期权定价公式及其应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C(S,T ) Se( )T N (d1 ) Ke T N (d 2 )
其中
d1
1
T
log
S K
(
1 2
2
)T
,
d2 d1 T
是期权价格的平均增长率。
1969年,他又与其研究生Merton合作,提出了把 期 权价格作为标的股票价格的函数的思想。
C(S,T ) SN (d1 ) KeT N (d2 ),
其中,
d1
1
T
log
S K
(
1 2
2
)T
,
d2 d1 T
(4) 塞缪尔森 (Samuelson, 1965)
1965年,著名经济学家萨缪尔森(Samuelson)把上 述 成果统一在一个模型中。
权的定价公式
C(S,T ) SN( S K ) KN ( S K ) T n( K S )
T
T
T
n是标准正态分布的密度函数
但他在建立模型时有3个假设与现实不符。
第一,假设标的股票的价格服从标准正态分布。这使得 股价出现负值的概率大于零,从而与现实明显不符。
第二,认为在离到期日足够远的时候,买权的价值可能大 于标的股票的价值,这显然也是不可能的。
Ke rT 15e0.1(0.25) 14.6296
d1
log(18
/15)
0.1 பைடு நூலகம்.15
(0.15)2 (0.5) 0.25
0.25
0.21013 2.8017 0.075
d2 d1 0.15 0.25 2.7267
把这些值代入公式,得到:
C 18 N (2.8017 ) 15e0.1(0.25) N (2.7267 )
我们可以看到,所有这些公式都与后来的BlackScholes公式有许多相似的地方。
在1973年Black和Scholes提出Black—Scholes期权 定价模型.
20世纪60年代末,两人开始合作研究期权的定价问 题,并找到了建立期权定价模型的关键突破点,即构造一 个由标的股票和无风险债券的适当组合(买入适当数量的 标的股票,同时按无风险利率借入适当金额的现金)。该 组合具有这样的特点,即无论未来标的资产价格如何变化, 其损益特征都能够完全再现期权在到期日的损益特征。
对于具有固定现金流的金融产品、如债券等金融工具, 其价格都是通过净现值方法来确定的。
对于期权来讲,其风险究竟有多大?如何计算出相应 的风险溢价以及未来的现金流? 这都是较为难解决的问题。
3. Black-Scholes公式发展过程
(1) 巴列切尔公式 ( Bachelier 1900)
法国 数学家 Bachelier· Louis,在其博士论文 《The Theory of Speculation》中首次给出了欧式买
1976年,Merton把B—S期权定价模型推广到股票价格变化 可能存在跳跃点的场合,并包含了标的股票连续支付股利 的情况,从而把该模型的实用性又大大推进了一步,学术 界将其称为Merton模型。
另外Cox,Ross和Rubinstein等人还提出了二项式期权定 价模型。他们最初的动机是以该模型为基础,从而为推导 B-S模型提供一种比较简单和直观的方法。 但是,随着研究的不断深入,二项式模型不再是仅仅作为 解释B-S模型的一种辅助性工具,它已经成为建立复杂期 权(如美式期权和非标准的变异期权)定价模型的基本 手段。
第三,假设股票的期望报酬(即股价变化的平均值)为零, 这也违背了股票市场的实际情况。
(2) 斯普伦克莱 ( Sprenkle ,1961) 在Bachelier的研究基础上,人们对期权定价问题进行 了长期的研究。
1961年Sprenkle提出了“股票价格服从对数正态分布” 的基本假设,并肯定了股价发生随机漂移的可能性。
第九章 期权定价公式及其应用
第一节Black-Scholes期权定价公式 一、引言
1. Black-Scholes公式 经典的Black-Scholes期权定价公式是 对于欧式股票期权给出的。其公式为
C(S,T ) SN (d1 ) KerT N (d 2 ),
其中T是到期时间,S是当前股价,C(S,T )
C(S,T ) e T SN (d1 ) (1 A)KN (d2 )
其中
d1
1 T
log
S K
(
1
2
2 )T ,
d2 d1 T
是股票价格的平均增长率,
A是对应的风险厌恶程度。
(3) 博内斯 ( Boness, 1964)
1964年,Boness将货币时间价值的概念引入到期权 定价过程,但他没有考虑期权和标的股票之间风险水平 的差异。
Black和Scholes得到了描述期权价格变化所满足的 随机偏微分方程,即所谓的B—S方程。
从而得出了期权定价模型的解析解,这就是B—S模型。
Merton也对期权定价理论和实践的发展做出了独立的 和开创性的贡献,他几乎在与Black和Scholes同一时间,得 到了期权定价模型及其他一些重要的成果。
利用累积正态函数在点2.8017和2.7267处的 近似值,买入期权的价格是3.3749,即
C 18(0.997) 14.6296(0.996) 3.3749
更精确的计算可得: C 3.3714
2. 金融资产的定价问题
金融资产的定价问题(asset valuation)是现代财务 金融理论的一个基本问题。
是作为当前股价和到期时间的函 数的欧式买 入期权的价格.
1 S
2
d1
T
log
K
(r
2
)T
d2 d1 T
K是期权的执行价格,r是无风险证券的(瞬时)
收益率, 称为股价的波动率{volatility ,这是一个
需要测算的参数}
N称为累积正态分布函数,定义为
N(d) 1
y2 d
e 2 dy
2
图1 期权价格曲线随到期时间T的变化
Black-Scholes公式的方便之处在于除股价的 波动率外,其他参数都是直接在市场上可以找到的。
例如,如果这里价格以元计,时间以年计,从而涉 及的两个比率都指的是年率。那么(以下的等号实 际上都是近似等号)