模拟电子线路第6章集成电路运算放大器
模电第六章知识点总结
![模电第六章知识点总结](https://img.taocdn.com/s3/m/6bb5af54974bcf84b9d528ea81c758f5f71f2915.png)
模电第六章知识点总结一、运算放大器(Operational Amplifier,简称Op Amp)1. 运算放大器的基本概念:运算放大器是一种主要用于进行信号放大、滤波、比较、积分等运算的集成电路。
它具有高输入阻抗、低输出阻抗、大增益、高共模抑制比和宽带宽等特点。
2. 运算放大器的基本结构:运算放大器通常由一个差分放大器和一个输出级组成。
差分放大器提供了高增益和高输入阻抗,而输出级则提供了低输出阻抗和大功率放大。
3. 运算放大器的理想特性:理想的运算放大器具有无穷大的输入阻抗、零的输入偏置电压、无穷大的增益、无限带宽和零的输出阻抗。
4. 运算放大器的实际特性:实际的运算放大器会受到限制,例如有限的共模抑制比、有限的带宽、输入偏置电压和温度漂移等。
5. 运算放大器的虚短片段模型:运算放大器可以用虚短片段模型来进行分析,其中将输入端和输出端分别连接到地和反馈节点,其他端口则可以忽略。
6. 运算放大器的常见应用:运算放大器常用于反馈放大电路、比较器电路、积分电路、微分电路、滤波电路等。
7. 运算放大器的反馈模式:运算放大器的反馈模式主要包括正反馈和负反馈。
负反馈可以稳定放大器的增益和频率特性,而正反馈则会增加放大器的增益和非线性失真。
二、电压比较器1. 电压比较器的基本概念:电压比较器是一种将两个电压进行比较,并输出相应逻辑电平的集成电路。
它通常具有高增益、快速响应和高输出驱动能力等特点。
2. 电压比较器的工作原理:电压比较器通过将两个输入电压进行比较,当一个电压高于另一个电压时,输出为高电平;反之则为低电平。
3. 电压比较器的应用:电压比较器广泛应用于电压检测、开关控制、信号处理、电压测量和触发器等领域。
总结:模电第六章主要介绍了运算放大器和电压比较器的基本概念、工作原理、特性和应用。
掌握这些知识点,可以为我们设计和分析各种电路提供基础。
同时,对于提高我们的工程能力和电子技术水平也是非常有用的。
第六章集成运算放大器习题及答案
![第六章集成运算放大器习题及答案](https://img.taocdn.com/s3/m/ba47e8f733d4b14e852468f1.png)
第六章集成运算放大器习题及答案1、由于 ,集成电路常采用直接耦合,因此低频性能好,但存在 。
2、共模抑制比K CMR 是 ,因此K CMR 越大,表明电路的 。
3、电流源不但可以为差分放大器等放大电路 ,而且可以作为放大电路的 来提高放大电路的电压增益,还可以将差分放大电路双端输出 。
4、一般情况下,差动电路的共模电压放大倍数越大越好,而差模电压放大倍数越小越好。
( )5、在输入信号作用下,偏置电路改变了各放大管的动态电流。
( )6、有源负载可以增大放大电路的输出电流。
( )7、用恒流源取代长尾式差分放大电路中的发射极电阻Re ,将使电路的 ( ) A.差模放大倍数数值增大 B.抑制共模信号能力增强 C.差模输入电阻增大8、在差动电路中,若单端输入的差模输入电压为20V ,则其共模输入电压为( )。
A. 40VB. 20VC. 10VD. 5V 9、电流源的特点是( )。
A 交流电阻小,直流电阻大;B 交流电阻大,直流电阻小; C. 交流电阻大,直流电阻大; D. 交流电阻小,直流电阻小。
10、关于理想运算放大器的错误叙述是( )。
A .输入阻抗为零,输出阻抗也为零;B .输入信号为零时,输出处于零电位;C .频带宽度从零到无穷大;D .开环电压放大倍数无穷大 11、(1)通用型集成运放一般由哪几部分电路组成?每一部分常采用哪种基本电路?对每一部分性能的要求分别是什么?(2)零点漂移产生的原因是什么?抑制零点漂移的方法是什么?12、已知一个集成运放的开环差模增益A id 为100dB ,最大输出电压峰-峰值U opp =±10V,计算差模输入电压u i (即u +-u -)为10μV,0.5mV ,-200μV 时的输出电压u 0。
13、如图所示电路参数理想对称,晶体管的β均为50 ,r bb ′=100Ω,U BEQ = 0.7。
试计算R W 滑动端在中点时VT 1管和VT 2管的发射极静态电流I EQ ,以及动态参数A d 和R i 。
精品课件-模拟电子线路及技术基础(第二版)-第六章
![精品课件-模拟电子线路及技术基础(第二版)-第六章](https://img.taocdn.com/s3/m/c4871bb502768e9950e73855.png)
第六章 集成运算放大器电路原理 四. CMOS运放举例
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理 三.CMOS差动放大器
第六章 集成运算放大器电路原理
每一种知识都需要努力, 都需要付出,感谢支持!
第六章 集成运算放大器电路原理
20 lg
|
Aud Auc
| (dB)
双端输出
KCMR
单端输出
6.3.3 具有恒流源第的六差章动放集大成电运路算放大器电路原理
1.工作点 3.共模抑制比 5.输出电阻
2.差模放大倍数 4.差模输入电阻
6.3.4 差第动六放章大器集的成传运输算特放性大器电路原理
iC1,2 f uid u0 F uid
i I euBE1 UT
C1
s
i I euBE 2 UT
C2
s
公式推导:
ic1 ic2 I
第R六C 章 集成R运C UC算C 放大器电路原理
i (1 i ) I iC1 + uo - iC2
c2 c1
i +
V1
V2
c1
u-id
I
-UEE
I
I
I
ic1 1 ic 2 ic1
uBE 2 uBE 1
IC3
所以
IC3
2 2 2 2
2
Ir
Ir
第六章 集成运算放大器电路原理
6.有源负载放大器
第六章 集成运算放大器电路原理
6.3 差动放大器
第六章 集成运算放大器电路原理
6.3.1 直接耦合放大器的”零点漂移”积累现象
第六章《集成运算放大电路》
![第六章《集成运算放大电路》](https://img.taocdn.com/s3/m/74a9ca7f5acfa1c7aa00cced.png)
U od = U od 1 U od 2 = A u1 U id A u 2 ( U id ) = 2 A u 1 U id
U od 结论:差模电压放大倍数等于 结论: Ad = = A u1 半电路电压放大倍数。 半电路电压放大倍数。 2 U id
21
§6-3.差分放大电路
(2)共模输入方式
非线性区: 非线性区:
u o只有两种可能 : + U OM或 U OM
7
§6-2.集成运放中的电流源电路
( 一) 电 流 源 概 述
一、电流源电路的特点: 电流源电路的特点:
这是输出电流恒定的电路。它具有很高的输出电阻。 这是输出电流恒定的电路。它具有很高的输出电阻。 BJT、FET工作在放大状态时 工作在放大状态时, 1、BJT、FET工作在放大状态时,其输出电流都是具有恒流特 性的受控电流源;由它们都可构成电流源电路。 性的受控电流源;由它们都可构成电流源电路。 在模拟集成电路中,常用的电流源电路有: 2、在模拟集成电路中,常用的电流源电路有: 镜象电流源、精密电流源、微电流源、 镜象电流源、精密电流源、微电流源、多路电流源等 电流源电路一般都加有电流负反馈。 3、电流源电路一般都加有电流负反馈。 电流源电路一般都利用PN结的温度特性, PN结的温度特性 4、电流源电路一般都利用PN结的温度特性,对电流源电路进 行温度补偿,以减小温度对电流的影响。 行温度补偿,以减小温度对电流的影响。
差模输入信号为Ui1 - Ui2=2 Uid 差模输入信号为U
差模输入方式
定义: 定义:Ad=Uod/2Uid
20
§6-3.差分放大电路
A u1 U od 1 = U i1
U od 2 U i2
A u2 =
《模拟电子技术》课件第6章 集成运算放大电路
![《模拟电子技术》课件第6章 集成运算放大电路](https://img.taocdn.com/s3/m/6c8e2e964793daef5ef7ba0d4a7302768e996fdb.png)
IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源
电子技术基础(模拟部分)第五版_第6章_康华光
![电子技术基础(模拟部分)第五版_第6章_康华光](https://img.taocdn.com/s3/m/238ef58dd4d8d15abe234e9c.png)
(3)用电流源做有源负载,可获得增益高、 动态范围大的特性。
(4)用电流源给电容充电,以获得线性电压输出。
(5)电流源还可单独制成稳流电源使用。
(6)在模拟集成电路中,常用的电流源电路有: 镜象电流源、精密电流源、 微电流源、多路电流源等。
IC=0 IC 0 VCC=0 VBB
T
VBB
6.2 差分式放大电路
6.2.0 概述
直接耦合放大电路 零点漂移
差分式放大电路中的一般概念
6.2.1 射级耦合差分式放大电路
电路组成及工作原理 主要指标计算 抑制零点漂移原理 几种方式指标比较
6.2.2 FET差分式放大电路 6.2.3 差分式放大电路的传输特性
集成电路的优点
• 有体积小、功耗小、功能强、可靠 性好的优点,故得到发展。
• 最早源于航天技术的启示和应用。
6.1 模拟集成电路中的 直流偏置技术
BJT电流源
FET电流源
电 流 源 概 述
(1)电流源电路是一个电流负反馈电路, 并利用PN结的温度特性,对电流源电路进行温度补偿, 以减小温度对电流的影响。
4. 多路电流源
R
VCC
组成
IREF
T0
IC T ∑IB T1
IC1
IC2
IC3
公式推导
IC=IREF - ∑ IB/β
T2
Re2 Re3
T3
Re
Re1
当β较大时 IC=IREF 由于各管的β, VBE相同,则 IERE≈IREFRE=IE1RE1=IE2RE2=IE3RE3 所以 IC1≈IE1=IREFRE/RE1 IC2≈IE2=IREFRE/RE2 IC3≈IE3=IREFRE/RE3
第6章集成电路运算放大器
![第6章集成电路运算放大器](https://img.taocdn.com/s3/m/7817242633687e21af45a9bf.png)
差放的差模电压放大倍数AVD
R1 RC
差模输入信号:
RB
T1
ui1 = - ui2 = ud
ui1
(大小相等,极性相反)
uo
RC
T2
R1 +UCC
RB
ui2
设uC1 =UC1 +uC1 , uC2 =UC2 +uC2 。
因ui1 = -ui2, uC1 = -uC2
uo= uC1 - uC2= uC1- uC2 = 2uC1
级
-
作用:获取信号
要求:ri大 电路:共集、 MOS管电路
作用:电压放大
要求:AU大 电路:共射、共
源电路
作用:带负载能力强
要求:ro小 电路:共集、共漏、
功率放大电路
多级放大电路的组成与耦合方式(3)
多级放大电路的耦合方式
阻容耦合 直接耦合 变压器耦合
多级放大电路的组成与耦合方式(4)
阻容耦合方式
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
集成电路构造的特点
1. 电路元件制作在一个芯片上,元件参数偏差方 向一致,温度均一性好。
2. 电阻元件由硅半导体构成,范围在几十到20千 欧,精度低。高阻值电阻用三极管有源元件代 替或外接。
3. 几十 pF 以下的小电容用PN结的结电容构成、 大电容要外接。
差放的共模电压放大倍数AVC
+UCC
R1 RC RB
uo
RC R1
RB
T1
T2
ui1
ui2
共模输入信号: ui1 = ui2 = uC (大小相等,极性相同) 理想情况:ui1 = ui2 uC1 = uC2 uo= 0 但因两侧不完全对称, uo 0
《模拟电子技术基础》第6章 集成运算放大器
![《模拟电子技术基础》第6章 集成运算放大器](https://img.taocdn.com/s3/m/d69c434a793e0912a21614791711cc7931b778b5.png)
RF R RF [ R1 (R2 // R ')uI1 R2 (R1 // R ')uI2 ] RF R R1 R1 (R2 // R ') R2 R2 (R1 // R ')
RF Rn
( RP R1
uI1
RP R2
uI2 )
当 R1 R2 R Rp Rn
uO
RF R
(uI1
uI2 )
t /ms
-2
0
-2
12 34 5
t /ms
uO /V
uO /V
12345 0 -1
t /ms
12345
0
t /ms
-2
-1
-2
输入方波不完全对称,导致输出偏移,以致饱和。 旁路电阻只对直流信号起作用,对交流信号影响要尽量小。
积分电路应采用失调电压、偏置电流和失调电流较小的运放,并在同相输 入端接入可调平衡电阻;选用泄漏电流小的电容,可以减少积分电容的漏电流 产生的积分误差。
iR
iD
uI R
uO uD
由二极管的伏安特性方程:
uo
iD
ISexp
uD UT
对数运算电路
uO
UTln
iD IS
U T ln
uI RI S
只有uI>0时,此对数函数关系才成立。
6.6 对数和指数运算电路
6.6.2 指数运算电路
将对数运算电路中的二极管VD和电阻R互换,可得指数运算电路。
uP
A
uN
uO
UoM 非线性区
uo
+Uom
uO
O
uId =uP -uN
非线性区 uId
非线性区 0
6 集成电路运算放大器摘要
![6 集成电路运算放大器摘要](https://img.taocdn.com/s3/m/bb612c86bceb19e8b8f6bab2.png)
防止差模信号过大
防止共模信号过大
通 用 型
通用型运算放大器的技术指标比较适中,价 格低廉。通用型运放也经过了几代的演变,早期 的通用Ⅰ型运放已很少使用了。以典型的通用型 运放CF741(A741)为例,输入失调电压1~2mV 、输入失调电流20nA、差模输入电阻2M,开环 增益100dB、共模抑制比90dB、输出电阻75、 共模输入电压范围13V、转换速率0.5V/s。
μA715
S R 100 V/ μs
SR = 1800 V/ μ S
BWG = 65MHz
BWG 8000 MHZ
AD9618 LH0032
低功耗型
一般用于对能源有严格限制的遥测、遥感、空 间技术和生物科学研究中,工作于较低电压下,工 作电流微弱。 例如:
μPC253的PC 0.6mW ,VCC (3 ~ 18)V , AVO 110 dB
ICL7641 CA3078
ICL7600 的PC 10 W ,VCC (VEE )为 .5V 1
功 率 型
这种运放的输出功率可达1W以上,输出电流 可达几个安培以上。 例如: LM12 I o 10 A TP1465
I o 0.75 A
讨论二
增大输入级的负载电阻 有源负载 复合管共射放大电路
iO增大到一定程度,D1导通, 为T14基极分流,从而保护了 T14。 特点: 输出电阻小 最大不失真输出电压高
中间级
输出级
判断同相输入端和反相输入端
五、集成运放的种类
通常情况下用通用型运放,特 按性能指标 殊情况下才用专用型运放。 高 阻 型:rid,可高于1012Ω。 用于测量放大器、信号发生器。 高 速 型: fH和SR高, fH可达1.7GHz,SR可达 103V/μS。 用于A/D、D/A转换电路、视频放大器。 高精度型:低失调、低温漂、低噪声、高增益, Aod高于105dB。 用于微弱信号的测量与运算、高精度设备。 低功耗型:工作电源电压低、静态功耗小,在100~200μW。 用于空间技术、军事科学和工业中的遥感遥测。 大功率型、仪表用放大器、隔离放大器、缓冲放大器……
第6章 集成运算放大器及其应用
![第6章 集成运算放大器及其应用](https://img.taocdn.com/s3/m/cac2f01efc4ffe473368abae.png)
6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。
•
• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为
模拟电子线路 课件第六章第2-3节——集成运算放大器
![模拟电子线路 课件第六章第2-3节——集成运算放大器](https://img.taocdn.com/s3/m/ff5e684c49d7c1c708a1284ac850ad02de800734.png)
模拟电子线路 课件第六章第2-3节——集成运算放大器主 题:课件第六章第2-3节——集成运算放大器 学习时间:2016年5月23日-5月29日内 容:我们这周主要学习课件第六章集成电路运算放大器第2-3节集成运算放大器的相关内容。
希望通过下面的内容能使同学们加深对集成电路运算放大器相关知识的理解。
一、学习要求1.了解集成运算放大器的组成和主要参数以及理想运放的条件。
二、主要内容1.集成运放的总体结构2.简单的集成运放 (1)原理电路:(2)集成运算放大器符号国内符号:国际符号:+++T 1R c1sI R c2c3R 2T 4T 5T 3T V CC+EE -u -u +ou 反相输入端同相输入端集成运放的特点: ● 电压增益高 ● 输入电阻大 ● 输出电阻小3.集成运算放大器的主要参数 (1)输入失调电U IO输入电压为零时,将输出电压除以电压增益,即为折算到输入端的失调电压。
是表征运放内部电路对称性的指标。
(2)输入失调电压温漂 d U IO /dT在规定工作温度范围内,输入失调电压随温度的变化量与温度变化量之比值。
(3)输入偏置电流I IB :输入电压为零时,运放两个输入端偏置电流的平均值,用于衡量差分放大对管输入电流的大小。
()IB B1B212I I I =+(4)输入失调电流I IO :在零输入时,差分输入级的差分对管基极电流之差,用于表征差分级输入电流不对称的程度。
IO B1B2I I I =-(5)输入失调电流温漂dI IO /DT :在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值。
(6)最大差模输入电压U idmax运放两输入端能承受的最大差模输入电压,超过此电压时,差分管将出现反向击穿现象。
(7)最大共模输入电压V icmax在保证运放正常工作条件下,共模输入电压的允许范围。
共模电压超过此值时,输入差分对管出现饱和,放大器失去共模抑制能力。
(8)开环差模电压放大倍数A od : 无反馈时的差模电压增益。
第6章集成运算放大器
![第6章集成运算放大器](https://img.taocdn.com/s3/m/2316d36a48d7c1c708a1457b.png)
-VEE(-10V)
静态分析: 设vi1=vi2=0时,vo=0 IREF=(VCC+VEE-0.7)/R8=1mA= IC8 = IC7 IC1= IC2= IC7/2=0.5mA VC2=VCC- IC2R2=3.3v VE4=VC2-2×0.7=1.9v IE4= VE4/R4=1mA≈IC4 IC3= IC4/β=0.01mA VC3= VC4=VCC-IE4R3=4.9v VE5= VC3-0.7=4.2v VB6=0.7v IE5= (VE5- VB6)/R5=1mA= IC9 IE6=VEE/R6=5mA
∴ ⊿VBE= VBE1-VBE2
IC1
=VT[ln(IR/IES1)-ln(IC2/IES2)]
=VT[ln(IR/IC2)]
∴IC2=(VT/Re2)ln (IR/IC2)
3 比例恒流源电路
IR R 2IB VCC RC IC2
VBE1+IE1RE1=VBE2+IE2RE2
VBE1- VBE2 =IE2RE2 -IE1RE1 VBE1= VTln(IE1/IES) VBE2= VTln(IE2/IES) VBE1-VBE2= VTln(IE1/IE2)
vi1 vi2
线性放 大电路
vo
差模信号:vid=vi1-vi2 共模信号:vic=(vi1+vi2)/2 例 vi1=5mv vi2 =3mv 则:vid= vi1-vi2 =2mv vic=(vi1+vi2)/2=4mv
实际差分放大器,输出不仅与差模信号有关,而 且也与共模信号有关。
差模电压增益:AVD=vod/vid 共模电压增益:AVC=voc/vic 理想差分放大器:AVD很大, AVC=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流源电路不仅可用作各种放大电路的恒流偏置
(为放大电路提供稳定的偏置电流),
而且可用它取代电阻作为放大器的负载,是集成 运放中应用最广泛的单元电路之一。
电流源的要求:有足够大的动态内阻;对温度的敏感 度极低;能对抗电源电压或其他外因的变化。归纳起 来就是电流源电路应具有不受外界因素影响的恒流特 性。
vi c
=
1 2(vi1vi2)
共模信号
AVD
=
vod vid
共模信号输出 差模电压增益
AVC
=
voc v ic
共模电压增益
+
+
-vid
vi1 +
-
vi2 -
差放
+
-vo
+
+ v放大电路输入输出结构示意图
根总据输上出面电两压式v o 有= v o v i1d v =o vi cc A vV 2idv iD d v i2A =V viv ciC c v2id
R
R
IC2看作IREF的镜像。
由图可知,
IRE FIC12IB
IC2
2
IC2
IC
2
(1
2
)
越大,集电极电流 I C 2 与基准电流的偏差越小。 例, =100时,两者的偏差为2%
1. 镜像电流源
交流电阻(可由小信号等效
电路计算)
Ro
=
VT IT
由 于 T2 的集电 极电 流基本不变。所以交流量
4. 二极管一般用三极管的发射结构成。
运算放大器的方框图
输入端 输入级
中间级
输出级 输出端
偏置电路
对输入级的要求:尽量减小零点漂移,尽量提高
KCMRR , 输入阻抗 ri 尽可能大。
对中间级的要求:足够大的电压放大倍数。
对输出级的要求:主要提高带负载能力,给出足
够的输出电流io 。即输出阻抗 ro小。
3. 多路电流源
IER eIRE R F e IE1Re1IE2Re2
IC1IE1 IRE R eF /R e1,
IC2IE2 IRE R eF /R e2
4. 电流源作有源负载
镜像电流源
共射电路的电压增益为:
AV
=
Vo Vi
(Rc // RL )
rbe
对于此电路Rc就是镜
像电流源的交流电阻,
通用型集成电路运算放大器
简化电路
end
运放的特点:
ri 大: 几十k 几百 k KCMRR 很大 ro 小:几十 几百 A o 很大: 104 107
运放符号:
理想运放: ri KCMMRR ro 0 Ao
u- u+
-
Ao
+
+
uo
国内符号
u- -
u+ +
uo
国际符号
6.2 集成电路中的恒流源
• 几种方式指标比较
6.3.3 FET差分式放大电路
6.3.4 差分式放大电路的传输特性
6.3.1 概述
1. 直接耦合放大电路
既可放大直流信号,也可放 大交流信号 鉴于集成工艺难以制作电感 和较大的电容,集成运算放 大器都要采用直接耦合方式
2. 直接耦合放大电路 存在的问题
a. 零 点 漂 移 :输入短路时, 输出仍有缓慢变化的电压产生。
IB1
IB2
IC
双端输出电压 vo 0 ,单端输出电压 uo1 = uo2 = UC1 = UC2
K CMR =
AVD AVC
共模抑制比
反映差放抑制共模信号的能力
KCMR (dB) = 20 lg
AVD AVC
(分贝)
6.3.2 基本差分式放大电路
1. 电路组成及工作原理
对称性结构、恒流源式(或电阻
式)长尾
静态
1 IC1=IC2IC2I0
VC E1=VC E2 VCC ICRC V E V C C IC R C ( 0 .7 )
6.1 集成电路运算放大器概述 6.2 集成电路中的电流源 6.3 差分式放大电路 6.4 集成电路运算放大器的主要参数
*6.5 专用型集成电路运算放大器 *6.6 放大电路中的噪声与干扰
6.1 集成运算放大器概述
集成电路: 将整个电路的各个元件做在同一个半导
体基片上。
集成电路的优点:
工作稳定、使用方便、体积小、重量轻、 功耗小。
电流源种类很多,但有一个共同的特点即 直流等效电阻小,交流等效电阻很大,且具有良好的 恒流特性。 (电流源的恒流特性决定于电流源输出电阻的大小, 输出电阻越大,恒流效果越好)
1. 镜像电流源
恒流特性
VB E2=VB E1 IE2 = IE1
IC2 =IC1 IREF
= VCC VBE V CC
主 要 原 因 :温度变化引起,也称温漂(电源电压波动也是原因之一
温 漂 指 标 :温度每升高1度时,输出漂移电压按电压增益 折算到输入端的等效输入漂移电压值。
b.前后级Q点相互影响
例如
漂移
10 mV+100 uV
假设 AV1=100,
AV2=100AV ,3=1。
若第一级漂了100 uV,
漂移 1 V+ 10 mV
因此增益为
AV
=
RL
rbe
放大管
比用电阻Rc作负载时提高了。
end
例题 定性分析电路,说明T1,T2在电路中的作用.
6.3 差分式放大电路
6.3.1 概述
• 直接耦合放大电路
• 零点漂移
• 差分式放大电路中的一般概念
6.3.2 基本差分式放大电路
• 电路组成及工作原理 • 抑制零点漂移原理
• 主要指标计算
则输出漂移 10 mV 。
若第二级也漂
漂了 100 uV
了100 uV,
则输出漂移 1V+10 mV 。 第一级是关键
漂移 1 V+ 10 mV
3. 减小零漂的措施
用非线性元件进行温度补偿
采用差分式放大电路
调制解调方式。如“斩波稳零放大器”
4. 差分式放大电路中的一般概念
vi d=vi 1vi差2 模差信模号信输号出
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
集成电路内部结构的特点
1. 电路元件制作在一个芯片上,元件参数偏差 方向一致,温度均一性好。
2. 电阻元件由硅半导体构成,范围在几十到20 千欧,精度低。高阻值电阻用三极管有源元件 代替或外接。
3. 几十 pF 以下的小电容用PN结的结电容构成、 大电容要外接。
IT 0
Ro
=
VT IT
一般Ro在几百千欧以上
1. 镜像电流源
精度更高的镜像电流源
由于增加了T3,
减 小 IB 对 IREF 的 分 流 , 提 高 了 IC2 与 IREF 互 成
镜像的精度。
2. 微电流源
IC2
IE2
VBE1 VBE2 Re2
V BE R e2
由于 VBE 很小,
所以IC2也很小