气态污染物的吸收法净化
第四章 净化气态污染物的方法
第四章 净化气态污染物的方法我们都知道,大气污染物分类为气态污染物和颗粒状污染物,本章是针对于气态污染物的处理方法进行学习。
工程上净化气态污染物的方法主要有以下几种:利用溶液的溶解作用所组成的气体吸收净化;利用固体表面吸附作用的吸附净化;利用某些催化剂的催化转化;有机物的高温焚烧等方法。
§1 吸收法净化气态污染物吸收法净化气态污染物是利用气体混合物中各种成分在吸收剂中的溶解度不同,或者与吸收剂中的组分发生选择性化学反应,从而将有害组分从气流中分离出来的操作过程。
吸收分为物理吸收和化学吸收两大类。
吸收过程无明显的化学反应时为物理吸收,如用水吸收氯化氢。
用水吸收二氧化碳的感。
吸收过程中伴有明显化学反应时为化学吸收,如用碱液吸收难以达到排放标准,因此大多数采用化学吸收。
吸收法不但能消除气态污染物对大气的污染,而且开可以使其还可以使其转化为有用的产品。
并且还有捕集效率高、设备简单、一次性投资低等优点,因此,广泛用于气态污染物的处理。
如处理含有SO 2、H 2S 、HF 和NO x 等废气的污染物。
一、吸收平衡理论物理吸收时,常用亨利定律来描述气液两相间的平衡,即i i i x E p =* 式中*i p ——i 组分在气相中的平衡分压,Pa ;i x ——i 组分在液相中的浓度,mol%;i E ——i 组分的亨利系数,Pa 。
若溶液中的吸收质(被吸收组分)的含量i c 以千摩尔/米3表示,亨利定律可表示为: i i i H c p =*或i i i p H c =i H ——i 气体在溶液中的溶解度,kmol/m 3·Pa 。
亨利定律适用于常压或低压下的溶液中,且溶质在气相及液相中的分子状态相同。
如被溶解的气体在溶液中发生某种变化(化学反应、离解、聚合等),此定律只适用于溶液中未发生化学变化的那部分溶质的分子浓度,而该项浓度决定于液相化学反应条件。
二、双膜理论吸收是气相组分向液向转移的过程,由于涉及气液两相间的传质,因此这种转移过程十分复杂,现已提出了一些简化模型及理论描述,其中最常用的是双膜理论,它不仅用于物理吸收,也适用于气液相反应。
VOC处理方法都有哪些
对于VOC相关的知识,大家知道多少呢,尤其是关于其具体的处理方法,更是需要我们去熟悉掌握。
为此,接下来我们就有必要来具体看看都有哪些方法吧。
1、吸附法吸附法利用某些具有吸附能力的物质如活性炭、硅胶、沸石分子筛、活性氧化铝等具有多孔材料吸附有害成分而达到消除有害污染的目的。
吸附法的优点在于去除效率高、能耗低、工艺成熟、脱附后溶剂可回收。
此外,吸附法其吸附效果主要取决于吸附剂性质、气相污染物种和吸附系统工艺条件(如操作温度、湿度等因素),因而吸附法的关键问题就在于对吸附剂的选择。
2、溶剂吸收法以液体溶剂作为吸收剂,使废气中的有害成分被液体吸收,从而达到净化的目的,其吸收过程是根据有机物相似相溶原理,常采用沸点较高、蒸气压较低的柴油、煤油作为溶剂,使VOC从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的VOC,同时使溶剂得以再生。
该法不仅能消除气态污染物,还能回收一些有用的物质,可用来处理气体流量一般为3000~15000 m3/h、浓度为0、05%~0、5%(体积分数)的VOC,去除率可达到95%~98%。
3、热氧化法热氧化法分为直接燃烧法、催化燃烧法和浓缩燃烧法。
其破坏机理是氧化、热裂解和热分解,从而达到治理VOCs的目的。
热破坏法适合小风量,高浓度的气体处理,对于连续排放气体的场合,使用设备简单,投资少,操作方便,占地面积少,另外可以回收利用热能,气体净化彻底。
由于热破坏法是催化燃烧,所以要求的起燃温度低,大部分有机物在250~400℃即可完成反应,故辅助燃料消耗少,而且大量地减少了氮化物的产生,适用于较多场合。
但热破坏法有燃烧爆炸危险,热力燃烧需消耗燃料,不能回收溶剂。
而热催化氧化法中不允许废气中含有影响催化剂寿命和处理效率的尘粒和雾滴,也不允许有使催化剂中毒的物质,以防催化剂中毒,因此采用催化燃烧技术处理有机废气必须对废气作前处理。
4、生物处理法生物处理技术应用于有机废气的净化处理是近几年才开始的,是一项新兴的技术。
7气态污染物的治理吸附法PPT课件
2、吸附净化法的特点
(1)适用范围 ①常用于浓度低,毒性大的有害气体的净化; ②对有机溶剂蒸汽具有较高的净化效率; ③当处理的气体量较小时,用吸附法灵活方便。 (2)优点:净化效率高,可回收有用组分,设备简 单,易实现自动化控制。 (3)缺点:吸附容量小,设备体积大;吸附剂容量 往往有限,需频繁再生,间歇吸附过程的再生操作麻 烦且设备利用率低。
常用吸附剂特性
吸附剂类 型
堆积密度 /kg·m-3
热
容
/kJ(kg·K)
-1
操作温度
上限/K
平均孔径 /Å
再生温度 /K
比表面积 /㎡·g-1
活性炭
200~ 600 0.836 ~ 14.22534
15~25
373~ 413 600~ 1600
活性氧 化铝
750~ 1000 0.836
~ 17.07435
发展趋势:由电厂到石油化工、硫酸及肥料工业等领 域。
能否应用该方法的关键: ①解决副产物稀硫酸的应用市场; ②提高活性炭的吸附性能;
活性炭脱硫的主要特点: ①过程比较简单,再生过程中副反应很少; ②吸附容量有限,常需在低气速(0.3-1.0m/s) 下进行,因而吸附器体积较大; ③活性炭易被废气中O2氧化而导致损耗; ④长期使用后,活性会产生磨损,并因微孔堵塞 丧失活性。
吸附剂的活已性所 吸用 附吸 吸附 附剂 质量 的 10质 % 0 量
吸附剂的活性:
静活性:是指在一定温度下,与气相中被吸附物质的初 始浓度平衡时的最大吸附量,即在该条件下,吸附达到 饱和时的吸附量。
动活性:气体通过吸附层时,当流出吸附层的气体中刚 刚出现被吸附物质时即认为此吸附层已失效。这时单位 吸附剂所吸附的吸附质的量称为~。
吸收法净化气态污染物
吸收法净化气态污染物随着工业化和城市化的加速发展,气态污染物对于我们的生活环境带来了越来越严重的威胁。
气态污染物主要包括二氧化硫、氮氧化物、挥发性有机物等,它们对大气的质量产生了极大的影响。
为了净化空气中的气态污染物,一种常用的方法是通过吸收法进行处理。
吸收法是利用溶剂或吸附剂将气态污染物吸收到液体或固体中,从而达到净化的目的。
为了高效地净化气态污染物,我们需要选择合适的吸收剂,设计合理的吸收装置。
常见的吸收剂有水、乙醇、酸碱溶液等,而吸收装置则包括填充塔、膜分离装置等。
对于二氧化硫这类酸性气体,常用的吸收剂是碱性溶液,如氢氧化钠溶液。
氢氧化钠可与二氧化硫发生化学反应,生成硫酸钠溶液,从而从空气中净化出二氧化硫。
相似地,对于氮氧化物,我们可以选择氢氧化钠或氨水作为吸收剂,以碱性环境将氮氧化物吸收掉。
而对于挥发性有机物,我们可以选择活性炭等吸附剂,通过吸附作用将有机物吸附到其表面,达到净化的效果。
吸收法的工作原理是利用吸收剂的化学特性或物理特性与污染物发生作用,使其从气体相转变为液体相或固体相。
通过吸收法净化气态污染物,具有高效、安全、经济等优点。
吸收后的污染物可以进行合理的处理,如经过处理后的污染物可以作为原料进行再利用,从而实现资源的循环利用。
在实践中,吸收法净化气态污染物有很多应用。
其中,最典型的应用是烟气脱硫。
许多工业生产过程中,会产生大量的含硫烟气,这些烟气中的二氧化硫会对大气造成严重的污染。
通过吸收法,可以将二氧化硫吸收到碱性溶液中,从而净化烟气中的二氧化硫。
目前,烟气脱硫已成为工业界的主要技术之一。
此外,吸收法还可以用于处理工业废气、净化室内空气等。
工业废气中往往会含有各种有机物、酸性气体等,通过吸收法可以将这些污染物吸收掉,净化废气。
在室内环境中,常常会有甲醛、苯等有害气体释放,通过吸收法可以将这些有害气体吸收掉,保护人们的健康。
然而,吸收法也存在一些问题和挑战。
首先,吸收剂选择不当或吸收剂的成本过高会导致吸收法的成本增加。
“常见”大气污染物的治理方法
“常见”大气污染物的治理方法一、有机废气治理的常用方法1、冷凝回收法把有机废气直接导入冷凝器经吸附、吸收、解析、分离,可回收有价值的有机物,该法适用于有机废气浓度高、温度低、风量小的工况,需要附属冷冻设备,主要应用于制药、化工行业,印刷企业较少采用。
2、吸收法一般采用物理吸收,即将废气引入吸收液进行净化,待吸收液饱和后经加热、解析、冷凝回收;本法适用于大气量、低温度、低浓度的废气,但需配备加热解析回收装置,设备体积大、投资较高。
3、燃烧法(直接燃烧法和催化燃烧法)直接燃烧法:利用燃气或燃油等辅助燃料燃烧,将混合气体加热,使有害物质在高温作用下分解为无害物质;本法工艺简单、投资小,适用于高浓度、小风量的废气,但对安全技术、操作要求较高。
催化燃烧法:把废气加热经催化燃烧转化成无害无臭的二氧化碳和水;本法起燃温度低、节能、净化率高、操作方便、占地面积少、投资投资较大,适用于高温或高浓度的有机废气。
4、吸附法利用吸附剂的表面力把有机废气吸附在吸附剂表面,以净化生产过程中排出的废气。
常用的吸附剂有活性炭、硅胶、离子交换树脂等。
吸附法有直接吸附法法、吸附-回收法、新型吸附-催化燃烧法。
补充理由:环评中经常会遇见这类行业,如石油化工、制药、喷漆、制鞋、印刷等。
目前,国家对挥发性有机物(VOC)的防治比较重视。
二、恶臭废气治理常见方法恶臭物质有4000多种,其中对人体影响较大的八大恶臭物质是:硫化氢、氨、三甲胺、甲硫醇、甲硫醚、二硫化碳、苯乙烯、二甲二硫。
1、燃烧法采用将废气升温至800度以上,使废气中的有机成分燃烧分解的方法解决废气污染问题。
2、氧化法采用投加氯、臭氧、过氧化氢、高锰酸钾等强氧化剂将废气中的污染物分解,从而达到废气中产生恶臭的物质被分解成无机小分子,或转化成味小或转化成无味的物质,从而达到消除恶臭的目的,该法比较适合于浓度较低,具有特殊异味的废气治理工程中。
其缺点是净化效率不高,氧化剂投加量难以控制。
6气态污染物的治理-吸收法
• 缺点: • 化学吸收流程长,设备较多,操作也较复
杂,吸收剂价格较贵,同时由于吸收能力 强,吸收剂不易再生。
③酸性吸收液 浓硝酸和浓硫酸吸收NOx和SOx
④有机吸收液 吸收有机气体
7、吸收设备:
①气液接触面大,接触时间长; ②气液之间扰动强烈,吸收效率高; ③流动阻力小,工作稳定; ④结构简单,维修方便,投资和运行维修费用低 ⑤具有抗腐蚀和防堵塞能力。
7.1.2、板式塔
1、工作过程:吸收液体由 上部喷头喷入,被吸收气 体由下部送入,气液在中 间塔板层相互接触。常用 的塔板有筛孔板、斜孔板、 筛网等。
2、特点:吸收效率高等。 缺点是板孔容易堵塞,吸 收过程必须保持恒定的作 业条件,且体积大,构造 复杂,造价较高。
浮阀塔浮阀(a)V-4型,(b)T型
• 催化转化法是在催化剂的作用下,将废气中气态 污染物化为非污染物或其他易于清除的物质。
• 冷凝法是利用气体沸点不同,通过冷凝将气态 污染物分离。
• 生物法主要依靠微生物的生化降解作用分解污 染物。
• 膜分离法利用不同气体透过特殊薄膜的不同速 度,使某种气体组分得以分离。
• 电子辐射-化学净化法则是利用高能电子射线激 活、电离、裂解废气中的各组分,从而发生氧 化等一系列化学反应,将污染物转化为非污染 物。
–吸收剂对溶质应有良好的选择性,即对于混合气中待吸 收组分的溶解度要大,对其余组分的溶解度要小;
–溶剂的挥发性要小,以减少溶剂的损失量; –溶剂的粘度要低,这样有利于气、液接触,提高吸收速
率,也便于输送;
–无毒;难燃;腐蚀性小;易得价廉; –易于再生利用;不污染环境。
①水是常用的吸收剂。常用于净化煤气中的CO2和 废气中的SO2、HF、SiF4以及去除NH3和HCl等。
吸收法净化气态污染物
吸收法净化气态污染物
吸收法净化气态污染物
6、吸收设备的分类和特点
(1)对吸收设备的基本要求 a源自气液之间有较大的接触面积和一定的接触时间; b.气液之间扰动剧烈,吸收阻力小,吸收效率高; c.操作稳定并有合适的弹性; d.气流通过时的压降小; e.结构简单,制造维修方便,造价低廉; f.针对具体情况,要求具有抗蚀和防堵能力。
用喷嘴将液体喷射成为许多细小的液滴,以增大气-液接触面,完 成传质过程。比较典型的设备是空心喷洒吸收器(喷雾塔或称空塔 )和文丘里吸收器。
吸收法净化气态污染物
(3) 几种常用吸收塔的结构与特点
a.填料塔 填料塔的典型结构如图所示。塔内装有支撑板,板
上堆放填料层,吸收液通过安装在填料上部的分布器洒 向填料。填料在整个塔内可堆成一层,也可分成几层。 当填料分层堆放时,层与层之间常装有液体再分布装置
吸收法净化气态污染物
(3)吸收剂的再生
• 吸收剂使用到一定程度,需要处理后再使用,处理 的方式一是通过再生回收副产品后重新使用,如亚 硫酸钠法吸收SO2气体,吸收液中的亚硫酸氢钠经 加热再生,回收SO2后变为亚硫酸钠重新使用。二 是直接把吸收液加工成副产品,如用氨水吸收SO2 得到的亚硫酸铵经氧化变为硫酸铵化肥。
吸收还可以按吸收过程中有无温度变化分为等温吸收和非 等温吸收。吸收法净化气态污染物可以近似按等温吸收处理。
吸收法净化气态污染物
3、吸收的基本理论
(1)吸收平衡 在一定温度和压力下,气液接触时,混合气体中的可吸收组
分进入液相,称为吸收;同时液相中的吸收质向气相逸出,称 为解吸。当吸收速率等于解吸速率时,气液两相达到平衡,此 时气相中吸收质的分压称平衡压(p*);液相中收质浓度称平 衡浓度(c*)。
气态的净化方法
气态的净化方法
气态的净化方法主要包括以下几种:
1. 空气过滤:使用空气过滤器可以有效去除气体中的悬浮颗粒、粉尘和细菌等微小污染物,改善室内空气质量。
2. 吸附剂:通过使用吸附剂如活性炭、分子筛等材料,可以吸附空气中的有害气体,如二氧化硫、一氧化碳、甲醛等有机挥发物。
3. 光催化氧化:利用光催化剂如二氧化钛等材料,在紫外光照射下,可以将空气中的有机物质氧化为无害物质。
4. 冷凝法:通过冷凝技术将气体冷凝成液体或固体,实现气态污染物的分离和去除。
5. 电离和化学反应:通过电离装置产生负离子,吸附空气中的微粒污染物,或通过化学反应将有害气体转化为无害物质。
6. 生物净化:利用植物、菌类等生物来吸收或分解空气中的污染物,例如通过室内常见的绿植来吸收二氧化碳和甲醛。
7. 隔离与排放:对于无法直接净化的气体污染物,采取隔离措施,使用通风设备将有害气体排放到室外,减少室内的污染。
需要根据具体情况选择合适的净化方法,并结合多种方法进行综合净化,以达到较好的净化效果。
吸收法净化气体污染物实验
《环工综合实验(2)》(吸收法净化气体污染物实验)实验报告专业环境工程班级卓越环工1201姓名陈睿指导教师李响成绩东华大学环境科学与工程学院实验中心二0一五年五月实验题目吸收法净化气体污染物实验实验类别综合实验室实验时间2015年 5 月7 日13 时~ 16 时实验环境温度: 湿度: 同组人数9 本实验报告由我独立完成,绝无抄袭!承诺人签名一、实验目的1.了解吸收法净化气态污染物的原理。
2.计算实际的吸收效率。
二、实验仪器及设备1.气体吸收装置,分析天平2.氢氧化钠溶液,盐酸溶液,碳酸钠,邻苯二甲酸氢钾,甲基橙指示剂,酚酞指示剂1-喷淋管 2-填料吸收塔 3-碱液储槽 4-尾气吸收瓶5-酸性气体瓶 6-加热装置 7-铁架台三、实验原理气体吸收是气体混合物中一种或多种组分溶解于选定的液体吸收剂中,或者与吸收剂中的组分发生选择性化学反应,从而将其从气流中分离出来的操作过程。
从大气污染控制的角度看,用吸收法净化气态污染物,不仅是减少甚至消除气态污染物向大气中排放的重要途径,而且还能将污染物转化为有用的产品。
吸收可分为物理吸收和化学吸收。
在物理吸收中,气体组分在吸收剂中只是单纯的物理溶解过程;而在化学吸收中,吸收质在液相中与反应组分发生化学反应,从而降低液相中纯吸收质的含量,增加了吸收过程的推动力,提高了吸收速率。
物理吸收中,吸收速率决定于吸收质在气膜和液膜中的扩散速率。
化学吸收中,吸收速率除与扩散速率有关外,还与化学反应的速率有关。
化学吸收过程既应服从被吸收组分的气液平衡关系即相平衡关系,也应服从化学平衡关系。
对于物理吸收及气液相反应原理,应用最广泛且较成熟的是“双膜理论”。
采用一般的物理吸收是不能满足实际处理中处理气体流量大、吸收组分浓度低、吸收效率高和吸收速率快等要求,所以一般多采用化学吸收过程。
在实际生产中,对于吸收设备的最基本要求是:气液之间有较大的接触面积和一定的接触时间,且气液之间扰动强烈,吸收阻力小,吸收效率高;结构简单,操作稳定。
大气污染控制工程第七章课后习题答案
⼤⽓污染控制⼯程第七章课后习题答案第七章⽓态活染物控制技术基础⼀、填空题1、吸收法净化⽓态污染物是利⽤混合⽓体中各成分在吸收剂中的不同,或与吸收剂中的组分发⽣,从⽽将有害组分从⽓流中分离出来。
【答】溶解度,化学反应2、⽤⽔吸收HC1⽓体属于,⽤N a OH溶液吸收S02属于,⽤酸性溶液吸收N H3属于。
【答】物理吸收,化学吸收,化学吸收3、⽬前⼯业上常⽤的吸收设备可分为、和三⼤类。
【答】表⾯吸收器,⿎泡式吸收器,喷洒式吸收器4、⽓体扩散同时发⽣在⽓相和液相中,扩散过程既包括,也包括。
【答】分⼦扩散,湍流扩散5、吸收操作线斜率Ls/G s称为吸收操作的液⽓⽐,物理含义为。
【答】处理单位惰性⽓体所消耗的纯吸收剂的量6、常⽤的吸收剂有和。
【答】⽔,碱⾦属钠、钾、铵或碱⼟⾦属钙、镁等的溶液7、防治S02污染的⽅法主要有清洁⽣产⼯艺、采⽤低硫燃料、、及等。
M g2+, S⼆酸,氨【答】燃料脱硫,燃料固硫,烟⽓脱硫8、湿式⽯灰/⽯灰⽯-⽯膏法存在结垢和堵塞问题,通过在吸收液中加⼊C a C l2、、、等添加剂可解决此问题。
【答】浆液的p H值,吸收温度,⽯灰⽯的粒度9、影响湿式⽯灰/⽯灰⽯-⽯膏法吸收效率的主要因素有,,,流体⼒学状态,控制溶液过饱和,吸收剂种类等。
【答】⽯灰/⽯灰⽯法,氧化镁法,钠碱法10、⽬前应⽤较多的脱硫⽅法有、、、氨吸收法、亚硫酸钠法、柠檬酸钠法等。
【答】催化还原法(选择性、⾮选择性),吸收法,吸附法11、吸附设备主要有、和三种类型。
【答】固定床吸附器,移动床吸附器,流化床吸附器12、影响吸附容量的因素有、、、和。
【答】吸附剂表⾯积、吸附剂的孔隙⼤⼩、孔径分布、分⼦极性、吸附剂分⼦上官能团性质13、吸附区⾼度的计算⽅法有法和法。
【答】穿透曲线法;希洛夫近似法14、希洛夫⽅程式为。
【答】x=K L-t015、进⼊催化燃烧装置的⽓体⾸先要除去粉尘、液滴等有害组分,其⽬的为。
【答】防⽌中毒16、催化剂的组成为、和。
气态污染物的净化
第五组全体组员:
肖翔、谢世冬、熊伟、胥芳芳
热诚欢迎你的指点!!!
4、常用的燃烧设备
催化燃烧炉
5、优缺点:
⑴直接燃烧:安全简单、成本低;造成二次污染、 不能回收热能造成辐射。 ⑵热力燃烧:使用范围较广、设备结构简单,占用 空间小、维修费用低;操作费用高、易发生回火、 燃烧不完全时产生恶臭。 ⑶催化燃烧:安全性好、燃烧温度低、辅助燃料消 耗少、对可燃性组分的浓度和热值限制小;催化 剂的费用高。
4、常用的催化反应器
固定床催化反应器示意图 流化床催化反应器示意图
5、优缺点:
⑴反应速率较快 ⑵催化剂用量较少 ⑶操作方便 ⑷催化剂不易磨损; ⑸传热性能差。
四、燃烧法
1、原理:对含有可燃性有害组分的混合气体进行氧 化燃烧或高温分解,使有害组分转化为无害物。 2、使用范围:用于净化CO、恶臭、沥青烟、HC、 有机有害气体。 3、分类:直接燃烧法、热力燃烧法、催化燃烧法。
5、常用的吸附设备
有机废气吸附装置 吸附再生炉
固定床吸附器流程示意图
6、优缺点:
⑴净化效率高 ⑵能回收有用组分 ⑶设备简单、流程短、易于实现自动控 制 ⑷无腐蚀,不会造成二次、原理:利用催化剂的催化作用,使其发生氧化还原 反应,将废气中的有害物质转变为无害物质或易于 去除的物质。 2、适用范围:用于净化SO2、NOx、CO、汽车尾气。 3、常见的催化剂:V2O5、Pt、Pd、CuCrO2、 Rh、CuO、Cr2O3、Mn2O3、稀土金属氧化物、 碱土、稀土和过渡金属氧化物。
SO2 HCl
H 2S
含Hg废 气
NH3、Na2CO3、二乙醇 胺、环丁砜
含Pb废 气
CH3COOH、NaOH
KMnO4、NaClO、浓H2SO4、KI-I2
大气污染控制工程第七章课后习题答案
第七章气态活染物控制技术基础一、填空题1、吸收法净化气态污染物是利用混合气体中各成分在吸收剂中的不同,或与吸收剂中的组分发生,从而将有害组分从气流中分离出来。
【答】溶解度,化学反应2、用水吸收HC1气体属于,用N a OH溶液吸收S02属于,用酸性溶液吸收N H3属于。
【答】物理吸收,化学吸收,化学吸收3、目前工业上常用的吸收设备可分为、和三大类。
【答】表面吸收器,鼓泡式吸收器,喷洒式吸收器4、气体扩散同时发生在气相和液相中,扩散过程既包括,也包括。
【答】分子扩散,湍流扩散5、吸收操作线斜率Ls/G s称为吸收操作的液气比,物理含义为。
【答】处理单位惰性气体所消耗的纯吸收剂的量6、常用的吸收剂有和。
【答】水,碱金属钠、钾、铵或碱土金属钙、镁等的溶液7、防治S02污染的方法主要有清洁生产工艺、采用低硫燃料、、及等。
M g2+, S二酸,氨【答】燃料脱硫,燃料固硫,烟气脱硫8、湿式石灰/石灰石-石膏法存在结垢和堵塞问题,通过在吸收液中加入C a C l2、、、等添加剂可解决此问题。
【答】浆液的p H值,吸收温度,石灰石的粒度9、影响湿式石灰/石灰石-石膏法吸收效率的主要因素有,,,流体力学状态,控制溶液过饱和,吸收剂种类等。
【答】石灰/石灰石法,氧化镁法,钠碱法10、目前应用较多的脱硫方法有、、、氨吸收法、亚硫酸钠法、柠檬酸钠法等。
【答】催化还原法(选择性、非选择性),吸收法,吸附法11、吸附设备主要有、和三种类型。
【答】固定床吸附器,移动床吸附器,流化床吸附器12、影响吸附容量的因素有、、、和。
【答】吸附剂表面积、吸附剂的孔隙大小、孔径分布、分子极性、吸附剂分子上官能团性质13、吸附区高度的计算方法有法和法。
【答】穿透曲线法;希洛夫近似法14、希洛夫方程式为。
【答】x=K L-t015、进入催化燃烧装置的气体首先要除去粉尘、液滴等有害组分,其目的为。
【答】防止中毒16、催化剂的组成为、和。
【答】主活性组分;助催化剂;载体17、催化剂的性能主要指其、和。
大气污染物吸收法
大气污染物吸收法大气污染是当今社会面临的一个严重问题,它对人类健康和环境造成了巨大影响。
为了减少大气污染物的排放和防止其对空气质量的恶化,吸收法成为了一种有效的净化大气的方法。
本文将介绍大气污染物吸收法的原理、应用以及前景。
1. 吸收法的原理大气污染物吸收法基于物质的相互作用原理,通过使用吸收剂吸收空气中的污染物。
吸收剂通常是一种溶解性物质,可以吸收并固定大气中的污染物。
常见的吸收剂包括碱液、酸液、化学溶液等。
当污染物与吸收剂相接触时,它们之间发生化学反应或物理吸附,将污染物从气相转为液相,从而达到净化空气的目的。
2. 吸收法的应用大气污染物吸收法已经广泛应用于工业废气处理、燃煤电厂脱硫、汽车尾气净化等领域。
在工业废气处理中,吸收法被用来处理含有高浓度污染物的气体,如硫化氢、二氧化硫等。
燃煤电厂通常使用碱液吸收剂来减少废气中的二氧化硫排放。
同时,吸收法也可以用于城市道路上的尾气净化,减少有害气体对人体的影响。
3. 吸收法的前景随着环境问题的日益严重,对大气污染物的净化需求也越来越迫切。
吸收法作为一种成熟的污染物净化技术,具有广阔的应用前景。
通过持续的科研和技术创新,吸收剂的效率和选择性不断提高,吸收法将能够更好地适应不同环境下的污染物净化需求。
在未来,吸收法有望成为大气净化的主流技术之一。
总结:大气污染物吸收法通过使用吸收剂将污染物从气相转为液相,从而实现净化大气的目的。
它在工业废气处理、燃煤电厂脱硫、汽车尾气净化等领域得到了广泛应用。
随着环境问题的加剧,吸收法作为一种有效的净化技术具有广阔的前景。
通过不断的科研和技术创新,吸收法能够更好地适应不同环境下的污染物净化需求,成为净化大气的重要手段之一。
气态污染物典型净化工艺流程
气态污染物典型净化工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!气态污染物典型净化工艺流程。
一、吸附法。
1. 物理吸附,活性炭吸附、沸石吸附。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)化学及收过程:①气相反应物从气相主体通过气膜向气 液相界面传递; ②气相反应物从气液相界面向液相传递; ③反应组分在液膜或液相主体内与反应物相遇发生化学反应; ④反应生成的液相产物向液相主体扩散,留存于液相,若生 成气相产物则向相界面扩散; ⑤气相产物自相界面向气相主
体扩散。(与物理吸收过程有何区别?)
气态污染物的吸收法净化
概念:吸收法是根据气体混合物中各组分在 液体溶剂中物理溶解度和化学反应活性不同 而将混合物分离的一种方法。
特点:优点:效率高、设备简单、一次投资 相对较低等;缺点:产生废液、设备易受腐 蚀。
分类:
物理吸收
化学吸收
9、1 吸收平衡
9、1、1物理吸收平衡 1、气体组分在液相的吸收
NA=DAG/ZG(PAG–PAi)=kAG(PAG–PAi)
NA=DAl/ZL(CAi–CAL)=kAl(CAi–CAL)
CAi=HAPAi
NA=KAG(PAG–PA*)
NA=KAL(CA*–CAL)
其中:
吸收过程速率方程
1/KAG=1/kAG+1/(kALHA), PA*=CAL/HA 1/KAL=1/kAL+HA/kAG,
PA*=x/(KHA(1–x)) 若物理溶解量与化学溶解量相比可忽略,令K1=KHA,表征带有
化学反应的气液平衡,得
CA≈xCB0=CB0K1PA*/(1+K1PA*) <CB0
9、2 吸收速率
9、2、1物理吸收速率 1、双膜理论(由刘易斯和怀特曼提出) (1)组成:气相主体+气膜+相界面+液膜+液相主体 (2)气体的吸收过程:被吸收组分 气相主
(3)应用条件:在系统压力不太高、温度不太低、 溶解气体不与液体起化学反应时,难溶气体、中溶 和易溶气体在液相溶解度较低时可认为遵守享利定 律。
9、1、2有化学反应存在的气液相平衡
设气态污染物A与吸收液中所含组分B,C发生反应:
aA + bB+ cC+ …
mM + nN+ …
气态污染物A在溶液中的转化过程:
(1)前提:液相为理想溶液、气相为理想气体、溶 液温度高于气体临界温度。
(2)当溶质浓度用摩尔浓度来表示时
Pi*=Ci/Hi 故
Hi=ρL/(MLEi)
式中: Ci——单位体积吸收剂中溶质的摩尔数,kmol/m3; Hi——溶解度系数,kmol/(N.m); ρL,ML——纯溶剂的密
度(kg/m3)和摩尔质量(kg/kmol)。
倍。
2、被吸收组分在溶液中离解 A(气)
A(液)
M++N-
则
[A]物理平衡 =HAPA* [A]化学消耗=[M+]=(K[A]物理平衡 )0.5
CA=[A]物理平衡 +[A]化学消耗 =HAPA*+(KHAPA*) 0.5
例题:例8-1,见教材P141。 3、被吸收组分与溶剂中活性组分作用
(无扩散阻力)
体 气膜 相界面 液膜 液相主体
(气膜阻力(无传质阻力)(液膜阻力)(无扩散阻力)
(3)传质推动力:气膜内传质推动力:PAG-PAi;液膜内传质 推动力:CAi-CAL
PAG 气相主体
气膜 液膜 界面
传质方向
CAL PAL Z0 ZL
液相主体 ZAL
双膜理论模型
2、吸收过程速率
aA(气)
aA(液) + bB+ cC+ …
mM + nN+ …
气态污染物的总溶解量
CA=[A]物理平衡+[A]化学平衡 其中
[A]物理平衡=HAP*A [A]化学消耗:在达到化学平衡时,根据化学平衡常数K和反应前
后某种反应物浓度的变化可以求出生成物浓度,再由化学反 应方程式即可求出[A]化学消耗。 下面讨论几种特殊情况:
A (气)
A(液)+B(液) M(液) 设溶剂中活性组分的初始浓度为CB0,若平衡转化率为x,则溶
液中组分B的平衡浓度为[B]=CB0(1-x),而生成物M的平衡 浓度为[M]=CB0x,CA=[A]+CB0x,
又 K=[M]/([A][B])=x/([A](1–x)) 又有[A]=HAPA*,代入上式得
CA*=HAPAG
气膜控制:气膜阻力>液膜阻力 物理吸收类型
液膜控制:气膜阻力<液膜阻力 提高过程吸收速率的措施: 1、提高气液相对运动速度,以减小气膜和液膜的厚度; 2、增大供液量,降低液相吸收速度,以增大吸收推动力; 3、增大气液接触面积; 4、选用对吸收质溶解度大的吸收剂。
9、2、2 伴有化学反应的吸收速率
动力学控制:传质速率>>化学 反应速率
(2)控制步骤 扩散控制:传质速率<<化学 反应速率
动力学与扩散同时控制
(3)传质速率 气膜:教材中公式(8-23)
的表示 相界面:亨利定律
29)
液膜(过程稳定时):费克定律,教材公式(8-
2、极快速不可逆化学反应的吸收过程(扩散控制)
对于典型的气液相反应
aA(气相)+bB(液相)
混合气体
吸收
(可吸收组分) 解吸
吸收剂 (液相)
溶解度:在一定的温度和压力下,吸收过程的
速率和解吸过程的速率相等时气体溶质在液相中 的含量称为该气体的平衡溶解度,在同一系统中 随温度的升高而减小,随压力的增大而增大。
2、享利定律
Pi* = Ei xi
式中: Pi* ——气相组分的分压,Pa; xi——组分溶 液于溶剂中的浓度,摩尔分率; Ei——享利系数, 其大小随物系的特性和温度而异,单位与压力单位 一致,反应了组分在溶剂中的溶解度大小,在温度 和压力一定的情况下对一定的物系为一常数;*— —为平衡状态。
rR
如果化学反应进行得极快,根据A组分与反应物B的扩散
速率不同,会使液相浓度分布出现3种情况:
(1)CBL<CKP时,吸收速率 方程如下
NA
K AG (PAG
a bH A
DBL DAL
CBL )
1、被吸收组分A 与溶剂相互作用 A (气)
A(液)+B(溶剂) 由亨利定律
M(液)
[A] 物理平衡=HAPA* 由化学平衡
[A]化学消耗=[M] =K [B][A]物理平衡 故
CA=(1+K[B])HAPA* Nhomakorabea变形后得
PA*= CA /(HA(1+K[B])) (化学吸收)
Pi*= CA/ HA(物理吸收) 比较上式发现:由于化学反应使溶解度系数增大至(1+K[B])