高等数学常用的积分公式查询表

合集下载

高数积分公式大全

高数积分公式大全

⾼数积分公式⼤全常⽤积分公式(⼀)含有ax b +的积分(0a ≠) 1.d x ax b +?=1ln ax b C a ++2.()d ax b x µ+?=11()(1)ax b C a µµ++++(1µ≠-)3.d x x ax b +?=21(ln )ax b b ax b C a +-++4.2d x x ax b +?=22311()2()ln 2ax b b ax b b ax b C a ?? +-++++5.d ()xx ax b +?=1ln ax b C b x +-+6.2d ()xx ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +?=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +?=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2x ax b +?=211ln ()ax b C b ax b b x +-++的积分10.x C +11.x ?=22(3215ax b C a -12.x x ?=22232(15128105a x abx b C a-+13.x=22(23ax b Ca -14.2x ?=2223.?(0)(0)C b C b ?+><16.2a b - 17.d x x ?=b ?18.x ?=2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a+ 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22d xx a -?=1ln 2x a C a x a -++22.2d x ax b +?=(0)(0)C b C b ?+>+<23.2d x x ax b +?=21ln 2ax b C a++24.22d x x ax b +?=2d x b xa a ax b-+?25.2d ()x x ax b +?=221ln 2x C b ax b++26.22d ()x x ax b +?=21d a x bx b ax b --+?27.32d ()x x ax b +?=2222 1ln 22ax b a C b x bx+-+ 28.22d ()x ax b +?=221d 2()2x x b ax b b ax b +++?(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++?=22(4)C b ac Cb ac +<+>30.2d x x ax bx c ++?=221d ln 22b x ax bx c a a ax bx c ++-++?(0)a >的积分 31.=1arshxC a +=ln(x C ++ 32.C +33.x ?C34.x=C +35.2x2ln(2a x C +36.2x =ln(x C +++37.1ln aC a x -+38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88 x x a a x C ++42.xx ?=422(2ln(88x a x a x C +++43.x ?a C +44.x ?=ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +C48.x =C+49.2x 2ln 2a x C +++50.2x =ln x C +++51.1arccos aC a x+52.2C a x +53.x 2ln 2a x C -++54.x =2243(25ln 88 x x a a x C -++55.x ?C56.xx ?=422(2ln 88x a x a x C -+57.x ?arccos a a C x -+58.x ?=ln x C +++(0)a >的积分 59.=arcsinxC a + 60.C +61.x ?=C+62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.1C a +66.2C a x -+67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ?=C70.xx ?=422(2arcsin 88x a x x a C a-+71.x ?ln a a C x ++72.x ?=arcsin xC a-+(0)a >的积分73.2ax b C +++22ax b C + +++75.x ?2ax b C -+++76.=C +77.x 2C +78.x ?=C ++79.x ?=((x b b a C --+80.x ?=((x b b a C -+-81.=C ()a b <82.x 2()arcsin 4b a C -+ ()a b < (⼗⼀)含有三⾓函数的积分 83.sin d x x ?=cos x C-+84.cos d x x ?=sin x C + 85.tan d x x ?=ln cos x C -+ 86.cot d x x ?=ln sin x C + 87.sec d x x ?=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ?=ln tan2sec d x x ?=tan x C + 90.2csc d x x ?=cot x C -+ 91.sec tan d x x x ?=sec x C + 92.csc cot d x x x ?=csc x C -+93.2sin d x x ?=1sin 224x x C -+ 94.2cos d x x ?=1sin 224x x C ++95.sin d nx x ?=1211sin cos sin d n n n x x x x n n----+? 96.cos d n x x ?=1211cos sin cos d n n n x x x x n n---+? 97.d sin n x x ?=121cos 2d 1sin 1sin n n x n xn x n x----?+--? 98.d cos n x x ?=121sin 2d 1cos 1cos n n x n xn x n x---?+--? 99.cos sin d m nx x x ?=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++? =112 11cos sin cos sin d m n m n n x x x x x m n m n+----+++? 100.sin cos d ax bx x ?=11cos()cos()2()2()a b x a b x Ca b a b -+--++-101.sin sin d ax bx x ?=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ?=a b x a b x C a b a b ++-++-103.d sin xa b x +?tanxa b C ++22()a b >104.d sin x a b x +?C+22()a b <105.d cos xa b x +?)2x C +22()a b >106.d cos x a b x +?C +22()a b <107.2222d cos sin x a x b x +?=1arctan(tan )b x C ab a + 108.2222d cos sin xa xb x -?=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ?=211111.cos d x ax x ?=211cos sin ax x ax C a a ++112.2cos d x ax x ?=223122sin cos sin x ax x ax ax C a a a +-+(⼗⼆)含有反三⾓函数的积分(其中0a >)113.arcsin d x x a ?=arcsin x x Ca+114.arcsin d xx x a ?=22()arcsin 24x a x C a -+115.2arcsin d x x x a=3221arcsin (239x x x a C a ++116.arccos d xx a ?=arccosxx C a-+117.arccos d xx x a ?=22()arccos 24x a x C a --118.2arccos d x x x a=3221arccos (239x x x a C a -+119.arctan1()arctan 22x a a x x C a +-+121.2arctan d xx x a=33222arctan ln()366x x a a x a x C a -+ ++ (⼗三)含有指数函数的积分122.d xa x ?=1ln xa C a + 123.e d axx ?=1e ax C a +124.e d ax x x ?=21(1)e axax C a-+125.e d n axx x ?=11e e d n ax n ax n x x x a a--?126.d xxa x ?=21ln (ln )x xx a a C a a -+ 127.d nxx a x ?=11d ln ln n x n x nx a x a x a a --? 128.e sin d ax bx x ?=2 21e (sin cos )axa bxb bx C a b -++ 129.e cos d axbx x ?=2+++130.e sin d ax nbx x ?=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n--++? 131.e cos d ax nbx x ?=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++? (⼗四)含有对数函数的积分 132.ln d x x ?=ln x x x C -+133.d ln xx x ?=ln ln x C +134.ln d nx x x ?=111(ln )11n x x C n n +-+++135.(ln )d nx x ?=1(ln )(ln )d n nx x n x x --?111(ln )(ln )d 11m n m n nx x x x x m m +--++? (⼗五)含有双曲函数的积分 137.sh d x x ?=ch x C + 138.ch d x x ?=sh x C + 139.th d x x ?=lnch x C +140.2sh d x x ?=1sh224x x C -++ 141.2ch d x x ?=1sh224x x C ++(⼗六)定积分 142.cos d nx x π-π?=sin d nx x π-π=0143.cos sin d mx nx x π-π=0144.cos cos d mx nx x π-π=0,,m nm n≠??π=? 145.sin sin d mx nx x π-π?=0,,m nm n ≠??π=?146.sin sin d mx nx x π=0cos cos d mx nx x πm n m n ≠??π=??147. n I =20sin d nx x π=20cos d n x x πn I =21n n I n-- 1342253n n n I n n --=??- (n 为⼤于1的正奇数),1I =1 13312422n n n I n n --π=??-(n 为正偶数),0I =2π(注:专业⽂档是经验性极强的领域,⽆法思考和涵盖全⾯,素材和资料部分来⾃⽹络,供参考。

积分公式表

积分公式表

积分公式表在数学中,积分是微积分的重要概念之一。

积分公式是积分运算的基础,它们可以帮助我们简化积分运算过程,求解各种函数的不定积分和定积分等。

本文将介绍一些常用的积分公式和它们的应用。

一、基本积分公式1. 幂函数的积分1.1 $∫x^n \\,dx= \\frac{x^{n+1}}{n+1} + C$其中C为常数。

1.2 $∫k \\,dx= kx + C$其中k为常数。

2. 三角函数的积分2.1 $∫\\sin(x) \\,dx= -\\cos(x) + C$2.2 $∫\\cos(x) \\,dx= \\sin(x) + C$2.3 $∫\\sec^2(x) \\,dx= \\tan(x) + C$其中C为常数。

3. 指数函数和对数函数的积分3.1 $∫e^x \\,dx= e^x + C$3.2 $∫\\ln(x) \\,dx= x \\ln(x) - x + C$其中C为常数。

4. 反三角函数的积分4.1 $∫\\frac{1}{\\sqrt{1-x^2}} \\,dx= \\arcsin(x) + C$ 4.2 $∫\\frac{1}{1+x^2} \\,dx= \\arctan(x) + C$其中C为常数。

二、常用积分公式1. 分部积分法分部积分法用于求解两个函数的乘积的积分。

公式:$∫u \\,dv= uv - ∫v \\,du$2. 替换积分变量法替换积分变量法是通过引入新的变量替换原有变量,以简化积分运算过程。

3. 常见积分公式以下是一些常见的积分公式:3.1 $∫\\frac{1}{a^2+x^2} \\,dx= \\frac{1}{a}\\arctan(\\frac{x}{a}) + C$3.2 $∫\\frac{1}{\\sqrt{a^2-x^2}} \\,dx= \\arcsin(\\frac{x}{a}) + C$3.3 $∫\\frac{1}{\\sqrt{x^2 \\pm a^2}} \\,dx= \\ln(x +\\sqrt{x^2 \\pm a^2}) + C$3.4 $∫e^{ax} \\sin(bx) \\,dx =\\frac{e^{ax}}{a^2+b^2}(a\\sin(bx)-b\\cos(bx)) + C$以上公式仅为一部分常用积分公式,对于更多的积分公式和具体的积分操作,可以参考相关的数学教材或网上资源。

(完整word版)积分公式

(完整word版)积分公式

2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如arctan x d,ln x d我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。

高等数学积分公式大全---精品管理资料

高等数学积分公式大全---精品管理资料

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.(0)(0)C b C b ⎧+>+<16.2a b - 17.x=b 18.x=2a +(三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x aC a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b+⎰=2d x b x a a ax b -+⎰25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C ++ 32.C +33.xC34.x=C +35.2x 2ln(2a x C ++36.2x ⎰=ln(x C +++37.1lnaC a x +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.2d x x ⎰=ln(x C x-+++(七)(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.1arccos aC a x+52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x x⎰arccos a a C x -+58.2d x x ⎰=ln x C x-+++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.1C a +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-++71.x a C +72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C ++++75.x2ax b C -+++76.=C +77.x 2C ++78.x =C +79.x =((x b b a C --+80.x =((x b b a C --81.C()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d nx x ⎰=1211cos sin cos d n n n x x x x n n ---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tan xa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos x a b x +⎰)2xC +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a-117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d axx x ⎰=21(1)e ax ax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n xn x a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰(十五)含有双曲函数的积分137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

高数微积分基本公式大全

高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。

常见积分公式表

常见积分公式表

常见积分公式表常见积分公式表在微积分中,积分是一个重要的概念,它可以用来求解曲线下的面积、求解函数的原函数等。

而积分公式则是在求解积分过程中经常使用的一些公式,它们可以帮助我们简化计算,提高效率。

下面是一些常见的积分公式表:1. 基本积分公式:- ∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1- ∫e^x dx = e^x + C- ∫a^x dx = (1/ln(a)) * a^x + C,其中a为常数且不等于1- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C- ∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C- ∫csc(x)cot(x) dx = -csc(x) + C2. 特殊函数积分公式:- ∫1/(1+x^2) dx = arctan(x) + C- ∫1/(√(1-x^2)) dx = arcsin(x) + C- ∫1/(√(x^2+1)) dx = ln(x + √(x^2+1)) + C- ∫e^x/(1+e^x) dx = ln(1+e^x) + C- ∫sinh(x) dx = cosh(x) + C- ∫cosh(x) dx = sinh(x) + C3. 三角函数积分公式:- ∫sin^n(x) dx = (-1/(n-1)) * sin^(n-1)(x) * cos(x) + (n-2)/(n-1) *∫sin^(n-2)(x) dx,其中n不等于1- ∫cos^n(x) dx = (1/(n-1)) * cos^(n-1)(x) * sin(x) + (n-2)/(n-1) *∫cos^(n-2)(x) dx,其中n不等于14. 指数函数积分公式:- ∫a^x ln(a) dx = (1/(ln(a))^2) * a^x + C,其中a为常数且不等于15. 分部积分公式:- ∫u dv = uv - ∫v du6. 替换积分公式:- ∫f(g(x)) g'(x) dx = ∫f(u) du,其中u = g(x)这些是常见的积分公式,掌握它们可以在求解积分时事半功倍。

高等数学积分公式大全

高等数学积分公式大全

常 用 积 分 公 式一含有ax b +的积分0a ≠ 1.d x ax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++1μ≠-3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C +11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+15.=(0)(0)C b C b ⎧+><16.2a b - 17.x=b +18.x=2a x -+ 三含有22x a ±的积分 19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d xx a -⎰=1ln 2x a C a x a-++ 四含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b--+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b +++⎰ 五含有2ax bxc ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arsh xC a+=ln(x C + 32.C +33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.1ln aC a x -+ 38.C + 39.x2ln(2a x C ++40.x =2243(25ln(88x x a a x C ++++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C +++43.d x x ⎰ln a a C x ++44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C +48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.1arccosaC ax+52.C +53.x 2ln 2a x C ++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.x x ⎰=422(2ln 88x a x a x C -++57.d x x⎰arccos a a C x +58.2d x x ⎰=ln x C x-+++(0)a >的积分 59.=arcsin xC a+ 60.C +61.x =C62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.1ln a C a x +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C +70.x x ⎰=422(2arcsin 88x a x x a C a-+71.x a C ++72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x75.x 76.=C +77.x 2C ++78.x =C +79.x =((x b b a C --++80.x =((x b b a C --81.C ()a b <82.x 2()4b a C -++ 十一含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n ---+⎰97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n -+--+++⎰=11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C +22()a b <105.d cos xa b x+⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a+ 108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+十二含有反三角函数的积分其中0a > 113.arcsin d xx a ⎰=arcsin x x C a+114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a117.arccos d xx x a ⎰=22()arccos 24x a x C a --+118.2arccos d xx x a⎰=3221arccos (239x x x a C a -++119.arctan d xx a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++十三含有指数函数的积分122.d x a x ⎰=1ln xa C a + 123.e d ax x ⎰=1e ax C a +124.e d ax x x ⎰=21(1)e ax ax C a -+125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x xx a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n xn x a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b -++129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++十四含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n nx x x x x m m +--++⎰ 十五含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224xx C -++ 141.2ch d x x ⎰=1sh224x x C ++ 十六定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- n 为大于1的正奇数,1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-n 为正偶数,0I =2π。

高等数学常用积分公式查询表

高等数学常用积分公式查询表

导数公式:基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax b C b x+-+ 6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++9.2d ()x x ax b +⎰=211ln ()ax bC b ax b b x+-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+>+<16.2a bx b --17.x=b 18.x=2a +(三)含有22x a ±的积分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x a C a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b +⎰=2d x b xa a axb -+⎰25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()xx ax b +⎰=22221ln 22ax b a C b x bx +-+ 28.22d ()xax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a+=ln(x C ++ 32.=C +33.x=C +34.x=C +35.2x =2ln(2a x C -++36.2x =ln(x C ++37.1C a +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C + 46.C +47.x =C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++51.1arccos aC a x +52.C +53.x =2ln 2a x C ++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C +56.xx ⎰=422(2ln 88x a x a x C -++57.x x⎰=arccos a a C x +58.x =ln x C +++(0)a >的积分59.=arcsinxC a+ 60.C +61.x =C62.x C +63.2x =2arcsin 2a x C a ++ 64.2x arcsinxC a-+65.1C a +66.C +67.x =2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.d x x⎰a C +72.2d x x ⎰=arcsin xC x a--+(0)a >的积分73.2ax b C +++08070141常用导数和积分公式74.x =2n 2a x b c C+++75.xn 2a x b c C+++ 76.C +77.x =2C +78.x =C +79.x =((x b b a C --+80.x =((x b b a C -+-81.C ()a b <82.x 2()4b a C -+ ()a b <(十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2xC +=ln csc cot x x C -+ 89.2secd x x ⎰=tan x C +90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin x a b x +⎰tan xa b C ++22()a b >104.d sin x a b x+⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a-117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e s i n d a x n n n b b x x a b n--++⎰ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e c o s d a x n n n b b x x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π。

完整word版,高等数学常用积分公式查询表

完整word版,高等数学常用积分公式查询表

导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x+-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+><16.=2a bx b --⎰17.d x x ⎰=b 18.2d x x ⎰=2a +(三)含有22x a ±的积分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b +⎰=2d x b xa a ax b-+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.=C +33.x=C34.x=C +35.2x =2ln(2a x C ++36.2x =ln(x C +++37.=1ln aC a x +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.x x ⎰=422(2ln(88x a x a x C+++43.d x x ⎰a C +44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x =C48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos aC a x +52.2C a x+53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C +56.x x ⎰=422(2ln 88x a x a x C -++57.x =arccos aa C x -+58.x =ln x C ++(0)a >的积分59.=arcsinxC a + 60.C +61.x =C +62.x =C +63.2x =2arcsin 2a x C a ++ 64.2x arcsinxC a-+65.=1C a +66.2C a x -+67.x 2arcsin 2a x C a++68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.x x ⎰=422(2arcsin 88x a x x a C a-+71.x ln a a C x +72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C +++76.=C +77.x 2C +78.x =C ++79.x =((x b b a C -+-+80.x =((x b b a C -+-+81.2arcsinC +()a b <82.x 2()4b a C - ()a b <(十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2xC +=ln csc cot x x C -+ 89.2secd x x ⎰=tan x C +90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n x n x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanx a b C ++22()a b >104.d sin xa b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a117.arccos d x x x a⎰=22()arccos 24x a x C a --+118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -++ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

高等数学积分公式大全

高等数学积分公式大全

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b+⎰=1ln ax b C a++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b+⎰=21(ln )ax b b ax b C a+-++4.2d xx ax b+⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦ 5.d ()xx ax b +⎰=1ln ax b C b x +-+6.2d ()xx ax b +⎰=21lna axb C bx bx+-++7.2d ()x x ax b +⎰=21(ln )b ax b C aax b++++8.22d ()xx ax b +⎰=231(2ln )bax b b ax b C aax b+-+-++9.2d ()x x ax b +⎰=211ln()ax b C b ax b bx+-++的积分10.x ⎰=C11.x ⎰=22(3215ax b C a-+12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a-+14.2x⎰=22232(34815a x abx b C a-+15.⎰(0)(0)C b C b ⎧+>⎪<⎪⎩16.d x ⎰=2a bxb --⎰17.x x ⎰=b ⎰18.2d x x⎰=2ax-+⎰(三)含有22x a ±的积分 19.22d x x a+⎰=1arctanx C aa+20.22d ()nx x a +⎰=2221222123d 2(1)()2(1)()n n xn xn a x a n axa ---+-+-+⎰21.22d x x a-⎰=1ln 2x a C ax a-++(四)含有2(0)ax b a +>的积分22.2d x ax b+⎰=(0)(0)Cb Cb ⎧+>⎪⎪⎨+<23.2d x x ax b+⎰=21ln 2ax b C a ++ 24.22d xx ax b+⎰=2d x bxaa axb-+⎰25.2d ()xx ax b +⎰=221ln2xC bax b++26.22d ()xx ax b +⎰=21d axbxb axb--+⎰27.32d ()x x ax b +⎰=22221ln22ax b a C bxbx+-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b axb+++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<⎨+>30.2d x x ax bx c++⎰=221d ln 22b xax bx c aaaxbx c++-++⎰(0)a >的积分 31.⎰=1arshx C a+=ln(x C ++32.⎰C +33.x ⎰C34.x ⎰=C -+35.2x ⎰2ln(2ax C ++36.2x ⎰=ln(x C -+++37.⎰1lnaC ax +38.⎰=2C a x-+39.x ⎰=2ln(2ax C +++40.x ⎰=2243(25ln(88x x a a x C ++++41.x ⎰=C +42.xx ⎰=422(2ln(88x ax a x C +++43.x x ⎰lna C +44.2d x x⎰=ln(x C x-+++(0)a >的积分45.⎰1archx x C xa+=ln x C ++46.⎰C -+47.x ⎰C48.x ⎰=C -+49.2x ⎰2ln 2ax C +++50.2x ⎰=ln x C -+++51.⎰=1arccosa C ax+52.⎰=2C a x+53.x ⎰2ln 2ax C +54.x ⎰=2243(25ln 88x x a a x C -++55.x ⎰=C +56.xx ⎰=422(2ln 88x ax a x C --++57.x x ⎰arccosa a C x+58.x x⎰=ln x C x-+++(0)a >的积分59.⎰=arcsinx C a +60.⎰C +61.x ⎰=C +62.x ⎰C +63.2x ⎰=2arcsin2ax C a-+64.2x ⎰arcsinx C a-+65.⎰=1lna C ax-+66.⎰=2C a x-+67.x ⎰2arcsin2ax C a+68.x ⎰=2243(52arcsin88x x a x a C a-++69.x ⎰=C -70.xx ⎰=422(2arcsin88x ax x a C a-+71.x x ⎰lna C +72.x x⎰=arcsin x C xa--+(0)a >的积分73.⎰12ax b C +++74.x ⎰2n 2a x b c C++++75.x ⎰=n 2a x b c C-+++ 76.⎰=C -+77.x ⎰2C ++78.x ⎰=C -+79.x ⎰=(()x b b a C -+-+80.x ⎰=(()arcsinx b b a C --81.⎰2arcsinC +()a b <82.x ⎰=2()arcsin4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2x C +=ln csc cot x x C -+89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+ 93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sind n n n x x x x nn ----+⎰96.cos d nx x ⎰=1211cos sin cosd n n n x x x x nn---+⎰97.d sin nx x ⎰=121cos 2d 1sin 1sinn n xn xn xn x ----⋅+--⎰ 98.d cos n x x⎰=121sin 2d 1cos1cosn n xn xn xn x---⋅+--⎰99.cos sin d m nx x x ⎰=11211cos sincossin d m n m nm x x x x x m nm n-+--+++⎰=11211cossin cos sind m n mn n x x x x x m nm n+----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin x a b x+⎰=tanx a bC++22()a b >104.d sin x a b x+⎰=C+22()a b <105.d cos x a b x+⎰)2x C +22()a b >106.d cos x a b x+⎰C+22()a b <107.2222d cos sin xa xb x+⎰=1arctan(tan )b x C aba+108.2222d cos sin xa xb x-⎰=1tan ln2tan b x a C ab b x a++-109.sin d x ax x ⎰=211sin cos ax x ax C aa-+110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C aaa-+++111.cos d x ax x ⎰=211cos sin ax x ax C aa++ 112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C aaa+-+(十二)含有反三角函数的积分(其中0a >) 113.arcsin d xx a⎰=arcsinx x C a +114.arcsind x x x a⎰=22()arcsin24xax C a-+115.2arcsin d x x x a ⎰=3221arcsin(239xx x a C a+++116.arccos d xx a⎰=arccosx x C a-117.arccos d x x x a⎰=22()arccos24xax C a--+118.2arccos d x x x a⎰=3221arccos(239xx x a C a-+119.arctand x x a⎰=22arctan ln()2x a x a x C a-++120.arctand x x x a ⎰=221()arctan 22x a a x x C a+-+121.2arctand x x x a⎰=33222arctanln()366xx a ax a x C a-+++(十三)含有指数函数的积分 122.d xa x ⎰=1ln xa C a +123.e d axx ⎰=1e axC a +124.e d ax x x ⎰=21(1)e axax C a -+ 125.e d naxx x ⎰=11ee d naxn axn x xx aa--⎰126.d xxa x ⎰=21ln (ln )xxx a a C aa -+127.d nxx a x ⎰=11d ln ln nxn xnx a x a x aa--⎰128.e sin d axbx x ⎰=221e (sin cos )axa bxb bx C a b-++ 129.e cos d axbx x ⎰=221e (sin cos )axb bx a bx C a b+++ 130.e sin d axnbx x ⎰=12221esin(sin cos )ax n bx a bx nb bx a b n--+22222(1)es i n d a xn n n b b x x a b n--++⎰131.e cos d axnbx x ⎰=12221ecos (cos sin )axn bx a bx nb bx a b n-++22222(1)e c o s d a xn n n b b x x a b n--++⎰(十四)含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x⎰=ln ln x C +134.ln d nx x x ⎰=111(ln )11n xx C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m nmn nxx x x x m m +--++⎰(十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh 224x x C -++141.2ch d x x ⎰=1sh 224x x C ++(十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =2sin d nx x π⎰=20cos d nx x π⎰ n I =21n n I n--1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =113312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

24个高数常用积分表

24个高数常用积分表

24个高数常用积分表如下:第一个,基本公式。

高数基本24个积分公式:1.∫kdx=kx+C(k是常数)。

2.∫xdx=+1+C,(≠1)+1dx。

3.∫=ln|x|+Cx1。

4.∫dx=arctanx+C21+x1。

5.∫dx=arcsinx+C21x。

6.∫cosxdx=sinx+C。

7.∫sinxdx=cosx+C。

8.∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。

9.∫secxtanxdx=secx+C。

10.∫cscxcotxdx=cscx+C。

11.∫axdx=+Clna。

12.[∫f(x)dx]'=f(x)。

13.∫f'(x)dx=f(x)+c。

14.∫d(f(x))=f(x)+c。

15.∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。

16.∫secxdx=ln|secx+tanx|+c。

17.∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。

18.∫1/√(a^2-x^2)dx=arcsin(x/a)+c。

19.∫sec^2xdx=tanx+c。

20.∫shxdx=chx+c。

21.∫chxdx=shx+c。

22.∫thxdx=ln(chx)+c。

23.令u=1x2,即∫u=23u+C3312122=3u+C=3(1x)+C12d(1x)2。

24.令u=cosx=2,即∫u=22+C=u+C=cosx+C。

第二个,定义。

不定积分。

设f(x)是函数f(x)的一个原函数,把函数f(x)的所有原函数f(x)+c(c 为任意常数)成为函数f(x)的不定积分,记作,即∫f(x)dx=f(x)+c.其中∫名为积分号,f(x)名为被积函数,x名为积分变量,f(x)dx名为被积式,c名为积分常数,求已知函数不定积分的过程也就是对这个函数进行积分。

注:∫f(x)dx+c1=∫f(x)dx+c2,不能推出c1=c2。

常用积分公式表大全

常用积分公式表大全

常用积分公式表大全在数学的学习和应用中,积分是一个非常重要的概念和工具。

积分公式就像是一把把钥匙,能够帮助我们打开解决各种问题的大门。

下面就为大家整理一份常用的积分公式表。

一、基本积分公式1、∫kdx = kx + C (k 为常数)这意味着对于任何常数 k,其积分结果是 k 乘以 x 再加上常数 C。

2、∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)当幂次为 n 时,积分结果为(1/(n + 1))乘以 x 的(n + 1)次幂加上常数 C。

3、∫dx/x = ln|x| + C对 1/x 进行积分,结果是自然对数 ln|x|加上常数 C 。

4、∫e^x dx = e^x + C指数函数 e^x 的积分还是它本身 e^x 加上常数 C 。

5、∫a^x dx =(1/ln a)a^x + C (a > 0,a ≠ 1)对于底数为 a 的指数函数 a^x 的积分,结果是(1/ln a)乘以 a^x 加上常数 C 。

6、∫sin x dx = cos x + C正弦函数 sin x 的积分是 cos x 加上常数 C 。

7、∫cos x dx = sin x + C余弦函数 cos x 的积分是 sin x 加上常数 C 。

8、∫tan x dx = ln|cos x| + C正切函数 tan x 的积分是 ln|cos x|加上常数 C 。

9、∫cot x dx = ln|sin x| + C余切函数 cot x 的积分是 ln|sin x|加上常数 C 。

10、∫sec x dx = ln|sec x + tan x| + C正割函数 sec x 的积分是 ln|sec x + tan x|加上常数 C 。

11、∫csc x dx = ln|csc x + cot x| + C余割函数 csc x 的积分是 ln|csc x + cot x|加上常数 C 。

数学分析资料:积分表

数学分析资料:积分表

附录III 积分表一、含有x n 的形式:1、∫x n dx=1n x1n +++C, n ≠-1.2二、含有a+bx 的形式:3dx=2b1(bx-aln|a+bx|)+C.4dx=2b 1(bxa a++ln|a+bx|)+C.52b 1[1-n 2-n bx )1)(a -(n a bx )2)(a -(n 1-+++]+C, n ≠1,2.6dx=3b 1-2bx(2a-bx)+a 2ln|a+bx|)+C.7dx=3b 1(bx-bx a a 2+-2aln|a+bx|)+C.8dx=3b 1[bx a 2a +-22bx)2(a a ++ln|a+bx|]+C.93b 1[3-n bx )3)(a -(n 1-++2-n bx )2)(a -(n 2a +-1-n 2bx)1)(a -(n a +]+C,n ≠1,2,3.10a 1ln bx a x ++C.11⎪⎪⎭⎫⎝⎛+++bxa xlna 1bx a 1a 1+C.12dx=-⎪⎪⎭⎫⎝⎛++bx a xlna b x 1a 1+C. 13dx=-⎪⎪⎭⎫ ⎝⎛++++bx a xlna2b bx)x(a 2bx a a 12+C.三、含有a 2±x 2, a>0的形式:14dx=a 1arctan a x+C. 15dx=2a 1ln a x a -x ++C.16dx=⎥⎦⎤⎢⎣⎡±+±-⎰--dx )x (a x)3-n 2()x (a x )1n (2a 11n 221n 222, n ≠1.四、含有a+bx+cx 2, b 2≠4ac 的形式:17dx=⎪⎪⎩⎪⎪⎨⎧>++++++4ac b C 4ac -b b cx 24ac -b -b cx 2ln 4ac -b 24ac <b C b -4ac b cx 2arctan b-4ac 22222222,,.18dx=⎪⎭⎫ ⎝⎛++-++⎰dx cx bx a 1b |cx bx a |ln 2c 122.五、含有bx a +的形式: 19、∫bx a x n +dx=[]⎰+-++dx bx a x na bx )(a x 3)b(2n 21-n 3n .20⎪⎪⎩⎪⎪⎨⎧<++>+++-+0a C a -bxa arctan a-2a C a bx a abx a lna 1,,.21dx=⎥⎦⎤⎢⎣⎡+++-⎰dx bx a x 123)-b(2n x bx a 1)-a(n 11-n 1-n , n ≠1.22dx=⎰+++dx bxa x 1a bx a 2.23dx=⎥⎥⎦⎤⎢⎢⎣⎡+++-⎰dx x bx a 25)-b(2n x bx)(a 1)-a(n 11-n 1-n 3, n ≠1.24dx=bx a b3)bx a 2(22+--+C. 25dx=⎪⎪⎭⎫ ⎝⎛+-++⎰dx bx a x na bx a x 1)b(2n 21-n n .六、含有22a x ±,a>0的形式:26dx=21(x 22a x ±±a 2ln|x+22a x ±|)+C. 27、∫x 222a x ±dx=81[x(2x 2±a 2)22a x ±-a 4ln|x+22a x ±|)+C.2822a x +-aln x a x a 22+++C.2922a x --a ·arccos x a +C. 3022a x x1±-+ln|x+22a x ±|)+C. 3122a x ±|+C.3221(x 22a x ±∓a 2ln|x+22a x ±|)+C.33dx=a1arccos xa +C.34dx=a 1-ln x a x a 22+++C.35dx=∓x a a x 222±+C.36dx=222ax ax ±±+C.七、含有22x -a ,a>0的形式:37dx=21(x 22x -a +a 2arcsin ax )+C. 38、∫x 222x -a dx=81[x(2x 2-a 2)22x -a +a 4arcsin ax ]+C.39dx=22x -a -aln x x -a a 22++C.40dx=22x -a x 1-- arcsin ax+C.41dx=arcsin ax +C.42dx=a 1-ln x x -a a 22++C.43dx=x a x -a 222-+C. 44dx=21(-x 22x -a +a 2arcsin ax )+C.45222x-a ax +C.八、含有sinx 或cosx 的形式:46、∫sinxdx=-cosx+C.47、∫cosxdx=sinx+C.1(x-sinxcosx)+C.48、∫sin2xdx=21(x+sinxcosx)+C.49、∫cos2xdx=21[-sin n-1xcosx+(n-1)∫sin n-2xdx].50、∫sin n xdx=n1[cos n-1xsinx+(n-1)∫cos n-2xdx].51、∫cos n xdx=n52、∫xsinxdx=sinx-xcosx+C.53、∫xcosxdx=cosx+xsinx+C.54、∫x n sinxdx=-x n cosx+n∫x n-1cosxdx.55、∫x n cosxdx=x n sinx-n∫x n-1sinxdx.56∓secx+C.57dx=-cotx±cscx+C.58dx=ln|tanx|+C.九、含有tanx, cotx, secx或cscx的形式:59、∫tanxdx=-ln|cosx|+C.60、∫cotxdx=ln|sinx|+C.61、∫secxdx=ln|secx+tanx|+C.62、∫cscxdx=ln|cscx-cotx|+C.63、∫tan 2xdx=-x+tanx+C. 64、∫cot 2xdx=-x-cotx+C. 65、∫sec 2xdx=tanx+C. 66、∫csc 2xdx=-cotx+C.67、∫tan nxdx=⎰-x dx tan 1-n xtan 2-n 1-n , n ≠1. 68、∫cot nxdx=-⎰-x dx cot 1-n xcot 2-n 1-n , n ≠1. 69、∫sec nxdx=⎰+x dx sec 1-n 2-n 1-n x tanx sec 2-n 2-n , n ≠1. 70、∫csc nxdx=-⎰+x dx csc 1-n 2-n 1-n x cotx csc 2-n 2-n , n ≠1.71dx=21(x ±ln|cosx ±sinx|)+C.7221(x ∓ln|sinx ±cosx|)+C.73∓cscx+C.74±secx+C.十、含有反三角函数的形式: 75、∫arcsinxdx=xarcsinx+2x -1+C. 76、∫arccosxdx=xarccosx-2x -1+C. 77、∫arctanxdx=xarctanx-21ln(1+x 2)+C.78、∫arccotxdx=xarccotx+21ln(1+x 2)+C. 79、∫arcsecxdx=xarcsecx-ln|x+1x 2-|+C. 80、∫arccscxdx=xarccscx+ln|x+1x 2-|+C. 81、∫xarcsinxdx=41[x 2x -1+(2x 2-1)arcsinx]+C. 82、∫xarccosxdx=41[-x 2x -1+(2x 2-1)arccosx]+C. 83、∫xarctanxdx=21[(1+x 2)arctanx-x]+C. 84、∫xarccotxdx=21[(1+x 2)arccotx+x]+C.十一、含有e x 的形式:85、∫a xdx=lnaa x+C.86、∫e x dx=e x +C. 87、∫xe x dx=(x-1)e x +C. 88、∫x n e x dx=x n e x -n ∫x n-1e x dx.89dx=x-ln(1+e x )+C. 90、∫e axsinbxdx=22axb a e +(asinbx-bcosbx)+C.91、∫e axcosbxdx=22axba e +(acosbx+bsinbx)+C.十二、含有lnx 的形式:92、∫lnxdx=x(lnx-1) +C.93dx=4x (ln x -1) +C.94、∫xlnxdx=4x 2(2lnx-1) +C.95、∫x nlnxdx=21n )1n (x ++[(n+1)lnx-1] +C, n ≠-1. 96、∫(lnx)2dx=x[(lnx)2-2lnx+2] +C. 97、∫(lnx)n dx=x(lnx)n -n ∫(lnx)n-1dx. 98、∫sin (lnx)dx=2x [sin(lnx)-cos(lnx)]+C. 99、∫cos (lnx)dx=2x [sin(lnx)+cos(lnx)]+C. 100、∫ln (x+2x 1+)dx=xln(x+2x 1+)-2x 1++C.。

关于高等数学常用积分公式查询表

关于高等数学常用积分公式查询表

导数公式:基本积分表: 三角函数的有理式积分:(一)含有ax b +的积分(0a≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-) a x x aa a ctgxx x tgxx x xctgx xtgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 22222222C ax x a dx Cx a x a a x a dx Ca x a x a a x dx C ax arctg a x a dx Cctgx x xdx Ctgx x xdx Cx ctgxdx Cx tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I nn xdx xdx I n n n n arcsin 22ln 22)ln(221cos sin 222222222222222222222020ππ3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax b C b x+-+ 6.2d ()x x ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x +-++的积分 10.xC + 11.x ⎰=22(3215ax b C a- 12.x x ⎰=22232(15128105a x abx b C a -+ 13.x=22(23ax b C a - 14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+>< 16.2a b - 17.d x x ⎰=b ⎰18.2d x x ⎰=2a + (三)含有22xa ±的积分 19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x aC a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d xx ax b +⎰=21ln 2ax b C a ++24.22d x x ax b +⎰=2d x b x a a ax b -+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b ++26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()xax b +⎰=221d 2()2x xb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)Cb ac Cb ac +<+> 30.2d xx ax bx c ++⎰=221d ln 22b xax bx c a a ax bx c ++-++⎰(0)a >的积分31.=1arsh x C a+=ln(x C ++ 32.C +33.x C34.x =C +35.2x 2ln(2a x C ++36.2x =ln(x C +++37.1C a +38.2C a x -+39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x ln a a C x +44.x =ln(x C +++(0)a >的积分45.=1arch x x C x a+=ln x C ++46.C +47.x C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++ 51.1arccos a C a x +52.2C a x +53.x 2ln 2a x C ++54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos a a C x -+58.x =ln x C +++(0)a >的积分59.=arcsin x C a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsin x C a -+65.1ln a C a x -+66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C +70.xx ⎰=422(2arcsin 88x a x x a C a -+71.x a C ++72.x =arcsin x C a -+(0)a >的积分73.2ax b C +++74.x75.x 76.=C +77.x 2C +78.x =C +79.x =((x b b a C --+80.x =((x b b a C -+-81.C ()a b <82.x 2()arcsin 4b a C -+ (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2x C +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n x n x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n x n x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n +----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++- 101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++- 102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++- 103.d sin x a b x +⎰tan x a b C ++22()a b > 104.d sin x a b x +⎰C +22()a b <105.d cos x a b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b < 107.2222d cos sin x a x b x +⎰=1arctan(tan )b x C ab a+ 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a-+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a-+++ 111.cos d x ax x ⎰=211cos sin ax x ax C a a++ 112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a +-+(十二)含有反三角函数的积分(其中0a>)113.arcsin d x x a ⎰=arcsin x x C a114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccos x x C a-+117.arccos d x x x a⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n -++ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C +140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩ 145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x+-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x ⎰C11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-++13.x⎰=22(23ax b C a -+14.2x ⎰=22232(34815a x abx b C a -++ 15.⎰(0)(0)C b C b ⎧+>+<16.⎰=2a bx b --17.x ⎰=b +18.x ⎰=2a +(三)含有22x a ±的积分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)x C b C b ⎧+>⎪⎪⎨+< 23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b +⎰=2d x b xa a ax b-+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.⎰=1arshxC a+=ln(x C + 32.⎰C +33.x ⎰C +34.x ⎰=C +35.2x2ln(2a x C -++36.2x ⎰=ln(x C +++37.⎰1lnaC a x +38.⎰C +39.x ⎰2ln(2a x C +++40.x ⎰=2243(25ln(88x x a a x C +++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C+-++43.d x x ⎰a C +44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.⎰C +47.x ⎰C +48.x ⎰=C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.⎰1arccos aC a x +52.⎰C +53.x ⎰2ln 2a x C ++54.x ⎰=2243(25ln 88x x a a x C -+55.x ⎰C56.x x ⎰=422(2ln 88x a x a x C --++57.x ⎰arccos a a C x +58.x ⎰=ln x C +++(0)a >的积分59.⎰=arcsinxC a+ 60.⎰C +61.x ⎰=C62.x ⎰C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.⎰1C a +66.⎰2C a x -+67.x ⎰2arcsin 2a x C a+68.x ⎰=2243(52arcsin 88x x a x a C a-++69.x ⎰=C70.x x ⎰=422(2arcsin 88x a x x a C a-++71.x ⎰a C +72.x ⎰=arcsin xC a-+(0)a >的积分73.⎰2ax b C +++74.x ⎰22ax b C +++75.x ⎰2ax b C -+++76.⎰=C +77.x ⎰2C +78.x ⎰=C79.x ⎰=((x b b a C --++80.x ⎰=((x b b a C --81.⎰=C ()a b <82.x ⎰2()4b a C -+ ()a b <(十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C +90.2cscd x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanx a b C ++22()a b >104.d sin xa b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a117.arccos d x x x a⎰=22()arccos 24x a x C a --+118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a --⎰128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅-L (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-L (n 为正偶数),0I =2π。

相关文档
最新文档