶部的空白高度或者文字高度对碎片进行区间分类,得到22组矩阵,再根据曼哈顿距离将得到的22组矩阵聚成两类,每类各包含某一面的11组矩阵,然后综合每一面的聚类情况再应用最小曼哈顿距离对双面碎纸片进行拼接复原。

相关文档
最新文档