第四节有阻尼的自由振动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节有阻尼自由振动
(Damped Free Vibration)
前面的自由振动都没有考虑运动中阻力的影响。实际系统的机械能不可能守恒,因为总存在着各种各样的阻力。振动中将阻力称为阻尼,例如粘性阻尼、库伦阻尼(干摩擦阻尼)、和结构阻尼及流体阻尼等。尽管已经提出了许多种数学上描述阻尼的方法,但是实际系统阻尼的物理本质仍然极难确定。
一、粘性阻尼(Viscous Damping)
------------- 最常见的阻尼力学模型
在流体中低速运动或沿润滑表面滑动的物体,通常就认为受到粘性阻尼。粘性阻尼力与相对速度成正比,即
=
F cx
F--- 粘性阻尼力,x--- 相对速度
⋅
c--- 粘性阻尼系数(阻尼系数),单位:N S m
二、粘性阻尼自由振动
()
k x ∆+
以静平衡位置为坐标原点建立坐标系。由牛顿运动定律,得运动方程
0mx cx kx ++= (2-10)
设方程的解为
()st
x t Ae
=
代入式(2-10),得
2()0st ms cs k Ae ++=
因为0A ≠,所以在任一时间时均能满足上式条件为
2
0ms cs
k ++= (2-11)
------ 系统的特征方程(频率方程) 它的两个根为
1,2
2c s m =-± (2-12)
则方程(2-10)的通解为
1211212s t s t c t m
x A e A e e
A A e
=+⎛⎫ ⎪=+ ⎪⎝
⎭
(2-13)
式中1A 和2A 为任意常数,由初始条件
00(0),(0)x x x x ==
确定。显然方程(2-10)的解(2-13)的性质取决于
是实数、零,还是虚数。 当
2
02c k m m
⎛⎫
-= ⎪⎝⎭ 时的阻尼系数称为临界阻尼系数,用0c 表示。因此
02n c m ω==
令
02n
c c c
c m ζω===
叫做阻尼比。
∵
022n c c m m
ζζω==
∴ 式(2-12)可写成
(
1,2n s ζω=-± (2-14)
可见1s 和2s 的性质决定于ζ的值。
1. 1ζ
> (c >
系统称为过阻尼系统(强阻尼)。 运动方程的解为
()
1
2n n n t
t
t
x e
A A e
ζω-=+
这是一种按指数规律衰减的非周期蠕动。
2. 1ζ
= (c =
系统称为临界阻尼系统。 运动方程的解为
()12n t
x e
A A t ω-=+
这是一种按指数规律衰减的非周期运动。
3. 1ζ<
(c <
系统称为弱阻尼系统(欠阻尼)。
式(2-12)可写成
(1,2n s ζω=-±
令
d
n ω= --- 有阻尼固有频率
故运动方程的解为
()1
2n d d t
j t
j t
x e
A e
A e
ζωωω--=+
由欧拉公式cos sin j e
j θ
θθ±=±,则上式可写为
()12cos sin n t d d x e C t C t ζωωω-=+
式中1C 和2C 是待定常数,由初始条件确定。设0t =时,有
00(0),(0)x x x x ==
则系统对初始条件的响应为
00
0cos sin n t
n d d d x x x e
x t t ζωζωωωω-⎛⎫+=+
⎪⎝⎭
(2-18) 上式也可写为
()sin n t d x Ae t ζωωϕ-=+
其中
00000,n d
n x x x A tg x x ζωωϕωζω+==
+
A
因
max n t
x Ae
ζω-=
所以响应的振幅被限制在曲线n t
Ae
ζω-±之内,随时间而逐渐
衰减。因而有阻尼系统的自由振动是衰减振动,当t →∞,
0x →
,振动最终消失。
阻尼对自由振动的影响:
(1)设无阻尼系统的自由振动振动周期为2n
n
T π
ω=
有阻尼系统的自由振动振动周期为
22d
T π
πω=
=
可见:阻尼使自由振动的周期增大,频率降低。当阻尼较小时,例如
0.05 1.001250.999n d n T T ζωω=== 0.2 1.020.980n d n T T ζωω===
所以在阻尼较小时,阻尼对周期和频率的影响可以忽略不计。
(2)设相邻两次振动的振幅分别为i x 和1i x +,则振幅比为
()
1n i
n n i t T
i t T i x Ae e x Ae
ζωζωζωη--++=== 式中η称为减幅系数。可见阻尼比ζ越大,减幅系数η就越大,振幅衰减得就越快。例如
10.05 1.37
0.73i i x x ζη+===
即每一个周期内振幅减小27﹪.由此可见,即使阻尼较小时,振幅的衰减也是很快的。