14-微分及其运算
一微分的定义二微分的基本公式三微分的四则运算法则
v udx u vdx vdu udv.
定理3.9 设u=u(x),v=v(x)可微,且 v 0 ,则 u 可微,
v
且有
d(u v)Fra bibliotekvdu v2
udv.
证 d(u) (u)dx vv
uv v2
uv dx
v
udx v2
u
vdx
vdu v2
微分及其运算
一、微分的定义 二、微分的基本公式 三、微分的四则运算法则 四、微分形式的不变性 五、微分在近似计算中的应用
一、微分的定义
当正方形的边长从 x0 变到 x0 x 时,相应的面积 增量 S (x0 x)2 x02 2x0x (x)2 .函数增量 S 分成两部分,一部分是 x 的线性部分 2x0 x ,一部 分是关于x 的高阶无穷小 (x)2 o(x).
即
f (x) f (x0 ) f (x0 ) (x x0 ).
当 f (x0 ), f (x0 ) 容易计算时,就可以用上述的 近似公式来计算 x0附近点的函数值.
例6 计算 2的近似值. 解 1.96 1.4, 令 f (x) x,则
2 f (2) f (1.96) f '(1.96) (2 1.96) 1.4 1 0.04 1.414 3. 2 1.4
五、微分在近似计算中的应用
设y=f(x)在 x0 可导,当自变量从 x0 变到x(即取得 增量 x x x0),则有
x f (x) f (x0 ) f (x0 ) (x x0 ) o(x x0 ). 当x很接近 x0 时,即| x || x x0 |很小时,就有近 似公式
f (x) f (x0 ) f (x0 ) (x x0 ),
微积分定理和公式
一、函数【定义 1.1】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作.),(D x x f y ∈=x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义1.2】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义1.3】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义 1.4】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义 1.5】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律:设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数;)()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义 1.6】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα xy ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义1.7】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作 .),(1R y y f x ∈=-并称其为)(x f y =反函数. 习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x fy ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义 1.8】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数{}f D x x x x f y ∈∈=)(|)],([ϕϕ为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:f D x x f x F ∈=,0))(,(其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数. 如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即 ]1,0[,)1()(2∈-==x x x f ye n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (二)函数的极限1.∞→x 时的极限【定义1.10】 设函数)(x f 在)0(||>≥a a x 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作.)(lim A x f n =∞→当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作.)(lim )(lim )(lim ).)(lim ()(lim A x f A x f A x f A x f A x f n n n n n ===⇔===+∞→+∞→∞→-∞→+∞→3.0x x →时的极限【定义 1.11】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作.)(lim 0A x f x x =→4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0.)(lim )(lim )(lim 000A x f A x f A x f x x x x x x ===⇔=-+→→→(三)函数极限的性质1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B .2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻 域内有)(x f >0(或)(x f <0=。
微积分必知
必须了解的微积分微积分微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一目录•1词目释义••2历史••3基本内容••折叠数学分析••折叠微积分••4一元微分••折叠定义••折叠几何意义••5多元微分••6积分相关••折叠一阶微分与高阶微分••7创立意义••8极限理论••9第二次危机••10常见符号••11相关评价••12优先权之争••13现代发展••14计算器对微积分的求解•1词目释义编辑从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。
(1)运动中速度与距离的互求问题已知物体移动的距离表为以时间为变量的函数,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。
这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。
比如,计算物体在某时刻的瞬时速度,就不能像计算平均速度那样,用移动的距离去除运动的时间,因为在给定的瞬间,物体移动的距离和所用的时间是,而是无意义的。
但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。
已知速度公式求移动距离的问题,也遇到同样的困难。
因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。
(2)求曲线的切线问题这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。
微分概念及其计算
微分概念及其计算微分是微积分的一个重要概念,指的是在数学中研究函数局部变化的方法。
微分的计算方法主要通过求导来实现。
本文将详细介绍微分的概念和计算方法。
一、微分的概念微分是函数在其中一点的变化量与自变量的变化量的比率。
对于一个函数y=f(x),如果在其中一点x0处存在一个常数A,使得当x在x0附近变化时,函数f(x)与直线y=f(x0)+A(x-x0)之间的差异可以忽略不计,那么这个常数A就是函数f(x)在点x0处的微分,记作dy。
具体来说,如果函数f(x)在点x0处可导,则其微分dy满足以下等式:dy = f'(x0)dx其中,f'(x0)表示函数f(x)在点x0处的导数,dx表示自变量x的变化量。
二、微分的计算计算微分的方法有很多种,根据函数的不同形式和求导规则,可以使用以下几种常见的求导方法。
1.基本求导法则基本求导法则是求导的基本规则,包括常数微分法、幂函数微分法、指数函数微分法、对数函数微分法、三角函数微分法等。
根据不同的函数类型和导数规则,可以迅速求出函数的导数。
2.高阶导数与迭代法对于函数的高阶导数,可以使用迭代法进行求解。
迭代法的基本思想是通过对导数的连续求导来得到高阶导数。
例如,若f'(x)存在且可导,则f"(x)=(f'(x))',f"'(x)=(f"(x))',以此类推。
3.复合函数的导数对于复合函数,即由两个或多个函数经过运算得到的函数,可以根据链式法则求导。
链式法则指出,若y=f(u)和u=g(x)均可导,则复合函数y=f(g(x))的导数可以通过两者的导数相乘得到:dy/dx=f'(g(x))g'(x)。
4.隐函数的求导对于隐函数,即由一个方程所定义的函数,可以通过求导的方式进行计算。
隐函数的求导主要利用了导数的局部线性近似性质,将方程两边同时对自变量求导。
5.参数方程的求导参数方程指的是自变量和因变量都由参数t决定的函数形式。
函数的微分及其在近似计算中的应用
3、问题:函数可微的条件是什么? A = ? 问题:函数可微的条件是什么? 可微, 则有(1)成立 成立, 设函数 y = f (x) 在点 x0 可微 则有 成立,即
∆y = A∆x + o(∆x)
等式两端除以 ∆x , 得
o( ∆ x ) ∆y = A+ . ∆x ∆x
于是, 于是 当 ∆x → 0时, 由上式就得到 o(∆x ) ∆y = lim A + lim = A. f ′( x 0 ) = ∆ x → 0 ∆x →0 ∆x ∆x 可微, 因此, 因此 如果函数 f (x) 在点 x 0 可微,则 f (x)在点 x 0也一定可导 且 也一定可导,
函数在任意点的微分,称为函数的微分,记作 函数在任意点的微分 称为函数的微分 记作 dy 或 df ( x ), 即 称为函数的微分 dy = f ′( x ) ∆ x . 如函数 y = cos x 的微分为
dy = (cos x )' ∆ x = − sin x ∆ x 显然, 显然,函数的微分 dy = f ′( x )∆x 与 x 和 ∆x 有关。 有关。
′
1 d (log a x ) = dx, x ln a 1 d (ln x ) = dx , x 1 d (arcsinx) = dx, 2 1− x 1 d (arccosx) = − dx, 1 − x2 1 d (arctanx) = dx, 2 1+ x
1 (arccot x) = − 2 . 1+ x
dy = ( x 3 )′∆x = 3 x 2 ∆x.
再求函数当 x = 2 , ∆ x = 0 . 02 时的微分
dy
x =2 ∆x =0.02
函数的微分及应用教案08
(13)d(arcsinx)=
(14)d(arccos x)=
(15)d(arctanx)=
(16)d(arccotx)=
2.微分运算法则
(1)d[u(x)±v(x)]=du(x)±dv(x);
(2)d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);
讲授法、讨论法、案例教学法
教学
准备
教师:教案
学生:预习相关知识
教学过程设计
教学内容
教师活动
学生活动
第六节函数的微分及应用
一、微分的概念
定义
设函数y=f(x)在某区间内有定义,当x的增量为Δx,相应地,函数的增量为Δy=f(x+Δx)-f(x)
可表示为Δy=AΔx+o(Δx)
其中,A是不依赖于Δx的常量,而o(Δx)是比Δx高阶的无穷小,那么称函数y=f(x)在点x处可微,AΔx称为函数
y=f(x)在点x处的微分,记作dy或d(x),即dy=AΔx
由于AΔx是Δx的线性函数,当Δx→0时,Δy≈Δx,称AΔx为Δy的线性主部,也就是说,dy是Δy的主要部分。
例1求函数y=1+3x2在x=1,Δx=0.01时的增量及微分。
解Δy=3(x+Δx)2—3x2=3×1.012-3=0.0603
解令f(x)=arctanx,由式(3-6-2)有
arctan(x0+Δx)≈arctanx0+
取x0=1,Δx=0.05,有
arctan1.05 =arctan(1+0.05)
≈arctan1+
= 讲解
思考
回答
微积分教学大纲
微积分教学大纲一、使用说明一课程性质微积分是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用;微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础;二教学目的通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题;三教学时数本课程共132学时,8学分;四教学方法采用课堂讲授、多媒体课件等方法和形式;五面向专业经济学、管理学所有本科专业;二、教学内容第一章函数一教学目的与要求教学目的使学生正确理解函数的定义;理解函数的各种表示法,特别是分析表示法;了解函数的几何特性及图形特征,了解反函数、复合函数概念;熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系;基本要求1、理解实数与实数的绝对值的概念;2、理解函数、函数的定义域和值域,熟悉函数的表示法;3、了解函数的几何特性并掌握各几何特性的图形特征;4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数;5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法;6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质;7、了解分段函数的概念;8、会建立简单应用问题的函数关系;二教学内容函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数;教学重点:1、五个基本初等函数的分析表达式、定义域、值域及其图形;2、初等函数的概念,复合函数的复合步骤的分解方法;3、几个常用经济量的含义及几个常用的经济函数;教学难点:1、复合函数的复合步骤的分解方法;2、利用图形把抽象的数学问题形象化、直观化研究问题的方法;第一节预备知识一、实数二、绝对值三、区间四、邻域五、集合第二节函数概念一、常量与变量二、函数的定义与表示法三、函数定义域的求法第三节函数的几何特性一、函数的单调性二、有界性三、奇偶性四、周期性第四节反函数一、反函数的定义及其图形二、反三角函数及其主值第五节复合函数一、复合函数的定义二、运算及举例第六节初等函数一、基本初等函数的定义、定义域、值域及其图形二、初等函数的定义第七节分段函数一、分段函数的概念二、分段函数的图形特征第八节建立函数关系的例子一、总成本函数、总收入函数、总利润函数二、需求函数、供给函数三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数6学时;第二章极限与连续一教学目的与要求教学目的通过本章教学使学生理解极限与连续这两个高等数学中的基本概念掌握极限运算法则和两个极限存在准则,了解间断点的概念和闭区间上连续函数的性质; 基本要求1、了解数列极限与函数极限概念;关于数列极限与函数极限分析定义不做要求;2、了解无穷小量的概念与基本性质,掌握无穷小量比较的方法;了解无穷大量的概念;知道无穷小量与无穷大量的关系;3、知道两个极限的存在性定理,并能用于求一些简单的极限;夹逼定理,单调有界数列的极限存在性定理;4、熟练掌握两个重要极限,两个重要极限的证明不作要求;5、了解函数连续性的概念,函数间断点的概念;掌握函数间断点的分类;掌握讨论简单分段函数连续性的方法;6、了解连续函数的性质,理解初等函数在其定义区间内必连续的结论;7、了解闭区间上连续函数的基本定理,基本定理的证明不作要求;8、掌握求极限的基本方法:利用极限运算法则、无穷小量的性质、两个重要极限以及函数的连续性等求极限的方法;二教学内容数列极限,函数极限,极限的基本性质,无穷小及无穷大,极限的四则运算,极限存在准则及两个重要极限,函数连续的概念及性质;教学重点:1、极限概念、极限的运算法则;2、两个重要极限,求极限的一些基本初等方法;3、函数连续性的概念、间断点的分类;教学难点:1、极限的概念;2、分段函数的连续性;3、间断点的分类;第一节 数列的极限一、数列的概念二、数列极限的定义与几何意义三、数列极限的唯一性及收敛数列的有界性第二节 函数的极限一、0x x →时,函数()f x 的极限二、x →∞时,函数()f x 的极限三、函数极限的几何解释四、单边极限第三节 极限的基本性质一、唯一性二、有界性三、保号性四、不等式性第四节 无穷小量与无穷大量一、无穷小量的定义与基本性质二、无穷小量的比较三、无穷大量的定义四、无穷小量与无穷大量的关系第五节极限的运算法则一、极限的四则运算法则二、复合函数的极限运算法则第六节极限的存在性定理一、夹逼定理二、单调有界数列的极限存在性定理第七节两个重要极限一、0sin1lim xx x→=二、1(1)lim xxex→∞+=第八节函数的连续性一、函数的改变量二、函数的连续性,左连续与右连续三、函数的连续性与极限的关系四、函数的间断点及其分类五、连续函数的和、差、积、商的连续性六、反函数与复合函数的连续性七、初等函数的连续性七、分段函数的连续性第九节闭区间上连续函数的基本定理一、有界性定理二、最值定理三、介值定理四、零点定理三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数14学时;第三章导数与微分一教学目的与要求教学目的让学生理解导数与微分的概念,导数的几何意义及函数可导性与连续性之间的关系;掌握导数四则运算法则,初等函数、复合函数、反函数以及隐函数所确定的函数的一阶二阶导数的求导方法,会求简单的n阶导数;基本要求1、了解导数的概念;知道导数的几何意义与经济意义;了解可导与连续的关系;2、熟练掌握基本初等函数的导数公式;3、熟练掌握导数的四则运算法则;4、掌握反函数的导数公式证明不作要求;5、熟练掌握复合函数的链式求导公式证明不作要求6、掌握隐函数求导法与对数求导法;7、了解高阶导数概念,掌握求二阶、三阶导数及某些简单函数的n阶导数的方法;8、了解微分的概念;掌握可导与可微的关系;熟练掌握微分法则与微分基本公式;了解微分形式的不变性;9、知道边际与弹性的概念,会求解简单的经济应用问题;二教学内容导数概念;导数的和、差、积、商的求导法则;反函数的导数;复合函数的求导法则;高阶导数;隐函数的导数;函数的微分;微分在近似计算中的应用;教学重点:1、导数定义,利用求导公式及四则运算法则计算初等函数的导数;2、复合函数的导数;3、微分的定义以及计算方法;教学难点:1、导数概念的建立;2、复合函数的导数;3、微分概念的建立,微分形式不变性;第一节导数的概念一、变速直线运动的速度二、平面曲线的切线斜率三、导数的定义与几何意义四、可导与连续的关系第二节基本初等函数的导数公式推导基本初等函数的导数公式;第三节导数的四则运算导数的和、差、积、商的求导法则;第四节反函数与复合函数的导数,隐函数的导数,对数求导法一、反函数的导数二、复合函数的求导法则三、隐函数的导数四、对数求导法第五节高阶导数的概念与求法一、高阶导数的概念二、高阶导数求法第六节微分一、微分的定义与几何意义二、可导与可微的关系三、微分法则与微分基本公式四、微分形式的不变性第七节导数与微分的简单应用一、边际与弹性概念二、边际与弹性经济学意义三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数16学时;第四章中值定理与导数的应用一教学目的与要求教学目的使学生掌握中值定理的条件和结论;会用中值定理进行简单的推理论证,熟练运用洛必达法则求不定式的极限,掌握利用导数判断函数的单调性、极值、凹凸型和拐点的方法,并会描绘简单函数的图形,会用到书分析一些简单的经济问题;基本要求1、能叙述Rolle定理、Lagrange定理、Cauchy定理,知道这些定理之间的联系,会利用这些定理证明一些简单的证明题如证明不等式;有关这些定理的证明不作要求;2、熟练掌握00型、∞∞型的洛必达法则,了解其它未定式的定值方法;注意洛必达法则适用的条件;3、熟练掌握函数单调性的判别法;4、熟练掌握求函数的极值与最值的方法;了解函数极值与最值的关系与区别;会求某些简单的经济应用问题;5、掌握曲线凹凸性的判别法;掌握求曲线拐点与渐进线的方法;6、掌握函数作图的基本步骤与方法;会作某些简单函数的图形;二教学内容中值定理;洛必达法则;函数单调性、凹凸性及拐点的判定;函数的极值与最值及其求法;函数图形的描绘;教学重点:1、拉格朗日中值定理的题的条件,结论和有限增量形式;2、用洛必达法则求0,∞∞型的极限化五种不定式∞-∞,0∞, ∞1,00,0∞为型或∞∞型;3、利用导数研究函数的单调性,极值及曲线的凹凸性;4、经济应用问题:最大利润,最小成本等;教学难点:1、三个中值定理的证明,证明时辅助函数的引进;2、化五种不定式∞-∞,0∞, ∞1,00,0∞为型或∞∞型;3、利用单调性和极值证明不等式;第一节中值定理一、Rolle 定理二、Lagrange 定理三、Cauchy 定理第二节 洛必达法则一、洛必达法则二、洛必达法则的条件及其应用第三节 函数的单调性与凹凸性一、函数的单调性及其判别法二、函数的凹凸性及其判别法、拐点第四节 函数的极值与最值一、函数极值的定义二、函数取极值的必要条件与充分条件三、函数最值的概念四、求函数最值的基本步骤第五节 函数作图一、曲线的渐进线二、函数作图第五节 经济应用举例一、最大利润二、最小成本三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数18学时;第五章 不定积分一教学目的与要求教学目的通过教学让学生理解不定积分的概念与性质.掌握不定积分的基本公式,还原法和分部积分法,会求一些简单的有理函数的积分;基本要求1、了解原函数与不定积分的概念,掌握不定积分的基本性质;2、熟悉基本积分公式;3、熟练掌握计算不定积分的两种换元法和分部积分法;4、会计算三种简单的分式的不定积分:A dx x a -⎰, ()m A dx x a -⎰,22(40)Mx N dx p q x px q +-<++⎰ 二教学内容不定积分的概念与性质;换元积分法;分部积分法;有理函数的积分;教学重点:1、原函数,不定积分的定义,基本积分公式;2、换元法,分部积分法教学难点:1、第一换元法,第二换元法,分部积分法;2、有理函数式化部分分式代数和;第一节不定积分的概念一、原函数的概念二、不定积分的定义与几何意义三、不定积分的基本性质第二节基本积分表基本积分公式;第三节换元积分法一、第一换元积分法二、第二换元积分法第四节分部积分法一、分部积分公式二、分部积分公式应用第五节有理函数的积分一、简单分式的不定积分二、真分式的分解三、求有理函数不定积分的一般步骤与方法三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数10学时;第六章定积分一教学目的与要求教学目的使学生理解定级分和广义积分的概念,掌握定积分的计算方法.会计算简单的广义积分,另外会用定积分求解一些简单的几何和经济问题;基本要求1、了解定积分的概念与基本性质,掌握积分中值定理;2、会求变上限积分的导数,熟练掌握牛顿——莱布尼兹公式;3、熟练掌握定积分的换元积分公式与分部积分公式;4、会利用定积分求解平面图形的面积、旋转体的体积、及简单的经济应用问题;5、了解广义积分收敛与发散的概念,掌握计算广义积分的方法;知道广义积分11pdx x+∞⎰与101p dxx⎰的收敛条件;知道Γ函数的定义、性质与递推公式;二教学内容定积分的概念与性质;微积分基本定理;定积分的换元积分法和分部积分法;定积分在面积、体积与经济学中的应用;广义积分;教学重点:1、定积分的概念,牛顿—莱布尼兹公式,定积分的计算;2、定积分的换元法及分部积分法;3、平面图形的面积计算;教学难点:1、定积分几何意义,变上限定积分;2、广义积分的敛散性;3、”微元法”的基本思想;第一节定积分的概念与性质一、曲边梯形的面积二、定积分的定义与几何意义三、定积分的基本性质四、积分中值定理第二节微积分基本定理一、变上限积分与原函数存在定理二、变上限积分的求导方法三、牛顿——莱布尼兹公式第三节定积分的计算一、第一换元积分法二、第二换元积分法三、分部积分法第四节定积分的应用一、平面图形的面积二、立体的体积三、简单的经济应用问题第五节广义积分初步一、无穷积分的概念与无穷积分收敛与发散的定义及其计算二、瑕积分的概念与瑕积分收敛与发散的定义及其计算三、广义积分11pdx x+∞⎰与101p dxx⎰的敛散性判别四、Γ函数的定义、性质与递推公式五三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数14学时;第七章多元函数微积分学一教学目的与要求教学目的使学生了解空间直角坐标系的有关概念及多元函数的概念.理解多元函数微分理论,掌握多元函数微分的基本计算方法和在求极值方面的应用.了解二重积分的概念,性质.掌握在直角坐标系下二重积分的计算方法及对特殊区域会用极坐标系去计算积分;基本要求1、了解空间直角坐标系的有关概念,会求空间两点间的距离;了解平面区域、区域的边界、点的领域、开区域与闭区域等概念;2、了解多元函数的概念;掌握二元函数的定义与表示法;3、知道二元函数的极限与连续性的概念;4、理解多元函数的偏导数与全微分的概念;熟练掌握求偏导数与全微分的方法;掌握求多元复合函数偏导数的方法;5、掌握由一个方程确定的隐函数的求偏导数的方法;6、了解二元函数极值与条件极值的概念;掌握用二元函数极值存在的必要条件与充分条件求二元函数极值的方法;掌握用拉格朗日乘数法求解二元函数极值的方法;7、了解二重积分的概念、几何意义与基本性质;掌握在直角坐标系与极坐标系下计算二重积分的常用方法,会计算一些简单的二重积分二教学内容多元函数的概念;偏导数;多元复合函数偏导数;隐函数的求偏导数;全微分;二元函数极值与条件极值;二重积分的概念、性质、计算法及应用;教学重点:1、偏导数的运算;2、复合函数的偏导数和全微分;3、条件极值与拉格朗日乘数法;4、二重积分定义,性质;5、在直角坐标系及极坐标系下计算二重积分教学难点:1、二元函数极限的概念;2、高阶偏导数的运算;3、复合函数的偏导数;4、极值应用问题的求解;5、二重积分定义;6、二重积分的定限第一节预备知识一、空间直角坐标系、空间两点间的距离与空间曲面与曲面方程二、平面上的区域、区域的边界、点的领域、开区域与闭区域的概念第二节多元函数的概念一、多元函数的定义二、二元函数的定义域与几何意义三、二元函数的极限与连续性第三节偏导数与全微分一、偏导数的定义与计算方法二、全微分的定义与计算方法第四节多元复合函数微分法与隐函数微分法一、多元复合函数概念与微分法二、隐函数微分法第五节高阶偏导数一、高阶偏导数的定义二、高阶偏导数的求法第六节多元函数的极值与最值一、二元函数极值的定义二、极值的必要条件与充分条件三、条件极值与拉格朗日乘数法四、多元函数最值的概念与求法第七节二重积分一、曲顶柱体体积二、二重积分的定义与基本性质三、二重积分的计算法四、在直角坐标系与极坐标系下计算二重积分三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数28学时;第八章无穷级数一教学目的与要求教学目的使学生掌握关于级数的基本概念和基本理论及有关级数收敛性的理论和方法.了解函数项级数的收敛域及和函数的概念,能熟练掌握简单的幂级数收敛区间的求法.基本要求1、了解无穷级数及其一般项、部分和、收敛与发散、收敛级数的和等基本概念;2、掌握几何级数与P级数敛散性判别条件;知道调和级数的敛散性;3、掌握级数收敛的条件,以及收敛级数的基本性质;4、掌握正项级数的比较判别法;熟练掌握正项级数的达朗贝尔比值判别法;5、掌握交错级数敛散性的莱布尼兹判别法;6、了解任意项级数的绝对收敛与条件收敛的概念;掌握绝对收敛与条件收敛的判别法;二教学内容常数项级数的概念与性质;正项级数的判别法;任意项级数的判别法;幂级数的概念;收敛半径;收敛区间;教学重点:1、正项级数收敛性的判别;2、交错级数的判敛.任意级数绝对收敛与条件收敛的概念;3、幂级数的收敛半径和收敛区间教学难点:1、对级数通项的认识并选定恰当的判敛法;2、任意项级数绝对收敛与条件收敛的概念;第一节无穷级数的概念与性质一、无穷级数及其一般项与部分和的概念二、无穷级数收敛与发散的定义三、收敛级数和的概念四、几何级数与调和级数的收敛性五、无穷级数收敛的必要条件六、收敛级数的基本性质第二节正项级数一、正项级数收敛的概念二、正项级数收敛的充分必要条件三、正项级数敛散性的比较判别法、达朗贝尔比值判别法四、P级数的敛散性第三节任意项级数一、交错级数的概念二、交错级数敛散性的莱布尼兹判别法三、任意项级数的绝对收敛与条件收敛的概念四、绝对收敛与条件收敛的判别法第四节广义积分的敛散性判别法一、无穷积分与瑕积分的比较判别法与极限判别法二、广义积分的绝对收敛性三、Β函数的定义四、Β函数与Γ函数的关系第五节幂级数一、函数项级数的概念二、幂级数的概念三、幂级数收敛半径、收敛区间、和函数的概念四、幂级数敛散性判别法五、幂级数收敛半径、收敛区间的求法六、幂级数的基本性质第六节函数的幂级数展开一、泰勒公式及其余项二、泰勒级数与麦克劳林级数三、幂级数展开定理四、将函数展成幂级数的方法直接展开法、间接展开法五、基本初等函数的幂级数展开三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数10学时;第九章微分方程初步一教学目的与要求教学目的使学生了解微分方程的一些基本概念,掌握一些特殊而又简单的微分方程的解法,以及一阶线性方程,二阶常系数线性方程的解法,并会解一些简单的经济应用问题.基本要求1、了解微分方程的阶、解、通解、特解等概念;2、掌握可分离变量的微分方程、齐次微分方程、一阶线性微分方程的解法;3、掌握二阶常系数线性微分方程的解法;4、会求解一些简单的经济应用问题;二教学内容微分方程的基本概念;可分离变量的微分方程;齐次微分方程;一阶线性微分方程;二阶常系数线性微分方程;微分方程在经济学中的应用;教学重点:1、微分方程的概念;2、变量可分离的微分方程,齐次方程,一阶线性微分方程,二阶常系数线性微分方程的解法;教学难点:1、各种类型的微分方程的判别;2、建立实际问题的微分方程第一节微分方程的基本概念一、微分方程的定义二、微分方程的阶、解通解、特解、定解条件三、微分方程的初值问题第二节一阶微分方程一、可分离变量的微分方程二、齐次微分方程三、一阶线性微分方程第三节高阶微分方程一、n阶微分方程的一般形式二、二阶常系数线性微分方程的特征根解法三、几种特殊的高阶微分方程的解法三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数8学时;第十章差分方程初步一教学目的与要求教学目的使学生了解差分方程的基本概念;掌握一阶,二阶常系数线性齐次差分方程的解法;会解一些特殊的一阶,二阶常系数线性非齐次差分方程;了解差分方程在经济学中的简单应用;基本要求1、了解差分与差分方程的阶、解、通解、特解等概念;2、掌握一阶与二阶常系数线性齐次差分方程的解法;3、会求某些特殊的一阶与二阶常系数线性非齐次差分方程的特解与通解;4、会求解一些简单的经济应用问题;二教学内容差分方程的基本概念;一阶与二阶差分方程的解法;差分方程在经济学中的应用;教学重点:1、差分与差分方程的概念;2、一阶、二阶常系数线性差分方程的特解、通解;教学难点:二阶常系数线性非齐次差分方程的特解与通解;第一节差分方程的基本概念一、差分与差分方程的概念二、差分方程的阶、解通解、特解第二节一阶常系数线性差分方程一、一阶齐次差分方程的通解二、一阶非齐次差分方程的特解与通解第三节二阶常系数线性差分方程一、二阶齐次差分方程的通解特征根解法二、二阶非齐次差分方程的特解与通解第四节 n阶常系数线性差分方程一、n阶齐次差分方程的通解特征根解法二、n阶非齐次差分方程的特解与通解第五节差分方程在经济学中的简单应用一、“筹措教育经费”模型二、价格与库存模型三、国民收入的稳定分析模型三教学方法与形式采用课堂讲授、多媒体课件等方法和形式;四教学时数8学时;三、考核方式闭卷笔试;四、教材选用1、朱来义:微积分第二版,高等教育出版社,2004年3月第2版;。
微积分初步
微积分的意义: 为数学和科学的 发展奠定了基础, 促进了现代科技 的进步
微积分的未来: 随着科技的发展, 微积分的应用将 更加广泛和深入
微积分的应用
物理学:微积分用于解决物理问题,如速度、加速度、动量等 经济学:微积分用于研究经济学中的边际分析和最优化问题 工程学:微积分用于解决工程设计和分析中的问题,如流体动力学、结构分析等 计算机科学:微积分用于算法设计和优化,以及计算机图形学中的渲染和动画制作
在经济中的应用
微积分在经济学中用于研究经济现象的变化趋势和规律,如边际分析、弹性分析等。
微积分在经济预测中用于建立数学模型,如回归分析、时间序列分析等。 微积分在金融领域中用于评估风险和回报,如投资组合优化、期权定价等。
微积分在生产管理中用于优化生产过程和提高效率,如生产计划、质量控制等。
计算最优设计 预测结构稳定性 优化施工方案 确定材料强度
证明:牛顿-莱布尼茨定理的证明可以通过不定积分和定积分的定义以及微积分基本定理来完成。
洛必达法则
定义:洛必达 法则是微积分 中的一个重要 定理,用于研 究函数的极限
应用场景:在 求解不定积分、 求极限等问题 中有着广泛的
应用
使用条件:在使 用洛必达法则之 前,需要满足一 定的条件,如分 子分母的导数存 在且分母不为零
学习微积分的途径和方法
参加线上课程
阅读专业书籍
参加学术研讨会
寻求导师或专业人士的指导
学习微积分的难点和注意事项
理解极限概念:极限是微积分的基础,需要深入理解极限的概念及其性质。
掌握微分与积分的计算方法:微积分包括微分和积分两个部分,需要掌握它们的计算方法和技巧。
理解连续性和可微性:连续性和可微性是微积分中的重要概念,需要理解它们的定义和性质。
函数微分的运算
解 dy = d(excos x) = ex dcos x + cos xdex = ex (cos x - sin x)dx .
3.复合函数的微分
定理 3 设函数 y = f (u), u = (x) 均可 微, 则 y = f ( (x)) 也可微, 且
dx.
1 x2
d arctan x
1 1 x2 dx.
1 darc cot x 1 x2 dx.
2.微分的四则运算
定理 2 设函数 u、v 可微, 则
d(u v) = du dv
d(uv) = udv + vdu
d
v u
udv vdu u2
(u 0).
推论 1
当
v
为常数
c
时,则
2 ln(1 x) d (1 x) 2 ln(1 x) dx
1 x
x 1
也可以不写中间变量
dy d ln2 (1 x) 2 ln(1 x)d ln(1 x) 2 ln(1 x) dx 1 x
• 例 求下列隐函数的微分和导数
1 y3 x2 xy y2
dy3 d (x2 xy y2 ) dx2 dxy dy2
4. d ( 1 cos 2 x C ) sin 2 x d x 2
5. 设
由方程
确定,
求
解: 方程两边求微分, 得
3 x2 d x 3 y2 d y 3 cos3x d x 6 d y 0
当x
0时y
0,由上式得 d
y
x0
1 2
d
x
2已知xy exy,求dy
dxy dex y
微积分:微分及其应用
(1)(u v) u v, (2)(cu) cu (c 是常数),
(3)(uv) uv uv,
(4)( u )
v
uv v2
uv
(v
0) .
(2) 反函数的求导法则
如果函数x ( y)的反函数为y f ( x),则有
f
(
x)
1 ( x)
.
(3) 复合函数的求导法则
设y f (u),而u ( x)则复合函数y f [( x)]的导数为 dy dy du 或 y( x) f (u) ( x). dx du dx
dt dx
(t); (t )
dt
d2y dx2
(t )
(t) (t 3(t)
)(t) .
4、高阶导数 (二阶和二阶以上的导数统称为高阶导数)
二阶导数 ( f ( x)) lim f ( x x) f ( x) ,
x0
x
记作
f
( x),
y,
d2y dx 2
或
d
2 f (x) dx2 .
二阶导数的导数称为三阶导数,
(cos x) sin x
(cot x) csc2 x
(csc x) csc xctgx
(e x ) e x
(ln x) 1 x
(arccos x) 1 1 x2
(arc
cot
x)
1
1 x2
3、求导法则
(1) 函数的和、差、积、商的求导法则
设u u( x),v v( x)可导,则
2、基本导数公式(常数和基本初等函数的导数公式)
(C ) 0
(sin x) cos x
(tan x) sec2 x
(sec x) sec xtgx
高数中的微分与积分运算及其实际应用
高数中的微分与积分运算及其实际应用微分与积分是高等数学中重要的概念和技巧,对于理工科的学生来说尤为重要。
本文将介绍高数中的微分与积分运算以及它们在实际应用中的作用。
微分是描述函数变化速率的工具,它可以解决许多实际问题。
在微分运算中,我们首先要了解导数的概念。
导数表示函数在某一点处的变化速率,可以通过极限的方法求得。
对于函数f(x),它的导数表示为f'(x),也可以写为dy/dx。
导数可以衡量函数在某一点处的切线斜率。
微分运算不仅可以计算导数,还可以进行一些常见的微分法则运算。
例如,常数的导数等于零,幂函数的导数可以通过公式求得,而基本初等函数的导数也具有特定的规律性质。
微分在实际应用中有广泛的应用,例如物理学中对于位置、速度和加速度的关系可以通过微分来描述。
在工程学中,微分可以帮助我们研究电路、控制系统和信号处理等问题。
此外,微分还可以用来解决最优化问题,例如优化函数的最大值和最小值。
而积分则是导数的逆运算,它可以求得函数的原函数。
在积分运算中,我们通常使用不定积分符号∫来表示。
如果函数f(x)的导数是F'(x),则函数F(x)是f(x)的原函数,即F'(x) = f(x)。
积分运算可以通过积分法、换元法等方法进行。
积分的实际应用也非常广泛。
在物理学中,积分可以用来计算曲线下的面积,解决热力学和电磁学中的问题。
在经济学中,积分可以用来计算供求曲线之间的面积,分析市场需求和供应关系。
在概率论中,积分可以用来计算概率密度函数和累积分布函数。
除了微分和积分的基本运算以外,它们还有一些特殊的应用。
例如,微分方程是描述自然科学和工程学中许多现象的重要工具,它们可以用微分和导数来表示。
微分方程可以通过解析和数值方法求得解,并在物理学、生物学和经济学等领域中得到广泛应用。
另外,微积分还与数学分析、数值计算和动力系统等领域有密切关联。
数学分析通过严格的证明和推导方法,系统地研究微分和积分的性质和定理。
微积分及其意义
导数和微分在书写的形式有些区别,如y'=f(x),则为导数,书写成dy=f(x)dx,则为微分。
积分是求原函数,可以形象理解为是函数导数的逆运算。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx.于是函数y = f(x)的微分又可记作dy = f’(x)dx,而其导数则为:y'=f'(x)。
设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f’(x)=g(x),则有∫g(x)dx=f(x)+c。
向左转|向右转扩展资料:设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = f(x + Δx) - f(x)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。
于是函数y = f(x)的微分又可记作dy = f’(x)dx.函数因变量的微分与自变量的微分之商等于该函数的导数.因此,导数也叫做微商。
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微.一元微积分中,可微可导等价.记A·△X=dy,则dy=f′(X)dX。
例如:d(sinX)=cosXdX.微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。
16个微积分公式
16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。
下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。
一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。
这是因为常数函数在任意点的斜率都是0。
2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。
3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。
4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。
5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。
二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。
计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。
2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。
计算不定积分可以使用导数和积分的基本公式。
三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。
2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。
3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。
4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。
5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。
6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。
7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。
8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。
求解微分方程可以通过积分的方法来得到解析解。
9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。
微积分的基本介绍
微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。
就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
最新微分概念及其运算
微分概念及其运算§2 微分概念及其运算设«Skip Record If...»在«Skip Record If...»点可导,即下面的极限存在:«Skip Record If...»=«Skip Record If...»=«Skip Record If...»«Skip Record If...»因此 «Skip Record If...»=«Skip Record If...»+«Skip Record If...»,其中«Skip Record If...»(«Skip Record If...»),于是 «Skip Record If...»=«Skip Record If...»«Skip Record If...»,«Skip Record If...»(函数的增量«Skip Record If...»=(«Skip Record If...»的线性函数)+«Skip Record If...»)物理意义:如果把«Skip Record If...»视为时间«Skip Record If...»时所走过的路程,«Skip Record If...»时间内所走过的路程«Skip Record If...»=以匀速«Skip Record If...»运动所走过的路程«Skip Record If...»«Skip Record If...»+因为加速度的作用而产生的附加路程«Skip Record If...»定义4.2 设«Skip Record If...»在«Skip Record If...»有定义,如果对给定的«Skip Record If...»«Skip Record If...»,有«Skip Record If...»=«Skip Record If...»-«Skip Record If...»=«Skip Record If...»+«Skip Record If...»,(«Skip Record If...»)其中«Skip Record If...»与«Skip Record If...»无关,则称«Skip Record If...»在«Skip Record If...»点可微,并称«Skip Record If...»为函数«Skip Record If...»在«Skip Record If...»点的微分,记为«Skip Record If...»=«Skip Record If...»或 «Skip Record If...»=«Skip Record If...»微分具有两大重要特征:1)微分是自变量的增量的线性函数;2)微分与函数增量«Skip Record If...»之差«Skip Record If...»,是比«Skip Record If...»高阶的无穷小量.因此,称微分«Skip Record If...»为增量«Skip Record If...»的线性主要部分。
微分及其运算
d arsin x 1 dx. 1 x2
1
d arccos x
dx.
1 x2
d
arctan
x
1 1 x2
dx
.
d
arccot
x
1
1 x
2
dx .
三、微分的四则运算法则
定理2.8 设u=u(x),v=v(x)可微 ,则 u v, u , v可微, 且有
d(u v) du dv, d(uv) vdu udv.
微分dy的几 何意义,就是曲 线y=f(x)在点 M 0 处的切线的纵坐 标的增量.
二、微分的基本公式
微分的基本公式: dc 0 (c为常数).
dxa axa1dx(a为常数) .
da x a xln a dx (a 0,a 1).
de x exdx.
d
log
a
x
1 x
定义2.4 设y=f(x)在点x0 的某邻域内有定义,x0 x 属 于该邻域.若
y f (x0 x) f (x0 ) A x o(x), 其中A与 x无关,而o(x) 是关于 x 的高阶无穷小, 则称y=f(x)在x0 可微,而 A x 称为y=f(x)在点x0处的 微分,记为
注意,当然也可以直接用公式dy ydx求微分. d(x tan x sin x) (x tan x sin x)dx
(tan x x sec2 x cos x)dx.
例3 设 y x2 ln x,求dy.
解 dy d(x2 ln x) (x2 ln x)dx (2x ln x x2 1)dx x (2x ln x x)dx.
第四章42节微分定义ppt
y f ( x ) 充分性: f ( x ) 在 x 处可导 lim x 0 x y lim [ f ( x )] 0 即 x 0 x
由无穷小的定义,有 y f ( x ) o(1) x 从而 y f ( x )x o(1)x f ( x )x o(x ) 即 f ( x )在 x 处可微. 由定理4.1.1知: 可导 可微,
负、但不为零), 那么它的函数值也相应地产生一个增量
y f ( x x ) f ( x ), 增量 x 和 y 分别称为自变量和
因变量的差分.
定义4.1.1 对函数 y f ( x ) 定义域中的一点 x ,若存 在一个只与 x 有关,而与 x 无关的数 g( x ) , 使得当
2 y x 由定义, 在 x 处可微,它的微分为 dy d ( x 2 ) 2 xx
注:若 f ( x )在 x 处可微,
1.当 x 0 时,y 0 ,于是 f ( x ) 在 x 处连续,即
可微 连续 2.当 g( x ) 0 时,
y o( x ) 1 1( x 0) g ( x )x g ( x )x
即 y ~ dy (x 0).
g( x )x 称为 y 的线性主要部分。
y dy o( x ) 是比 x 高阶的无穷小,所以,当 x 3.
y dy. 很小时,
二、微分和导数
定义4.1.2 如果函数 y f ( x )在其定义域中的一点 x
处,极限
y f ( x x ) f ( x ) lim lim x 0 x x 0 x
定理4.1.1 函数 y f ( x ) 在 x 处可微的充分必要 条件是它在 x 处可导.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y f (u ) 在相应点 u0 ( x0 ) 处可微 , 且 f ( ( x)) 在 U( x0 ) 内有定义 , 则 y f ( ( x))
在点 x0 处可微.
19
按微分的定义
dy dy d x ( f ( ( x))) d x dx
f ( ( x)) ( x) d x
5
就是说, 在点 x0 处若可用关于自变量的增 量 x 的线性函数逼近函数的增量 y 时,
其关系式பைடு நூலகம்定是
y = f (x0)x + o(x) 我们称 f (x0)x (或 Ax) 为函数在点 x0 处 增量的线性主部, 通常将它记为 微 分 dy = f (x0)x ( dy =Ax ).
y f ( x0 )x
现在反过来想一想: 若在 x0 点处 y = f (x) 的增量 y 可以 表示为 一个线性函数与一个高级无穷小量
之和的形式
y Ax o(x)
( x 0 )
那么, 我们自然要问 A = ?
4
y o(x) A x x
y A lim f ( x0 ) x 0 x
6
一. 函数的微分
将以上的讨论归纳一下, 可得出什么结论 ?
7
1.微分的概念
设 y = f (x) 在 U(x0) 有定义, 给 x0 以增量 x , 且 x0+x U(x0) 。 如果函数相应的增量可表示为 y =Ax + o(x) 则称 y 的线性主部为 f (x)在点 x0 处的微分, 记为 d y =Ax , 其中, A 叫微分系数 。
高等院校非数学类本科数学课程
大 学 数 学(一)
—— 一元微积分学
第十四讲 微分及其运算
1
2
第四章 函数的导数和微分
第四节 微分及其运算
一.微分的定义
二. 微分的运算法则
三.二阶微分
四.微分在近似计算中的应用
五.微分在误差估计中的应用
3
回忆复合函数求导法则中的一个定理
若 y = f (x) 在点 x0 处有(有限)导数, 则 y f ( x0 )x o(x)
360
.
f ( x0 x) f ( x0 ) f ( x0 ) x
6 , x
取 x0
360
, 而 f ( x0 ) cos
3 , 6 2
得
sin( ) sin cos 6 360 6 6 360
1 3 0.5076 2 2 360
纵坐标的改变量.
15
二.微分的运算法则
1.微分的基本公式
可微
可导
微分的基本公式与导数的基本公式相似
微分公式一目了然, 不必讲了.
16
17
18
2. 一阶微分形式不变性 ( 复合函数微分法则 )
设 y f (u ) 与 u ( x) 可构成复合函数
y f ( ( x)). 若 u ( x) 在点 x0 处可微 , 而
练习. 在下列括号中填入适当的函数使等式成立:
2 C ) xdx (1) d( 1 x 2
(2) d(
1 sin t
C ) cos t d t
说明: 上述微分的反问题是不定积分要研究的内容. 注意: 数学中的反问题往往出现多值性.
40
练习. 有一批半径为1cm 的球 , 为了提高球面的光洁度,
33
例7
设测得圆钢截面的直径 D = 60.03 mm ,
测量 D 的绝对误差限 D=0.05 mm ,试估计
计算圆钢的截面积时的面积误差
解
A
D
4
设测量值为 D , 精确值为 D D , 则 2 2 2
A 4 ( D D) 4 D
2 由于D 的绝对误差限 D=0.05 mm, 所以
32
四.微分在误差估计中的应用
设某个量的精确值为 A, 它的近似值为 a, 则称: | A a | 为 a 的绝对误差;
| Aa| 为 a 的相对误差. |a|
若已知 | A a | A , 则称:
A 为测量 A 的绝对误差限, 简称 A 的绝对误差.
δA 为测量 A 的相对误差限, 简称 A 的相对误差. |a|
函数值的近似值:
f ( x0 x) f ( x0 ) f ( x0 ) x f ( x) f ( x0 ) f ( x0 ) ( x x0 )
29
30
例5
将半径为 R 的球加热. 如果球的半径
伸长 R , 估计球的体积的增量.
解
4 由 V R3 , 则 3
dy = f (x0)x
10
说明: y f ( x0 ) x o( x)
d y f ( x0 )x
当 f ( x0 ) 0 时 , y y lim lim x 0 f ( x0 ) x x 0 d y 1 y lim 1 f ( x0 ) x 0 x 所以 x 0 时 y 与 d y 是等价无穷小, 故当 x
要镀上一层铜 , 厚度定为 0.01cm , 估计一下, 每只球需
用铜多少克 .
解: 已知球体体积为
镀铜体积为 V 在
R 1 R 0.01
时体积的增量
4 R 2 R R 1
R 0.01
0.13 (cm 3 )
因此每只球需用铜约为
8.9 0.13 1.16 ( g )
d y d y du , d x du d x
23
复合函数的导数
例4
dy 设 x y 4 y, 求 . dx
2
解
d x (2 y 4) d y
dx (或 2y 4 ) dy
dy 1 d x 2y 4
( y 2)
24
三. 二阶微分
设函数 y = f (x) 二阶可导, 当 x 为自变量时, 其二阶微分为
n
n1
y) d( f
( n1)
( x) d x ) f
n1
( n)
( x) d x
n
且有
n d y (n) f ( x) n dx
注意这里 x 是自变量
26
n d y (n) 由高阶导数 f ( x) n 以及一阶微分 dx
形式不变性 , 我们自然会想到高阶微 分是否也
具有这种不变性?
很小时, 有近似公式
y dy
11
例1
y x , 求 d y.
d y ( x)x 1 x x,
什么意思?
解
由于 y x, 故得
d y d x x.
该例说明: 自变量的增量就是自变量的微分:x d x 函数的微分可以写成:
d y f ( x) d x
35
设 y f ( x) , 已知测量 x 的绝对误差限为 x ,
即 | x | x , 若根据直接测量的 x 值计算 y 值 ,
则当 y 0 时 ,
y 的绝对误差:
| y | | d y | | y || x | | y | x
即有
y 的绝对误差限约为
y 的相对误差限约为
y | y | x
| y | x | y| | y|
y
36
37
38
39
练习. 设
求
解: 利用一阶微分形式不变性 , 有
d( y sin x) d(cos( x y)) 0 sin x d y y cos x dx sin( x y) (dx d y) 0 y cos x sin( x y) dy dx sin( x y) sin x
4 4 3 V ( R R ) R 3 3 3 4 ( R 3 ) R 3
4 R2R
所以, 球的体积增量大约为 4 R 2R.
31
例6
利用微分求 sin 3030' 的近似值 . 设 f ( x) sin x ,
又 30 30'
解
由
6
或 d f ( x) f ( x) d x
此外, 当 x 为自变量时, 还可记
x2 d x2 , xn d xn (n Z ) 等.
12
dy 当 d y f ( x) d x 时, 有 f ( x) . dx
即函数 f (x) 在点 x 处的导数等于函数的
微分 d y 与自变量的微分 d x 的商, 故导数也
21
例2
求 y x3 在 x 2 处的微分 , 以及当 x 0.1 时, 在 x 2 处的微分.
解
故
d y ( x3 ) d x 3x2 d x
d y x 2 3 x 2 d x x 2 12 d x
d y x2
x 0.1
3 x 2 d x x2
但 故
d u ( x) d x
d y f (u ) ( x) d x f (u ) d u
(u为中间变量 )
说 明 什 么 问 题 ?
20
我们发现 y = f (u) , 当 u 为中间变量 时的微分形式与 u 为自变量时的微分的形 式相同 , 均为 dy = f (u) du , 这种性质称为 函数的一阶微分形式不变性 .
x 0.1
3 22 0.1 1.2 (x d x)
22
例3
由一阶微分形式不变性, 再来看 复合函数、反函数、参数方程等的求 导公式就会有另一种感觉: