电力系统继电保护原理-电网距离保护
电力系统继电保护-距离保护概述
2、距离保护的基本原理
距离保护是反应保护安装处至 短路点之间的距离,并根据短路点 至保护安装处的距离确定动作时限 的一种保护。
故障点离保护安装处越近,保 护动作时间越短;反之越长。
故障点总是由离故障点近的 保护首先动作切除故障,从而保 证了保护动作的选择性。
Im
K
ZUmຫໍສະໝຸດ Z set当在保护区末端短路时,测量阻 抗为 Um Im Zset
工作电压为
Uop ImZm ImZset 0
Im
K2 Z
K1
Um
Zm
保护区外K1点短路,有
Zm > Zset
Uop Im (Zm Zset ) >0 保护区内K2点短路,有
Zm < Zset
Uop Im (Zm Zset ) <0
教学内容:输电线路距离保护
4.1 距离保护概述 1、距离保护的作用 2、距离保护的基本原理 3、距离保护时限特性 4、距离保护的构成
教学要求:通过学习要求 理解距离保护的作用、距 离基本工作原理、距离保 护的时限特性及距离保护 的构成。
1、距离保护的作用
原因:电流、电压保护其保护范 围随系统运行方式的变化影响很 大,很难满足长距离、重负荷线 路灵敏性常常不能满足要求。
距离保护的核心元件:阻抗继 电器。
要求:测量元件应能正确测量 故障点至保护安装处的距离。 方向阻抗继电器还应具有测量 故障点方向。
测量故障点至保护安装处的 阻抗,实际上也测量故障点至 保护安装处的距离。
Im
K1
Um
测量阻抗为:Zm
Um Im
(设变比为1)
设阻抗继电器工作电压为:
电力系统继电保护--距离保护的基本原理、阻抗继电器及其动作特性 ppt课件
PPT课件
8
三、三相系统中测量电压和测量电流的选取
K:零序电流补偿系数 PPT课件
9
三、三相系统中测量电压和测量电流的选取
单相接地短路(以A相接地为例)
PPT课件
10
三、三相系统中测量电压和测量电流的选取
两相接地短路1(以B,C两相接地为例)
PPT课件
11
三、三相系统中测量电压和测量电流的选取
两相短路、三相短路和两相短路接地:两故障相的电压差
和电流差。
PPT课件
15
四、距离保护的延时特性
距离保护的动作延时t与故障点到保护安装处的距离Lk 之间的关系称为距离保护的延时特性
PPT课件
16
五、距离保护的构成
1.启动部分:模拟式距离保护中,由硬件电路元
件实现,大多反应负序电流、零序电流或负序与 零序复合电流的判断原理;数字式保护中,由实 时逐点检测电流突变量或零序电流的变化的软件 来实现。
PPT课件
7
三、三相系统中测量电压和测量电流的选取
U A UkA I A1z1Lk I A2 z2Lk I A0 z0Lk
UkA
(I A1
I A2
I A0 ) 3I A0
z0 z1 3z1
z1Lk
UkA (I A K 3I0 )z1Lk
电气工程及其自动化专业课程
电力系统继电保护
PPT课件
1
距离保护的基本原理与构成
一、距离保护的概念 二、测量阻抗及其与故障距离的关系 三、三相系统中测量电压和测量电流的选取 四、距离保护的延时特性 五、距离保护的构成PPTຫໍສະໝຸດ 件2一、距离保护的概念
继电保护距离保护特性原理说明
三电网距离保护1距离保护基本原理与构成1.距离保护的概念短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离,短路时:电流增大、电压变小、阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。
阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。
距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。
距离与电流是统一的。
但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确.2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析?负荷阻抗:正常运行条件下,额定电压与负荷电流的比值;短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。
测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。
测量阻抗能反应出运行状态。
整定阻抗:能使继电器动作的最大阻抗,是一个定值。
测量阻抗小于整定阻抗,继电器就动作。
阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。
这是一对对偶关系.动作阻抗:阻抗继电器动作时,测量到的阻抗值。
比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误.3.一次阻抗、二次阻抗区别?这里要对比一次电流和二次电流的概念,道理是一样的。
一次阻抗:一次电压与一次电流的比值,二次阻抗:二次电压与二次电流的比值,4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角负荷阻抗角:负荷电压与负荷电流的夹角短路阻抗角:短路电压与短路电流的夹角动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角.整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。
继电保护(距离保护)
对于相间短路,故障环路为相—相故障环路,取测量电 压为保护安装处两故障相的电压差,测量电流为两故障相的 电流差,称为相间距离保护接线方式,能够准确反应两相短 路、三相短路和两相接地短路情况下的故障距离。
LINYI UNIVERSITY
LINYI UNIVERSITY
LINYI UNIVERSITY
UB = z1 l k B 、 C 相 测 量 I B + K3I 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
增大,短路阻抗比正常时测量到的阻抗大大降低。
LINYI UNIVERSITY
二、测量阻抗及其与故障距离的关系
Um Zm = = z1 l k Im Z set = z1 l set
♣ 距离保护反应的信息量测量阻抗在故障前后变化比电流变 化大,因而比反应单一物理量的电流保护灵敏度高。 ♣ 距离保护的实质是用整定阻抗 Zset 与被保护线路的测量阻 抗 Zm 比较: 当短路点在保护范围以内时,Zm<Zset,保护动作; 当短路点在保护范围以外时,Zm>Zset时,保护不动作。 因此,距离保护又称低阻抗保护。
U kA = 0
LINYI UNIVERSITY
三、三相系统中测量电压和测量电流的选取
U A = U kA + (I A + K3I 0 )z1 l k U B = U kB + (I B + K3I 0 )z1 lk U = U + (I + K3I )z l kC C 0 1 k C
电力系统继电保护——3.6-3.7电网的距离保护-影响阻抗继电器正确动作的因素
t
'' '
360
*T
通过延时可以躲开振荡 对距离保护的影响
2.6 避免系统振荡距离保护误动作的措施 采用在OO’方向上面积小的阻抗继电器 保护安装处远离振荡中心
适当延长保护的动作时间,躲开震荡的影响,缺 点会影响保护的动作速度。
2.7 振荡闭锁回路--振荡和短路的主要区别 振荡时,电流和各点电压的幅值周期性变化;而 短路后,在不计衰减时是不变的 振荡时电流和各点电压幅值的变化速度较慢;而 短路时幅值是突然改变的,变化速度很快 振荡时,各点电流和电压之间的相位关系随振荡 角的变化而改变;而短路时是不变的
护不应该动作;
正常运行时,系统两侧的功角一般小于70度。
2.2 系统振荡研究的假设条件
EM
X M , RM
M N
I
EN
X N , RN
X L , RL
研究电力系统振荡,要做如下的假设:
将所研究的系统,按其电气连接的特点,简化为一个具 有双侧电源的开式网络; 系统振荡时,三相处于对称状态,可只取一相来研究; 振荡时,两侧系统的电势 EM 和EN 幅值相等,相角差用 来表示, 在0~360度之间变化; 系统中各元件的阻抗角相等,用Z k 来表示; Z Z M Z L Z N Zk 震荡过程中,不考虑负荷电流的影响。
故障判断元件和整组复归元件在系统正常运行或 振荡时都不会动作(无负序分量),保护装置的I 段和II段被闭锁,无论阻抗继电器本身是否动作 ,保护都不可能动作跳闸,即不会发生误动。
电力系统发生故障时,故障判断元件立即动作, 动作信号经双稳态触发器SW记忆下来,直至整 组复归。SW输出的信号,又经单稳态触发器DW ,固定输出时间宽度为 的短脉冲,在 时间内若 阻抗判别元件的I段或II段动作,则允许保护无延 时或有延时动作(距离保护III段被自保持)。
电力系统继电保护原理-距离保护的振荡闭锁
M侧:
Zm
U
M
IM
EM IM
IM
ZM
EM
IM
ZM
1
Z e
j
ZM
∵
1- e jδ
= 1-
2 jctgδ
2
∴
Z
=
m
Z∑ (12
jctgδ2
)
-
ZM
=
(
Z∑ 2
- ZM)-
j
Z∑ 2
ctgδ2
7
Z
=
m
Z∑ (12
jctgδ2
)
-ZMΒιβλιοθήκη =(Z∑ 2
- ZM)-
j
Z∑ 2
ctgδ2
jX O’
Zm
N
Z∑ 2
17
3.5.4 振荡过程中再故障的判断
振荡过程中又发生不对称短路,判据:
I2 I0 m I1
振荡过程中又发生三相短路,判据:
U cos:近似为电弧电压,其值一般不会超过6%额
定电压,且与故障距离无关,基本不随时间 变化,振荡时,短时满足;短路时,一直满 足。
0.03p.u. U cos 0.08p.u.
响,但Ⅱ、 Ⅲ段定值较大,振荡时的测量阻抗比较
容易进入其动作区。
10
系统振荡时,阻抗继电器是 否误动、误动的时间长短与:
•
保护安装位置
•
保护动作范围
•
动作特性的形状
•
振荡周期长短等有关
11
4. 振荡与短路的区别:
①从电流和各点电压的幅值的变化上看:
振荡:作周期性变化 短路: di du 大
dt dt
3.5 距离保护的振荡闭锁
电力系统继电保护第六章 距离保护
中国电力出版社
第二节 阻抗继电器
一、阻抗继电器的动作特性 可以是相电压或线电压) 单相式阻抗继电器是指加入继电器只有一个电压 (可以是相电压或线电压 可以是相电流或两相电流差) 的阻抗继电器, Um和一个电流 Im(可以是相电流或两相电流差 的阻抗继电器,加入继 电器的电压与电流比值称为继电器的测量阻抗。 电器的电压与电流比值称为继电器的测量阻抗。 & U
Z
U&
m
m
中国电力出版社
当线路正方向0.85 Z NP 处发生短路时,阻抗继电器的测量阻抗为: 处发生短路时,阻抗继电器的测量阻抗为: 当线路正方向
UN U n U n n Z m = m = TV = N TA = 0.85Z NP TA I NP I NP nTV Im nTV nTA
I段阻抗继电器的整定值为 Z 段阻抗继电器的整定值为
中国电力出版社
第六章学习主要内容及学习要点
1、要求了解距离保护的工作原理,主要组成元件及动作时限特性 2、重点掌握下述内容: (1)常用阻抗继电器名称、特点及动作参数(动作阻抗、返回阻 抗、测量阻抗和整定阻抗)的基本概念。 (2)熟练掌握用幅值比较原理和相位比较原理,在复平面上分析 单相阻抗继电器的动态特性。以及用这两种原理构成常用单相 式阻抗继电器的方法。 (3)掌握阻抗继电器用于相间短路的基本接线方式;用于接地保 护的基本接线方式。 (4)掌握方向阻抗继电器产生死区原因及消除死区的措施,并了 解由于引入极化电压对阻抗继电器暂态特性的影响。 (5)了解过渡电阻、电力系统振荡、电压回路断线,分支电流对 距离保护工作的影响及其防止措施。 (6)熟练掌握三段式距离保护的整定计算。
TA
• •
动作量: U 1 = I m Z set 制动量: U = U 2 m
电力系统继电保护课件第四章 距离保护
距离保护的发展趋势
数字化技术应用
随着数字化技术的发展,未来距离保护装置将更加智能化 和数字化,能够实现更快速、准确的故障定位和切除。
集成化和模块化设计
为了提高保护装置的可靠性和稳定性,未来距离保护装置 将采用集成化和模块化设计,减少外部元件数量,降低故 障率。
自适应和智能决策
随着人工智能技术的发展,未来距离保护装置将具备自适 应和智能决策功能,能够根据系统运行状态自动调整保护 参数和策略,提高保护的可靠性和稳定性。
障或恢复供电。
03
距离保护的整定计算
距离保护的定值计算
阻抗继电器定值
根据系统最大运行方式和最小运行方 式下的阻抗值,计算出继电器的启动 、速断和过流定值,以确保在故障发 生时能够正确动作。
动作时间整定
根据系统稳定运行的要求和保护装置 的特性,确定保护装置的动作时间, 以保证在故障发生时能够快速切除故 障。
THANKS FOR WATCHING
感谢您的观看
距离保护的原理
距离保护的原理是利用被保护线路的阻抗值随距离的变化而 变化,当线路发生故障时,阻抗值会发生变化,保护装置通 过比较线路两端电压和电流的大小,计算出阻抗值的变化, 从而确定故障点的位置。
当故障点距离保护装置越近时,阻抗值越小,反之则越大。 因此,当故障点在保护装置的整定范围内时,保护装置会迅 速动输电线路故障:某日,500kV输电线路A相发生接地故障,距离保护装 置正确动作,快速切除了故障线路,避免了事故的扩大。
案例二
某220kV变压器内部故障:某变压器在运行过程中发生内部匝间短路故障,由于 配置了距离保护,装置正确动作,及时切断了电源,避免了变压器的进一步损坏 。
02 03
变压器保护
继电保护之距离保护
范围,或反向。
距离保护的保护范围和灵敏度受运行方式的影响较小, 尤其是距离保护Ⅰ段的保护范围比较稳定,同时,还具备 判别短路点方向的功能。
5/59
Um 测量阻抗Z m 通常为复数,还可以表示为: Im
Um Zm Z m m Rm jX m Im Z m — 测量阻抗的幅值;
18/59
通用式 : Um UK Z1 Im K 3 I 0 m
U K U K 0 3 I0 0
U UK Z1 I K 3 I 0 Z1 I
因此,接地测量阻抗为: U Zm Z1 I K 3 I 0
3/59
3.1.1
距离保护基本原理
利用保护安装处测量电压和测量电流(适当选择接
线方式)的比值 U m / I m 所构成的继电保护方式-----称为阻抗保护。
对于输电线路,由于
U m / I m z1lm
,
U m / I m 能反映短路点到保护安装处的距离 l m ,
因此,通常也称为距离保护。其中,
U m U 1m U 2 m U 0 m
U 1 K U 2 K U 0 K Z1 I1m Z 2 I 2m Z 0 I 0m
Z1 Z 2时
U K Z1 I1 m Z1 I 2 m Z 0 I 0 m
接地距离接线方式 A相 B相 C相
UC UA UB I A k 3I 0 I B k 3I 0 I C k 3I 0
相间距离接线方式 AB相 BC相 CA相
U AB I A IB
电力系统继电保护原理第三章
第三章 电网的距离保护 第一节距离保护的作用原理一﹑基本概念电流保护的优点:简单﹑可靠﹑经济。
缺点:选择性﹑灵敏性﹑快速性很难满足要求(尤其35kv 以上的系统)。
距离保护的性能比电流保护更加完善。
Z dU d....1fe f dd d ld I U Z I U Z Z =<==,反映故障点到保护安装处的距离——距离保护,它基本上不受系统的运行方式的影响。
二﹑距离保护的时限特性距离保护分为三段式: I 段:AB Idz Z Z )85.0~8.0(1=,瞬时动作 主保护 II 段:)(21Idz AB IIK IIdz Z Z K Z +=,t=0.5’’III 段:躲最小负荷阻抗,阶梯时限特性。
————后备保护第二节 阻抗继电器阻抗继电器按构成分为两种:单相式和多相式单相式阻抗继电器:指加入继电器的只有一个电压U J (相电压或线电压)和一个电流I J (相电流或两相电流之差)的阻抗继电器。
JJ J I U Z ..=——测量阻抗Z J =R+jX 可以在复平面上分析其动作特性它只能反映一定相别的故障,故需多个继电器反映不同相别故障。
多相补偿式阻抗继电器:加入的是几个相的补偿后的电压。
它能反映多相故障,但不能利用测量阻抗的概念来分析它的特性。
本节只讨论单相式阻抗继电器。
一﹑阻抗继电器的动作特性PTld PT l lPT JJ J n n Z n n I U n I n U I U Z ⨯=⨯===1.1.1.1...BC 线路距离I 段内发生单相接地故障,Z d 在图中阴影内。
由于1)线路参数是分布的, Ψd 有差异2)CT,PT 有误差 3)故障点过渡电阻 4)分布电容等 所以Z d 会超越阴影区。
因此为了尽量简化继电器接线,且便于制造和调试,把继电器的动作特性扩大为一个圆,见图。
圆1:以od 为半径——全阻抗继电器(反方向故障时,会误动,没有方向性) 圆2:以od 为直径——方向阻抗继电器(本身具有方向性) 圆3:偏移特性继电器另外,还有椭圆形,橄榄形,苹果形,四边形等二﹑利用复数平面分析阻抗继电器它的实现原理:幅值比较原理 B A U U ..≥J相位比较原理 90arg 90..≤≤-DC U U(一) 全阻抗继电器 特性:以保护安装点为圆心(坐标原点),以Z zd 为半径的圆。
电力系统继电保护——3.1-3.2电网的距离保护-阻抗继电器原理和动作特性
Zset
UP 240 arg 120 U jX
Zm Zset
Z0
Zm
O
R
Z0
R
U P Um
U P Um
U =Um I m Zset
U = I m Z0
10. 具有四边形特性的阻抗继电器
jX
A
B
折线A-O-C可以由动作 范围小于1800的功率方 向继电器来实现
直线A-B可由一个电抗 型继电器实现
电力系统继电保护原理
主讲教师:范春菊
3 电网的距离保护 3.1 距离保护的作用原理 3.2 各种单相式阻抗继电器的动作特性 3.3 阻抗继电器的接线方式
3.4 方向阻抗继电器的死区和特性分析
3.5 距离保护的整定计算和评价
3.6 影响距离保护正确动作的因素及防止方法
3.7 距离保护装置框图举例
3.1 距离保护的作用原理
Z m Z set
Zm
O
m
R
Z m Z set
R
(a)
(b)
| Zm | Zset
| U m | I m Z set
幅值比较方式
Z m Z set 270 arg 90o Z m Z set
继电保护原理第3章电网距离保护
U
U Uk (I K 3I0 ) Z1 l
•
•
•
U A U kA (I A K 3I0 ) Z1l
•
•
Zm
Um Im
UA
•
I A K 3I0
Z1l
U kA
•
I A K 3I0
•
U kA 0
Zm Z1l l
4) 两相相间短路
M 1 Ik
k
2N
假设AB 相间短路:
U
1)测量阻抗正比于短路点到保护安装点之间的距离;
Zm l ,l 是故障距离。 Zm z1 l
2)测量阻抗应该与故障类型无关,即在故障位置确定 情况下,测量阻抗不随故障类型的变化而变化。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
阻抗继电器的接线方式主要有两种: 1、相间距离继电器接线( 0° 接线方式),反应相间故障; 2、接地距离继电器接线方式(相电压和具有K3I0补偿的相电 流接线),反应接地短路故障。
5. 动作角度范围变化对继电器特性的影响
橄榄形(透镜型)继电器: arg Zset Zm
90 Zm
苹果型继电器: arg Zset Zm
Zm
折线型继电器:
60
arg
U J IJ Z0
60
, 90
第三节 阻抗继电器的实现方法
阻抗继电器的两种实现方法:
(1)精确测量出测量阻抗Zm,然后把它与事先确定的动作 特性进行比较。如果Zm在动作区域内,判为内部故障,发出 动作信号。
jX
Z0 Zset2
2N
Zset1 Zm
R
圆的半径:
R1 2
Zset1 Zset2
电力系统继电保护-3 电网距离保护
3.1.5 距离保护的构成
• 启动部分要求——当作为远后备保护范围末端发生故障时,启动部分 应灵敏、快速(几毫秒)动作,使整套保护迅速投入工作。 • 测量部分要求--在系统故障的情况下,快速、准确地测定出故障方向 和距离,并与预先设定的方向和距离相比较,区内故障时给出动作信 号,区外故障时不动作。
3.2.2 动作特性和动作方程
• 动作特性——阻抗继电器动作区域的 形状,称为动作特性。 • 圆特性——动作区域为圆形; • 四边形特性——动作区域为四边形。 • 动作方程——描述动作特性的复数的 数学方程。 • 绝对值(或幅值)比较动作方程—— 比较两个量大小的绝对值比较原理表 达式。 • 相位比较动作方程:比较两个量相位 的相位比较原理表达式。
电力系统继电保护
3 电网距离保护
3.1 距离保护的基本原理与构成
ቤተ መጻሕፍቲ ባይዱ
电力系统继电保护基础知识讲座-第四章(输电线路的距离保护)
直线 1 直线 2
Zm Zset Zm ,
arg(Zm
1 2
Zset )
2
arg(Zm
1 2
Zset )
2
为 (4 ~ 8)
第二节 阻抗元件的动作特性和动作方程 三、直线特性及其动作方程
2、电阻特性
当 Z set2 , 0 Z set1 R = Zset 时,
直线 1 Zm R Zm
方向阻抗继电器的整定阻抗角称最大灵敏角
第二节 阻抗元件的动作特性和动作方程 二、圆特性阻抗继电器的动作方程
1.全阻抗继电器的动作方程 (1) 绝对值比较动作方程
Zm Zset
第二节 阻抗元件的动作特性和动作方程
二、圆特性阻抗继电器的动作方程
1. 全阻抗继电器的动作方程
(2) 、相位比较动作方程
90arZ gse t Zm90 Zse t Zm
第一节 距离保护的作用原理和构成
抗 Z m
Um
•
Im
负荷阻抗
短路阻抗
第一节 距离保护的作用原理和构成
一、距离保护的作用原理
分析结论: 一. 保护安装处的测量阻抗能区分正常状态与故障
状态,两者在大小和角度上均有明显的差别; 二. 保护安装处的测量阻抗能区分故障点的远近,
4.其它圆特性及其动作 方程
(3)令 K1 0 则:
K2 K3
Zm
K4 K3
当 K 4 K2 时,
上抛圆或下抛圆特性
当 K 4 K 2 时, 偏移特性圆特性
第二节 阻抗元件的动作特性和动作方程 三、直线特性及其动作方程
Zm Zset1 Zm Zset2
1、电抗特性
当 Z set2 0 , Z set1 jx = Z set 时
电网距离保护的基本原理及构成
90 arg Zm jZ set 90 jZ set
(3.27)
特点:电抗特性的动作情况只与测量阻抗中的电抗分量有关,与电阻无
关,因而它有很强的耐过渡电阻能力。但它本身不具有方向性,且负荷
阻抗下也可能动作,所以通常不能独立应用,而是复合,形成具有复合
特性的阻抗元件。
3.2.2 阻抗继电器的动作特性和动作方程
时,特性圆向右偏转,反之,当α为负角时,特性圆左偏。
3.2.2 阻抗继电器的动作特性和动作方程
2、苹果形和橄榄形阻抗元件
如果各相位比较方程中动作的范围不等于180°,对应的动作特性就不再是 一个圆。以方向圆特性为例,将式(3.20)中的动作边界改为-β和β,对应的 动作方程变为:
arg Zset Zm Zm
3.1.5距离保护的构成
启动部分 要求:当作为远后备保护范围末端 发生故障时,启动部分应灵敏、快 速(几毫秒)动作,使整套保护迅 速投入工作。
测量部分 要求:在系统故障的情况下,快速、准确地 测定出故障方向和距离,并与预先设定的保 护范围相比较,区内故障时给出动作信号, 区外故障时不动作。
3.2.1阻抗继电器及其动作特性
(3.29) 直线2,相应的特性称为准电阻特性或 修正电阻特性,它与直线1的夹角为θ,
特点:电阻特性通常也是与其它特性 对应的相位比较式的动作方程为:
复合,形成具有复合特性的阻抗元件
。
90 arg Zm Rset 90 Rset
(3.30)
3.2.2 阻抗继电器的动作特性和动作方程
B-电阻特性
电阻特性的动作边界如图3-13所示。动作边 界直线平行于jX,它到jX的距离为Rset,直 线的左侧为动作区。电阻特性阻抗形式的绝 对值方程为:
电力系统继电保护课件第四章 距离保护
通过引入人工智能技术,提高距离保护的自动化水平和智能化能力。
2
通信协议
距离保护的通信协议将不断改进,以支持更高效和更可靠的数据传输。
3
多功能化
距离保护将逐渐融合其他保护功能,实现集成化和多功能化。
局限性
• 对系统参数变化敏感 • 不适用于所有类型的故障 • 需要准确的线路模型
距离保护的主要技术指标
保护动作速度 灵敏度 抗干扰能力 配置灵活性
快速响应故障,减少损失 准确判断故障位置,提高保护的可靠性 抵御外部干扰,确保保护的准确性 可根据实际需求调整和配置保护参数
距离保护的未来发展趋势
1
智能化
距离保护的特点
1 快速准确
距离保护能够迅速响应故障并准确判断故障位置,有助于及时采取措施进行修复。
2 灵活可靠
距离保护具有灵活的配置和调整选项,可适应不同的电力系统,并提供可靠的保护。
3 适用范围广
距离保护适用于各种电力设备和系统,包括输电线路、变电站、发电厂等。
距离保护的常见应用场景
输电线路
距离保护广泛用于长距离输电线路,以保护线 路免受短路故障和过电流等异常情况的影响。
发电厂
距离保护在发电厂应用中,主要用于保护发电 机、ห้องสมุดไป่ตู้压器和主变等关键设备,确保电力系统 的可靠性。
变电站
在变电站中,距离保护用于保护变压器、开关 设备和其他电力设备,确保其正常运行。
配电系统
距离保护也适用于配电系统,用于保护配电线 路和其他低压设备免受故障的影响。
距离保护的优点和局限性
优点
• 准确判断故障位置 • 快速响应故障 • 灵活可靠
电力系统继电保护课件第 四章 距离保护
电力系统继电保护03
26
电阻特性
动作边界直线平行于jX 轴,到 jX 轴的距离为Rset,直线的左 侧为动作区。 类似于电抗特性的分析,可以 得到电阻特性阻抗形式的幅值 比较动作方程和相位比较动作 方程分别为:
27
电阻特性
与电抗特性一样,电阻特性通常 也是与其他特性复合,形成具有 复合特性的阻抗元件。 实际应用的电阻特性一般如图中 的直线2,相应的特性称为准电 阻特性或修正电阻特性,它与直 线1的夹角为θ,对应的相位比 较动作方程为:
15
阻抗继电器的动作特性和动作方程
阻抗继电器动作区域的形状称为动作特性。例如动作 区域为圆时称为圆特性;动作区域为四边形时称为四 边形特性。动作特性既可以用阻抗复平面上的几何图 形来描述,也可用复数的数学方程来描述,这种方程 称为动作方程。 1. 圆特性阻抗继电器 根据动作特性圆在阻抗复平面上位置和大小的不同, 圆特性又分为偏移圆特性、方向圆特性和全阻抗圆特 性等。
11
故障环路的概念及测量电压、电流的选取
• 利用故障环路上的电压和环路中流通的电流作为测量 电压和测量电流所算出的测量阻抗,能够正确反应保 护安装处到故障点的距离。 • 而由非故障环路上的电压、电流算出的测量阻抗就不 能正确反应故障距离。 • 对于接地短路,取相—地故障环路,测量电压为保护 安装处故障相对地电压,测量电流为带有零序电流补 偿的故障相电流称为接地距离保护接线方式。 • 对于相间短路,故障环路为相—相故障环路,取测量 电压为保护安装处两故障相的电压差,测量电流为两 故障相的电流差,称为相间距离保护接线方式。
7
三相系统中测量电压和测量电流的选取
8
三相系统中测量电压和测量电流的选取
• 单相接地短路故障 • 以A相接地为例,当A相发生金属性短路时,接地 点电压为零,有 可以写成 • 因而据此算出的测量阻抗能够正确反应故障的距 离,从而可以实现对故障区段的比较和判断。 • 非故障相对地电压不为零,无法满足所需要的测 量阻抗形式。
电力系统继电保护第6章 输电线路距离保护分析
6.1 距离保护概述
故障点总是由离故障点近的保护首先动作切除, 从而保证了在任何形状的电网中,故障线路都能 有选择性的被切除。 距离保护核心元件:阻抗继电器。 阻抗继电器:测量故障点至保护安装处的距离。 方向阻抗继电器不仅能测量阻抗的大小,而且还应 能测量出故障点的方向。
6.1 距离保护概述
原理:测量故障点至保护安装处的阻抗,实际上 是测量故障点至保护安装处的线路距离。 假设:电压、电流互感器变比等于1。加入继电 。 器电压、电流为 U 、I m m 测量阻抗
6.2 阻抗继电器
偏移特性阻抗继电器比相形式动作方程:
jX
Z Z C set m
Z Z D m set
Z set
Z set
Zm
C
R
6.2 阻抗继电器
以电压形式表示动作方程为:
K I K U C ur m uv m
K I K U D ur m uv m
特点:1)圆的半径为整定阻抗; 2)圆内为动作区; 3)动作不具有方向性。
R
6.2 阻抗继电器
方程两边乘以电流,则方程为
I Z U m m set
/K 若令整定阻抗为: Zset K ur uv
U 圆的动作方程为: K uv m K ur I m
物理意义:正常运行时,电压为额定电压、电流是 负荷电流,方程不满足条件,即继电器不动作;当 在保护区内发生短路故障时,电压降低,电流增大, 方程满足条件,保护起动。
Zm Um Im
工作电压:Uop Um Im Zset
6.1 距离保护概述
设阻抗继电器安装在线路M侧:
K3
I m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Um Im
Z m m
R m jX m
ZL
IUmm
:是测量电流 :是测量电压
Z m :是测量阻抗
R
R m :是测量电阻
X m :是测量电抗
依据测量阻抗在不同情况下幅值和相位的“差 异”,保护就能够区分出系统是否发生故障以及 故障发生的范围。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
Uk
[(I A1
I A2
I A0 ) 3I A0
Z
0 Z1 3Z1
]Z1l
U k
(I
K
3I0 ) Z1 l
U A U kA (I A K 3I0 ) Z1l
Zm
Um Im
UA
I A K 3I0
Z1l
U kA
UA
I A K 3I0
Z1l
U kA
I A K 3I0
U kA 0
Zm Z1l l
4) 两相相间短路
M 1 Ik
k
2N
假设AB 相间短路:
U
U Uk (I K 3I0 ) Z1 l
U A U kA (I A K 3I0 ) Z1l
Zm
Um Im
UA
I A K 3I0
Z1l
U kA
I A K 3I0
U kA 0
Zm
Z1l
IA
U kA K3I0
l
(2)相间距离保护的 接线方式 Um
U AB
U U k I Z1 l
U BC
1) 三相短路
U CA
M 1 Ik
k
2N
U
U U k I Z1 l
U AB U kAB I AB Z1l
Zm
Um Im
U
AB
I AB
Z1l
U
kAB
I AB
U kAB U kA U kB 0
Zm
Z1l
U kAB I AB
l
相间距离保护 接线方式
K (1)
K (3) K (1,1)
K (2)
接地距离保护 接线方式
为保证距离保护的正确工作,测量电压、测量电 流应取用故障环路(故障电流流通的回路)上电压、 电流量。
接地短路的故障环路为 相-地故障环路; 相间短路的故障环路为 相-相故障环路。
Zm
Um Im
测量电压、测量电流的选取形式, 称为接线方式。
若使距离保护正确工作,测量阻抗在不同故障类型情
况下均能正确反应故障距离,必须选取适当的接线方
式。对接线方式的基本要求:
1)测量阻抗正比于短路点到保护安装点之间的距离;
Zm l
l 是故障距离。
Z m z1 l
2)测量阻抗应该与故障类型无关,即在故障位置确定
第三章
电网距离保护
一、距离保护基本原理与构成 二、阻抗继电器及动作特性 三、阻抗继电器的实现方法 四、距离保护的整定计算与对距离保护的评价 五、距离保护的振荡闭锁 六、故障类型判别和故障选相 七、距离保护特殊问题的分析 八、工频故障分量距离保护
一、距离保护的概念
电流保护:反映故障电流大小。 简单、经济、工作可靠,适用于35kV及以下电网; 受系统运行方式变化的影响较大,难以满足高压和超高 压电网快速、有选择性地切除故障的要求。
距离保护:利用短路时电压、电流同时变化的特征,测量电压与电
流的比值,反应故障点至保护安装点之间的距离,并根
据距离的远近而确定动作时间。
Zm
Um Im
通过选取适当的接线方式,使得 测量阻抗与故障距离 L 成正比。
K3 M 1
K1 Lset K2
2N
jX Z k2
Z Set Z k1
Z k3
Zm
情况下,测量阻抗不随故障类型的变化而变化。
三相系统中测量电压和测量电流的选取(距离保护的接线方式)
阻抗继电器的接线方式主要有两种: 1、相间距离继电器接线( 0° 接线方式),反应相间故障; 2、接地距离继电器接线方式(相电压和具有K3I0补偿的相电 流接线),反应接地短路故障。
(1) 接地距离保护的接线方式
U Uk (I K 3I0 ) Z1 l
其中 K Z0 Z1 3Z1
1) 三相短路
M1
U A U kA (I A K 3I0 ) Z1l
U
Zm
Um Im
UA
I A K 3I0
Z1l
U kA
I A K 3I0
U kA 0
Zm Z1l l
U m U A U B U C
Ik
Im IA K 3I0 IB K 3I0 IC K 3I0
K
2N
2) 单相接地短路
M 1 Ik
K
2N
假设A 接地短路:
U
U Uk I A1Z1 l I A2Z2 l I A0Z0 l
I A K 3I0
U kA 0
Zm Z1l l
3) 两相接地短路
M 1 Ik
k
2N
假设AB 接地短路:
U
U Uk (I K 3I0 ) Z1 l
U A U kA (I A K 3I0 ) Z1l
Zm
Um Im
假设AB 接地短路:
M 1 Ik
k
2N
U
U U k I Z1 l
U AB U kAB I AB Z1l
Zm
Um Im
U
AB
I AB
Z1l
U
kAB
I AB
U kAB 0
Zm Z1l l
4) 单相接地短路
假设A 接地短路:
2N
2) 两相相间短路
假设AB 相间短路:
M 1 Ik
K
2N
U
U U K I Z1 l
U AB U kAB I AB Z1l
Zm
Um Im
U
AB
I AB
Z1l
U
kAB
I AB
U kAB 0
Zm Z1l l
3) 两相接地短路
M 1 Ik
kБайду номын сангаас
U AB U kAB I AB Z1l
U
(U A U B ) (UkA UkB ) (I A IB )Z1l
Zm
Um Im
U
AB
I AB
Z1l
U
kAB
I AB
U kAB 0
Zm Z1l l
Im IAB IBC ICA