中考数学基础训练50套试题.doc
中考数学数与式专题训练50题(含答案)
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
人教版九年级数学 中考数学 基础训练
人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
中考数学九年级专题训练50题含答案
中考数学九年级专题训练50题含答案一、单选题1.若23a b =,则a b b +的值为( ) A .23 B .53 C .35 D .322.下列函数关系式中属于反比例函数的是( )A .3y x =B .3y x =-C .23y x =+D .3x y += 3.已知反比例函数k y x=(0k <)的图象上有两点()()1122,,,A x y B x y ,且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定 4.在函数y=中,自变量的取值范围是A .x≠B .x≤C .x ﹤D .x≥ 5.一个几何体的三视图如图,则该几何体是( )A .B .C .D .6.已知二次函数2y ax bx c =++的图象如图所示,有下列结论: ①11024a b c ++>; ①方程20ax bx c ++=的两根之积小于0;.①y 随x 的增大而增大;=+的图象一定不经过第四象限.其中正确的结论有()①一次函数y ax bcA.4个B.3个C.2个D.1个7.如图,在①O内有折线OABC,其中OA=8,AB=12,①A=①B=60°,则BC的长为()A.19B.16C.18D.208.如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则CO:C ′O的值为()A.1:2B.2:1C.1:4D.1:39.关于抛物线244=﹣,下列说法错误的是()y x x+A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=2D.当x>2时,y随x的增大而减小10.已知①O的半径为5cm,点P在直线l上,且点P到圆心O的距离为5cm,则直线l与①O()A.相离B.相切C.相交D.相交或相切11.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.ABBC=DEEFB.ABAC=DEDFC.EFBC=DEABD.OEEF=EBFC12.用5个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A.B.C.D.13.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.514.如图,在①O中,直径AB①弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.①A=12①BOD D.①A=12①ACD15.如图,在矩形ABCD中,AB=3,BC=4,点P在AD上,若将①ABP沿BP折叠,使点A落在矩形对角线AC上,则AA′的长为()A.95B.94C.185D.9216.如图,在Rt ABC中,90C∠=︒,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P 到边AB距离的最小值是().A.1B.4C.1.2D.2.417.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米18.如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数kyx=(k≠0,x<0)的图象上,点C的坐标为(2,2-),则k的值为()A.4B.2C.2-D.4-19.如图,四边形ABCD为半径为R的O的内接四边形,若AB R=,CD=,4AD,BC=O的直径为()=A.4B.C.8D.二、填空题20.如图,AB是①O的直径,BC与①O相切于点B,AC交①O于点D,若①ACB=50°,则①BOD=______度.21.如图,在长方体ABCD EFGH-中,棱BC与棱AE的位置关系是______.22.测得一种树苗的高度与树苗生长的年数有关的数据如下表所示(树高原高100 cm)假设以后每年树苗的高度的变化规律与表中相同,请用含n ( n 为正整数)的式子表示生长了n 年的树苗的高度为__________cm.23.如图:折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知AB=8,①B=300,则CD 的长是_______.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________ 25.如图,已知AB CD EF ∥∥,则下列四个结论①EF BE CD EC =;①AE BE ED EC =;①1EF EF AB CD+=中,正确的有__________(填正确结论序号).26.比的意义:两个数____又叫做两个数的比.“:”是比号,读作比;比号前面的数叫做比的____,比号后面的数叫做比的____.27.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)28.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.29.如图,ABC 是O 的内接三角形,点D 是BC 的中点,已知98AOB ∠=,120COB ∠=,则ABD ∠的度数是________度.30.如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.31.抛物线21212y x x =++与y 轴的交点是________,解析式写成2()y a x h k =-+的形式是________,顶点坐标是________.32.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将①ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin①ECF =__________.33.在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,)b ,则b 的取值范围是_____.34.如图,正比例函数y =kx 与反比例函数y =6x的图象有一个交点A (m ,3),AB ①x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数解析式是___.35.如图,已知点A (0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,①α=75°,则直线y x b =+的解析式为_________.36.在①ABCD 中,E 是AD 上一点,23AE DE =,连接BE 、AC 相交于F ,则下列结论:①23AE BC =;①ΔΔ425AEF CBF S S =;①52BF EF =;①Δ1031ABF CDEF S S =四边形,正确的是 __________.37.点C 是AB 的黄金分割点,4AB =,则线段AC 的长为__________.38.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是_______.39.如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是______.三、解答题40.如图1,在四边形ABCD 中,AB ①AD ,AB ①BC ,以AB 为直径的①O 与CD 相切于点E ,连接OC 、OD .(1)求证:OC ①OD ;(2)如图2,连接AC 交OE 于点M ,若AB =4,BC =1,求CM AM的值.41.已知ABC ①111A B C △,111A B C △①222A B C △,则ABC 与222A B C △有怎样的关系?为什么?42.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件.设这段时间内售出该商品的利润为y 元.(1)直接写出利润y 与售价x 之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?43.某商场销售一批工艺品,平均每天可售出20件,每件赢利45元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件工艺品每降价1元,商场平均每天可多售出4件.(1)设每件工艺品降价x 元,商场销售这种工艺品每天盈利y 元,求出y 与x 之间的函数关系式;(2)每件工艺品降价多少元时,才能使每天利润最大,最大利润为多少?44.某水库大坝的横截面是如图所示的四边形ABCD ,其中AB①CD .大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,渔船N 在俯角45β=︒,已知MN 所在直线与PC 所在直线垂直,垂足为点E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度为,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)45.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A 点的坐标为(O ,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块①OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?46.解方程:(1)()()3525x x x +=+(2)22310x x --=47.在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________.(2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.48.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系; (2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;①如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.49.已知抛物线214y x bx c =++与x 轴交于A ,B 两点(点A 在点B 左边),与y 轴交于点C.直线1y x42=-经过B,C两点.(1)求抛物线的解析式;(2)如图1,动点M,K同时从A点出发,点M以每秒4个单位的速度在线段AB上运动,点K AC上运动,当其中一个点到达终点时,另一个点也随之停止运动设运动的时间为()0t t>秒.①如图1,连接MK,再将线段MK绕点M逆时针旋转90︒,设点K落在点H的位置,若点H恰好落在抛物线上,求t的值及此时点H的坐标;②如图2,过点M作x轴的垂线,交BC于点D,交抛物线于点P,过点P作PN BC⊥于N,当点M运动到线段OB上时,是否存在某一时刻t,使PNC△与AOC相似.若存在,求出t的值;若不存在,请说明理由.参考答案:1.B 【分析】依据23a b =,可得a 23=b ,代入即可得出答案案. 【详解】①23a b =, ①3a =2b ,①a 23=b , ①2533b b a b b b ++==. 故选:B .【点睛】本题考查了比例的性质,解题时注意:内项之积等于外项之积.2.B【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选:B . 【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是k y x=(0k ≠) . 3.D【分析】分,A B 在同一象限,和不在同一象限,两种情况进行讨论求解即可.【详解】解:①k y x =(0k <), ①反比例函数的图象过二、四象限,在每一个象限内,y 随x 的增大而增大,当,A B 在同一象限时:①12x x <,①12y y <,①120y y -<,当,A B 不在同一象限时,①12x x <,①A 在第二象限,B 在第四象限,①120y y >>,①120y y ->;综上:12y y -的值无法确定;故选D .【点睛】本题考查比较反比例函数的函数值大小.熟练掌握反比例函数的性质,是解题的关键.注意,分类讨论.4.C【详解】 1-2x≥0且x-≠0 解得:x ﹤.故选C5.D【分析】根据主视图与左视图可以判断几何体的下部是柱体,上部为台体,再结合俯视图即可确定答案.【详解】由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选:D .【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.6.B【分析】根据二次函数的图象与性质依次判断即可求出答案.【详解】①由图象可知:x =2时,y >0,①y =4a +2b +c >0, 即a +12b +14c >0,故①正确; ①由图象可知:a >0,c <0,①ax 2+bx +c =0的两根之积为c a<0,故①正确; ①当x >−2b a时,y 随着x 的增大而增大,故①错误;①由图象可知:−2b a>0, ①b <0,①bc >0, ①一次函数y =ax +bc 的图象一定不经过第四象限,故①正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.D【分析】延长AO 交BC 于D ,根据①A 、①B 的度数易证得①ABD 是等边三角形,由此可求出OD 、BD 的长;过O 作BC 的垂线,设垂足为E ;在Rt①ODE 中,根据OD 的长及①ODE 的度数易求得DE 的长,进而可求出BE 的长;由垂径定理知BC=2BE ,由此得解.【详解】解: 延长AO 交BC 于D ,作OE①BC 于E ;①①A=①B=60°,①①ADB=60°;①①ADB 为等边三角形;①BD=AD=AB=12;①OD=4,又①①ADB=60°, ①DE=12OD=2;①BE=10;①BC=2BE=20;故选D . 【点睛】此题主要考查了等边三角形的判定和性质以及垂径定理的应用,解答此题的关键是正确做出辅助线,得到①ADB为等边三角形.8.A【分析】根据位似图形的性质知:BC①C′B′,则①BCO①①B′C′O′,根据该相似三角形的对应边成比例得到答案.【详解】解:如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则①ABC与①A′B′C′的相似比为1:2.①①ABC与①A′B′C′是位似图形,①BC∥C′B′,①①BCO①①B′C′O′.①CO:C′O=BC:B′C′=1:2.故选:A.【点睛】本题考查了位似图形的性质:两个图形的对应边平行,面积的比等于位似比的平方.9.D【分析】根据抛物线解析式求出顶点坐标和对称轴,利用二次函数的性质即可判断.【详解】解①a=1>0,①开口向上,故A正确;①22=﹣=(﹣),442y x x x①顶点坐标(2,0),对称轴x=2,①抛物线的顶点在x轴上,①与x轴有两个重合的交点,故B、C正确;①抛物线开口向上,对称轴为直线x=2,①当x>2时,y随x的增大而增大,故D错误.故选:D.【点睛】本题考查抛物线与x轴的交点以及二次函数的性质,解题的关键是熟练掌握配方法全等抛物线的顶点坐标,对称轴,属于中考常考题型.10.D【分析】直接根据直线与圆的位置关系即可得出结果;【详解】①①O的半径为5cm且点P到圆心O的距离为5cm,当OP的距离是圆心到直线的距离时,①点P在圆上,①直线l与①O相切,当OP的距离不是圆心到直线的距离时,得到直线与圆相交.故答案选D.【点睛】本题主要考查了直线与圆的位置关系,准确分析判断是解题的关键.11.D【分析】直接根据平行线分线段成比例定理进行判断即可得出结论.【详解】A、①直线a①直线b①直线c,①ABBC=DEEF,正确,故本选项不符合题意;B、①直线a①直线b①直线c,①ABAC=DEDF,正确,故本选项不符合题意;C、①直线a①直线b①直线c,①EFBC=DEAB,正确,故本选项不符合题意;D、不能证明OEEF=EBFC,错误,故本选项符合题意.故选D.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.12.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,1,故选D.【点睛】本题主要考查了三视图的知识,关键是找准俯视图所看的方向.13.D【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65、0.7、0.58、0.52、0.51、0.5,可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5,故选D.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.14.C【分析】根据垂径定理判断即可.【详解】连接DA,①直径AB①弦CD,垂足为M,①CM=MD,①CAB=①DAB,①2①DAB=①BOD,①①CAD=12①BOD.故答案选:C.【点睛】本题考查了垂径定理及其推论,解题的关键是熟练的掌握垂径定理及其推论.15.C【分析】在Rt ABC 中,由勾股定理求得AC ,根据折叠可得到BP 是AA '的垂直平分线,从而得到BP AA '⊥,2AA OA ''=,而由矩形ABCD 可知AB BC ⊥,从而可以得到90AOB ABC ∠=∠=,以及12901390∠+∠=∠+∠=,,进而可证得AOB ABC ~,由相似的性质求得线段长度.【详解】解:由题意知, AB BC ⊥,BP AA '⊥,2AA OA ''=,①90AOB ABC ∠=∠=,① 12901390∠+∠=∠+∠=,,①23∠∠=,①AOB ABC ∠=∠,23∠∠=,①AOB ABC ~, ①AB AO AC AB=,在Rt ABC 中,AC =, ①29=5AB AO AC =,182=5AA OA '=, 故答案选:C .【点睛】本题考查垂直平分线的判定和性质,相似三角形的判定和性质,矩形的性质,勾股定理,比较综合.16.C【分析】先依据勾股定理求得AB 的长,然后依据翻折的性质可知PF =FC ,故此点P 在以F 为圆心,以2为半径的圆上,依据垂线段最短可知当FP ①AB 时,点P 到AB 的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】解:如图所示:当PE ①A B .在Rt①ABC中,①①C=90°,AC=6,BC=8,①AB,由翻折的性质可知:PF=FC=2,①FPE=①C=90°.①PE①AB,①①PDB=90°.由垂线段最短可知此时FD有最小值.又①FP为定值,①PD有最小值.又①①A=①A,①ACB=①ADF,①①AFD①①AB C.①AF DFAB BC=,即4108DF=,解得:DF=3.2.①PD=DF-FP=3.2-2=1.2.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.B【分析】根据地形图上的等高线的比例尺和图上距离求得两点间的实际距离,再利用解直角三角形的知识求得山顶的海拔高度即可.【详解】解:①两点的图上距离为6厘米,例尺为1:50000,①两点间的实际距离为:6÷150000=3000米,①从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°,米,①点M的海拔为250米,①山顶P的海拔高度为=1732+250=1982米.故选B .【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形.18.D【分析】根据反比例函数的几何意义只要求出矩形OGAH 的面积也可,依据矩形的性质发现S 矩形OGAH =S 矩形OECF ,而S 矩形OECF 可通过点C (2,2-)转化为线段长而求得,再根据反比例函数的所在的象限,确定k 的值即可.【详解】解:如图,根据矩形的性质可得:S 矩形OGAH =S 矩形OECF ,①点C 的坐标为(2,-2),①OE=2,OF=2,①S 矩形OECF =OE•OF=4,设A (a ,b ),则OH=-a ,OG=b ,①S 矩形OGAH =OH•OG=-ab=4,又①点A 在函数k y x=(k≠0,x <0)的图象上, ①4k ab ==-;故选:D. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.C【分析】取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,先证得①AOB =60°及①COD =120°,可得AOD+①BOC =180°,再利用垂径定理可得①AOG+①BOF =90°,最后通过证①BOF①①OAG 得OF =AG =2,再利用勾股定理求解即可.【详解】解:如图,取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,①OA =OB =AB =R ,①①AOB 为等边三角形,①①AOB =60°,①OE①CD,CD =,①12CE CD R ==, 在Rt①COE 中,2sin CE COE CO R ∠===①①COE =60°,①①COD =2①COE =120°,①①AOD+①BOC =360°﹣①COD ﹣①AOB =180°,①OF①BC ,OG①AD ,①AG =12AD =2,BF =12BC =①AOG =12①AOD ,①BOF =12①BOC , ①①AOG+①BOF =12(①AOD+①BOC )=90° 又①①AOG+①OAG =90°,①①BOF =①OAG ,①①BOF =①OAG ,①BFO =①OGA =90°,OB =OA ,①①BOF①①OAG (AAS ),①OF =AG =2,在Rt①BOF中,4OB ==,①O 的直径=2OB =8,故选:C .【点睛】本题考查了垂径定理,等边三角形的判定及性质,解直角三角形,全等三角形的判定及性质和勾股定理,通过理清题目意思并作出正确的辅助线是解决本题的关键.20.80【分析】根据切线的性质得到①ABC=90°,根据直角三角形的性质求出①A,根据圆周角定理计算即可.【详解】解:①BC是①O的切线,①①ABC=90°,①①A=90°-①ACB=40°,由圆周角定理得,①BOD=2①A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21.异面【分析】棱BC与棱AE不在同一平面内,属于异面线段.【详解】解:棱BC与棱AE不在同一平面内,属于异面线段,故答案为:异面.【点睛】本题考查了认识立体图形,理解异面直线的意义是正确解题的前提.22.100+5n【分析】从上表可以看出,树每年长高5厘米.所以生长了n 年的树苗的高度为100+5n.【详解】解:根据题意有:生长了n 年的树苗的高度为100+5n故答案为100+5n.【点睛】本题的关键是算出树每年长高多少厘米.通过观察,分析、归纳并发现其中的规律.23.【详解】试题分析:根据题意,得①EAD=①B=30°,AE=BE=4.设DE=x,则AD=2x,根据勾股定理,得x2+16=4x2,解得x=.①DE=.考点:了翻折变化;角平分线的性质;勾股定理24.6【分析】根据根与系数的关系变形后求解.【详解】解:①x 1、x 2是方程x 2−2x−1=0的两根,①x 1+x 2=2,x 1×x 2=−1,①x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为6.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 25.①①【分析】~BEF BCD ∆∆根据相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可得三组三角形相似,然后依据相似三角形的性质:对应边成比例即可进行判断,得出结果.【详解】解:①∵EF CD ∥,∴~BEF BCD ∆∆, ∴EF BE CD BC=,故①错误; ①AB CD ∥,∴~AEB DEC ∆∆, ∴AE BE ED EC=,故①正确; ①AB EF ∥,∴~DEF DAB ∆∆, ∴EF DF AB BD=, 由①得:~BEF BCD ∆∆, ∴EF BF CD BD=, 1EF EF DF BF BD AB CD BD BD BD+=+==,故①正确; 综合可得:①①正确,故答案为:①①.【点睛】题目主要考查相似三角形的判定定理和性质,熟练掌握相似三角形的判定定理和性质是解题关键.26. 相除 前项 后项【解析】略27【分析】铅直高度BC 可得①ACB =90°,由勾股定理AC =AB 的坡比即可.【详解】解:①BC ①AC ,①①ACB =90°,在Rt △ABC 中,①AB =12米,BC =6米,由勾股定理=①自动扶梯AB 的坡比BC i AC ==.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.28.-1【分析】由已知中α,β是方程4x 2-4mx+m+2=0∥∥x∥R∥∥∥∥∥∥∥∥∥∥∥∥∥∥≥0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:①关于4x 2﹣4mx +m +2=0的两个实数根,①b 2﹣4ac =(-4m )2-4×4(m +2)≥0,①m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ①m ≥2或m ≤﹣1,①α+β=﹣44m -=m ,α•β=14(m +2), ①α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ①当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解, 29.101【分析】根据周角为360°,可求出①AOC 的度数,由圆周角定理可求出①ABC 的度数,关键是求①CBD 的度数;由于D 是弧BC 的中点,根据圆周角定理知①DBC =12①BAC ,而①BAC 的度数可由同弧所对的圆心角①BOC 的度数求得,由此得解.【详解】①①AOB =98°,①COB =120°①①AOC =360°-①AOB -①COB =142°,①①ABC =71°,①D 是弧BC 的中点,①①CBD =12①BAC ,又①①BAC =12①COB =60°,①①CBD =30°,①①ABD =①ABC +①CBD =101°,故答案为101度.【点睛】本题主要考查了圆心角、圆周角的应用能力,解此题的要点在于求①CBD 的度数.30.()3【分析】四边形ABCD 是菱形,由图象可得AC 和BD 的长,从而求出OC 、OB 和ACB ∠.当点P 在A D -段上运动且P 、Q 两点间的距离最短时,此时PQ 连线过O 点且垂直于BC .根据三角函数和已知线段长度,求出P 、Q 两点的运动路程之和.【详解】由图可知,2AC BD ==(厘米),①四边形ABCD 为菱形①11122OC AC OB BD ====(厘米) ①30ACB ∠=︒P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和2()S OC CQ =+①3cos 2CQ OC ACB =⋅∠==(厘米)①3232S ⎫==⎪⎭(厘米)故答案为3).【点睛】本题主要考查菱形的性质和三角函数.解题的关键在于从图象中找到菱形对角线的长度.31. ()0,1 21(2)12y x =+- ()2,1-- 【分析】令抛物线的x =0,即可求得与y 轴交点坐标;将等号右边配成完全平方式即可;根据抛物线的顶点式解析式即可求出其顶点坐标.【详解】令x =0,则y =1,即抛物线与y 轴的交点为(0,1);y =12 (x 2+4x )+1=12 (x 2+4x +4)−1=12(x +2)2−1, ①顶点坐标为(−2,−1).故答案填空为(0,1),y =12 (x +2)2−1,(−2,−1).【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与应用.32.45 【详解】过E 作EH①CF 于H ,则有①HEC+①ECH=90°,由折叠的性质得:BE=EF ,①BEA=①FEA ,①点E 是BC 的中点,①CE=BE ,①EF=CE ,①①FEH=①CEH ,①①AEB+①CEH=90°, ①①ECH=①AEB ,即①ECF=①AEB ,在矩形ABCD 中,①①B=90°,, ①sin①ECF=sin①AEB=AB AE=45 , 故答案为45.33.32b -≤≤-【分析】延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E ,即可求出CE 的长,设点A 的坐标为(x ,1),由题意可得1≤x ≤3,用x 和b 表示出AD 、BD 、AE ,然后证出①BDA ①①AEC ,列出比例式即可求出b 与x 的二次函数关系,然后根据x 的取值范围即可求出b 的取值范围.【详解】解:延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E①①AEC =90°①M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),①MN ①y 轴①CE =1,①DBA +①DAB =90°设点A 的坐标为(x ,1),由题意可得1≤x ≤3①AD =x ,BD =yA -yB =1-b ,AE =xC -xA =4-x①AB AC ⊥①①EAC +①DAB =90°①①DBA =①EAC①①BDA =①AEC =90°①①BDA ①①AEC ①=BD AD AE CE 即141-=-b x x 整理,得241=-+b x x =()223x --,b 是x 的二次函数,其中1>0①1≤x ≤3①当x =2时,b 最小,最小值为-3;当x =1时,b 最大,最大值为-2①-3≤b ≤-2故答案为:-3≤b ≤-2.【点睛】此题考查的是相似三角形的判定及性质和二次函数的应用,掌握相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.34.y =32x ﹣3. 【分析】可以先求出点A 的坐标,进而知道直线平移的距离,得出点B 的坐标,平移前后的k 相同,设出平移后的关系式,把点B 的坐标代入即可.【详解】①点A (m ,3)在反比例函数y =6x的图象, ①3=6m,即:m =2, ①A (2,3)、B (2,0)点A 在y =kx 上,①k =32①y =32x ①将直线y =32x 平移2个单位得到直线l , ①k 相等设直线l 的关系式为:y =32x +b ,把点B (2,0)代入得:b =﹣3, 直线l 的函数关系式为:y =32x ﹣3; 故答案为y =32x ﹣3. 【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k 值相等,是解决问题的关键. 35.5y x =+【分析】首先根据直线y=x+b (b >0)与x 轴、y 轴分别交于点C 、点B ,求出点C ,点B 的坐标各是多少;然后根据①α=75°,①BCA=45°,应用三角形的外角的性质,求出①BAC 的度数是多少,进而求出b 的值是多少即可.【详解】如图,,①直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,①点C的坐标是(-b,0),点B的坐标是(0,b),①①α=75°,①BCA=45°,①①BAC=75°-45°=30°,tan30=︒=解得b=5.故答案为y=x+5.【点睛】(1)此题主要考查了解直角三角形问题,要熟练掌握,解答此题的关键是要明确解直角三角形要用到的关系:①锐角直角的关系:①A+①B=90°;①三边之间的关系:a2+b2=c2.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.36.①①①【分析】根据平行四边形的性质可得AD BC∥,AD BC=进而可得AEF CBF∽△△,根据23AEDE=,即可求得25AEBC=,ΔΔ425AEFCBFSS=,52BFEF=进而判断①①①,根据三角形的面积和平行四边形的面积可得,分别用ABCDS表示出ABFS△与CDEFS四边形,进而求得其比值【详解】解:四边形ABCD是平行四边形∴AD BC∥,AD BC=∴AEF CBF∽△△AF AE EFCF BC BF∴==23AEDE=25AEAD∴=∴25AE AEBC AD==∴2425AEFCBFS AES BC⎛⎫==⎪⎝⎭。
中考数学《方程与不等式》专题知识训练50题-含答案
中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
中考数学不等式与不等式祖专题训练50题-含答案
中考数学不等式与不等式祖专题训练含答案一、单选题1.截至6月10日24时,广东新冠病毒疫苗累计接种超过6340万人,若接种人数为x ,x 为自然数,则“超过6340万”用不等式表示为( ) A .x <6340万B .x ≤6340万C .x >6340万D .x ≥6340万2.贵阳市今年5月份的最高气温为,270C 最低气温为180C ,已知某一天的气温为tC ,则下面表示气温之间的不等关系正确的是( )A .1?827t <<B .1?827t ≤<C .1?827t <≤D .1?827t ≤≤3.不等式组3122x x -≥⎧⎨-⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.将“x 的2倍与5的和不是正数”用不等式表示为( ) A .250x +>B .250x +≥C .250x +<D .250x +≤5.将不等式组 422113x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示出来应是( )A .B .C .D .6.在“中国共产党建党百年知识竞赛”中共有20道题,每一题答对得10分,答错或不答都扣5分.墩墩得分要超过90分,设他答对了x 道题,则根据题意可列不等式为( )A .105(20)90x x --≥B .105(20)90x x -->C .10(20)90x x --≥D .10(20)90x x -->7.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >①内错角相等,两直线平行; ①若33x y ->-,则x y >;①三角形的一个外角大于任何一个与之不相邻的内角; ①若1a <-,则21a > A .1个B .2个C .3个D .4个9.关于x ,y 的方程组3249x y ax y -=⎧⎨+=⎩,已知40a ,则x y +的取值范围为( )A .02x y <+<B .13x y -<+<C .04x y <+<D .12x y -<+<10.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A .18千克B .22千克C .28千克D .30千克11.如果点()391M m m --,在第二象限,则m 的取值范围是( ) A .1m <B .3m <C .13m <<D .3m >12.若关于x ,y 的方程组2822mx y x y +=⎧⎨-=-⎩的解为整数,且关于x 的不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则满足条件的非负整数m 的值有( ) A .4个B .3个C .2个D .1个13.不等式组315,26x x ->⎧⎨≤⎩的解集在数轴上表示正确的是( )A .AB .BC .CD .D14.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥D .0x ≤,0y ≤15.不等式215x +>的解集是( ) A 2x <BCD 3x >16.对于任意实数x ,现规定[]x 表示不大于x 的最大整数,例如][2122],1[1=-=-...若325x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .7x ≥ B .12x ≤ C .712x ≤< D .712x <≤17.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1 C .x =1 D .无解18.已知a b <,则下列不等式一定成立的是( ) A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <19.已知二次函数2243y x x =-++,当3m x m ≤≤+时,函数y 的最大值为5,则m 的取值范围是( ) A .1m ≥-B .2m ≥-C .21m -≤≤D .12m -≤≤20.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤4二、填空题21.不等式210x ->的解集是______.22.不等式组372510x x -<⎧⎨-≤⎩的解集是________.23.不等式组12x x m ≤≤⎧⎨>⎩无解,求m 的取值范围______.24.不等式组31534x x -<⎧⎨+>⎩的解是____________.25.若不等式组1241x ax +>⎧⎨-≤⎩有解,则a 的取值范围是________.262=成立,则x 的取值范围是___________. 27.不等式10->的解集是____________.28.把“a 的3倍与2的和不小于6”用不等式表示得______. 29.不等式13-3x >0的正整数解是______________________ . 30.不等式215x -≤的正整数解的个数有_______个.31.若0m n<<,则2{22x mx nx n>>-<的解集为.32.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:_____.33.不等式-3x-1≥-10的正整数解为______________34.不等式3x-7<0的非负整数解是________________.35.如果x=2是不等式2x a2->3的一个解,则a的取值范围______.36.若关于x的分式方程11222kx x--=--的解是正数,则k的取值范围是______.37.设a,b是任意两个实数,max{a,b}表示a,b两数中较大的数.例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{﹣4,﹣3}=﹣3.若max{3x+1,﹣x+2}=﹣x+2,则x的取值范围是_____.38.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩,则满足条件的m的整数值为________.39.我国已研制出新型新冠疫苗一一重组亚单位疫苗(CHO细胞),预计4月初开始接种.3月底我市部分小区率先开始了新型新冠疫苗接种预约,这部分小区平均每个小区有144名业主申报,其中申报人数低于120名的小区平均每个小区有112名业主申报,申报人数不低于120名的小区平均每个小区有168名业主申报.根据统计结果发现,若每个小区同时新增20名业主申报,则此时申报人数低于120名的小区平均每个小区有116名,申报人数不低于120名的小区平均每个小区有180名业主申报,且该市这部分小区个数高于100,且低于130,则这部分小区有______个.40.已知﹣1<a<0___.三、解答题41.解不等式组:12256xx x+⎧⎨≤+⎩,并把它的解集在数轴上表示出来.42.已知整数x同时满足不等式211132x x+--<和3x-4≤6x-2,并且满足方程3(x+a)-5a+2=020212a-的值43.解不等式组:12 382xx+<⎧⎨-<-⎩44.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?45.解不等式组(121(1)2-⎛⎫∏++ ⎪⎝⎭(2)32123x xxx>-⎧⎪+⎨>⎪⎩46.(1)解方程:31122xx x-+=--(2)解不等式组:426,{21136x xx x≥-++<+.47.某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?48.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?49.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元.(1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品.50.春节将至,洪崖洞的某礼品店准备将腊肉、香肠、野生葛根粉以礼盒形式销售,腊肉、香肠、野生葛根粉的成本之比为4:5:7.商家打算将3斤腊肉、2斤香肠、4斤野生葛根粉作为甲礼盒;将4斤腊肉、2斤香肠、4斤野生葛根粉作为乙礼盒;将2斤腊肉、4斤香肠、4斤野生葛根粉作为丙礼盒.已知每个礼盒的成本价是这三种年货的成本价之和,每个甲礼盒在成本价的基础上提高20%之后进行销售,每个乙礼盒的利润等于2斤野生葛根粉的成本价,每个丙礼盒的售价为1斤腊肉成本价的18倍.腊月二十九当天,该礼品店销售了40个甲礼盒,销售乙礼盒与丙礼盒的数量之和不少于55个,不超过58个.该礼品店通过核算,当天订单的利润率为25%,则腊月二十九当天一共销售了______个礼盒.参考答案:1.C【分析】根据关键词“超过”就是大于,然后列出不等式即可. 【详解】解:由题意得:x >6340万, 故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词语,选准不等号. 2.D【详解】【分析】根据题意,用不等式表示.【详解】一天的最高气温为270C ,最低气温为180C ,一天的气温为t 0C ,用不等关系表示为1827t ≤≤. 故选D【点睛】本题考核知识点:不等式. 解题关键点:用不等式表示题意. 3.C【分析】先求出不等式组的解集,再根据解集中是否含有等号确定圆圈的虚实,方向,表示即可.【详解】① 不等式组3122x x -≥⎧⎨-⎩①>②中,解①得,x ≤2, 解①得,x >-1,①不等式组3122x x -≥⎧⎨-⎩①>②的解集为-1<x ≤2,数轴表示如下:故选C .【点睛】本题考查了一元一次不等式组的解集的数轴表示方法,熟练掌握解不等式的基本要领,准确用数轴表示是解题的关键. 4.D【分析】根据题意可直接列出不等式排除选项.【详解】解:由题意得:250x +≤; 故选D .【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键. 5.B【分析】分别求出两个不等式的解集,即可求解. 【详解】解:422113x x -<⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >, 解不等式①得:3x ≤, ①不等式组的解集为13x <≤,把不等式组的解集在数轴上表示出来,如下: 故选:B【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 6.B【分析】设他答对了x 道题,根据题意列出不等式即可求解. 【详解】解:设他答对了x 道题,则根据题意可列不等式为, 105(20)90x x -->,故选B .【点睛】本题考查了列一元一次不等式,理解题意,找到不等关系是解题的关键. 7.C【详解】解:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,说法正确,不符合题意;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,说法正确,不符合题意;C .当c =0时,若a b >,则不等式22ac bc >不成立,符合题意;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,说法正确,不符合题意 故选C . 8.A【分析】根据平行线的判定可以判断①;根据不等式的性质可以判定①①;根据三角形外角的性质可以判定①.【详解】解:①内错角相等,两直线平行,故①是真命题,不符合题意; ①若33x y ->-,则x y <,故①是假命题,符合题意;①三角形的一个外角大于任何一个与之不相邻的内角,故①是真命题,不符合题意; ①若1a <-,则21a >,故①是真命题,不符合题意; 故选A .【点睛】本题主要考查了,判断命题真假,平行线的判定,不等式的性质,三角形外角的性质,熟知相关知识是解题的关怀. 9.B【分析】两方程相加、化简可得3x y a +=+,结合40a 知133a -<+<,据此可得答案.【详解】解:3249x y ax y -=⎧⎨+=⎩,3339x y a ∴+=+, 3x y a ∴+=+,40a -<<,133a ∴-<+<,即x y +的取值范围为13x y -<+<, 故选:B .【点睛】本题考查的是解一元一次不等式组,根据方程组得出3x y a +=+,并结合a 的取值范围得出3a +的范围是解题的关键. 10.A【详解】解:设小明的体重为m 千克,依题意得m+50<70 解得m <20即小明的体重<20千克①18<20①小明的体重可能是18千克. 故选A . 11.A【分析】根据点P (3m -9,1-m )在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解之即可得m 的取值范围. 【详解】解:①点P (3m -9,1-m )在第二象限, ①坐标符号是(-,+),①39010m m -<⎧⎨->⎩,解得m <1. 故选:A .【点睛】本题考查各象限内点的坐标的符号,解决本题的关键是转化为不等式或不等式组的问题. 12.C【分析】解方程组得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x +<-得8x >,结合4x m <且不等式组无解知2m ≤,继而从在2m ≤的非负整数中找到使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的个数.【详解】解:解方程组2822mx y x y +=⎧⎨-=-⎩得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x+<-,得:8x >, 又4x m <且不等式组无解,48m ∴≤, 解得2m ≤,在2m ≤的非负整数中使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的有0、2共2个, 故选:C .【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组,并根据不等式组无解得出m 的取值范围. 13.C【详解】31526x x ->⎧⎨≤⎩①②, 解①得,2x >;解①得,3x ≤;①原不等式组的解集是23x <≤,故选C.14.C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果.【详解】解:根据题意得,20x y ≥,①20x ≥,①0y ≥,①0xy ≤,①0x ≤,故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.15.C【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:2x >5-1,合并同类项,得:2x >4,系数化为1,得:x >2,故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.C【详解】①325x +⎡⎤=⎢⎥⎣⎦,①3235x +≤<,解得712x ≤<. 17.D【详解】21 3......{3 4......x x +≤+>①②解不等式①,得x≤1,解不等式①,得x>1,所以不等式组无解集;故选D .18.A【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.19.C【分析】先根据二次函数的解析式确定对称轴及最大值,再结合图象判断:当自变量m +3在对称轴上或在对称轴右侧即m +3≥1时且自变量m 在对称轴上或在对称轴左侧即m ≤1时,函数能取到最大值5,由此列出不等式组,解不等式组即可.【详解】解:()22243=215y x x x =-++--+,①对称轴是x =1,①﹣2<0,①函数的最大值为5.又①当m ≤x ≤m +3时,函数y 的最大值为5, ①311m m +≥⎧⎨≤⎩, 解得:﹣2≤m ≤1.故选:C .【点睛】本题考查二次函数的最值问题,熟练掌握二次函数的图象和性质是解题的关键. 20.C【详解】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围. 详解:2011,3x a x x +>⎧⎪⎨--≤⎪⎩①② 解不等式①,得 2a x ;>- 解不等式①,得1x ≤;原不等式组的解集为12a x -<≤. ①只有4个整数解,①整数解为:2,101--,,, 322a ∴-≤-<-, 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围.21.5x -<【分析】不等式两边都除以-2即可得出答案;【详解】解:210x ->,不等式两边都除以-2得:5x -<故答案为:x <-5【点睛】本题考查了解不等式,熟练掌握不等式的性质是解题的关键22.x <3【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:372510x x -<⎧⎨-≤⎩①②, 由①得:x <3,由①得:x ≤15,①不等式的解为:x <3,故答案是:x <3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.23.2m ≥【分析】根据不等式组12x x m ≤≤⎧⎨>⎩无解,可得12x ≤≤与x >m 在数轴上没有公共部分,即可求解. 【详解】不等式组12x x m≤≤⎧⎨>⎩无解, 12x ∴≤≤与x >m 在数轴上没有公共部分,2m ∴≥,故答案为:2m ≥.【点睛】本题考查了一元一次不等式组无解的情况,熟练掌握知识点是解题的关键. 24.1<x <2【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:31534x x -<⎧⎨+>⎩①②, 解不等式①,得x <2,解不等式①,得x >1,所以 原不等式组的解集为1<x <2,故答案为:1<x <2.【点睛】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.25.72a < 【分析】先解不等式组,再根据题意,“大小小大”列关于a 的不等式求解.【详解】解:1241x a x +>⎧⎨-≤⎩①②, 由①得:-1x a >,由①得:25x ≤,52x ≤①不等式组有解, ①5-12a <, 解得:72a <, 故答案为:72. 【点睛】本题考查了含参数不等式组的问题,首先要先解不等式组,再根据题意列出参数所满足的不等式,再进行计算求解.26.1x ≥【分析】根据二次根式有意义的条件分别求出等号两边被开方数中x 的范围,再取其公共部分即可.2(–10)x ≥,则x 为任意实数;2要满足10x -≥,则1x ≥,所以1x ≥.故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,属于基本知识题型,熟知二次根式的被开方数非负是解题关键.27.x <【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以x <故答案为:x <【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.28.3a +2≥6##236a +≥【分析】由“a 的3倍与2的和不小于6”得出关系式为:a 的3倍+2≥6,把相关数值代入即可.【详解】解:①a 的3倍为3a ,①a 的3倍与2的和不小于6:3a +2≥6.故答案为:3a +2≥6.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.29.36125402x y x y +=⎧⎪⎨=⨯⎪⎩【详解】先求出不等式解集,再找出满足条件的正整数解即可.解:1330x ->的313x ->-133x < 满足条件的正整数解为:1,2,3,4故答案为x=1,2,3,430.3【分析】先求出不等式的解,再找出其正整数解即可得.【详解】215x -≤,251x ≤+,26x ≤,3x ≤,则不等式的正整数解为1,2,3,共有3个,故答案为:3.【点睛】本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键. 31.无解.【详解】试题考查知识点:解不等式组思路分析:根据条件确定2m 、2n 、-2n 的大小关系具体解答过程:①0m n <<①2m <2n <0<-2n①x >-2n >0,x <2n <0没有交集①x >-2n 与x <2n 没有交集①原不等式组无解试题点评:32.2800×10x ﹣2000≥2000×5%. 【分析】设最低可打x 折,根据品牌手机的利润率不低于5%,可列出不等式求解.【详解】设这种品牌的电脑打x 折销售,依据题意得:2800200020005%10x ⨯-≥⨯, 故答案为:2800200020005%10x ⨯-≥⨯. 【点睛】本题考查了一元一次不等式的应用,根据利润=售价-进价,可列不等式求解. 33.1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,①不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.34.0,1,2【分析】先确定不等式的解集,后确定非负整数解.【详解】①3x -7<0,①x <73,①要确定非负整数解,①0≤x <73, ①非负整数解有0,1,2;故答案为:0,1,2.【点睛】本题考查了一元一次不等式的解集和特解问题,规范求不等式的解集是解题的关键.35.a <-2.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.【详解】解:①22x a ->3, ①2x-a >6,2x >a+6,则x >62a +, ①x=2是不等式的一个解, ①62a +<2, 解得a <-2,故答案为:a <-2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.37.14x ≤##0.25x ≤ 【分析】根据max {3x +1,﹣x +2}=﹣x +2,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:①max {3x +1,﹣x +2}=﹣x +2,①3x +1≤﹣x +2,解得:14x ≤, 故答案为:14x ≤. 【点睛】本题考查了解一元一次不等式,解题的关键是根据max {3x +1,﹣x +2}=﹣x +2,找出关于x 的一元一次不等式.38.-3和-2【分析】根据题意,先求出方程组的解,然后解代入不等式组,即可求出m 的取值范围,然后得到m 的整数解即可.【详解】解:由题意得:x-2y=m 2x+3y=2m+4⎧⎨⎩①② 由①2-⨯①,解得:4y=7, 把4y=7代入①,得:8x=m+7, 把8x=m+7,4y=7代入不等式组,得: 843(m+)+07784m++5>077⎧⨯≤⎪⎪⎨⎪⨯⎪⎩③④, 解不等式①,得:4m -3≤,解不等式①,得:m>-4,①不等式组的解集为:4-4m -3<≤, ①满足条件的m 的整数解有:-3和-2,故答案为:-3和-2.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,解题的关键是熟练掌握解方程组和解不等式组的方法和步骤.39.112【分析】先设低于120名的有x 个小区,不低于120名的有y 个小区,每个小区增加20名业主,则设低于120名的会在x 个小区的基础上减少e 个,根据“这部分小区平均每个小区有144名业主参加”可知一共有()144x y +名业主,再根据增加20户前与后两种情况的等量关系列式,可以得到x ,y 含有e 的关系式,再结合“该市这部分小区个数高于100,且低于130”即可得出答案.【详解】解:设低于120名的有x 个小区,不低于120名的有y 个小区,再设每个小区增加20名业主后,低于120名的会在x 个小区的基础上减少e 个小区,不低于120名的会在y 个小区的基础上增加e 个小区①增加20名业主后,低于120名的有()x e -个小区,不低于120户的有()y e +个小区, 由题意得:()144112168x y x y +=+,①43x y =①,同时有:()()()()11618020144x e y e x y x y -++=+++,化简得:34x y e -=①,由①①解得: 2.4 3.2x e y e ==,,①x ,y ,e 都是正整数,且100130x y <+<①100 5.6130e <<,①20e =,①4864x y ==,,①112x y +=故答案为:112.【点睛】本题主要考查方程与实际问题,能够读懂题意,找到等量关系并准确的表达出来是解题的关键.40.2a- 【分析】根据题意得到10a a->,10a a +<,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式==①10a -<<,①201a <<, ①1a a>, 210a +>, ①10a a->,2110a a a a ++=<,原式112a a a a a ==---=- 故答案为:2a -. 【点睛】本题考查二次根式的化简和不等式的性质,解题关键是熟练掌握二次根式的性质.41.﹣2≤x ≤1,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x +1≤2,得:x ≤1,解不等式2x ≤5x +6,得:x ≥﹣2,则不等式组的解集为﹣2≤x ≤1,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查在数轴上表示不等式组的解集,熟练掌握,即可解题.42.0【分析】先解两个不等式,确定解集的公共部分,再确定不等式组的整数解,把整数解代入方程解方程求解a 的值,从而可得答案.【详解】解:由两个不等式组成不等式组:2111323462x x x x +-⎧-<⎪⎨⎪-≤-⎩①② 解不等式①,得x <1,解不等式①,得x ≥-23①不等式组的解集为-23≤x <1①整数x 为0,①3(0+a )-5a +2=0,解得a =1202121120a -=+-=【点睛】本题考查的是一元一次不等式组的解法,求一个数的立方根,一元一次方程的解与解法,代数式的值,掌握以上知识是解题的关键.43.1x <【分析】直接根据一元一次不等式的解法进行求解即可. 【详解】解: 12382x x +<⎧⎨-<-⎩①② 解不等式①,得:1x <;解不等式①,得2x <;∴不等式组的解集为1x <.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握不等式组的解法是解题的关键.44.(1)购进甲种花卉每盆16元,乙种花卉每盆8元;(2)10≤x ≤12.5,故有三种购买方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【分析】(1)根据题意设购进甲种花卉每盆x 元,乙种花卉每盆y 元,列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,利用一次函数的性质得到哪种方案获利最大,最大利润是多少.【详解】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,20507204030880x y x y +=⎧⎨+=⎩, 解得:168x y =⎧⎨=⎩, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)设甲种花卉购进m 盆,则 80016688001688m m m m -⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得,10≤m ≤12.5,又m 为整数,m ∴=10,11,12,故有三种购买方案,由利润W=80016614100,8m m m -+⨯=+ 40,∴>W 随m 的增大而增大,故当m =12时, 80016768m -=, 即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.45.(1)5;(2) 115x -<<. 【分析】(1)分别计算算数平方根,0指数幂,负指数幂,再把结果相加减;(2)依据解不等式的步骤分别计算两个不等式,求公共解.【详解】(1)原式2145=-+=(2)32(1)12(2)3x x x x >-⎧⎪+⎨>⎪⎩ 分别解两个一元一次不等式,过程如下:解①得,32x x ->-22x >-1x >-解①得,16x x +>51x <,15x < ①115x -<< 【点睛】本题考查0指数幂,算术平方根,负指数幂,解不等式组.(1)中熟记0指数幂,算术平方根,负指数幂的计算公式并能正确运用是解题的关键;(2)在解不等式时,需注意去分母和系数化为1时,要用到等式的性质2或者性质3,应注意不等号的方向改不改变.46.(1)解得x=2,检验,无解;(2)33x ≤<-【详解】试题分析:(1) 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2) 先求出①的解集,再求出①的解集,求两者的公共部分.试题解析: (1)31 122x x x-+=-- 去分母得:3−x −1=x −2,移项合并得:2-2x =-2,解得:x =2,经检验x =2是分式方程的增根,原方程无解. (2)426, 2x x 1136x x ①②≥-⎧⎪⎨++<+⎪⎩由①得,2x ≥-6所以x ⩾−3由①得,4+2x <x +1+6。
中考数学八年级上册专题训练50题(含答案)
中考数学八年级上册专题训练50题含答案一、单选题1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.下面列图案中既是轴对称图形......的是().....又是中心对称图形A.B.C.D.3.下列计算错误的是()=-A.22=B3=C.3D.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列说法正确的是()A.平行四边形的对角线互相平分且相等B.矩形的对角线互相垂直且平分C.菱形的对角线互相垂直且相等D.正方形的对角线互相垂直平分且相等6.下列四个说法:①连接两点之间的线段叫做这两点间的距离;①经过直线外一点,有且只有一条直线与这条直线平行;①a2的算术平方根是a;4.其中假命题的个数有()A.1个B.2个C.3个D.4个7.0.64的算术平方根是( ) A .0.8B .-0.8C .0.8±D .0.48.数学课上,老师出示了如下图的一道证明题.其中①①①分别填写( )A .中线、DE AC ∥、一组对边平行且相等B .中位线、DE AC ∥、两组对边分别相等 C .中线、CF AD =、两组对边分别相等 D .中位线、DE AC ∥、一组对边平行且相等9()2510b c +++=,则a b c +-的值是( ) A .4B .-2C .-4D .210.若函数y kx k =+(k 为常数,且0k ≠)中,y 随x 的增大而增大,则其图像可能是( )A .B .C .D .11.已知111222(,),(,)P x y P x y 是函数12y x =-图象上的两点,下列判断正确的是( ) A .12y y >B .12y y ≤C .当12x x <时,12y y <D .当12x x <时, 12y y >12.如图,在①ABCD 中,若①A =2①B ,则①D 的度数为( )A .30°B .45°C .70°D .60°13.已知a =b =2a 2+b 2的值为( ) A .14B .16C .18D .2014. 如下图,在等腰直角∆ABC 中,①B=90°,将∆ABC 绕顶点A 逆时针方向旋转60°后得到∆AB’C’,则①BAC’等于( )A .60°B .105°C .120°D .135°15.如图,等边AOB 中,点B 在x 轴正半轴上,点A 坐标为(,将AOB 绕点O 逆时针旋转30︒,此时点A 对应点'A 的坐标是( )A .(B .()2,0C .()0,2D .)16.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;①EOB CMB △≌△;①四边形EBFD 是菱形;①MB =( )A .1个B .2个C .3个D .4个17.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至'''OA B C 的位置,若OB =①C =120°,则点B'的坐标为( )A .(3B .(3,C .D .18.在△ABC 中,AC =AB ,D ,E ,F 分别是AC ,BC ,AB 的中点,则下列结论中一定正确的是( )A .四边形DEBF 是矩形B .四边形DCEF 是正方形C .四边形ADEF 是菱形D .△DEF 是等边三角形19.小军用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数图象l 1、l 2,如图所示,则这个方程组是( )A .22112y x y x =-+⎧⎪⎨=-⎪⎩B .22y x y x =-+⎧⎨=-⎩C .38132y x y x =-⎧⎪⎨=-⎪⎩D .22112y x y x =-+⎧⎪⎨=--⎪⎩20.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)2=;(4(5)当0a ≠有( ) A .1个B .2个C .3个D .4个二、填空题21.按要求各写出一个数:负整数______;无理数______.22.如图,在△ABD 中,①D =90°,CD =6,AD =8,①ACD =2①B ,BD 的长为_____.23. 24.立方根和算术平方根都等于它本身的数是___________. 25.计算:0(-2)2=____.26.如图,线段AB 和CD 关于点O 中心对称,若40B ∠=︒,则D ∠的度数为________.27的结果为_____.28.已知二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足3x y +≤,则a 的取值范围为______.29a 的取值范围是______. 30.对于任意有理数a ,定义运算①:当2a ≥-时,①a a =-;当2a <-时,①a a =.则()425+-=⎡⎤⎣⎦▽▽____.31.在平面直角坐标系中,将二次函数y =(x ﹣2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为_____.32.在平面直角坐标系中,若点P(x ﹣2,x+1)关于原点的对称点在第四象限,则x 的取值范围是_____.33.如图,正六边形ABCDEF 放置在直角坐标系内,A (﹣2,0),则点D 的坐标是 ____________.34.已知正方形ABCD 中,点E 在DC 边上,4DE =,2EC =,如图,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点间的距离为___.35.如图,DE 为①ABC 的中位线,点F 在DE 上,且①AFB =90°,若AB =8,BC =10,则EF =______.36.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.37.如图,在ABC 中,BD 平分ABC ∠,CD BD ⊥,垂足为D ,E 为AC 的中点.若10AB =,6BC =,则DE 的长为_______________________.38.如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,OCB 30∠=︒,如果OE =2,那么对角线BD 的长为______.39.如图,ABC ∆和ADE ∆都是等边三角形,120CAD ∠<︒,点,M N 分别是AE ,CD 的中点,连结MN ,BD ,当30ADB ∠=︒,2AD =,5BD =时,MN 的长度为__________.40.四边形不具有稳定性.如图,面积为25的正方形ABCD 变成面积为20的菱形BCEF 后,则AF 的长为 __________.三、解答题41.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.42.先化简,再求值:22321()2422a a a a a a a +--+÷+---,其中a 2 43.如图,在矩形纸片ABCD 中,4AB =,8AD =,E 是AD 边上一点,折叠纸片使点B 与点E 重合,其中MN 为折痕,连结BM 、NE .若2DE =,求NC 的长.44.如图所示,在边长为1的小正方形组成的网格中,点A ,B ,C 都是格点,请证明点A ,B ,C 在同一条直线上.45.无刻度直尺作图:图1 图2 (1)直接写出四边形ABCD 的形状.(2)在图1中,先过E 点画一条直线平分四边形ABCD 的面积,再在AB 上画点F ,使得AF =AE .(3)在图2中,先在AD 上画一点G ,使得①DCG =45°;连接AC ,再在AC 上画点H ,使得GH =GA .46.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是AD 的中点,连接OE ,过点D 作DF ①AC 交OE 的延长线于点F ,连接AF .(1)求证:AOE △①DFE △;(2)判定四边形AODF 的形状并说明理由.47.先化简,再求值:1111x x x ---+.其中x 48.某市正在创建“全国文明城市”,光明学校拟举办“创文知识”抢答案,欲购买A B 、两种奖品以抢答者.如果购买A 种25件,B 种20件,共需480元;如果购买A 种15件,B 种25件,共需340元.(1)AB 、两种奖品每件各多少元?(2)现要购买AB 、两种奖品共100件,总费用不超过1120元,那么最多能购买A 种奖品多少件?49.已知y =2xy 的n 次方根(n 为大于1的整数)50.某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费,而乙种方式不需要.两种收费方式 的费用 y (元)与印刷份数 x (份)之间的函数关系如图所示.(1)甲种收费方式的函数关系式是 ,乙种收费方式的函数关系式是 ;(2)该校八年级每次需印制 400 份学案,选择哪种印刷方式印刷比较合算?说明理由.参考答案:1.D【分析】根据菱形.正方形.矩形的判定进行判断即可.【详解】解:A.两条对角线垂直并且相互平分的四边形是菱形,故选项错误;B.对角线垂直且相等的平行四边形是正方形,故选项错误;C.两条对角线相等的平行四边形是矩形,故选项错误;D.根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项正确;故选:D【点睛】此题考查了菱形.正方形.矩形的判定,熟练掌握是关键.2.D【分析】根据轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;B、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;C、是轴对称图形,不是中心对称图形,不符合题意,所以本选项错误;D、既是轴对称图形,也是中心对称图形,符合题意,所以本选项正确.故选D.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,掌握概念是关键. 3.C【分析】根据二次根式的运算法则,逐一判定即可.【详解】A选项,22=,正确;B3=,正确;=,错误;C选项,3D选项,=故选:C.【点睛】此题主要考查二次根式的混合运算,熟练掌握,即可解题.4.B【分析】根据中心对称图形和轴对称图形的特征判断即可.【详解】解:A、不是中心对称图形,也不是轴对称图形,不符合题意;B、是中心对称图形,又是轴对称图形,符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是中心对称图形,不是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形和轴对称图形的识别,解题关键是抓住中心对称图形和轴对称图形的特征.5.D【分析】利用平行四边形、矩形、菱形、正方形的性质逐一判断即可.【详解】解:A、平行四边形的对角线不一定相等,但是互相平分,此选项错误,不符合题意;B、矩形的对角线相等,且互相平分,此选项错误,不符合题意;C、菱形的对角线互相垂直,且互相平分,但是不一定相等,此选项错误,不符合题意;D、正方形的对角线相等,且互相平分、垂直,符合题意.故选:D.【点睛】本题考查了平行四边形、矩形、菱形、正方形对角线的性质,解题的关键是熟练掌握平行四边形、矩形、菱形、正方形的性质及他们之间的联系和区别.6.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;①经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;①a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.7.A【分析】如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.【详解】解:①20.80.64=,①0.64的算术平方根是0.8,故选A.【点睛】本题主要考查了算术平方根,解题的关键在于能够熟练掌握算术平方根的定义.8.D【分析】证明DE是①ABC的中位线,得DE①AC,DE=12AC,再证AC=DF,然后由一组对边平行且相等的四边形是平行四边形,即可得出结论.【详解】解:①点D,E分别是AB,BC的中点.①DE是①ABC的中位线,①DE①AC,DE=12AC,又①EF=DE,①AC=DF,①四边形ADFC是平行四边形,故①代表:中位线,①代表:DE①AC,①代表:一组对边平行且相等,故选:D.【点睛】本题考查了平行四边形的判定、三角形中位线定理等知识;熟练掌握平行四边形的判定,证出DE①AC,DE=12AC是解题的关键.9.B【分析】先根据算术平方根的非负性、二次方的非负性和绝对值的非负性求出a、b、c的值,然后再代入代数式求值即可.【详解】解:()2510 b c+++=,①205010abc-=⎧⎪+=⎨⎪+=⎩,解得:251a b c =⎧⎪=-⎨⎪=-⎩,①()()=251=251=2a b c +-+----+-,故B 正确.故选:B .【点睛】本题主要考查了求代数式的值,算术平方根的非负性,二次方的非负性和绝对值的非负性,根据题意求出a 、b 、c 的值,是解题的关键.10.A【分析】先根据题意判断出函数的增减性,再根据一次函数的图象与系数的关系即可得出结论.【详解】解:①函数y kx k =+(k 为常数,且0k ≠)中,y 随x 的增大而增大, ①0k >,①函数图象经过一、二、三象限.故选:A .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键. 11.D【分析】根据正比例函数图象的性质可知.【详解】解:根据k <0,得y 随x 的增大而减小.①当x 1<x 2时,y 1>y 2,①当x 1>x 2时,y 1<y 2.故选:D .【点睛】本题考查了正比例函数图象的性质,正比例函数图象是经过原点的一条直线.①当k >0时,图象经过一、三象限,y 随x 的增大而增大;①当k <0时,图象经过二、四象限,y 随x 的增大而减小.12.D【分析】由平行四边形的性质得出①A +①B =180°,再由已知条件①A =2①B ,即可得出①B 的度数,再根据平行四边形的对角相等即可求出①D 的度数.【详解】解:①四边形ABCD 是平行四边形,①AD ①BC ,①B =①D ,①①A +①B =180°,①①A =2①B ,①2①B +①B =180°,解得:①B =60°;①①D =60°,故选:D .【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.13.C【分析】根据二次根式的运算及完全平方公式可进行求解.【详解】解:①a =b =2①((2222229918a b +=+=+-=;故选C .【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键. 14.B【详解】试题分析:由①ABC 绕顶点A 逆时针方向旋转60°后得到①AB′C′,根据旋转的性质得到①CAC′=60°,而等腰直角①ABC 中,①B=90°,得①BAC=45°,所以①BAC′=①BAC+①CAC′.解:①①ABC 绕顶点A 逆时针方向旋转60°后得到①AB′C′,①①CAC′=60°,又①等腰直角①ABC 中,①B=90°,①①BAC=45°,①①BAC′=①BAC+①CAC′=45°+60°=105°.故答案为B .考点:旋转的性质.15.C【分析】根据等边三角形可知①AOB=60°,OA 与y 轴所成锐角为30°,可知'A 落在y 轴上,作AC①OB ,垂足为C ,求出OA 长即可.【详解】解:①等边AOB ,①①AOB=60°,①OA 与y 轴所成锐角为30°,将AOB 绕点O 逆时针旋转30︒,可知'A 落在y 轴上,作AC①OB ,垂足为C ,2OA =,①()'0,2A .故选:C【点睛】本题考查了等边三角形的性质,旋转的性质,勾股定理,解题关键是明确旋转后的A′所在位置,根据勾股定理求出OA 长.16.B【分析】连接BD ,先证明①BOC 是等边三角形,得出BO=BC ,又FO=FC ,从而可得出FB①OC ,故①正确;因为①EOB①①FOB①①FCB ,故①EOB 不会全等于①CBM ,故①错误;再证明四边形EBFD 是平行四边形,由OB①EF 推出四边形EBFD 是菱形,故①正确;先在Rt①BCF 中,可求出BC 的长,再在Rt①BCM 中求出BM 的长,从而可知①错误,最后可得到答案.【详解】解:连接BD ,①四边形ABCD 是矩形,①AC=BD ,AC 、BD 互相平分,①O 为AC 中点,①BD 也过O 点,①OB=OC ,①①COB=60°,①①OBC 是等边三角形,①OB=BC ,又FO=FC ,BF=BF ,①①OBF①①CBF (SSS ),①①OBF 与①CBF 关于直线BF 对称,①FB①OC ,①①正确;①①OBC=60°,①①ABO=30°,①①OBF①①CBF ,①①OBM=①CBM=30°,①①ABO=①OBF ,①AB①CD ,①①OCF=①OAE ,①OA=OC ,易证①AOE①①COF ,①OE=OF ,①OB=OD ,①四边形EBFD 是平行四边形.又①EBO=①OBF ,OE=OF ,①OB①EF ,①四边形EBFD 是菱形,①①正确;①由①①知①EOB①①FOB①①FCB ,①①EOB①①CMB 错误,①①错误;①FC=2,①OBC=60°,①OBF=①CBF ,①①CBF=30°,①BF=2CF=4,①CM=12①BM=3,故①错误. 综上可知其中正确结论的个数是2个.故选:B .【点睛】本题考查矩形的性质、菱形的判定、等边三角形的判定和性质、全等三角形的判定和性质、含30°的直角三角形的性质以及勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.17.D【分析】根据角度的计算可得45AOB '∠=︒,过B '作B D x '⊥轴,勾股定理求解即可【详解】如图,过B '作B D x '⊥轴,将菱形OABC 绕原点O 顺时针旋转75°至'''OA B C 的位置,75BOB '∴∠=︒四边形OABC 是菱形, ①C =120°,120OAB C ∴∠=∠=︒,AO AB =, ∴()1180302AOB OAB ∠=︒-∠=︒ ∴45AOB '∠=︒OB D '∴是等腰直角三角形OB =OB '∴=OD DB ''∴===∴点B'的坐标为 故选D【点睛】本题考查了旋转的性质,菱形的性质,等腰直角三角形的性质,求得45AOB '∠=︒是解题的关键.18.C【分析】根据中位线性质可得四边形ADEF 是平行四边形,又因为AD=AF ,可得四边形ADEF 是菱形.【详解】解:结论:四边形ADEF 是菱形.理由如下:①CD =AD ,CE =EB ,①DE①AB,①BE=EC,BF=FA,①EF①AC,①四边形ADEF是平行四边形,①AC=AB,①AD=AF,①四边形ADEF是菱形.故选:C.【点睛】本题考查了菱形的判定,利用中位线的性质判定四边形是平行四边形是关键.19.D【分析】两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.【详解】解:由图可知:直线l1过(2,﹣2),(0,2),因此直线l1的函数解析式为:y=﹣2x+2;直线l2过(0,﹣1),(2,﹣2),因此直线l2的函数解析式为:y12=-x﹣1;因此所求的二元一次方程组为22112y xy x=-+⎧⎪⎨=--⎪⎩;故选:D.【点睛】本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.20.B【分析】根据平方根与立方根的定义与性质逐个判断即可.【详解】(1)6-是36的一个平方根,则此说法正确;(2)16的平方根是4±,则此说法错误;(3)(2)2=--=,则此说法正确;(44=,4是有理数,则此说法错误;(5)当a<0综上,正确的说法有2个,故选:B.【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.21.-2(答案不唯一)(答案不唯一)【分析】根据负整数及无理数的概念写出相应的答案即可.【详解】解:负整数:-2故答案为:-2(答案不唯一).【点睛】本题考查数的分类,掌握相关概念是解题关键.22.16.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到①B=①CAB,根据等腰三角形的性质求出BC,计算即可.【详解】解:①①D=90°,CD=6,AD=8,①AC=10,①①ACD=2①B,①ACD=①B+①CAB,①①B=①CAB,①BC=AC=10,①BD=BC+CD=16,故答案:16.【点睛】本题考查勾股定理、三角形的外角的性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.23.﹣41.24=-;1.224.0或1【详解】设这个数为x,根据题意可知,3x xx =⎧⎪ , 解得x=1或0,故填:0或1.25.3【分析】根据零次幂和绝对值的计算法则化简,再按照有理数的加减法法则计算即可. 【详解】解:0(-2)2=1+2=3. 故答案为:3.【点睛】此题主要考查了实数的运算,零指数幂与绝对值,熟练掌握运算法则是解答此题的关键.26.40°【分析】根据线段AB 和CD 关于点O 成中心对称,可以证明ABO CDO △≌△,则B D ∠=∠,从而可以得到答案.【详解】解:①线段AB 和CD 关于点O 成中心对称,40B ∠=,①AO =CO ,BO =DO ,又①①AOB =①COD ,①ABO CDO △≌△(SAS ),①B D ∠=∠,①D ∠的度数为40.故答案为:40°.【点睛】本题主要考查了中心对称的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.27.【详解】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式﹣.点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单. 28.8a ≤【分析】两方程相加得444x y a +=+,继而知14a x y +=+,结合3x y +≤得134a +≤,解之即可.【详解】解:两方程相加,得:444x y a +=+,14a x y ∴+=+, 3x y +≤,134a ∴+≤, 解得8a ≤,故答案为:8a ≤.【点睛】本题主要考查二元一次方程组和解一元一次不等式,解题的关键是根据题意列出关于a 的不等式.29.0a ≥且2a ≠【分析】根据二次根式的被开方数不能为负数,分母不能为零,可得答案.【详解】解:由题意,得:a≥0,a ﹣2≠0,解得:a≥0且a≠2,故答案为:a≥0且a≠2.【点睛】本题考查了分式及二次根式有意义的条件,利用二次根式的被开方数不能为负数,分母不能为零得出不等式是解题关键.30.1-.【分析】根据行定义的运算逐级展开计算即可.【详解】解:原式()=43+-⎡⎤⎣⎦▽▽,①32-<-,=∴▽(-3)-3;①原式==▽(4-3)▽1,又12>-,①原式==▽1-1,故答案为:-1.【点睛】本题考查了一种新定义运算;关键在于能通过题干理解新定义运算的法则. 31.y =x 2+2.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:二次函数y =(x ﹣2)2+2的图象向左平移2个单位,得:y =(x ﹣2+2)2+2=x 2+2;故答案为y =x 2+2.【点睛】本题主要考查了函数图象的平移,熟练掌握是解题的关键.32.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.33.(0,【分析】连接AD ,先根据正六边形的性质可得60OAD ∠=︒,从而可得30ADO ∠=︒,再根据含30︒角的直角三角形的性质可得24AD OA ==,然后利用勾股定理可得OD 的长,由此即可得.【详解】解:如图,连接AD ,(2,0)A -,2OA ∴=,六边形ABCDEF 是正六边形,1180(62)6026OAD ︒⨯-∴∠=⨯=︒, ∴在Rt AOD 中,30ADO ∠=︒,24AD OA ∴==,OD ∴==(0,D ∴,故答案为:(0,.【点睛】本题考查了正六边形的性质、勾股定理、含30︒角的直角三角形的性质、二次根式的化简等知识点,熟练掌握正六边形的性质是解题关键.34.2或10.【分析】分两种情况进行讨论,①当线段AE 顺时针旋转时,利用题干条件得到1ADE ABF ∆≅∆,进而得到FC EC =;①当线段AE 逆时针旋转时,利用题干条件得到2ABF ADE ∆≅∆,进而得到22F C F B BC =+.【详解】解:①当线段AD 顺时针旋转得到1F 点,在ADE ∆和1ABF ∆中,190AE AF D ABC AD AB =⎧⎪∠=∠=︒⎨⎪=⎩,1ADE ABF ∴∆≅∆,14DE BF ∴==,12EC FC ∴==; ①逆时针旋转得到2F 点,同理可得2ABF ADE ∆≅∆,24F B DE ∴==,2210F C F B BC =+=,故答案为2或10.【点睛】本题主要考查旋转的性质,正方形的性质,全等三角形的判定与性质,解答本题的关键是注意旋转的方向,此题难度不大.35.1BC=5,再根据直角三角形斜边上的中线等于斜边的【分析】根据三角形的中位线得DE=12AB=4,进而可求解.一半得到DF=12【详解】解:①DE为①ABC的中位线,BC=10,BC=5,①DE=12①①AFB=90°,D为AB的中点,AB=8,AB=4,①DF=12①EF=DE-DF=5-4=1,故答案为:1.【点睛】本题考查三角形的中位线性质、直角三角形斜边的中线性质,熟知直角三角形斜边上的中线等于斜边的一半是解答的关键.36.1,2【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】解:点P的坐标是(1,-2),则关于原对称的点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.37.2【分析】如图,延长CD交AB于F,再证明①BDC①①BDF,根据全等三角形的性质可得BF=BC=6,CD=DF,然后可求出AF,最后根据三角形中位线定理计算即可.【详解】解:如图:延长CD 交AB 于F在①BDC 和①BDF 中90DBC DBF BD BD BDC BDF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩①①BDC ①①BDF (ASA )①BF =BC =6,CD =DF①A F =AB -BF =4.①CD =DF ,CE =EA①DE =12AF =2.故填2.【点睛】本题主要考查了三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边且等于第三边的一半成为解答本题的关键.38.8【分析】由30°角直角三角形的性质求得24OC OE ==,然后根据矩形的两条对角线相等且平分来求BD 的长度. 【详解】解:在矩形ABCD 中,对角线AC ,BD 的交点为O ,OC OA ∴=,AC BD =,90ABC ∠=︒.又①点E 为BC 边的中点,OE BC ∴⊥,30OCB ∠=︒,2OE =,24OC OE ∴==,28AC OC ∴==,8BD ∴=.故答案为:8.【点睛】本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出OD的长是解此题的关键.题型较好,难度适中.39【分析】连接EC,EB,设F为ED中点,连接MF,NF,根据中位线定理,求出MF和NF,再证明①BAD①①CAE,得到BD=EC=5,①AEC=①ADB,从而推出EC①AD,可推出MF①NF,再用勾股定理算出MN即可.【详解】解:连接EC,EB,设F为ED中点,连接MF,NF,可得:MF①AD,NF①EC,且MF=12AD=1,NF=12EC,①①ABC和①ADE为等边三角形,①AE=AD,AB=AC,①EAD=①BAC=60°,①①BAD=①EAC,①①BAD①①CAE(SAS),①BD=EC=5,①AEC=①ADB=30°,①EC平分①AED,①EC①AD,①MF①AD,FN①EC,①MF①NF,在①MNF中,=.【点睛】本题考查了中位线定理,全等三角形的判定和性质,等边三角形的性质,勾股定理,有一定难度,解题的难点在于构造出MN 为斜边的直角三角形FMN.40【分析】根据题意延长EF ,与AB 交于G ,作FH BC ⊥于H ,得出四边形GBHF 为矩形,进而根据勾股定理求解即可.【详解】解:延长EF ,与AB 交于G ,作FH BC ⊥于H .由面积为25的正方形ABCD 可得5AB BC ==,面积为20的菱形BCEF 可得·20BC FH =, ①2045FH ==,①541,3AG GF =-==,①AF.【点睛】本题考查四边形综合问题,熟练掌握正方形、矩形和菱形的性质以及运用勾股定理求解是解题的关键.41.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,①281x =,取正值9x =,可得218x =,①答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.42.12a a -+,1【分析】根据分式的混合运算顺序依次计算,代入求值即可【详解】解:原式=2(2)(23)2(2)2·41a a a a a a a --+++--- =2212·(2)(2)1a a a a a a -+-+-- =2(1)2·(2)(2)1a a a a a --+-- =12a a -+当a 2=时, 原式1==【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键. 43.113NC =. 【分析】利用对称的性质得出BM ME BN NE BMN EMN ==∠=∠,,,进而得出BM ME BN NE ===,证明四边形BMEN 是菱形,再利用菱形的性质结合勾股定理得出答案.【详解】解:①B 、E 两点关于直线MN 对称,①BM ME BN NE BMN EMN ==∠=∠,,,在矩形ABCD 中,AD BC ∥,①EMN MNB ∠=∠,①BMN MNB ∠=∠,①BM BN =,①BM ME BN NE ===,①四边形BMEN 是菱形;设菱形BMEN 的边长为x ,①826AM AD DE ME x x =--=--=-,在Rt ABM 中,222AB AM BM +=,①()22246x x +-=,①解得:133x =. ①1311833NC BC BN =-=-=. 【点睛】此题主要考查了菱形的判定与性质以及勾股定理,正确应用轴对称的性质是解题关键.44.见解析【分析】以C 为原点,构建如图,平面直角坐标系.求出直线AC 的解析式,证明点B 在直线AC 上即可.【详解】解:以C 为原点,构建如图,平面直角坐标系.则有C (0,0),A (-2,4),B (-1,2),设直线AC 的解析式为y =kx ,把A (-2,4)代入得,4=-2k ,解得,k =-2,直线AC 的解析式为y =-2x ,①x =-1时,y =2,①点B在直线AC上,①A,B,C三点共线.【点睛】本题考查了一次函数的应用,正确地求出直线AC的解析式是解题的关键,45.(1)四边形ABCD是菱形,理由见解析(2)见解析(3)见解析【分析】(1)只需要证明AB=CD=AD=BC即可得到结论;(2)如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH 并延长交AB于F,则直线EG,点F即为所求;(3)如图所示,取格点T,连接CT交AD于G,取格点M、N,连接MN交BC于P,连接GP交AC于H,则点G、H即为所求;(1)解:四边形ABCD是菱形,理由如下:由题意得55,,AB CD AD BC=====①AB=CD=AD=BC,①四边形ABCD是菱形;(2)解:如图连接AC,BD交于点T,作直线ET交BC于G,连接AG交BD于H,连接CH并延长交AB于F,则直线EG,点F即为所求;如图所示建立如下平面直角坐标系,①点A 的坐标为(0,4),点D 的坐标为(-3,0),点C 的坐标为(2,0),点B 的坐标为(5,4),①直线AD 的解析式为443y x =+,直线BD 的解析式为1322y x =+,点T 的坐标为(1,2), ①点E 的坐标为(-2,43) , ①直线ET 的解析式为21699y x =+, 同理可得直线BC 的解析式为4833y x =-, 联立216994833y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩, 解得483x y =⎧⎪⎨=⎪⎩, ①点G 的坐标为(4,83), ①直线AG 的解析式为143y x =-+, 联立1431322y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩, 解得33x y =⎧⎨=⎩, ①点H 的坐标为(3,3),①直线CH 的解析式为36y k =-,当y =4时,103x =, ①点F 的坐标为(103,4), ①103AF =, 又①103AE ==, ①AF =AE ;。
中考数学《方程与不等式》专题知识训练50题(含答案)
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列是二元一次方程的是( )A .B .C .D .2.不等式510x -≤的解集为( ) A .2x ≤B .2x ≤-C .2x ≥D .x≥-23.定义a b ab a b *=++,若535x *=,则x 的值是( ) A .4B .5C .6D .74.已知m n <,则下列不等式一定成立的是( ) A .20202020m n ->- B .20202020m n< C .20202020m n +>+D .20202020m n >5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x-4=0B .x 2-5=0C .5x 2-2x+1=0D .5x 2-4x+6=06.用配方法解下列方程时,配方正确的是( ) A .方程x 2﹣6x ﹣5=0,可化为(x ﹣3)2=4 B .方程y 2﹣2y ﹣2015=0,可化为(y ﹣1)2=2015 C .方程a 2+8a+9=0,可化为(a+4)2=25 D .方程2x 2﹣6x ﹣7=0,可化为2323()24x -=7.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,则k 的值为( )A .1B .2C .1或2D .-1或-28.由a ﹥b 得到an 2﹥bn 2成立的条件是( ) A .n ﹥0B .n <0C .n ≠0D .n 是任意实数9.关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根,则m 的取值范围是( )A .m <34B .m >34且m≠2C .m≤34D .m≥34且m≠210.“a 是正数”用不等式表示为( ) A .a ≤0B .a ≥0C .a <0D .a >011.一元一次方程2152236x x -+-=,去分母后变形正确的是( ) A .42522x x --+= B .42522x x ---= C .425212x x --+= D .425212x x ---=12.不等式组30{30x x +>-≥的解集是( ) A .3x >-B .3x ≥C .33x -<≤D .3x ≤13.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .714.下列方程中,是一元一次方程的是( ) A .3x+2y=0B .4x=1C .21x - =1 D .3x ﹣5=3x+215.取一张长与宽之比为5:2的长方形纸板,剪去四个边长为5cm 的小正方形(如图).并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为3200cm (纸板的厚度略去不计).这张长方形纸板的长为多少厘米?( )A .24cmB .30cmC .32cmD .36cm16.一元二次方程2920x -=的一个根可能在( ) A .4,5之间B .6,7之间C .7,8之间D .9,10之间17.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .﹣6<t <112-B .1162t -≤<-C .1162t -<≤-D .1162t -≤<-18.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500 B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=250019.若关于x 的一元二次方程ax 2+bx +5=0(a≠0)的一个解是x =1,则2014-a -b 的值是( ) A .2019B .2009C .2014D .201620.下列判断正确的是( ) A .若a b =,则33a b -=- B .若22 a b =,则a b = C .若b da c=,则b d = D .若a b =,则ac bc =二、填空题21.如果:□+□+△=14,□+□+△+△+△=30,则□=______.22.已知二元一次方程24x y -=,用含x 的代数式表示y 为_______.23.若23x y =⎧⎨=⎩是关于,x y 的二元一次方程1ax by -=的解,则463a b -+=_________.24.上海玩具厂2008年1月份生产玩具3000个,后来生产效率逐月提高,3月份生产玩具3630个,设平均每月增长率为x ,则可列方程________. 25.方程233x k x x=---无解,那么k 的值为________. 26.一元二次方程x(x-1)=2(1-x)的一般形式是________.27.已知4311237a b a b +=⎧⎨+=⎩,则a b +=__________.28.某单位在两个月内将开支从25万元降到16万元,如果每月降低开支的百分率均为(01)<<x x ,那么这个x 的值是________.29.一个不透明的袋子中装有6个红球和若干个黑球,这些球除了颜色外都相同,从袋子中随机摸出一个球是红球的概率为25,则袋子中有________个黑球.30.等腰三角形的一边长为4,另两边的长是关于x 的方程212=0x x k -+的两个实数根,则该等腰三角形的周长是______.31.若2|8|()0x y x y +++-=,则2x y +=_____________.32.某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是__________元.33.某公司2010年12月份的利润为160万元,要使2012年12月份的利润达到250万元,则平均每年增长的百分率是_________.34.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______35.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.36.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为________.37.某气象台发现:在一段时间里有10天下了雨,且这10天中下雨有如下规律:如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间里有9天晚上是晴天,7天早晨是晴天,则这段时间有______天.38.若(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,则a 的值是______.39.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水流速度是3千米/小时,则轮船在静水中的速度是______________千米/小时.三、解答题40.(1)解方程组:4103235x y x y +=⎧⎨-=⎩;(2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩. 41.解方程:5278x x +=+. 42.解方程:43.解不等式(组):(1)解不等式:()5522x x -<+.(2)解不等式组241342163x x x x -<-⎧⎪⎨--≤⎪⎩①②,并在数轴上表示该不等式组的解集.44.某超市采购某种商品1000件,将这种商品按采购价提高30%作为标价出售,当售完700件后,刚好是“双11”,商家决定,把余下的300件按标价出售的8.8折出售,最后这批商品共盈利12660元.问这种商品每件采购价多少元?45.计算:(1)202211(1)|4|()2--+-+ (2)解方程:2420x x --=. 46.解下列不等式组和不等式组:(1)34225x y x y +=⎧⎨-=⎩ (2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩47.(1(3223⎛⎫+ ⎪⎝⎭;(2)解方程组:32(21)7214322x y y x x -+=-⎧⎪⎨+++=⎪⎩.48.解下列不等式,并将解集在数轴上表示出来. (1)()()52121x x +>-- (2)3136x x ->- 49.(1)解不等式组()32421132x x x x ⎧--≥⎪⎨-->⎪⎩并把它的解集在数轴上表示出来.(2)解方程31133x x x=--- .参考答案:1.B【详解】试题分析:含有两个未知数,并且所含未知项都为1次方的整式方程就叫做二元一次方程.A 、是一元一次方程,C 、是分式方程,D 、是二元二次方程,故错误;B 、符合二元一次方程的定义,本选项正确. 考点:二元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握二元一次方程的定义,即可完成. 2.D【分析】根据一元一次不等式的解法,即可得到答案. 【详解】解:∵5x 10-≤, ∵x 2≥- 故选择:D.【点睛】本题考查了一元一次不等式的解法,解题的关键是掌握一元一次不等式的解法. 3.B【分析】先根据题意理解“*”所表示的运算法则,然后根据此运算法则将535x *=化为5535x x ++=,解出即可.【详解】由题意得:535x *=,可化为:5535x x ++=, 移项合并得:5355x x +=-, 系数化为1得:5x =. 故选:B .【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 4.B【分析】根据不等式的性质的内容逐个判断即可. 【详解】解:A .∵m <n ,∵m-2020<n-2020,故本选项不符合题意; B .∵m <n , ∵20202020m n<,故本选项符合题意; C .∵m <n ,∵m+2020<n+2020,故本选项不符合题意; D .∵m <n ,∵2020m <2020n ,故本题选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 5.A【详解】试题分析:((+(2x-1)2=0即x 2-2+4x 2-4x+1=0,移项合并同类项可得5x 2-4x-4=0,故答案选A . 考点:一元二次方程的一般形式. 6.D【详解】试题分析:选项A ,由原方程得到:方程x 2﹣6x+32=5+32,可化为(x ﹣3)2=14,故本选项错误;选项B ,由原方程得到:方程y 2﹣2y+12=2015+12,可化为(y ﹣1)2=2016,故本选项错误;选项C ,由原方程得到:方程a 2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;选项D ,由原方程得到:方程x 2﹣3x+(32)2=72+(32)2,可化为2323()24x -=,故本选项正确;故选D .考点:解一元二次方程-配方法. 7.B【分析】根据方程有两个相等的根,可知它是一元二次方程且判别式的值为零,进而即可求解.【详解】∵关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,∵k ﹣1≠0且[]21(1)4(1)04k k ----⨯=, ∵k=2. 故选B .【点睛】本题主要考查一元二次方程的判别式,熟练掌握一元二次方程的判别式与根的关系,是解题的关键. 8.C【分析】根据不等式的基本性质:不等式两边乘以同一个正数,不等号的方向不变可知,由a >b 得到an 2>bn 2的条件是n 2>0,由此得出n 的取值范围.【详解】解:∵由a >b 可得到an 2>bn 2, ∵n 2>0, 又∵n 2≥0, ∵n ≠0 故选:C .【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 9.B【详解】∵关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根, ∵∵=b 2﹣4ac >0,即(2m+1)2﹣4×(m ﹣2)2×1>0, 解这个不等式得,m >34, 又∵二次项系数是(m ﹣2)2, ∵m≠2,故M 得取值范围是m >34且m≠2. 故选B . 10.D【分析】正数即“>0”可得答案.【详解】解:“a 是正数”用不等式表示为a >0, 故选:D .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 11.D【分析】由去分母的运算法则进行化简,即可得到答案. 【详解】解:∵2152236x x -+-=, 去分母化简,得:425212x x ---=; 故选:D .【点睛】本题考查了解一元一次方程的方法,解题的关键是掌握解一元一次方程的方法.12.B【详解】试题分析:由∵得:x >﹣3, 由∵得:x≥3,∵不等式组的解集是x≥3. 故选B .考点:解一元一次不等式组. 13.B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式∵得:53x -解不等式∵得:x <5, ∵不等式组的解集为553x -< ∵不等式组的非负整数解为0,1,2,3,4,共5个, 故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 14.B【详解】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).根据一元一次方程的定义可得,只有选项B 符合要求,故选B. 15.B【分析】设这张长方形纸板的长为5x 厘米,宽为2x 厘米,根据包装盒的容积为3200cm ,得5(510)(210)200x x --=,解方程即可.【详解】设这张长方形纸板的长为5x 厘米,宽为2x 厘米, 根据题意,得5(510)(210)200x x --=, 解方程,得11x =(不合题意,舍去),26x =, ∵这张长方形纸板的长为30厘米. 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意正确表示出长方体的底面积是解题的关键. 16.D【分析】用直接开平方法求解.然后估计方程根的取值范围.【详解】解:移项得x 2=92,开方得x 1x 2根的取值范围进行判断:∵9<10, 故选D .【点睛】本题不仅考查了一元二次方程的解法,还考查了对无理数的估算能力,对同学们有较高要求. 17.C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题. 【详解】∵2553x x +->-, ∵20x <; ∵32x t x +->, ∵32x t >-;∵不等式组的解集是:2032t x <<-. ∵不等式组恰有5个整数解,∵这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可. 18.B【详解】由题意可得, 200(1+x)+200(1+x) ²=2500, 故选B. 19.A【分析】已知x=1是一元二次方程的一个实数根,可将其代入该方程中,即可求出a+b 的值.【详解】∵一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,∵a+b+5=0,即a+b=-5,∵2014-a-b=2014-(a+b )=2014-(-5)=2019,故选A .【点睛】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.20.D【分析】根据等式的性质解答判断即可.【详解】解:A.若a =b ,两边同时减3,得a −3=b −3,故不正确,此选项不合题意;B.由22 a b =,得a b =或a b =-,故不正确,此选项不合题意;C.若b d a c=,则bc =ad ,故不正确,此选项不合题意; D.若a =b ,则ac =bc ,故正确,此选项符合题意;故选:D .【点睛】此题考查的是等式的性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.21.3【分析】本题可以将抽象的图形用未知数x 与y 来表示,那么问题就转化成求两个二元一次方程的解集.【详解】设□为x ,△为y则□+□+△=2x+y=14,□+□+△+△+△=2x+3y =30即2142330x y x y +=⎧⎨+=⎩①② 用∵-∵得:216y =,8y =把8y =代入∵得:2814x +=,3x =,即□=3故答案为3【点睛】本题解题关键,把题干的两个图形看成两个未知数,用所学的二元一次方程组的求解方式求解.22.122y x =- 【分析】先移项,再把y 的系数化为1即可.【详解】解:移项得,24y x ,将y 的系数化为1得,122y x =-. 故答案为 122y x =-. 【点睛】本题主要考查二元一次方程的变形,熟知等式的基本性质是解答此题的关键. 23.5【分析】把23x y =⎧⎨=⎩代入1ax by -=中得出231a b -=,将231a b -=代入得出46a b -的值求解即可.【详解】解:将23x y =⎧⎨=⎩代入1ax by -=得:231a b -=, ∵()462232a b a b -=-=,故4635a b -+=.故答案为:5.【点睛】本题考查解二元一次方程组的解,掌握把方程组的解代入二元一次方程是解题关键.24.23000(1)3630x +=【分析】设平均每月增长率为x ,则二月份生产玩具的数量为3000(1+x )个,三月份生产玩具的数量为3000(1+x )2个,根据题意找出等量关系:三月份生产玩具的数量是3630个,据此等量关系列出方程即可.【详解】设平均每月增长率为x ,依题意得:该方程为:3000(1+x ) 2 =3630.故答案为:23000(1)x + =3630.【点睛】本题主要考查了由实际问题抽象出一元二次方程,读懂题意,找出合适的等量关系列出方程是解题关键.25.3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值. 【详解】解:233x k x x=---, 2(3)x x k =-+,26x x k =-+,6x k =-,方程无解,3x ∴=,63k ∴-=,3k ∴=,故答案为:3.【点睛】本题考查了解分式方程,掌握分式方程的计算是解题的关键.26.x 2+x-2=0【分析】对方程进行去括号、移项、合并同类项,将方程化为20ax bx c ++=的形式即可.【详解】解:(1)2(1)x x x -=-2220x x x --+=220x x +-=故答案为220x x +-=【点睛】本题考查一元二次方程的一般形式,难度较低,熟练掌握去括号、移项、合并同类项以及一元二次方程的一般形式20ax bx c ++=是解题关键.27.3【分析】利用两个方程相加求解即可.【详解】解:4311237a b a b +=⎧⎨+=⎩①②, ∵+∵,得6a +6b =18,∵6(a +b )=18,a +b =3,故答案为:3.【点睛】本题主要考查了解二元一次方程组,解二元一次方程组的基本解法有加减消元法和代入消元法.28.20%【分析】利用降低后的开支=原开支×(1-降低率)2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:依题意得:25(1-x )2=16,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.29.9【分析】设有x 个黑球,根据概率=符合条件的情况数目与全部情况的总数之比列出方程求解即可.【详解】解:设有x 个黑球,由题意,得6265x =+ 解得x =9,经检验,x =9是原方程的解.故答案为9.【点睛】本题考查了概率的求法及分式方程的应用.如果一个事件有n 种情况,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 30.16【分析】分为两种情况:∵腰长为4,∵底边为4,分别求出即可.【详解】解:分为两种情况:情况一:当腰为4时,则另一腰4是方程212=0x x k -+的一个解,代入4到方程中,求得=32k ,此时方程的两个解为4和8,对应的三边长为4、4、8,不能构成三角形,故舍去;情况二:当底边为4时,此时方程212=0x x k -+有两个相等的实数根,∵∵=12²-4k =0,解得k =36,此时方程的两个解为6和6,对应的三边长为6、6、4,能构成三角形,此时三角形周长为16,故答案为:16.【点睛】本题考查了一元二次方程的解及解法,等腰三角形的性质等知识点,注意要分类讨论,不要漏解.31.12-【分析】根据2|8|()0x y x y +++-=可得x 与y 的值,然后计算2x y +即可解答.【详解】解:∵2|8|()0x y x y +++-=,∵800x y x y ++=⎧⎨-=⎩, 解得:44x y =-⎧⎨=-⎩, ∵()242412x y +=-+⨯-=-;故答案为:12-.【点睛】本题考查了非负数的性质,熟练掌握是解题的关键.32.500【详解】设商品的标价为x 元,则0.8x=320(1+25%),解得:x=500.故答案:500.33.25%【详解】试题分析:设每年的增长率是X ,则有()()22225516012501164x x ⎛⎫+=⇒+== ⎪⎝⎭ 1 1.25x +=,25%x =考点:二次函数的综合题点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.34.64【详解】∵x 2+y 2+10=2x +6y ,∵x 2+y 2+10-2x -6y =0,∵(x -1)2+(y -3)2=0,∵(x -1)2≥0,(y -3)2≥0,∵x -1=0,y -3=0,解得:x =1,y =3;∵x 21+21y =121+21×3=63+1=64,故答案为:64.35.﹣1≤x <3【详解】试题分析:分别解不等式,找出解集的公共部分即可. 试题解析:5323142x x x ①②+≥⎧⎪⎨-<⎪⎩, 由∵解得1x ≥-;由∵解得3x ;< 所以,原不等式组的解集为1 3.x把不等式组的解集在数轴上表示为:.36.()21090151800x x +-≥【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090151800x x +-≥故答案为:()21090151800x x +-≥.【点睛】本题考查的知识点是一元一次不等式的实际应用,找出题目中的等量关系是解此题的关键.37.13【详解】分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,∵总天数-早晨下雨=早晨晴天;∵总天数-晚上下雨=晚上晴天;列方程组解出即可.详解:设有x 天早晨下雨,这一段时间有y 天,根据题意得:7(10)9y x y x -=⎧⎨--=⎩①②, ∵+∵得:2y =26,y =13.所以一共有13天;故答案为13.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系列出方程组. 38.6【分析】依据二元一次方程的定义可得到a+6≠0,|a|-5=1,从而可确定出a 的值.【详解】解:∵(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,∵a+6≠0,|a|-5=1.解得:a=6.故答案为6.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.39.20【分析】关键描述语为:“顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等”;本题的等量关系为:逆水航行46千米用的时间+顺水航行34千米所用的时间=静水航行时80千米所用的时间.【详解】设船在静水中的速度是x 千米/时. 则:3446x 3x 3+-+ =80x . 解得:x=20.经检验,x=20是原方程的解.【点睛】本题考查的是分式方程的应用,正确列出方程是解题的关键.40.(1)510x y =⎧⎨=-⎩;(2)20x -<<. 【分析】(1)利用加减消元法解方程组;(2)先分别解两个不等式,然后根据大于小的小于大的取中间确定不等式组的解集.【详解】(1)解:∵2⨯得:8220x y +=∵,∵+∵得: 1155x =,解得:x=5,把x=5代入∵得:y=-10 ,所以,方程组的解为:510x y =⎧⎨=-⎩ ; (2) 解:由∵得: 2x >-,由∵得: 0x <,所以,不等式组的解为:20x -<<.故答案为(1)5{10x y ==- ;(2)20x -<< .【点睛】本题考查解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.同时考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.3x =-【分析】先移项,再合并同类项,最后把系数化为“1”,即可得到答案.【详解】解:5278x x +=+,移项得:5782x x -=-,整理得:26x -=,解得:3x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤与方法”是解本题的关键.42.原方程无解【详解】试题分析:先去分母,变为整式方程,解后进行检验即可试题解析:去分母:2(3x-1)+3x=1x=检验:当x=时,9x-3=0所以:x=是原方程的增根,原方程无解考点:解分式方程43.(1)3x <(2)23x -≤<,见解析【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去括号得:5x -5<4+2x ,移项、合并得:3x <9,系数化为1得:x <3;(2)解:解∵得:x <3,解∵得:x ≥-2,则不等式组的解集为-2≤x <3,将不等式组的解集表示在数轴上如下:.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.44.这种商品每件采购价是50元.【分析】根据“利润=(售价-进价)×销售量”,将打折前、打折后两种情况的盈利相加等于总盈利,列方程求解即可.【详解】解:设此商品单价是x 元,则有:()()8.8130%700130%3001266010x x x x ⎡⎤⎡⎤+-⨯++-⨯=⎣⎦⎢⎥⎣⎦化简,整理后得:2100.14430012660x x +⨯=解得:50x =答:这种商品每件采购价是50元.【点睛】本题考查了一元一次方程解决实际问题,解题关键是根据题意找到等量关系,并正确列出方程.45.(1)4;(2)1222x x ==【分析】(1)按照乘方运算,绝对值,负整数指数幂,立方根分别计算即可; (2)用配方法解一元二次方程即可.(1)202211(1)|4|()2--+-+ 1423=++-4=;(2)2420x x --=,2446x x ∴-+=,2(2)6x ∴-=,2x ∴-=,∴1222x x ==【点睛】本题考查了实数的运算及一元二次方程的解法,解决本题的关键是熟练掌握用配方法解一元二次方程.46.(1)21x y =⎧⎨=-⎩;(2)7<-x 【分析】(1)根据代入消元法解二元一次方程组即可;(2)先分别解每一个不等式,再求出公共部分即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由∵得:25y x =-∵将∵代入∵得:()34252x x +-=,解得:2x =将2x =代入∵得:1y =-∵21x y =⎧⎨=-⎩(2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩①② 由∵得:1x ≤由∵得:()()22151x x ->+,解得:7<-x∵不等式组的解集为:7<-x【点睛】本题考查解二元一次方程组以及解一元一次不等式组,掌握代入消元法解二元一次方程组以及不等式组的求解方法是解题关键.47.(1)7;(2)12x y =⎧⎨=⎩. 【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1(03223⎛⎫--+ ⎪⎝⎭(81=-+81=+7=-.(2)32(21)712143222x y y x x -+=-⎧⎪⎨+++=⎪⎩()() 解:由(1),得345x y -=-(3)由(2),得1x y -+=(4)343+⨯()(),得2y =(5),把(5)代人(4),得1x =∵方程组的解为12x y =⎧⎨=⎩. 【点睛】此题主要考查了实数的运算,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.48.(1)x >-1,数轴见解析;(2)x>3,数轴见解析【分析】(1)先去括号,再移项、合并得到7x≥-7,然后把x 的系数化为1即可; (2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)去括号得5x+10>1-2x+2,移项得5x+2x >1+2-10,合并得7x >-7,系数化为1得x >-1;用数轴表示为:;(2)去分母,得:2x>6-(x-3),去括号,得:2x>6-x+3,移项,得:2x+x>6+3,合并同类项,得:3x>9,系数化为1,得:x>3.【点睛】此题考查解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.49.(1),不等式组的解集是﹣1<x≤1,数轴表示见解析;(2)x=﹣1.【详解】试题分析:(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)()32421132x x x x ⎧--≥⎪⎨-->⎪⎩①②, 解不等式∵ ,得x≤1,解不等式∵,得x >﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x ﹣3得:3x=(x ﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.。
中考数学基础训练(50套)
中考基础题训练中考基础训练1一、选择题1.2的相反数是 ( ) A .2B .-2C .21D .22.y=(x -1)2+2的对称轴是直线 ( ) A .x=-1B .x=1C .y=-1D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:44.函数11y x =+中自变量x 的取值范围是 ( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠05.下列计算正确的是 ( ) A .a 2·a 3=a 6B .a 3÷a=a 3C .(a 2)3=a 6D .(3a 2)4=9a 46.在下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等腰三角形B .圆C .梯形D .平行四边形7.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .7cmB .16cmC .21cmD .27cm8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C D 二、填空题9.写出一个3到4之间的无理数 . 10.分解因式:a 3-a= .B ACED坐标为(0,3)的抛物线的解析式.13.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。
请你帮他计算这块铁皮的半径为cm.三、解答题14计算:0(2)2cos60-+15. 先化简,再求值:212(1)11xx x+÷--,其中3x=-.16. 在如图所示的直角坐标系中,O为原点,直线y=-12x+m与x轴、y轴分别交于A、B两点,且点B的坐标为(0,8).(1)求m的值;(2)设直线OP与线段AB相交于P点,且S△AOPS△BOP=13,试求点P的坐标.中考基础训练21. 下列事件中是必然事件的是A. 打开电视机,正在播广告.B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.C. 从一定高度落下的图钉,落地后钉尖朝上.D. 今年10月1日 ,厦门市的天气一定是晴天.2. 如图1,在直角△ABC 中,∠C =90°,若AB =5,AC =4,则sin ∠B = A. 35B. 45C. 34D. 433. “比a 的32大1的数”用代数式表示是A. 32a +1B. 23a +1C. 52aD. 32a -14. 已知:如图2,在△ABC 中,∠ADE =∠C ,则下列等式成立的是 A.AD AB =AE AC B. AE BC =AD BDC. DE BC =AE ABD. DE BC =AD AB5. 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是 A. 6 B. 2 m -8 C. 2 m D. -2 m 二、填空题6. -3的相反数是 .7. 分解因式:5x +5y = .8. 如图3,已知:DE ∥BC ,∠ABC =50°,则∠ADE = 度. 9. 25÷23= .10. 某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .11. 如图4,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.12. 如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,E 图 3D CBA 图 1CBA图 4乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为 (填“甲”或“乙”)获胜的可能性更大.13.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u = 厘米.14. 已知函数y =-3x -1-2 2 ,则x 的取值范围是 . 若x 是整数,则此函数的最小值是 .15. 已知平面直角坐标系上的三个点O (0,0)、A (-1,1)、B (-1,0),将△ABO绕点O 按顺时针方向旋转135°,则点A 、B 的对应点A 1、B 1的坐标分别是A 1( , ) ,B 1( , ) . 三、解答题16.计算: 22+(4-7)÷32+(3)017. 我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交. 如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0)、A (1,0)、B (1,1)、C (0,1).(1)判断直线y = 1 3x + 56与正方形OABC 是否相交,并说明理由;(2)设d 是点O 到直线y =-3x +b 的距离,若直线y =-3x +b 与正方形OABC 相交,求d 的取值范围.中考基础训练31、6 的倒数是 。
中考数学数与式真题训练50题含答案
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。
中考数学九年级下册专题训练50题含参考答案
2023年2月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.2.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.B.C.D.3.如图是一个几何体的侧面展开图,这个几何体是()A.长方体B.圆柱C.球D.圆锥4.如图,已知点P为反比例函数y=-6x上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.6C.3D.125.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则(). A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D .从中随机抽取7张,可能都是红桃 6.函数3xy x =+中,自变量x 的取值范围是( ) A .3x >-B .3x <-C .x≠-3D .x≠ 37.将抛物线22y x =-向右平移3个单位,再向下平移2个单位,所得抛物线解析式为( )A .()2232y x =-++ B .()2232y x =-+- C .()2232y x =--+D .()2232y x =---8.从正面、上面、左面三个方向看某一物体得到的图形如图所示,则这个物体是( )A .三棱锥B .三棱柱C .圆锥D .圆柱9.如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A .12B .11C .10D .910.若气象部门预报明天下雨的概率是70%,下列说法正确的是( ) A .明天下雨的可能性比较大 B .明天下雨的可能性比较小 C .明天一定会下雨D .明天一定不会下雨11.一个由两个一次性纸杯组成的几何体如图水平放置,它的俯视图是( )12.已知点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上,则下列结论正确的是( ) A .122y y >>B .212y y >>C .122y y >>D .212y y >>13.下图是几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的主视图为( )A .B .C .D .14.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-2,x 2=6;①12a +c >0;①当y >0时,x 的取值范围是-2≤x <2;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个15.如图是某几何体的三视图,则该几何体是( )16.若下列有一图形为二次函数2286y x x =-+的图形,则此图为( )A .B .C .D .17.已知二次函数21=++()y ax bx c b c ≠图象的最高点坐标为(-2,4),则一次函数22()4y b c x b ac =-+-图象可能在:A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限18.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是( ).A .14B .34C .29D .91619.二次函数y=ax2+bx+c (a 、b 、c 为常数,且a≠0)中x 与y 的部分对应值如下表:给出以下三个结论:(1)二次函数y=ax2+bx+c 最小值为﹣4; (2)若y <0,则x 的取值范围是0<x <2;(3)二次函数y=ax2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,则其中正确结论的个数是( )A .0B .1C .2D .320.如图,平行于x 轴的直线AC 分别交抛物线21y x =与223x y =于B 、C 两点,过点C作y 轴的平行线交1y 于点D ,直线DE ∥AC 交2y 于点E ,则DEAB的值是( )A .2B .32y =C .3D .3.二、填空题21.有6张同样的卡片,卡片上分别写上数字“1921”、“1994”、“1935”、“1949”、“1978”、“1980”,将这些卡片背面朝上,洗匀后随机从中抽出一张,抽到标有的数字是偶数的概率是______.22.抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,则a 的取值范围是________.23.事件A 发生的概率为15,大量重复做这种试验事件A 平均每100次发生的次数是___.24.已知二次函数245y x x =--的图像与x 轴交于A 、B 两点,顶点为C ,则①ABC 的面积为________.25.甲、乙两人分别从、、A B C 这3个景点随机选择2个景点游览,甲、乙两人选择的2个景点恰好相同的概率是________.26.在10以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的等可能性大小是______.27.一个几何体的三视图如图所示,则这个几何体的名称是___________.28.如图,P 是反比例函数y = 3x图象上一点,P A ①x 轴于点A ,则PAOS =_______________.29.写出抛物线y =2(x ﹣1)2图象上一对对称点的坐标,这对对称点的坐标可以是_____.30.如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是________.31.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC ∆都在第一象限内,52AB AC ==,BC x ∕∕轴,且4BC =,点A 的坐标为()3,5.若将ABC ∆向下平移m 个单位长度,,A C 两点同时落在反比例函数图象上,则m 的值为_____.32.已知Rt △ABC ,①C =90°,AB =13,AC =12,以AC 所在直线为轴将此三角形旋转一周所得圆锥的侧面积是________.(结果保留π)33.若二次函数26y x x k =-+的最小值为2,则k =________.34.将图所示的Rt①ABC 绕AB 旋转一周所得的几何体的主视图是图中的________ (只填序号).35.如图,矩形ABCD 的顶点C ,D 在x 轴的正半轴上,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上,则矩形ABCD 的面积为__36.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__. 37.如图,将抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q .(1)点P 的坐标为______;(2)图中阴影部分的面积为_____.38.30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)39.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;①244b ac a->0;①ac -b +1=0;①OA·OB =ca-.其中正确结论的个数是______个.40.如图,在平面直角坐标系中.点A 、B 在反比例函数y =5x的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度是_____.三、解答题41.当自变量x 取何值时,函数512y x =+与54y x =-的值相等?这个函数值是多少? 42.抛物线2y ax bx c =++的对称轴为直线2x =,且顶点在x 轴上,与y 轴的交点为A ,A 点的坐标为()0,1,点()2,1B 在抛物线的对称轴上,直线1y =-与直线2x =相交于点C .(1)求该抛物线的函数表达式.(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线1y =-交于点D .试判断PBD ∆是否为等腰三角形,并说明理由.(3)作PE BD ⊥于点E ,当点P 从横坐标2013处运动到横坐标2019处时,请求出点E 运动的路径长.43.如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点(4,)A m 和(8,2)B --,与y 轴交于点C .(1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ;(3)过点A 作AD ①x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当ODAC S 四边形:ODES=3:1时,求点P 的坐标.44.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表中,a=,b=,c=;(2)补全统计图;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?45.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W (元)与x (天)之间的函数关系式; (2)求x 为何值时,日销售利润为900元?(3)直接写出哪一天销售这种水果的利润最大?最大日销售利润为多少元?46.在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x 后放回,然后乙也从中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(),x y . (1)请用列表或画树状图的方法写出点P 所有可能的坐标; (2)求点P 在函数22y x =-+的图象上的概率.47.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =12时,y =1.求x =-12时,y 的值.48.综合与探究如图,已知抛物线y =﹣x 2﹣2x +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .其顶点为D ,对称轴是直线l ,且与x 轴交于点H .(1)求点A ,B ,C ,D 的坐标;(2)若点P 是该抛物线对称轴l 上的﹣个动点,求①PBC 周长的最小值;(3)若点E 是线段AC 上的一个动点(E 与A .C 不重合),过点E 作x 轴的垂线,与抛物线交于点F ,与x 轴交于点G .则在点E 运动的过程中,是否存在EF =2EG ?若存在,求出此时点E的坐标;若不存在,请说明理由.49.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球(每个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;①掷一枚均匀的骰子,朝上一面的点数分别为1、2、3、4、5、6;①从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;①掷一枚图钉,钉尖着地与钉尖朝上.50.如图,①OAB的OA边在x轴上,其中B点坐标为(3,4)且OB=BA.(1)求经过A,B,O三点的抛物线的解析式;(2)将(1)中的抛物线沿x轴平移,设点A,B的对应点分别为点A′,B′,若四边形ABB′A′为菱形,求平移后的抛物线的解析式.参考答案:1.B【分析】根据左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知: 该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.2.B【详解】试题分析:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2.故选B.考点:二次函数图象与几何变换.3.D【分析】根据圆锥侧面展开图的特征即可求解.【详解】解:如图是一个几何体的侧面展开图,这个几何体是圆锥.故选:D.【点睛】本题主要考查几何体的展开图,解题的关键是根据几何体的展开图判断几何体的形状,难度不大.4.B【分析】设P(x,y),根据点P在反比例函数上得xy=-6,由反比例函数k的几何意义结合矩形的面积公式即可得出答案.【详解】设P(x,y),①点P在反比例函数y=-6x上,①xy=-6,①S四边形MONP=ON·OM=|xy|=|-6|=6.故答案为B.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k .5.A【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【详解】解: A 、黑桃数量多,故抽到黑桃的可能性更大,故正确;B 、黑桃张数多于红桃,故抽到两种花色的可能性不相同,故错误;C 、从中抽取5张可能会有2张红桃,也可能不是,故错误;D 、从中抽取7张,不可能全是红桃,故错误.故选A .【点睛】本题考查概率的意义.6.C【分析】根据分式中分母不为零计算即可.【详解】由题意得x+3≠0,解得:x≠-3,故选:C .【点睛】本题考查了函数自变量的取值范围,掌握知识点是解题关键.7.D【分析】根据二次函数图象左加右减在自变量,上加下减在函数值的平移规律进行求解.【详解】.解:抛物线 22y x =- 向右平移3个单位,得()22-3y x =-,再向下平移2个单位,得:()2222y x =---.故答案为:D .【点睛】此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.A【分析】由主视图和左视图可得知几何体为锥体,再根据俯视图是三角形即可判断其为三棱锥.【详解】解:①主视图和左视图均为三角形①该几何体为椎体①俯视图为三角形①该几何体为三棱锥.故选:A.【点睛】本题主要考查了几何体的三视图,良好的空间想象能力是解答本题的关键.9.D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;++=个小正方体.①这个几何体最少需要用6219故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.10.A【分析】根据“概率”的意义进行判断即可.【详解】解:A.明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意;B.明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B不符合题意;C.明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D.明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D不符合题意;故选:A.【点睛】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.11.C【分析】根据俯视图是指从几何体的上面观察得出的图形作答.【详解】解:几何体的俯视图是:【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.B【分析】根据题意可得当1x >-时,y 随x 的增大而增大,即可求解.【详解】解:①抛物线()()2120y a x a =++>,①抛物线的对称轴为直线1x =-,且开口向上,①当1x >-时,y 随x 的增大而增大,①当1x =-时,函数值最小,最小值为2,①点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上, ①212y y >>.故选:B【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.13.C【分析】由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形,从而确定答案.【详解】解:由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形.故选C .【点睛】本题主要考查由三视图判断几何体等知识点的理解和掌握,能正确画图是解此题的关键,难度不大.14.B【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(6, 0),则可对①进行判断;由对称轴方程得到b =-2a ,然后根据x =-1时函数值为0可得到3a +c =0,则可对①进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对①进行判断;根据二次函数的性质对①进行判断.【详解】解:①抛物线开口向下,顶点在x 轴上方,①抛物线与x 轴有两个交点,①①= b 2-4ac >0,①①正确;①抛物线的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),①抛物线与x 轴的另一个交点坐标为(6,0),①方程ax 2+bx +c =0的两个根是x 1=2,x 2=6,①①正确; ①22b a-=, ①b =-4a ,①x =-2时,y =0,①4a -2b +c =0,①4a +8a +c =0,即12a +c=0,①①错误;当-2<x <6时,y >0,①①错误;当x <0时,y 随x 的增大而增大,①①正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时( 即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由①决定:①= b 2-4ac >0时,抛物线与x 轴有2个交点;①= b 2-4ac =0时,拋物线与x 轴有1个交点;①=b 2-4ac <0时,抛物线与x 轴没有交点.15.B【分析】根据三视图的形状即可判断.【详解】解:A 、圆柱的主视图是长方形,左视图是长方形,俯视图是圆,故此选项不符合题意;B 、几何体的主视图是长方形,左视图是小长方形,俯视图是三角形,故此选项符合题意;C 、长方体的主视图是长方形,左视图是小长方形,俯视图是长方形,故此选项不符合题意;D 、圆锥的主视图是三角形,左视图是三角形,俯视图是圆且中间有点,故此选项不符合题意,故选:B .【点睛】本题考查了根据三视图判断几何体的形状,解题的关键是掌握常见几何体的三视图特征.16.A【分析】根据二次函数的解析式y=2x 2-8x+6求得函数图象与y 轴的交点及对称轴,并作出选择.【详解】解:①当x=0时,y=6,及二次函数的图象经过点(0,6);①二次函数的图象的对称轴是:x=--822=2,即x=2; 综合①①,符合条件的图象是A ;故选A .【点睛】本题考查了二次函数的图象.解题时,主要从函数的解析式入手,求得函数图象与y 轴的交点及对称轴,然后结合图象作出选择.17.B【分析】根据图象有最高点可知a <0,把(-2,4)代入函数表达式可得4a -2b +c =4,根据最高点坐标可得到对称轴的表达式.【详解】解:①图象有最高点,①a <0,把(-2,4)代入21=++y ax bx c 得:4a -2b +c =4, ①最高点坐标(-2,4),①对称轴表达式:x =-2b a=-2,整理得:b =4a , 把b =4a 代入4a -2b +c =4得:b -c =-4<0,①a <0,且最高点坐标(-2,4),①21=++y ax bx c 与x 轴有两个交点,①∆=24b ac ->0,①一次函数22()4y b c x b ac =-+-在一二四象限.故选①B .【点睛】一次函数y =kx +b (k ≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.18.D【分析】首先将黄色区域平分成三部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【详解】解:将黄色区域平分成三部分,如图:画树状图得:①共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,①两次指针都落在黄色区域的概率为916; 故选D .【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.C【分析】根据表格数据确定出二次函数的顶点坐标,开口方向,与x 轴的交点坐标,然后再逐一进行判断即可得解.【详解】解:由表格得:二次函数顶点坐标为(1,﹣4),开口向上,与x 轴交点坐标为(﹣1,0)与(3,0),则(1)二次函数y=ax 2+bx+c 最小值为﹣4,正确;(2)若y <0,则x 的取值范围是﹣1<x <3,错误;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,正确, 故选C .【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.20.D【分析】设A 点坐标为(0,a ),利用两个函数解析式求出点B 、C 的坐标,然后求出AB 的长度,再根据CD ∥y 轴,利用y 1的解析式求出D 点的坐标,然后利用y 2求出点E 的坐标,从而得到DE 的长度,然后求出比值即可得解.【详解】解:设A 点坐标为(0,a ),(a >0),则x 2=a ,解得x①点B a ),23x =a ,则x①点C a ),①CD ∥y 轴,①点D 的横坐标与点C①y 1=2=3a ,①点D ,3a ),①DE ∥AC ,①点E 的纵坐标为3a , ①23x =3a ,①x①点E 的坐标为(3a ),①DE ,①则3DE AB == 故选:D .【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据平行于x 轴的点的纵坐标相同,平行于y 轴的点的横坐标相同,用点A 的纵坐标表示出各点的坐标是解题的关键.21.12【分析】直接利用概率公式计算即可.【详解】根据题意可知:这些卡片中标有数字是偶数的卡片有3张. 故抽到标有的数字是偶数的概率是3162=. 故答案为:12.【点睛】本题考查简单的概率计算,掌握概率的计算公式是解答本题的关键. 22.a <1【分析】根据题意列出不等式并解答即可.【详解】解:①抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,①a −1<0,解得a <1,故答案为:a <1.【点睛】本题考查了二次函数图象与系数的关系,解题时,需要熟悉抛物线的对称性和增减性.23.20【分析】根据概率的意义解答即可.【详解】解:①事件A 发生的概率为15,①大量重复做这种试验事件A 平均每100次发生的次数是100×15=20.故答案为:20.【点睛】本题考查了概率意义,熟记概率意义是在大量重复试验下事件发生的频率会趋近于某个数(即概率)附近是解题关键. 24.27【分析】先求出A ,B ,C 的坐标,再以AB 为底边,求出三角形ABC 的高,即可求出面积.【详解】解:当y =0时,2450x x --=, 解得11x =-,25x =,①A ,B 的坐标为(1-,0),(5,0), ①AB =6,①2245(2)9y x x x =--=--, ①C (2,9-), ①C 到AB 的距离为9, ①169272ABCS=⨯⨯=. 故答案为:27.【点睛】本题主要考查二次函数的性质,关键是要能根据解析式求出图象与坐标轴的交点. 25.13【分析】用树状图表示所有可能出现的结果,再求出两个景点相同的概率. 【详解】解:用树状图表示如下:共有9种可能的结果,其中甲、乙两人选择的2个景点恰好相同的有3种结果, ①甲、乙两人选择的2个景点恰好相同的概率是3193P ==, 故答案为:13.【点睛】本题考查了用树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决本题的关键.26.14【分析】根据10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2;求抽取的素数是偶数的可能性,就相当于求1是4的几分之几,用除法计算,据此解答. 【详解】解解:10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2; ①1144÷=, 故答案为:14.【点睛】本题考查了简单事件发生的可能性的求解,即用可能性=所求情况数÷总情况数或求一个数是另一个数的几分之几用除法计算,注意:在所有的素数中只有一个偶素数即2.27.直三棱柱.【详解】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱. 故答案为:直三棱柱.【点睛】本题考查由三视图判断几何体,难度不大. 28.32【分析】根据反比例函数k 的几何意义即可求解. 【详解】解:①P 是反比例函数y = 3x图象上一点P A ⊥x 轴于点A , ①PAOS=32, 故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.29.(2,2),(0,2)(答案不唯一)【分析】由函数y=2(x﹣1)2可得函数的对称轴,任取函数上一点,求出其关于对称轴对称的点可得答案.【详解】解:由抛物线y=2(x﹣1)2,可得其对称轴为x=1,可取一点(0,2),则其关于x=1的对称点位(2,2),故答案:(2,2),(0,2)(答案不唯一).【点睛】本题主要考查二次函数的性质及二次函数关于对称轴对称的点的特征.30.4 9【分析】由白色区域是240度,黑色区域是120度,指针落在它们的可能性不相同;所以将白色区域分成相等的两部分,那么指针落在三个部分的可能性相同,则可由列表法或树状图列出所有可能的结果,利用概率公式即可求解.【详解】解:将白色扇形分成相等的两部分,分别记为白1和白2,所以转盘自由转动1次,指针落在白1,白2,黑三部分的可能性相同,如下表,所有等可能的结果有9种,其中一次落在白色区域,一次落在黑色区域的有4种,所以P(指针一次落在白色区域,另一次落在黑色区域)= 4 9 .故答案为4 9 .【点睛】本题考查了几何概率的求法,将白色扇形分成相等的两部分,再利用列表法(或树状图法)求解是解决本题的基本思路.31.5 4【分析】根据已知求出B与C点坐标,再表示出相应的平移后A与C坐标,将之代入反比例函数表达式即可求解;【详解】解:①52AB AC ==,4BC =,点()A 3,5. ①71,2B ⎛⎫⎪⎝⎭,75,2C ⎛⎫ ⎪⎝⎭,将ABC ∆向下平移m 个单位长度, ①()3,5A m -,75,2C m ⎛⎫- ⎪⎝⎭,①,A C 两点同时落在反比例函数图象上, ①73(5)52m m ⎛⎫-=- ⎪⎝⎭,①54m =;故答案为54;【点睛】本题考查反比例函数的图象及性质;熟练掌握等腰三角形的性质,通过等腰三角形求出点的坐标是解题的关键. 32.65π【详解】试题分析:首先确定圆锥的母线长和圆锥的底面半径,利用侧面积计算公式直接求得圆锥的侧面积即可.试题解析:①①C=90°,AB=13,AC=12, ①BC=5,以AC 所在直线为轴旋转一周,所得圆锥的底面周长=10π,侧面积=12×10π×13=65π. 考点:1.圆锥的计算;2.点、线、面、体. 33.11【分析】根据二次函数解析式求出函数的顶点坐标,代入即可解题. 【详解】解:①函数2y x 6x k =-+的对称轴是x=3, ①当x=3时,函数有最小值2, 即9-18+k=2, 解得:k=11.【点睛】本题考查了二次函数的图像和性质,属于简单题,求出二次函数的顶点坐标是解题关键. 34.①【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看【详解】解:Rt △ABC 绕斜边AB 旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图①. 故答案为①.【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键. 35.12.【分析】利用反比例函数k 的几何意义求解即可.【详解】①延长BA 交y 轴于点E ,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上, ①ADOE S 矩形=4,OE S 矩形BC =16, ①矩形ABCD 的面积为:OE S 矩形BC -ADOE S 矩形=16-4=12;故答案为:12.【点睛】本题考查了反比例函数的k 的几何意义,熟练将k 的几何意义与图形的面积有机结合,灵活解题是解题的关键. 36.﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,所以函数图象分支在二、四象限。
中考数学数与式专题知识训练50题含答案
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。
中考数学七年级下册知识专题训练50题-含答案
中考数学七年级下册知识专题训练50题含答案一、单选题1.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为( )A .11B .-1C .1D .-112.如图,OA ⊥OB ,若⊥1=55°,则⊥2的度数是( )A .35°B .40°C .45°D .60°3.据医学研究:猴痘病毒的平均直径约为0.00000023米,0.00000023米用科学记数法表示为( ) A .72.310-⨯米B .82.310-⨯米C .92.310-⨯米D .102.310-⨯米4.若21x y =⎧⎨=⎩是方程3ay x -=的解,则a 的取值是( )A .1B .2C .5D .5-5.下列运算正确的是( ). A .236a a a =B .21a a a -=C .236()a a =D .842a a a ÷=6.石墨烯是目前世界上最薄却又最坚硬同时还是导电性能最好的纳米材料,其理论厚度大约仅0.00000034纳米,将0.00000034用科学记数法表示为( ) A .73.410-⨯B .83.410-⨯C .83410-⨯D .70.3410-⨯7.下列等式从左到右的变形,属于因式分解的是( ) A .()m x y mx my -=- B .22()()a b a b a b -=+- C .221(2)1x x x x ++=++D .2(3)(1)43x x x x ++=++8.将0.0012用科学记数法表示为( ) A .1.2×10﹣2B .1.2×10﹣3C .1.2×10﹣4D .1.2×10﹣59.计算()32a ,结果正确的是( )10.若二次三项式()2316x m x +++是一个完全平方式,则m 的值为( )A .1B .1或-7C .5D .5或11-11.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =.则这个等式是( ) A .32y x =-+B .32y x =+C .32y x =-D .32y x =--12.如图,在ABC 中,10AB =,8AC =,AD 为中线,则ABD △与ACD 的周长之差为( )A .1B .2C .3D .413.下列四个图形中,1∠和2∠是内错角的是( )A .B .C .D .14.方程组233x y x y +=⎧⎨=+⎩的解是( )A .21x y =⎧⎨=⎩B .21x y =-⎧⎨=⎩C .21x y =-⎧⎨=-⎩D .21x y =⎧⎨=-⎩15.化简22222a b a ab b --+的结果是:( )A .2a bab- B .a b a b +- C .a b a b -+D .2a bab+ 16.如图,在ABC 中, D 、E 分别是AB 、AC 的中点,CD 与BE 相交于点O ,AO 的延长线与BC 相交于点F ,则AF 一定为ABC 的( ).A .高线B .角平分线C .中线D .以上都是17.在同一平面内两条不重合的直线的位置关系是( ) A .平行或垂直 B .平行或相交 C .垂直或相交 D .以上都不对18.在平面直角坐标系中,我们把横纵坐标均为整数的点称为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.例如:图中ABC 的与四边形DEFG 均为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点记为L ,已知格点多边形的面积可表示为S N aL b =++(a ,b 为常数),若某格点多边形对应的14N =,7L =,则S =( )A .16.5B .17C .175.D .1819.下列运算正确的是( ) A .m 2+2m 3=3m 5B .m 2•m 3=m 6C .(﹣m )3=﹣m 3D .(mn )3=mn 320.下列各式中,正确的是( ) A .y 3·y 2=y 6B .(a 3)3=a 6C .(-x 2)3=-x 6D .-(-m 2)4=m 8二、填空题21.若点()21,2m m -+-在x 轴上,则m =________. 22.分解因式:9a 2﹣4=_____.23.如图,直线AB ,CD ,EF 相交于点O ,⊥AOC 的邻补角是___________.若⊥AOC =50°,则⊥BOD =________,⊥COB =________.24.若关于x ,y 的多项式3224231xy ax xy x --+-不含2x 的项,则=a ______. 25.因式分解:2224a a b -=___________.26.若点A (m -1,m +2)在x 轴上,则点A 的坐标为_________. 27.已知4812M a b =,M=______________.28.已知三角形的三边长分别为23m ,,,则m 的取值范围是_______. 29.计算:()3222()a ab -=________.30.已知32×9m ÷27=323,则m =_____.31.若a 、b 、c 为三角形的三边长,且a 、b 满足|a ﹣3|+(b ﹣2)2=0,则第三边长c 的取值范围是_____.32.附中文化源远流长,潜移默化.学校通过推出的“你的名字,我的记忆”校园文创产品的设计活动,给学子们提供了施展自己才华的平台,经过选拔评比,学校拟推出A 、B 、C 三款校园文创产品,并以零售和礼盒两种形式销售(各产品的零售单价均为正整数,礼盒售价为各产品零售价之和).其中甲礼盒含有3件A 产品,2件B 产品,2件C 产品,乙礼盒含有4件A 产品,1件B 产品,1件C 产品,丙礼盒含有2件A 产品,4件B 产品,1件C 产品.甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,并且A 产品的单价不超过10元.则A 产品与B 产品的单价之比为______.33.已知2,32m n a b ==,m ,n 为正整数,则252m n -=______.(用含a ,b 的式子表示)34.因式分解:21025x x -+=______. 35.在实数范围内分解因式:428a -=______;36.22164x kxy y ++是一个完全平方式,则k =_________________37.计算:()()223a a +-=__________;分解因式:32a ab -=___________. 38.很多代数公式都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式等.【提出问题】如何用表示几何图形面积的方法计算:3333123n ++++=【规律探究】观察下面表示几何图形面积的方法:【解决问题】请用上面表示几何图形面积的方法写出3333123n ++++=______=______(用含n 的代数式表示); 【拓展应用】根据以上结论,计算:3333246(2)n ++++的结果为________.39.已知:1纳米=1×10﹣9米.用科学记数法表示:250纳米=___米. 40.已知:22x y 5,x y 11,+=+=则代数式3223x y-3x y xy +的值为________.三、解答题41.计算:()()2333322a a a a ⋅+-+-42.解方程组.43.解三元一次方程组:(1)3423126x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩(2)302223x z x y z x y z +-=⎧⎪-+=⎨⎪--=-⎩.44.已知O 为直线AB 上的一点,⊥COE 是直角,OF 平分⊥AOE .(1)如图1,若⊥COF =34°,则⊥BOE =______;(2)如图1,若⊥BOE =80°,则⊥COF =______;(3)若⊥COF =m °,则⊥BOE =______度;⊥BOE 与⊥COF 的数量关系为______. (4)当⊥COE 绕点O 逆时针旋转到如图2的位置时,(3)中⊥BOE 与⊥COF 的数量关系是否仍然成立?请说明理由. 45.因式分解: (1)4x 2﹣64;(2)81a 4﹣72a 2b 2+16b 4;(3)(x 2﹣2x )2﹣2(x 2﹣2x )﹣3.46.从夏令营地到学校先下山后走平路,某人骑自行车以12千米/时速度下山,再以9千米/时速度通过平地,用了1小时,返回时以8千米/时通过平路,6千米/时速度上山回到原地,共用1小时15分钟,求营地到学校有多远?47.如图,已知DC ⊥FP ,⊥1=⊥2,38DEF ∠=︒,⊥AGF =70°,FH 平分⊥EFG . (1)求证:DC ⊥AB ; (2)求⊥PFH 的度数.48.马虎同学化简()()()2222a b a b a b +-+-的解题过程如下:解:原式()222244a b a b =+--(第一步)222244a b a b =+--(第二步)0=(第三步)(1)马虎同学的化简过程从第__________步开始出现错误; (2)请你帮助他写出正确的化简过程. 49.已知:如图,AD⊥EF ,⊥1=⊥2. (1) AB⊥DG 吗? 请说明理由.(2)若⊥B=50°⊥C=62°,求⊥DGC 的度数.50.因式分解(1)(2)参考答案:1.A【分析】由x 与y 互为相反数,得到y =-x ,代入方程组计算即可求出m 的值. 【详解】解:由题意得:y =-x , 代入方程组得:33221x x m x x m -++⎧⎨-⎩=①=②,消去x 得:32123m m +-=, 即3m +9=4m -2, 解得:m =11. 故选:A .【点睛】本题考查解二元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法. 2.A【详解】试题分析:⊥OA⊥OB , ⊥⊥AO⊥=90°,即⊥2+⊥1=90°. ⊥⊥1=55°,⊥⊥2=35°. 故选A .考点:1.垂直的性质;2.数形结合思想的应用. 3.A【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.【详解】解:0.00000023米=72.310-⨯米. 故选:A【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键. 4.C【分析】将x 与y 的值代入方程计算即可求出a 的值. 【详解】解:将x=2,y=1代入方程得:a-2=3,解得:a=5, 故选:C .【点睛】本题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 5.C【分析】见解析.【详解】235a a a =,2121a a a a -=-,844a a a ÷=,所以选C. 【点睛】掌握整式的运算法则是解题的关键. 6.A【分析】科学记数法表示绝对值小于1的数形如,11001,na n a <⨯<为负整数,据此解题.【详解】解:0.00 000 034用科学记数法表示为73.410-⨯, 故选:A .【点睛】本题考查用科学记数法表示绝对值小于1的数,是基础考点,难度较易,掌握相关知识是解题关键. 7.B【分析】根据因式分解的定义直接判断即可.【详解】解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D .属于整式乘法,不属于因式分解,故本选项不符合题意; 故答案为:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 8.B【分析】用科学记数法表示绝对值小于1的数,形如,11001,na n a <⨯<负整数.【详解】解:将0.0012用科学记数法表示为1.2×10﹣3 故选:B .【点睛】本题考查用科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键. 9.B【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案. 【详解】()326a a =,故选:B .【点睛】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键. 10.D【分析】根据首末两项是x 和4的平方,那么中间项为加上或减去x 和4的乘积的2倍也就是()3m x +,由此对应求得m 的数值即可.【详解】解:⊥()2316x m x +++是一个多项式的完全平方,⊥()324m x x +=±⨯⨯, ⊥38m +=±,解得:5m =或11m =-. 故选:D .【点睛】此题考查完全平方公式问题,关键要根据完全平方公式的结构特征进行分析,两数和的平方加上或减去它们乘积的2倍,就构成完全平方式,在任意给出其中两项的时候,未知的第三项均可求出,要注意积的2倍符号,有正负两种情形,不可漏解. 11.A【分析】分别把当x=2时,y=-4,当x=-2时,y=8代入等式,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.【详解】解:分别把当x=2时,y=-4,当x=-2时,y=8代入等式y=kx+b 得,4282k b k b -=+⎧⎨=-+⎩①②, ⊥-⊥得,4k=-12, 解得k=-3,把k=-3代入⊥得,-4=-3×2+b , 解得b=2,分别把k=-3,b=2的值代入等式y=kx+b 得,y=-3x+2,故选:A .【点睛】本题主要考查的是解二元一次方程组的加减消元法和代入消元法,难度适中. 12.B【分析】根据三角形中线的性质得BD CD =,则两个三角形的周长之差就是AB 和AC 长度的差.【详解】解:⊥AD 是中线,⊥BD CD =,⊥ABD CAB AD BD =++,ACD C AC AD CD =++△, ⊥1082ABD ACD C C AB AC -=-=-=.故选:B .【点睛】本题考查中线的性质,解题的关键是掌握三角形中线的性质.13.B【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A 、⊥1与⊥2不是内错角,选项不符合题意;B 、⊥1与⊥2是内错角,选项符合题意;C 、⊥1与⊥2不是内错角,选项不符合题意;D 、⊥1和⊥2不是内错角,选项不符合题意;故选:B .【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.14.D【分析】把方程⊥代入方程⊥先求解,y 再求解x 即可得到答案.【详解】解:233x y x y ①②把⊥代入⊥得:363,y解得:1,y =-把1y =-代入⊥得:2,x =所以方程组的解为:2.1x y故选D【点睛】本题考查的是二元一次方程组的解法,掌握“代入法解二元一次方程组”是解本题的关键.15.B【分析】用平方差公式和完全平方公式进行化简即可 【详解】解:22222a b a ab b --+ ()()()2a b a b a b -+=- a b a b +=- 故选:B【点睛】本题考查了分式的化简,解决问题的关键是熟练应用平方差公式和完全平方公式 16.C【分析】结合题意,根据三角形中线和重心的性质,即可得到答案.【详解】⊥三角形三条中线相交于一点,这点是三角形的重心又⊥D 、E 分别是AB 、AC 的中点,CD 与BE 相交于点O⊥点O 是三角形的重心⊥AF 经过点O⊥AF 是ABC 的中线故选:C .【点睛】本题考查了三角形中线、三角形重心的知识;解题的关键是熟练掌握三角形中线、三角形重心的性质,从而完成求解.17.B【详解】在同一平面内,不重合的两条直线位置关系只有平行和相交两种.18.A【分析】先分别根据ABC 和四边形DEFG 中,S 、N 、L 的数值得出关于a 和b 的二元一次方程组,解得a 和b 的值,则可求得当14N =,7L =时S 的值.【详解】解:ABC 中,1S =,0N =,4L =,则41a b +=;同理,四边形DEFG 中,24122112232 3.5S =⨯-⨯÷-⨯÷-⨯÷=,2N =,5L =⊥25 3.5a b ++=;联立得4125 3.5a b a b +=⎧⎨++=⎩解得:0.5a =,1b⊥14N =,7L =,则14 3.5116.5S =+-=,故选:A .【点睛】本题属于创新题型,主要考查了二元一次方程相关知识以及学生对于题意理解和数据分析能力.19.C【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【详解】A. m 2与2m 3不是同类项,不能合并,故错误;B. m 2•m 3=m 5,故错误;C. (﹣m)3=﹣m 3,正确;D. (mn)3=m 3n 3,故错误,故选C.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方的运算法则.20.C【分析】根据同底数幂的乘法,幂的乘方与积的乘方的运算法则计算,利用排除法即可得到答案.【详解】A. 应为:32325y y y y +⋅==,故本选项错误; B. 应为:33339()a a a ⨯==, 故本选项错误;C.23236()x x x ,⨯-=-=-故正确;D. 应为:24248()m m m ⨯--=-=-, 故本选项错误;故选C.【点睛】考查同底数幂的乘法,幂的乘方与积的乘方,掌握它们的运算法则是解题的关键. 21.2【分析】根据点在x 轴上的坐标的特征,即可求解.【详解】解:⊥点()21,2m m -+-在x 轴上,⊥20m -= ,⊥2m = .故答案为:2 .【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是掌握好坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.22.(3a ﹣2)(3a +2)【分析】直接利用平方差公式分解因式即可.【详解】222294(3)32)(2)(3a a a a --==-+故答案为:32)(2)(3a a -+.【点睛】本题考查了利用平方差公式分解因式,分解因式常用方法有:提取公因式法、公式法(完全平方公式、平方差公式)、十字交叉相乘法、配方法等.23. ⊥AOD 、⊥BOC 50° 130°【分析】根据邻补角必须是相邻的两个角,即有一条公共边和一个公共顶点的互补的两个角;对顶角有一个公共顶点,其中一个角的两条边是另一个角的两条边的反向延长线,对顶角的度数相等即可得出答案.【详解】解:⊥AOC 的邻补角是⊥BOC ,⊥AOD ;⊥⊥BOD 的对顶角是⊥AOC ,⊥AOC =50°,⊥⊥BOD =⊥AOC =50°,⊥⊥COB 是⊥AOC 邻补角,⊥⊥COB =180°-⊥AOC =130°.故答案为:⊥AOD 、⊥BOC ,50°,130°【点睛】本题主要考查了邻补角与对顶角的概念和特点,熟练掌握邻补角与对顶角的定义是解题的关键.24.12##0.5【分析】先把多项式关于2x 项合并,由题意得出2x 项的系数为0,进而求出即可.【详解】解:3224231xy ax xy x --+- ()3242131xy a x xy =----因为关于x 、y 的多项式3224231xy ax xy x --+-不含2x 的项,可得:210a -=, 解得:12a =, 故答案为:12.【点睛】此题主要考查了多项式系数中的字母求值,多项式中不含哪一项,哪一项的系数为0,注意要先合并同类项.25.()()21212a b b -+【分析】先提取公因式,再用平方差公式来分解因式.【详解】解: ()()()2222224141212a a b a b a b b -=-=-+ .故答案为: ()()21212a b b -+【点睛】本题考查的是用提公因式法、平方差公式分解因式,能够熟练掌握因式分解的方法是解题的关键.26.(-3,0)【分析】直接利用x 轴上点的坐标特点得出m 的值,即可得出答案.【详解】解:⊥A (m -1,m +2)在x 轴上,⊥m +2=0,解得:m =-2,⊥m -1=-3,⊥点A 的坐标是:(-3,0).故答案为:(-3,0).【点睛】本题主要考查了点的坐标,正确掌握x 轴上点的坐标特点是解题关键. 27.23a b ±【分析】根据积的乘方逆运算即可求解.【详解】⊥()423812a a b b =±⊥M=23a b ±故填:23a b ±.【点睛】此题主要考查幂的运算,解题的关键是熟知积的乘方公式.28.15m <<##51m >>【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得答案.【详解】解:⊥三角形的三边长分别为23m ,,, ⊥3232m -<<+,即15m <<.故答案为:15m <<.【点睛】本题考查了确定三角形第三边的取值范围,掌握三角形三边关系是解题的关键. 29.828a b -【分析】根据幂的乘方和积的乘方以及同底数幂的乘法法则计算.【详解】解:()3222()a ab - =()()6228a a b -⋅=828a b -故答案为:828a b -.【点睛】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,解题的关键是掌握运算法则.30.12【分析】先将底数全部转为以3为底,再结合同底数幂的乘除法法则解答.【详解】解:由32×9m ÷27=323得32×32m ÷33=323,32+2m -3=323,2+2m -3=232m =24m =12故答案为:12.【点睛】本题考查同底数幂的乘除法,是基础考点,掌握相关知识是解题关键. 31.1<c <5【分析】先根据非负数的性质求出a 、b 的值,再由三角形的三边关系即可得出结论.【详解】⊥a 、b 满足|a ﹣3|+(b ﹣2)2=0,⊥a ﹣3=0,b ﹣2=0,⊥a =3,b =2.⊥a 、b 、c 为三角形的三边长,⊥3﹣2<c <3+2,即1<c <5.故答案为1<c<5.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.32.2:3【分析】先设A款校园文创产品的单价为a元,B款校园文创产品的单价为b元,C款校园文创产品的单价为c元,则甲礼盒的售价为:3a+2b+2c,乙礼盒的售价为:4a+b+c,丙礼盒的售价为:2a+4b+c;利用甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,列出三元一次方程组,化简得到a关于c的关系式,然后利用A产品的单价不超过10元,各产品的零售单价均为正整数,得到c,a的值,进而利用﹣a+b+c=11求得b的值,则结论可求.【详解】解:设A款校园文创产品的单价为a元,B款校园文创产品的单价为b元,C款校园文创产品的单价为c元,则甲礼盒的售价为:3a+2b+2c,乙礼盒的售价为:4a+b+c,丙礼盒的售价为:2a+4b+c.⊥甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,⊥(322)(4)11 3222(24)80a b c a b ca b c a b c++-++=⎧⎨++=++-⎩.化简得:11680a b cb a-++=⎧⎨+=⎩,⊥a=67c+2.⊥a≤10,a,b,c均为正整数,⊥c=7,a=8符合题意.⊥b=11+a﹣c=12.⊥A产品与B产品的单价之比为8:12=2:3.故答案为:2:3.【点睛】本题主要考查了三元一次方程组的应用,列代数式.依据题干中的等量关系列出三元一次方程组是解题的关键.33.2 a b【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可.【详解】解:⊥2,32m n a b ==,⊥22252(2),2m m n a b ===, ⊥22255=222m m n n a b-=. 故答案为:2a b【点睛】本题考查幂的乘方公式和同底数幂的除法.熟练掌握公式,并能逆运用是解题关键.34.()x -25【分析】直接利用公式法分解因式即可.【详解】原式=x 2-25x ⋅⋅+52=(x-5)2.故答案为:(x-5)2.【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.35.2(a 2【分析】实数包括有理数和无理数,先运用提公因式法和平方差公式得出2(x 2+2)(x 2-2),后一个括号还能运用平方差公式进行分解.【详解】解:原式=2(x 2+2)(x 2-2)()222(x x x =+故答案为()222(x x x + 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 36.16±【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】⊥()()222216442x kxy y x kxy y ++=++是一个完全平方式,⊥24?2kxy x y =±⨯,⊥k =±16.故答案为:±16.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值. 37. 226a a +- ()();a a b a b +-【分析】⊥用多项式乘多项式法则计算即可;⊥提取公因式再公式法因式分解即可.【详解】⊥()()22223234626a a a a a a a +-=-+-=+-,⊥3222()()()a ab a a b a a b a b -=-=+-,故答案为:⊥226a a +-;⊥()()a a b a b +-.【点睛】此题考查多项式的乘法和因式分解的相关知识,难度一般.38.规律探究26;解决问题2(123)n +++⋅⋅⋅+;22(1)4n n +;拓展应用222(1)n n +或432242n n n ++.【分析】规律探究:计算333123++=36=大正方形面积,然后直接求大正方形面积即可; 解决问题:3333123n +++⋯+转化为大正方形面积,其边长为1+2+3+…+n ,再求面积化简即可;拓展应用:()33332462n +++⋯+提公因式8转化为8(3333123n +++⋯+),再用规律计算即可【详解】解:规律探究:333123++=1+8+27=36=大正方形面积=()221+2+3=6; 故答案为:62解决问题:由上面表示几何图形的面积探究知,()23333123123n n +++⋯+=+++⋯+, 又(1)1232n n n ++++⋯+=, 2223333(1)(1)12324n n n n n ++⎡⎤∴+++⋯+==⎢⎥⎣⎦; 故答案为:222(1)(123),4n n n ++++⋯+; 拓展应用:()33333333324622123n n +++⋯+=⨯+++⋯+⎡⎤⎣⎦,223333(1)1234n n n ++++⋯+=, ()()()223233332432124622212424n n n n n n n n +∴+++⋯+=⨯=+=++. 故答案为:222(1)n n +或432242n n n ++.【点睛】本题考查实践探索问题,仔细观察图形与算式的关系,发现规律为立方数的和等于最大正方形面积,再利用面积公式求是解题关键.39.2.5×10-7.【分析】根据用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案.【详解】解:250纳米=2.5×10-7米.故答案为:2.5×10-7.【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键.40.-70【分析】先由22x y 5,x y 11,+=+=求出xy 的值,然后再对3223x y-3x y xy +因式分解即可完成解答.【详解】解:⊥22x y 5,x y 11,+=+=⊥()222x y x y 225xy +=++=⊥xy=7 3223x y-3x y xy +=()22xy x -3xy y +=()22xy x y -3xy +=7×(11-3×7)=-70【点睛】本题考查了完全平方公式、因式分解和代数式求值,解题的关键是通过完全平方公式的变形以及因式分解寻求条件之间的关系.41.64a【分析】原式利用幂的乘方及同底数幂的乘法法则计算,合并即可得到结果.【详解】解:()()2333322a a a a ⋅+-+- 666=4a a a +-64a =【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.42.【详解】试题分析:方程组利用加减消元法求出解即可.解:,⊥×3﹣⊥×2得:5x=25,即x=5,把x=5代入⊥得:y=1,则方程组的解为.考点:解二元一次方程组.43.(1)231x y z =⎧⎪=⎨⎪=⎩;(2)241x y z =⎧⎪=⎨⎪=⎩ 【详解】试题分析:(1)、通过⊥+⊥和⊥+⊥得到关于x 和y 的二元一次方程组,从而求出方程组的解,最后代入⊥求出z 的值,得出方程组的解;(2)、通过⊥﹣⊥和⊥得出关于x 和z 的二元一次方程组,从而求出方程组的解,最后代入⊥求出y 的值,得出方程组的解.试题解析:(1)、3423126x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩①②③, ⊥+⊥得:5x+2y=16⊥, ⊥+⊥得:3x+4y=18⊥,⊥×2﹣⊥得:7x=14,即x=2,把x=2代入⊥得:y=3, 把x=2,y=3代入⊥得:z=1,则方程组的解为231x y z =⎧⎪=⎨⎪=⎩;(2)、302223x z x y z x y z +-=⎧⎪-+=⎨⎪--=-⎩①②③, ⊥﹣⊥得:x+3z=5⊥, ⊥﹣⊥得:2z=2,即z=1,把z=1代入⊥得:x=2, 把z=1,x=2代入⊥得:y=4,则方程组的解为241xyz=⎧⎪=⎨⎪=⎩.44.(1)68° (2) 40° (3)2m⊥BOE=2⊥COF;(4)成立,理由见解析.【分析】(1)根据互余得到⊥EOF=90°-34°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF,然后根据邻补角的定义即可得到⊥BOE;(2)设⊥COF=n°,根据互余得到⊥EOF=90°-n°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF=180°-2n°,然后根据邻补角的定义得到⊥BOE=180°-(180°-2n°)=2n°=80°,于是得到结论;(3)当⊥COF=m°,根据互余得到⊥EOF=90°-m°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF=180°-2m°,然后根据邻补角的定义得到⊥BOE=180°-(180°-2m°)=2m°,所以有⊥BOE=2⊥COF;(4)同(3),可得到⊥BOE=2⊥COF.【详解】解:(1)⊥⊥COE是直角,⊥COF=34°,⊥⊥EOF=90°-34°=56°,⊥OF平分⊥AOE.⊥⊥AOE=2⊥EOF=112°,⊥⊥BOE=180°-112°=68°;(2)设⊥COF=n°,⊥⊥EOF=90°-n°,⊥⊥AOE=2⊥EOF=180°-2n°,⊥⊥BOE=180°-(180°-2n°)=2n°=80°,⊥⊥COF=40°;(3)当⊥COF=m°,⊥⊥EOF=90°-m°,⊥⊥AOE=2⊥EOF=180°-2m°,⊥⊥BOE=180°-(180°-2m°)=2m°,⊥⊥BOE=2⊥COF;(4)⊥BOE与⊥COF的数量关系仍然成立.理由如下:设⊥COF=n°,⊥⊥COE是直角,⊥⊥EOF=90°-n°,又⊥OF平分⊥AOE.⊥⊥AOE=2⊥EOF=180°-2n°,⊥⊥BOE=180°-(180°-2n°)=2n°,即⊥BOE=2⊥COF.【点睛】本题考查了角的计算,角平分线的定义以及互余互补.解题的关键是注意找出所求角与已知角之间的关系.45.(1)x(x+4)(x﹣4);(2)(3a﹣2b)2(3a+2b)2;(3)(x﹣3)(x+1)(x﹣1)2.【详解】整体分析:先提取公因式,再用公式法分解,注意x2+(p+q)x+pq=(x+p)(x+q)形式的因式分解,要分解到不能再分解为至,相同的因式要写成幂的形式.解:(1)4x2﹣64=4(x2﹣16)=x(x+4)(x﹣4).(2)81a4﹣72a2b2+16b4=(9a2)2﹣2×9×4a2b2+﹙4b2﹚2=(9a2﹣4b2)2=(3a﹣2b)2(3a+2b)2.(3)(x2﹣2x)2﹣2(x2﹣2x)﹣3.=(x2﹣2x﹣3)(x2﹣2x+1)=(x﹣3)(x+1)(x﹣1)2.46.营地到学校有667千米【分析】设下山路长x千米,平路长y千米,根据“下山时间+走平路时间=1、上山时间+走平路时间=54”列方程组求解可得.【详解】设下山路长x千米,平路长y千米,根据题意,得:1 1295 684x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,整理得:34364330x y x y +=⎧⎨+=⎩①②, ⊥+⊥得:7766x y +=, ⊥667x y +=. 答:营地到学校有667千米. 【点睛】本题主要考查了二元一次方程组的实际应用,理解题意得出题目当中蕴含的相等关系是解题的关键.47.(1)见解析;(2)16︒【分析】(1)根据平行线的性质与判定定理即可得证;(2)先根据平行线的性质求得EFG ∠,再根据平分线的定义求得EFH ∠,进而根据角度的差即可求得⊥PFH 的度数.【详解】(1)12∠=∠//AB FP ∴//DC FP//DC AB ∴(2)//DC FPDEF EFP ∴∠=∠12∠=∠//AB FP ∴AGF PFG ∴∠=∠DEF AGF EFP PFG EFG ∴∠+∠=∠+∠=∠38DEF ∠=︒,⊥AGF =70°,∴EFG ∠=3870108︒+︒=︒FH 平分⊥EFG111085422EFH EFG ∴∠=∠=⨯︒=︒ 543816PFH EFH EFP ∴∠=∠-∠=︒-︒=︒16PFH ∴∠=︒【点睛】本题考查了平行线的性质与判定,角平分线的定义,角度的和差计算,掌握平行线的性质与判定是解题的关键.48.(1)一;(2)见解析【分析】(1)观察该同学解题过程,确定出出错的步骤即可;(2)写出正确的解答过程,把a 的值代入计算即可求出值.【详解】解:(1)该同学的解答过程从第一步开始出现错误;故答案为:一;(2)解:原式()2222444a ab b a b =++--2222444a ab b a b =++-+248ab b =+【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 49.(1)证明见解析;(2)68°【详解】(1)AB⊥DG .理由如下: 略(2) 68°50.(1)x (x+1)(x-1);(2)23(2)x x y -.【详解】试题分析:(1)先提取公因式x ,再运用平方差公式进行分解即可; (2)先提取公因式3x ,再运用平方差公式进行分解即可.试题解析:(1)x 3-x=x (x 2-1)=x (x+1)(x-1);(2)32222312123(44)x x y xy x x xy y -+=-+23(2)x x y =-考点:因式分解---提公因式法与公式法的综合运用.。
中考数学八年级下册专题训练50题(含答案)
中考数学八年级下册专题训练50题含答案一、单选题1.下列各组数中,能作为直角三角形三边长度的是()A.2、3、4B.4、5、6C.6、8、10D.5、12、23 2.把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36︒B.72︒C.90︒D.108︒3.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.下列式子中,为最简二次根式的是()ABCD5.下列图形中,既是中心对称图又是轴对称图形的是()A.B.C.D.6.下列哪个图形不是中心对称图形()A.圆B.平行四边形C.矩形D.梯形7)A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.若关于x的不等式组43413632x xx ax--⎧+>⎪⎪⎨+⎪<⎪⎩的解集为x<2,则a的取值范围是()A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣29.下列各组数中,能作为直角三角形的三边长的是( )A .2,4,5B .3,4,6C .6,8,10D .9,16,25 10.如图,在Rt ABC 中,,3AC =,4BC =,O 是AB 的中点,则OC 的长是( ).A .3B .3C .2.5D .3 11.已知两个一次函数1y ,2y 的图象相互平行,它们的部分自变量与相应的函数值如下表:则m 的值是( )A .13-B .3-C .12 D .512.平面直角坐标系中,点(﹣2,9)关于原点对称的点坐标是( ) A .(﹣9,2) B .(2,﹣9) C .(2,9) D .(﹣2,﹣9) 13.下列说法错误的是( )A .4是16的算术平方根B .2是4的一个平方根C .0的平方根与算术平方根都是0D .(﹣3)2的平方根是﹣314.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-15.下列计算:(1))4()9(-⨯-=49⨯,,2(3)(12-==( )A .1B .2C .3D .416.如图,直线()0y kx b kb =+≠经过点P (2,1),与x ,y 轴分别交于点A ,B ,则112OA OB +的值为( )A .12 B .23 C .34 D .无法确定17( )A .3B .±3CD .18.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A .B .C .D .19.如图,▱ABCD 的对角线AC ,BD 交于点O ,AC ⊥AB ,AB BO =3,那么AC 的长为( )A .BC .3D .4 20.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题21.已知矩形ABCD的对角线AC、BD相交于点O,⊥AOD=120°,AC=8cm,则该矩形的两边长分别为_____cm和_____cm.22.如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.23.点A(﹣3,m)、B(2,n)都在一次函数y=﹣2x+3的图像上,则m___n(填“>”或“=“或“<”).24.如图,在菱形ABCD中,∠A=60°,如果菱形边长为2a,那么菱形的面积是______.25.如图,菱形ABCD中,⊥D=120°,点E在边CD上,将菱形沿直线AE翻折,使点D恰好落在对角线AC上,连结BD',则⊥AD'B=______°.26.如图,已知平行四边形ABCD的对角线AC、BD交于点O,DE⊥AC,CE⊥BD,要使四边形OCED是矩形,则平行四边形ABCD还必须添加的条件是_____(填一个即可).27.如图a 是长方形纸带,⊥DEF =26º,将纸带沿EF 折叠成图b ,则⊥FGD 的度数是______ 度,再沿BF 折叠成图c ,则图c 中的⊥DHF 的度数是________.28.某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是______.29.在平面直角坐标系中,将点M (5,2)向下平移3个单位后的点的坐标是__________.30.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1米,则1A 的坐标为()2,2、2A 的坐标为()5,2.(1)3A 的坐标为___________,n A 的坐标(用n 的代数式表示)为___________. (2)2020米长的护栏,需要两种正方形共___________个.31.如图,把Rt ABC 放在平面直角坐标系中,90CAB ∠=,5BC =,点A 、B 的坐标分别为()1,0、()4,0,将Rt ABC 沿x 轴向右平移,当点C 落在直线25y x =-上时,线段BC 扫过的面积为______.AD=,点M是矩形ABCD边上的一个动点,当32.在矩形ABCD中,∠=°时,AM的长为______.60AMB33.如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.34.将矩形ABCD纸片先对折,然后展开,折痕为MN,点E是BC上一点,把矩形ABCD沿AE折叠,使B点落在MN上的点B'处,设AE与MN交于点G,若AB=B G'的长为________.35.如果把对角线与一边垂直的平行四边形成为“联想平行四边形”,现有一个“联想平_____度.行四边形”的一组邻边长为4和36.在四边形ABCD中,AD=BC,AD⊥BC.请你再添加一个条件,使四边形ABCD 是菱形.你添加的条件是_________.(写出一种即可)37.如图,平行四边形ABCD的顶点A、B、D的坐标分别是A(0,0)、B(3,0)、D(1),则顶点C的坐标是_____.38.当10a -<<. 39.点A (3,2)a b --与点B (8,)a b --关于原点对称,则a b +=__________.三、解答题40.已知:BD 是四边形ABCD 的对角线,AB BC ⊥,60C ∠=︒,1AB =,3BC =CD =(1)求ABD ∠的值.(2)求AD 的长.41.已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求AC 、BD 的长.42.解不等式组:2141123x x x x -+<+⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.43.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m 、8 m .现要将其扩建成等腰三角形,且扩充部分是以8 m 为一个直角边长的直角三角形,请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.44.如图,在正方形ABCD中,点E、F分别是边BC、CD上的点.若AB=4,BE=2,CF=1.(1)请求出AF的长;(2)求证:⊥AEF=90°.45.已知:边长为2的正方形OABC在平面直角坐标系中位于x轴上方,OA与x轴的正半轴的夹角为60°,则B点的坐标为_____.46.如图,直线y=x+2与x轴交于点A,与y轴交于点B,直线y=-2x+8与x轴交于点C,与y轴交于点D,与直线AB交于点E.(1)求⊥DBE的面积;(2)P,Q分别在AB和CD上,M,N在y轴上,当以P,Q,M,N为顶点的四边形为正方形时,直接写出点P的坐标.47.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)⊥作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;⊥作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.48.如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(1,-4),B(5,-4),C(4,-1).(1)画出ABC关于原点O成中心对称的A 1B1C1;(2)面出ABC绕点O逆时针旋转90°所得到的A 2B2C2;(3)将ABC先向右平移2个单位长度,再向上平移6个单位长度,画出第二次平移后的A 3B3C3.若A3B3C3看成是由ABC经过一次平移得到的,则这一平移的距离等于________个单位长度.49.某市出租车收费标准分白天和夜间分别计费,计费方案见下列表格及图象(其中a ,b ,c 为常数)设行驶路程为km x 时,白天的运价为1y (元),夜间的运价为2y (元).如图,折线ABCD 表示2y 与x 之间的函数关系式,线段EF 表示当02x ≤≤时,1y 与x 的函数关系式,根据图表信息,完成下列各题:(1)填空:=a ______,b =______,c =______;(2)当210x <≤时,求1y 的函数表达式;(3)若幸福小区到阳光小区的路程为12km ,小明从幸福小区乘出租车去阳光小区,白天收费比夜间收费少多少元?参考答案:1.C【分析】根据勾股定理逆定理,即可逐个判断是否构成直角三角形.【详解】解:A、222234+≠,故不能作为直角三角形;B、222+≠,故不能作为直角三角形;456C、222+=,故能作为直角三角形;6810D、222+≠,故不能作为直角三角形.51223故选:C.【点睛】本题考查直角三角形的构成条件勾股定理逆定理,属于基础题型.2.B【分析】根据五角星的特点,用周角360°除以5即可得到最小的旋转角度,从而得解.【详解】解:⊥360°÷5=72°,⊥旋转的角度为72°的整数倍,36°、72°、90°、108°中只有72°符合.故选:B.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A.是轴对称图形,也是中心对称图形,故此选项正确;B.是轴对称图形,不是中心对称图形,故此选项错误;C.不是中心对称图形,是轴对称图形,故此选项错误;D.不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.4.B【分析】根据最简二次根式的定义逐个判断即可.=,不是最简二次根式,故本选项不符合题意;【详解】解:A2B是最简二次根式,故本选项符合题意;C=D=故选:B.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键,注意:二次根式含有以下两个条件:⊥被开方数中不含有分母,⊥被开方数中每个因式的指数都小于根指数2,像这样的二次根式叫最简二次根式.5.C【详解】试题分析:A.是轴对称图形,不是中心对称图形,故本选项错误;B.是中心对称图,不是轴对称图形,故本选项错误;C.既是中心对称图又是轴对称图形,故本选项正确;D.是轴对称图形,不是中心对称图形,故本选项错误.故选C.考点:中心对称图形;轴对称图形.6.D【分析】根据中心对称图形的定义逐项判断即得答案.【详解】解:A、圆是中心对称图形,故本选项不符合题意;B、平行四边形是中心对称图形,故本选项不符合题意;C、矩形是中心对称图形,故本选项不符合题意;D、梯形不是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形的定义和常见的中心对称图形,属于基础题目,熟练掌握中心对称图形的概念是关键.7.B【分析】由16<21<25,以及算术平方根的定义,即可求解.【详解】解:⊥16<21<25,⊥45,故选B.【点睛】本题主要考查估计无理数的范围,掌握算术平方根的定义,是解题的关键. 8.C【分析】分别求出每个不等式的解集,根据不等式组的解集为x <2可得关于a 的不等式,解之可得. 【详解】解不等式434136x x --+>,得:x <2, 解不等式32x a +<x ,得:x <﹣a , ⊥不等式组的解集为x <2,⊥﹣a ≥2,解得:a ≤﹣2,故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.C【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】A 、⊥22+42≠52,⊥2,4,5不能构成直角三角形.B 、⊥,32+42≠62,⊥3,4,6不能构成直角三角形;C 、⊥62+82=102,⊥6,8,10能构成直角三角形;D 、⊥92+162≠252,⊥9,16,25不能构成直角三角形.故选C .【点睛】主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.C【详解】试题分析:115 2.522OC AB ===⨯= 考点:直角三角形斜边上的中线为斜边的一半、勾股定理点评:此题属于基础题,掌握以下方法即可解答.通过勾股定理求出AB ,再根据直角三角形斜边上的中线为斜边的一半求出OC11.A【分析】根据两个一次函数1y ,2y 的图象相互平行,结合表格可得163420m m---=--,即可求解.【详解】⊥一次函数1y ,2y 的图象相互平行,163420m m ---∴=--, 解之得13m =-. 故选:A .【点睛】本题考查了待定系数法求一次函数解析式,理解两个一次函数互相平行并列出方程是解题的关键.12.B【分析】直接利用关于原点对称点与原来的点横坐标互为相反数,纵坐标也互为相反数.【详解】解:点(﹣2,9)关于原点对称的点的坐标是:29-(,).故选B .【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.13.D【分析】根据算术平方根和平方根的定义逐项分析即可,平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.【详解】解:A 、4是16的算术平方根,原说法正确,故此选项不符合题意;B 、2是4的一个平方根,原说法正确,故此选项不符合题意;C 、0的平方根与算术平方根都是0,原说法正确,故此选项不符合题意;D 、(﹣3)2的平方根是±3,原说法错误,故此选项符合题意;故选:D .【点睛】本题考查了算术平方根和平方根,掌握算术平方根和平方根的定义是解题的关键.14.D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.C【分析】根据二次根式的性质和计算逐项判断即可.【详解】(1))4()9(-⨯-49⨯,正确;(22=2-,正确;(3)()222(2=43=12-=-⨯⨯,正确;(4)不是同类二次根式,无法合并,原式错误;故选C.【点睛】本题考查二次根式的性质,二次根式乘法与加减法,熟记性质与运算法则是解题的关键.16.A【分析】分别求出AB 的坐标,表示出OA 、OB 通过计算后整体代入即可.【详解】⊥直线y kx b =+经过点P (2,1),⊥21k b +=,⊥A (b k-,0),B (0,b ), ⊥11112122222k k b OA OB b b b b -+=-+===, 故选:A .【点睛】本题考查一次函数上的点的特征,利用整体思想求值是解题的关键.17.C【分析】根据立方根的定义解答即可.【详解】⊥⊥故选C.【点睛】本题主要考查平方根和立方根,掌握平方根和立方根的概念是解题关键.18.C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.19.D【分析】首先利用勾股定理计算AO长,再根据平行四边形的性质可得AC长.【详解】⊥AC⊥AB,AB BO=3,,⊥四边形ABCD是平行四边形,⊥AC=2AO=4,故选:D.【点睛】此题考查平行四边形的性质,解题关键是掌握平行四边形对角线互相平分.20.A【分析】根据中心对称图形的概念求解.【详解】A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.21.4【分析】根据⊥AOD=120°,可得⊥AOB=60°,则⊥AOB为等边三角形,由AC=8cm,得AB=4cm,由勾股定理得,BC=即可.【详解】解:⊥⊥AOD=120°,可得⊥AOB=60°,⊥AO=BO=CO=DO,AC=8cm,⊥AB=4cm,⊥⊥ABC=90°,⊥⊥ACB=30°,⊥BCcm),故答案为:4;【点睛】本题考查了矩形的对角线平分且相等的性质,解题的关键是注意勾股定理的熟练应用.22.48【分析】利用长方形的面积减去石子路的面积,即可求解.【详解】解:根据题意得:种植鲜花的面积为2⨯-⨯⨯=.61222648m故答案为:48【点睛】本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.23.>【分析】根据一次函数的性质,可以判断出m、n的大小关系,本题得以解决.【详解】解:⊥一次函数y=-2x+3,⊥函数y随x的增大而减小,⊥点A(-3,m)、B(2,n)都在一次函数y=-2x+3的图象上,⊥m>n,故答案为:>.【点睛】本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.24.2【分析】连接,AD BC ,交于点O ,可得ABD △是等边三角形,进而根据含30度角的直角三角形的性质,勾股定理求得AO ,根据菱形的性质求得面积即可【详解】如图,连接,AD BC ,交于点O ,四边形ABCD 是菱形,∠A =60°2,a AB AD AC BD ∴==⊥ ABD 是等边三角形AO AD ∴==,2DB AD a ==AC ∴=∴菱形的面积是22122a ⨯故答案为:2【点睛】本题考查了菱形的性质求面积,等边三角形的性质与判定,掌握菱形的性质是解题的关键.25.75【分析】根据菱形的性质先求出⊥BAC ,再由折叠知AD'=AB ,从而求出⊥AD'B 的度数.【详解】解:⊥四边形ABCD 为菱形,⊥AB=BC=CD=AD ,CD⊥AB ,⊥⊥D=120°,⊥⊥DAB=60°,⊥AC 为菱形ABCD 的对角线,⊥⊥BAC=30°,⊥将菱形沿直线AE 翻折,使点D 恰好落在对角线AC 上,⊥AD'=AD ,⊥AD'=AB , ⊥⊥AD'B=()1180BAC =752-∠, 故答案为:75.【点睛】本题是对菱形知识的考查,熟练掌握菱形的性质定理是解决本题的关键. 26.答案不唯一,如⊥E=90°【详解】试题分析:由DE⊥AC ,CE⊥BD 可得四边形CEDO 为平行四边形,再有一个角为90°即可得到结果.⊥DE⊥AC ,CE⊥BD⊥四边形CEDO 为平行四边形⊥⊥E=90°⊥平行四边形OCED 是矩形.考点:矩形的判定点评:解题的关键是熟记有两组对边分别平行的四边形为平行四边形,有一个角是直角的平行四边形矩形.27. 520 780【分析】根据两条直线平行,内错角相等,则⊥BFE=⊥DEF=26°,由三角形的外角性质得出⊥FGD 的度数;根据平角定义、折叠的性质求出⊥CFE=102°,再根据平行线的性质即可求解.【详解】解:⊥AD⊥BC ,⊥DEF=26°,⊥⊥BFE=⊥DEF=26°,⊥图b 中,⊥FGD=26°+26°=52°;图c 中,⊥CFE=180°-3×26°=102°,⊥⊥DHF=180°-102°=78°.故答案为52,78°.【点睛】本题考查了翻折变换的性质,平行线的性质,三角形的外角性质;熟练掌握翻折变换的性质和平行线的性质是解决问题的关键.28.320≤x ≤340【分析】将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可.【详解】解:因为净含量为330g±10g ,则这罐八宝粥的净含量x 少不过320g ,多不过340g ,即320≤x ≤340.故答案为:320≤x ≤340.29.(5,-1)【分析】根据“右加左减,上加下减”的规律解答即可.【详解】点M (5,2)向下平移3个单位后的点的坐标是(5,-1).故答案为(5,-1).【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.30. ()8,2 ()31,2n - 1347【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,An 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【详解】解:(1)⊥A1的坐标为(2,2)、A2的坐标为(5,2),⊥A1,A2,A3,…,An 各点的纵坐标均为2,⊥小正方形的边长为1,⊥A1,A2,A3,…,An 各点的横坐标依次大3,⊥A3(5+3,2),An (2333++++,2),即A3(8,2),An (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)由已知可得,所有直角三角形是全等的等腰直角三角形⊥直角三角形的直角边长度是1米⊥一个小正方形与一个大正方形所构成的护栏长度:1+1+1=3(米)⊥2020÷3=673…1,⊥需要小正方形673+1=674(个),大正方形673个.⊥674+673=1347(个)故答案为:1347【点睛】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.31.14【分析】先求AC 的长,即求C 的坐标,由平移性质得,平移的距离,因此可求线段BC 扫过的面积. 【详解】点A 、B 的坐标分别为()1,0、()4,0, AB 3∴=,在Rt ABC 中,BC 5=,AB 3=,AC 4∴=,()C 1,4∴,由于沿x 轴平移,点纵坐标不变,且点C 落在直线y 2x 5=-上时,42x 5=-, 9x 2∴=, ∴平移的距离为97122-=, ∴扫过面积74142=⨯=, 故答案为:14【点睛】本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.32.2或4或【分析】分⊥点M在矩形ABCD的BC边上,⊥点M在矩形ABCD的AD边上,⊥点M在矩形ABCD的CD边上三种情况,利用含30度角的直角三角形的性质、勾股定理求解即可得.AD=,AB=【详解】解:四边形ABCD是矩形,且3∴∠=∠=∠=∠=︒,3BAD ABC C D90==,CD ABBC AD==由题意,分以下三种情况:⊥如图,当点M在矩形ABCD的BC边上时,∠=︒,AMB60∴∠=︒,BAM30∴=,AM BM2∴=,AB2AB==BM=<,符合题意,解得23则4AM=;⊥如图,当点M在矩形ABCD的AD边上时,∠=︒,60AMB30ABM ∴∠=︒,2BM AM ∴=,AB ∴,2AB ==,解得23AM =<,符合题意;⊥如图,当点M 在矩形ABCD 的CD 边上时,取CD 的中点E ,连接,AE BE ,12DE CE CD ∴===AE BE ∴=AE BE AB ∴==,ABE ∴是等边三角形,60AEB AMB ∴∠=︒=∠,∴此时点M 与点E 重合,AM AE ==综上,AM 的长为2或4或故答案为:2或4或【点睛】本题考查了矩形的性质、含30度角的直角三角形的性质、勾股定理等知识点,正确分三种情况讨论是解题关键. 33.2.5##52【分析】设AD x =,则0.8,AEx 结合,90,AB AC D E 再利用勾股定理建立方程22222.420.8,x x 再解方程求解,x 再利用勾股定理求解梯子的长即可.【详解】解:设AD x =,则0.8,AE x 而 2.4,2,,90,BD CE AB AC D E 由勾股定理可得:22222.420.8,x x 整理得:1.6 1.12,x解得:0.7,x 222.40.7 6.25 2.5,AB所以梯子的长度为2.5m.故答案为:2.5【点睛】本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键. 34.1【分析】根据折叠的性质,结合勾股定理以及中线的性质即可求解;【详解】解:由折叠的性质可知,12AM BM AB AB AB '===, 12AM AB = 30AB M '∠=︒∴AG GE =,90AB E '∠=︒⊥AG GE B G '==30A B AE B M '∴∠'∠==︒60AEB '∴∠=︒B G B E GE ''==∴设2B E x AE x '==,由勾股定理,222AE AB B E ''=+即()222x x =+解得:1211x x ==-,(舍去)【点睛】本题主要考查折叠的性质、矩形的性质、勾股定理,掌握相关知识并灵活应用是解题的关键.35.30【分析】在平行四边形ABCD 中,AB ⊥AC ,AB=BC=4时,⊥B 最小,根据含30°角的直角三角形的性质即可求解.【详解】如图所示:在平行四边形ABCD中,AB⊥AC,AB=BC=4时,⊥B最小,由勾股定理得:2AC==,⊥12AC AB=,⊥在Rt⊥ABC中,⊥B=30°,故答案为:30.【点睛】本题考查了平行四边形的性质、“联想平行四边形”、勾股定理、含30°角的直角三角形的性质;熟练掌握“联想平行四边形”的性质,根据含30°角的直角三角形的性质求出⊥B=30°,是解题的关键.36.此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD⊥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,⊥在四边形ABCD中,AD=BC,AD⊥BC,⊥四边形ABCD是平行四边形,⊥当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;当AC⊥BD时,四边形ABCD是菱形.故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.37.C(5)【分析】直接利用平行四边形的性质得出AB的长,进而得出顶点C的坐标.【详解】解:⊥四边形ABCD 是平行四边形,A (0,0)、B (3,0)、⊥DC =AB =4,⊥D(1,⊥C (5.【点睛】此题主要考查了平行四边形的性质,正确得出AB 的长是解题关键.38.2a【分析】根据题意得到a-1a >0,a+1a <0,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式因为10a -<<,所以a-1a =21a a->0,a+1a =210a a +<,所以原式1a -(-a-1a )=2a . 故答案为:2a .【点睛】本题考查二次根式的化简,解题关键是熟练掌握二次根式的性质.39.4【分析】根据关于原点对称的点坐标的关系可以得到关于a 和b 的二元一次方程组,解方程组得到a 、b 的值后即可算得a+b 的值.【详解】由题意得:382a b a b -=⎧⎨-=⎩,解之得:a=3,b=1,所以a+b=4 故答案为4.【点睛】本题考查关于原点对称的点和二元一次方程组的综合应用,由关于原点对称的点坐标的关系得到关于a 和b 的二元一次方程组是解题关键.40.(1)45︒;(2【分析】(1)过点D 作DE⊥BC 于点E ,根据⊥C=60°求出CE 、DE ,再求出BE ,从而得到DE=BE ,然后求出⊥EDB=⊥EBD=45°,即可求出⊥ABD=45°;(2)过点A 作AF⊥BD 于点F ,求出BF AF ==,再求出BD ,然后求出DF ,在Rt⊥ADF 中,利用勾股定理列式计算即可得解.【详解】(1)过点D 作DE BC ⊥于点E ,⊥在Rt CDE △中,60C ∠=︒,CD =⊥30∠=︒CDE⊥CE 3DE =,⊥3BC =⊥33BE BC CE =-=,⊥3DE BE ==,⊥在Rt BDE 中,45EDB EBD ∠=∠=︒,⊥AB BC ⊥,90ABC ∠=︒,⊥45ABD ABC EBD ∠=∠-∠=︒.(2)过点A 作AF BD ⊥于点F ,在Rt ABF 中,45ABF ∠=︒,1AB =,⊥BF AF ==, ⊥在Rt BDE 中,3DE BE ==, ⊥BD =⊥DF BD BF =-==⊥Rt AFD 中,AD ==【点睛】本题考查了勾股定理,含30︒的直角三角形的性质,等腰三角形的性质,根据边的长度得到等腰直角三角形是解题的关键,难点在于作辅助线构造成直角三角形. 41.AC =6cm ,BD=【分析】根据平行四边形的性质得到BC =AD =8cm ,根据勾股定理即可得到结论.【详解】解:在▱ABCD 中⊥BC =AD =8cm ,⊥AC ⊥BC ,⊥⊥ACB =90°,⊥AC6cm ,⊥OC =12AC =3cm ,⊥OB,⊥BD=.【点睛】本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.42.14x -<≤,数轴表示见解析.【分析】先分别解得两个不等式的解集,再将不等式的解集表示在数轴上,找到公共解集即可解题 【详解】解:2141123x x x x -+<+⎧⎪⎨--≤⎪⎩①② 由⊥得:33x -<,解得1x >-,由⊥得:32(1)6x x --≤,32+26x x -≤,解得4x ≤,将不等式的解集表示在数轴上:所以不等式组的解集是14x -<≤.【点睛】本题考查解一元一次不等式组,是重要考点,难度较易,掌握相关知识是解题关键.43.作图见解析,面积为248m 或240m 或21003m 【分析】利用等腰三角形的性质分别画出符合题意的图形求出即可.【详解】如图⊥所示:()2112848m 2ABD S =⨯⨯=△; 如图⊥所示:()2110840m 2ABD S =⨯⨯=△;如图⊥所示:在Rt⊥ACD 中,AC 2+DC 2=AD 2,即82+x 2=(x+6)2, 解得:73x =, ()2171008(6)m 233ABD S =⨯⨯+=△. 【点睛】本题主要考查了应用设计与作图、勾股定理以及等腰三角形的性质等知识点的理解和掌握,能通过分类求出等腰三角形的所有情况是解此题的关键.44.(1)5;(2)证明见解析;。
(完整word版)初三数学基础训练题
练习题(一)1。
计算:()12121138121-⎪⎭⎫⎝⎛+-+++2。
16的平方根是3。
分式112+-x x 的值为零,则=x4。
等腰三角形的两边是6cm 和9cm ,则周长是5。
若直角三角形的斜边长10,那么它的重心与外心之间的距离是6.函数112++=x x y 的定义域是 ,若113)(-+=x x x f 则=)4(f 7。
相切两圆的圆心距是5cm ,其中一个圆的半径是3cm ,则另一圆的半径是8。
在一陡坡上前进40米,水平高度升高9米,则坡度=i9。
把抛物线32-=x y 向右平移2个单位后,所得抛物线顶点是10.设m 、n 是方程0122=--x x 的两个根,那么=+n m 1111。
方程38151622=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1原方程可变形关于y 的整式方程是12.如图弓形ACB 所在圆的半径是5, C 弦AB=8,则弓形的高CD 是A D B13.若正多边形的中心角是036,则这个正多边形的边数是14.分式方程01112=-+-xx x 的根是 15.分解因式=+--2221a ax x16。
数据5,-3,0,4,2的中位数是 方差是 17.不等式组 52+x ≤()23+x 的解集是21-x <3x18.已知四边形ABCD 中,AB//CD ,AB=BC 请填上一个适当的条件 使得四边形ABCD 是菱形。
19。
已知一次函数b kx y +=过点()1,1-与()4,2,则y 的值随x 的增大而 20。
两个相似三角形的周长之比是1∶9,则它们的面积之比是 21.上海市现有人口约一千七百万,用科学记数法表示是22。
在边长为2的菱形ABCD 中,045=∠B AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB ′E,那么△AB ′E 与四边形AECD 重叠部分的面积是 23。
已知222=-x x 代简求值 24。
解方程:31066=+++x x x x ()()()()()133312--+-++-x x x x x练习题(二)1。
中考数学几何图形专题训练50题(含答案)
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。
中考数学数与式真题训练50题含参考答案
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列各数中,是无理数的是( )A .17B C .2π D 2.下列各组单项式中,为同类项的是( ) A .3ab 2与3a 2bB .a 与1C .2bc 与3abcD .a 2b 与23a b3.下列运算正确的是( )A4±B .()3327-=C 2=D 3=4.下列运算正确的是( ) A .a 3+a 3=a 6B .(a 3)2=a 6C .(ab )2=ab 2D .2a 5·3a 5=5a 55.下列计算中,正确的是( ).A 3=-B 6=C 122= D 76.将数据72000000用科学记数法表示是( ) A .72×107B .0.72×109C .7.2×107D .7.2×1087 )AB C D8.在920,5.55,2π,133-,0.232333223332333,,123中,无理数的个数是( ) A .2B .3C .4D .59.当1<x<3 ) A .3 B .-3 C .1 D .-110在两个整数之间,下列结论正确的是( ) A .2-3之间B .3-4之间C .4-5之间D .5-6之间11.将-3-(+6)-(-5)+(-2)写成省略括号的和的形式是( )A .-3+6-5-2B .-3-6+5-2C .-3-6-5-2D .-3-6+5+212.下列结论中,不正确的是( ) A .-1<0<3 B .23>-2>-212C .-4>-3>-2D .-212>-3>-3.113.下列式子中,正确的是( )A8k =-BC )3x >D 1=-14.在31x +,3m +,23a b -,2a ,0,12-中,单项式的个数( )A .2B .3C .4D .515.代数式243x x -+的最小值为( ). A .1-B .0C .3D .516.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( ) A .10B .20C .40D .8017.若x 2+mxy +4y 2是一个完全平方式,那么m 的值是( ) A .±4B .﹣2C .±2D .418.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( ) A .71.4410⨯ B .70.14410⨯C .81.4410⨯D .80.14410⨯19.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D二、填空题 20.函数35y x =-中,自变量x 的取值范围是________. 21.在实数范围内因式分解:222ax ay -=_____. 22.把多项式24a -分解因式的结果是_____.23.14的算术平方根是_________.24.用配方法将方程2210x x +-=变为2()x a b +=的形式,则a b +=______. 25.化简2232a b a b a b--=-+__________.26.若2a b +=,3a b -=-,则22a b -=_____. 27.多项式2412xy xyz +的公因式是______. 28.计算:37-=__________.29_____.30.如图,显示的是新冠肺炎全国(含港澳台)截至4月27日20时30分,现存确诊人数数据统计结果,则昨日(4月26日)现存确诊人数是__________人.31.一种细菌半径是1.91×10-5米,用小数表示为________________米.3233.在实数范围内分解因式:-1+9a 4=____________________。
中考数学专题复习基础训练及答案(49
基础知识反馈卡·1.1时间:15分钟 满分:50分一、选择题(每小题4分,共24分)1.-4的倒数是( )A .4B .-4 C.14 D .-142.下面四个数中,负数是( )A .-5B .0C .0.23D .63.计算-(-5)的结果是( )A .5B .-5 C.15 D .-154.数轴上的点A 到原点的距离是3,则点A 表示的数为( )A .3或-3B .3C .-3D .6或-65.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( )A .4.6×108B .46×108C .4.6×109D .0.46×10106.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( )A .-500元B .-237元C .237元D .500元二、填空题(每小题4分,共12分)7.计算(-3)2=________.8.13 =______;-14的相反数是______. 9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”).图J1-1-1答题卡7.__________8.__________ __________9.__________三、解答题(共14分)10.计算:︱-2︱+(2+1)0--113⎛⎫⎪⎝⎭+tan60°.基础知识反馈卡·1.2时间:15分钟满分:50分一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)结果为( )A.2x-3 B.2x+9 C.8x-3 D.18x-32.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为( ) A.30元 B.60元 C.120元 D.150元3.下列运算不正确的是( )A.-(a-b)=-a+b B.a2·a3=a6C.a2-2ab+b2=(a-b)2 D.3a-2a=a二、填空题(每小题4分,共24分)4.当a=2时,代数式3a-1的值是________.5.“a的5倍与3的和”用代数式表示是____________.6.当x=1时,代数式x+2的值是__________.7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为____________.输入x―→x2―→+2―→输出图J1-2-19.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.图J1-2-2答题卡4.____________5.____________6.____________7.____________ 8.____________ 9.____________三、解答题(共14分)10.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中x=2+1.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.计算2x+x的结果是( )A.3x2 B.2x C.3x D.2x22.x3表示( )A.3x B.x+x+x C.x·x·x D.x+3 3.化简-2a+(2a-1)的结果是( ) A.-4a-1 B.4a-1 C.1 D.-1 4.下列不是同类项的是( )A.0与12B.5x与2yC.-14a2b与3a2b D.-2x2y2与12x2y25.下列运算正确的是( )A.(-2)0=1 B.(-2)-1=2 C.4=±2 D.24×22=28二、填空题(每小题4分,共12分)6.单项式-x3y3的次数是________,系数是________.7.计算:3-2=__________.8.计算(ab)2的结果是________.答题卡题号1234 5答案8.__________三、解答题(共18分)9.先化简,再求值:3(x-1)-(x-5),其中x=2.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.把多项式x2-4x+4分解因式,所得结果是( )A.x(x-4)+4 B.(x-2)(x+2)C.(x-2)2 D.(x+2)22.下列因式分解错误的是( )A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.利用因式分解进行简便计算:7×9+4×9-9,正确的是( )A.9×(7+4)=9×11=99 B.9×(7+4-1)=9×10=90 C.9×(7+4+1)=9×12=108 D.9×(7+4-9)=9×2=184.下列各等式中,是分解因式的是( )A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)C.10x2-5x=5x(2x-1)D.x2-16x+3x=(x+4)(x-4)+3x5.如果x2+2(m-1)x+9是完全平方式,那么m的结果正确的是( )A.4 B.4或2C.-2 D.4或-2二、填空题(每小题4分,共16分)6.因式分解:a2+2a+1=______________.7.因式分解:m2-mn=____________.8.因式分解:x3-x=____________.9.若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k 为常数,则m+k=____________.答题卡6.__________7.__________8.__________ 9.__________三、解答题(共14分)10.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.基础知识反馈卡·1.3.3时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.若分式32x -1有意义,则x 的取值围是( ) A .x ≠12 B .x ≠-12 C .x >12 D .x >-122.计算1x -1-x x -1的结果为( ) A .1 B .2 C .-1 D .-23.化简a -1a ÷a -1a2的结果是( ) A.1a B .a C .a -1 D.1a -14.化简1x -1x -1可得( ) A.1x 2-x B .-1x 2-x C.2x +1x 2-x D.2x -1x 2-x二、填空题(每小题4分,共24分)5.化简:aa -b -b a -b=__________.6.化简x x -12-1x -12的结果是____________. 7.若分式x +12x -2的值为0,那么x 的值为__________. 8.若分式-12a -3的值为正,则a 的取值围是__________. 9.化简x x -12-1x -1的结果是__________. 10.化简2x 2-1÷1x -1的结果是__________.答题卡7.____________8.____________ 9.____________10.____________三、解答题(共10分) 11.先化简,再求值:21211a a a -⎛⎫- ⎪+-⎝⎭÷1a +1,其中a =3+1.基础知识反馈卡·1.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.3最接近的整数是( )A .0B .2C .4D .52.|-9|的平方根是( )A .81B .±3 C.3 D .-33.下列各式中,正确的是( )A.-32=-3 B .-32=-3 C.±32=±3 D.32=±34.对任意实数a ,下列等式一定成立的是() A.a 2=a B.a 2=-aC.a 2=±aD.a 2=|a |5.下列二次根式中,最简二次根式( )A.15 B.0.5C. 5D.50二、填空题(每小题4分,共12分)6.4的算术平方根是__________.7.实数27的立方根是________.8.计算:12-3=________.答题卡题号 1 2 3 4 5答案8.__________三、解答题(每小题9分,共18分)9.计算:|2 2-3|-212-⎛⎫- ⎪⎝⎭+18.10.计算:212-⎛⎫ ⎪⎝⎭-2cos45°+(3.14-π)0+12 8+(-2)3.基础知识反馈卡·2.1.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.方程5x -2=12的解是( ) A .x =-13 B .x =13C .x =12D .x =2 2.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x =13B .2(x +1)+3x =13C .2x +3(x +1)=13D .2x +3(x -1)=133.二元一次方程组20x y x y +=⎧⎨-=⎩,的解是( ) A.02x y =⎧⎨=⎩, B.11x y =⎧⎨=⎩, C.20x y =⎧⎨=⎩, D.11x y =-⎧⎨=-⎩, 4.有下列各组数:①22x y =⎧⎨=⎩,;②21x y =⎧⎨=⎩,;③22x y =⎧⎨=-⎩,;④16x y =⎧⎨=⎩,,其中是方程4x +y =10的解的有( )A .1个B .2个C .3个D .4个5.明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2 900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程组是( ) A. 14250802900x y x y ⎧+=⎪⎨⎪+=⎩, B.158********x y x y +=⎧⎨+=⎩, C. 14802502900x y x y ⎧+=⎪⎨⎪+=⎩, D.152********x y x y +=⎧⎨+=⎩, 二、填空题(每小题4分,共16分)6.方程3x -6=0的解为__________.7.已知3是关于x 的方程3x -2a =5的解,则a 的值为________.8.在x +3y =3中,若用x 表示y ,则y =______;若用y 表示x ,则x =______.9.对二元一次方程2(5-x )-3(y -2)=10,当x =0时,y =__________;当y =0时,x =________.答题卡题号 1 2 3 4 5答案8.__________ __________9.__________ __________三、解答题(共14分)10.解方程组: 281.x y x y +=⎧⎨-=⎩,基础知识反馈卡·2.1.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.分式方程2x -42+x=0的根是( ) A .x =-2 B .x =0 C .x =2 D .无实根2.分式方程12x 2-9-2x -3=1x +3的解为( ) A .3 B .-3 C .无解 D .3或-33.分式方程x x -3=x +1x -1的解为( ) A .x =1 B .x =-1 C .x =3 D .x =-34.有两块面积相同的试验田,分别收获蔬菜900 kg 和1 500 kg.已知第一块试验田每亩收获蔬菜比第二块少300 kg ,求第一块试验田每亩收获蔬菜多少千克?设第一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A.900x +300=1 500x B.900x =1 500x -300C.900x =1 500x +300D.900x -300=1 500x5.解分式方程1x -1=3x -1x +2的结果为( ) A .1 B .-1 C .-2 D .无解二、填空题(每小题4分,共16分)6.方程xx +2=3的解是________.7.方程1x -1=4x 2-1的解是________. 8.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =________________________________________________________________________.9.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是________.答题卡题号 1 2 3 4 5答案8.__________ 9.__________三、解答题(共14分)10.解方程:3x -2=2x +1.基础知识反馈卡·2.1.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m的值是( )A .-3B .3C .0D .0或32.已知一元二次方程x 2-4x +3=0的两根为x 1,x 2, 则x 1·x 2的值为( )A .4B .3C .-4D .-33.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5 D.-1+524.用配方法解一元二次方程x 2+4x =5时,此方程可变形为( )A .(x +2)2=1B .(x -2)2=1C .(x +2)2=9D .(x -2)2=95.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x .根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .100(1+x )2=121D .100(1-x )2=121二、填空题(每小题4分,共16分)6.一元二次方程3x 2-12=0的解为__________.7.方程x 2-5x =0的解是__________.8.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2+ x 1·x 2的值是________.9.关于x 的一元二次方程kx 2-x +1=0有两个不相等的实数根,则k 的取值围是_____________.答题卡8.__________ 9.__________三、解答题(共14分)10.滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?基础知识反馈卡·2.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若a <b ,则下列各式中一定成立的( )A .a -1<b -1 B.a 3>b 3C .-a <-bD .ac <bc2.不等式x -1>0的解集是( )A .x >1B .x <1C .x >-1D .x <-13.不等式10,324x x x ->⎧⎨>-⎩的解集是( )A .x <1B .x >-4C .-4<x <1D .x >14.如图J2-2-1,数轴上表示的是下列哪个不等式组的解集( )图J2-2-1A.5,3x x ≥-⎧⎨>-⎩B.5,3x x >-⎧⎨≥-⎩C.5,3x x <⎧⎨<-⎩D.5,3x x <⎧⎨>-⎩5.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .30x +50>280B .30x -50≥280C .30x -50≤280 D.30x +50≥280二、填空题(每小题4分,共16分)6.若不等式ax |a -1|>2是一元一次不等式,则a =______________.7.把不等式组的解集表示在数轴上,如图J2-2-2,那么这个不等式组的解集是______________.图J2-2-28.已知不等式组321,0x x a +≥⎧⎨-<⎩无解,则实数a 的取值围是______________.9.不等式组10,240x x -≤⎧⎨+>⎩的整数解是__________. 答题卡 题号 1 2 3 4 5答案8.__________ 9.__________三、解答题(共14分)10.解不等式组34,26x x +>⎧⎨<⎩并把解集在如图J2-2-3的数轴上表示出来.图J2-2-3基础知识反馈卡·3.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.点M (-2,1)关于y 轴对称的点的坐标是( )A .(-2,-1)B .(2,1)C .(2,-1)D .(1,-2)2.在平面直角坐标系中,点M (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限4.点M (-3,2)到y 轴的距离是( )A .3B .2C .3或2D .-35.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( )A.(2,3) B.(2,-1) C.(4,1) D.(0,1) 二、填空题(每小题4分,共16分)6.已知函数y=2x,当x=2时,y的值是________.7.如果点P(2,y)在第四象限,那么y的取值围是________.8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y(单位:元)与购买这种商品的件数x(单位:件)之间的关系式为__________________.9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(-1,0),则点E的坐标为________.图J3-1-1答题卡题号1234 5答案8.________________ 9.________________三、解答题(共14分)10.在图J3-1-2的平面直角坐标系中,描出点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,2),并回答下列问题:(1)点A到原点O的距离是多少?(2)将点C向x轴的负方向平移6个单位,它与哪个点重合?(3)点B分别到x、y轴的距离是多少?(4)连接CE,则直线CE与y轴是什么关系?图J3-1-2基础知识反馈卡·3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.直线y=x-1的图象经过象限是( )A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2.一次函数y=6x+1的图象不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知一次函数y=3x+b的图象经过第一、二、三象限,则b的值可以是( )A.-2 B.-1C.0 D.24.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是( )5.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A.(1,2) B.(-1,-2)C.(2,1) D.(1,-2)二、填空题(每小题4分,共16分)6.写出一个具体的y随x的增大而减小的一次函数解析式________.7.已知一次函数y=2x+1,则y随x的增大而________(填“增大”或“减小”).8.(1)若一次函数y=ax+b的图象经过第一、二、三象限,则a____0,b____0;(2)若一次函数y=ax+b的图象经过二、三、四象限,则a____0,b____0.9.将直线y=2x-4向上平移5个单位后,所得直线的表达式是____________.答题卡题号1234 5答案6.________8.(1)______ ______ (2)______ ______9.____________三、解答题(共14分)10.已知直线l1∶y1=-4x+5和直线l2∶y2=12x-4.(1)求两条直线l1和l2的交点坐标,并判断交点落在哪一个象限;(2)在同一个坐标系画出两条直线的大致位置,然后利用图象求出不等式-4x+5>12x-4的解.基础知识反馈卡·3.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若双曲线y =2k -1x 的图象经过第二、四象限,则k 的取值围是( )A .k >12B .k <12C .k =12D .不存在 2.下列各点中,在函数y =-6x图象上的是( ) A .(-2,-4) B .(2,3) C .(-1,6) D.1,32⎛⎫- ⎪⎝⎭3.对于反比例函数y =1x,下列说确的是( ) A .图象经过点(1,-1) B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.已知如图J3-3-1,A 是反比例函数y =k x的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是2,则k 的值是( )图J3-3-1A .2B .-2C .4D .-45.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )二、填空题(每小题4分,共16分)6.如图J3-3-2,已知点C为反比例函数y=-6x上的一点,过点C向坐标轴引垂线,垂足分别为A,B,那么四边形AOBC的面积为____________.图J3-3-2 图J3-3-3 图J3-3-47.如图J3-3-3,点P是反比例函数y=-4x上一点,PD⊥x轴,垂足为D,则S△POD=__________.8.(2012年)若反比例函数的图象经过点P(-1,4),则它的函数关系是________.9.如图J3-3-4所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为_______________.答题卡题号1234 5答案8.__________ 9.__________三、解答题(共14分)10.如图J3-3-5,已知直线y=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y=kx(k≠0)的图象上.图J3-3-5(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.基础知识反馈卡·3.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.抛物线y =-(x +2)2+3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位3.二次函数y =x 2-2x -3的图象如图J3-4-1.当y >0时,自变量x 的取值围是( )A .-1<x <3B .x <-1C .x >3D .x <-1或x >3图J3-4-1图J3-4-24.如图J3-4-2,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A .1B .2C .3D .45.下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是( )A.y=(x-2)2+1 B.y=(x+2)2+1C.y=(x-2)2-3 D.y=(x+2)2-3二、填空题(每小题4分,共16分)6.将二次函数y=x2-4x+5化为y=(x-h)2+k的形式,则y=__________.7.将抛物线y=x2+1向下平移2个单位,则此时抛物线的解析式是____________.8.若二次函数y=-x2+2x+k的部分图象如图J3-4-3,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=________.图J3-4-39.y=2x2-bx+3的对称轴是直线x=1,则b的值为________.答题卡题号1234 5答案8.__________ 9.__________三、解答题(共14分)10.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),求该抛物线的表达式.基础知识反馈卡·4.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个图形中,∠1与∠2是对顶角的图形为( )2.如图J4-1-1,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80° B.100° C.120° D.150°图J4-1-1 图J4-1-23.一只因损坏而倾斜的椅子,从背后看到的形状如图J4-1-2,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A.75° B.115° C.65° D.105°4.如图J4-1-3,AB∥CD,∠C=65°,CE⊥BE,垂足为点E,则∠B的度数为( )A.15° B.25° C.35° D.75°图J4-1-3 图J4-1-45.将一直角三角板与两边平行的纸条如图J4-1-4所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共16分)6.线段AB=4 cm,在线段AB上截取BC=1 cm,则AC=__________cm.7.有如下命题:①三角形三个角的和等于180°;②两直线平行,同位角相等;③矩形的对角线相等;④相等的角是对顶角.其中属于假命题的有__________.8.如图J4-1-5,请填写一个适当的条件:____________,使得DE∥AB.图J4-1-5 图J4-1-69.如图J4-1-6,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________度.答题卡题号1234 5答案8.____________ 9.____________三、解答题(共14分)10.如图J4-1-7,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.图J4-1-7基础知识反馈卡·4.2.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列各组线段能组成三角形的一组是( )A.5 cm,7 cm,12 cm B.6 cm,8 cm,10 cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,8 cm2.三角形的下列线段中能将三角形的面积分成相等两部分的是( )A.中线 B.角平分线C.高 D.中位线3.如图J4-2-1,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF( )图J4-2-1A.BC=EF B.∠A=∠DC.AC∥DF D.AC=DF4.在△ABC部取一点P,使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线的交点( )A.高 B.角平分线C.中线 D.垂直平分线5.下列说法中不正确的是( )A.全等三角形一定能重合 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等二、填空题(每小题4分,共16分)6.如图J4-2-2,要测量的A,C两点被池塘隔开,师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E,F,量得E,F两点间的距离等于23米,则A,C两点间的距离为__________米.图J4-2-27.如图J4-2-3,△ABC≌△ABD,且△ABC的周长为12,若AC=4,AB=5,则BD=________.图J4-2-3 图J4-2-4 图J4-2-58.将一副三角尺按如图J4-2-4所示放置,则∠1=________度.9.已知:如图J4-2-5,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________°.答题卡题号1234 5答案8.____________ 9.____________三、解答题(共14分)10.如图J4-2-6,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.图J4-2-6基础知识反馈卡·4.2.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.有一个角是60°的等腰三角形是( )A.钝角三角形 B.等边三角形C.直角三角形 D.以上都不是2.下列关于等腰三角形的性质叙述错误的是( )A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形3.如图J4-2-7,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )A.3 cm B.4 cm C.1.5 cm D.2 cm图J4-2-7 图J4-2-84.如图J4-2-8,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC为( )A.55° B.65° C.75° D.85°5.边长为4的正三角形的高为( )A.2 B.4 C. 3 D.2 3二、填空题(每小题4分,共16分)6.如图J4-2-9,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A=________度,∠B=________度.图J4-2-97.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是____________.8.已知等腰三角形的一个角为80°,则另两个角的度数是______________.9.如图J4-2-10,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF=________度.图J4-2-10答题卡题号1234 5答案6.____________ ____________7.____________8.____________ 9.____________三、解答题(共14分)10.如图J4-2-11,已知在直角三角形ABC中,∠C=90°,BD平分∠ABC且交AC于点D,∠BAC=30°.(1)求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BPA的度数.图J4-2-11基础知识反馈卡·4.3.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.平行四边形一边长是6厘米,周长是28厘米,则这条边的邻边长为( )A.22厘米 B.16厘米 C.11厘米D.8厘米2.如图J4-3-1所示,在□ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )图J4-3-1A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD3.若一个多边形的角和等于900°,则这个多边形的边数是( )A.6 B.7 C.8 D.94.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )A B C D5.下列条件中,不能判别四边形是平行四边形的是( )A.一组对边平行且相等 B.两组对边分别相等C.两条对角线垂直且相等 D.两条对角线互相平分二、填空题(每小题4分,共16分)6.五边形的外角和等于________度.7.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是________.8.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是________.9.如果一个多边形的角和与外角和相等,则此多边形是________.答题卡题号1234 5答案8.____________ 9.____________三、解答题(共14分)10.如图J4-3-2,已知E,F是四边形ABCD的对角线AC 上的两点,AE=CF,BE=DF,BE∥DF.求证:四边形ABCD是平行四边形.图J4-3-2基础知识反馈卡·4.3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.矩形,菱形,正方形都具有的性质是( )A.对角线相等 B.对角线互相平分C.对角线平分一组对角 D.对角线互相垂直2.如图J4-3-3,菱形ABCD中,AC=8,BD=6,则菱形的周长是( )A.20 B.24 C.28 D.40图J4-3-3 图J4-3-4图J4-3-53.如图J4-3-4,把矩形ABCD沿EF对折,若∠1=60°,则∠AEF等于( )A.115°B.130°C.120°D.65°4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CD B.AD=BC C.AB=BC D.AC =BD5.如图J4-3-5,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=4 cm,则AC的长为( ) A.4 cm B.8 cm C.12 cm D.4 5 cm二、填空题(每小题4分,共16分)6.如图J4-3-6,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=5,则图中阴影部分的面积为________.图J4-3-67.如图J4-3-7,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是________cm2.图J4-3-7 图J4-3-8 8.如图J4-3-8所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明□ABCD是矩形的有____________(填写序号).9.已知四边形ABCD中,∠A=∠B=∠C=90°,添加条件_____________________,此四边形即为正方形(填一个即可).答题卡题号1234 5答案8.____________ 9.____________三、解答题(共14分)10.如图J4-3-9,矩形ABCD中,已知对角线AC与BD交于点O,△OBC的周长为16,其中BC=7,求矩形对角线AC的长.图J4-3-9基础知识反馈卡·4.3.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列说确的是( )A.平行四边形是一种特殊的梯形B.等腰梯形的两底角相等C.等腰梯形可能是直角梯形D.有两邻角相等的梯形是等腰梯形2.如图J4-3-10,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是( )A.40° B.45° C.50° D.60°图J4-3-10 图J4-3-113.下面命题错误的是( )A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形4.有一等腰梯形纸片ABCD(如图J4-3-11),AD∥BC,AD =1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是( )A.直角三角形 B.矩形C.平行四边形 D.正方形5.如图J4-3-12,等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,则图中相等的线段共有( )图J4-3-12A.2对 B.3对 C.4对 D.5对二、填空题(每小题4分,共16分)6.如图J4-3-13,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.图J4-3-137.等腰梯形的中位线长是15 ,一条对角线平分一个60°的底角,则梯形的周长为______.8.如图J4-3-14,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是________.图J4-3-149.顺次连接等腰梯形四边中点所得的四边形是________形.答题卡题号1234 5答案8.____________ 9.____________三、解答题(共14分)10.已知:如图J4-3-15,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.图J4-3-15基础知识反馈卡·5.1时间:15分钟满分:50分一、选择题(每小题4分,共16分)1.如图J5-1-1,点A,B,C都在⊙O上,若∠AOB=40°,则∠C=( )A.20° B.40° C.50° D.80°图J5-1-1 图J5-1-2 图J5-1-3 图J5-1-42.如图J5-1-2,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为( )A.70° B.35° C.30° D.20°3.如图J5-1-3,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为( )A. 2 B.2 2 C.22D.624.如图J5-1-4,∠AOB=100°,点C在⊙O上,且点C 不与点A,B重合,则∠ACB的度数为( )A.50° B.80°或50° C.130° D.50°或130°二、填空题(每小题4分,共20分)5.如图J5-1-5,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A,B两点,点P在优弧AB上,且与点A,B不重合,连接PA,PB,则∠APB的大小为 ________度.图J5-1-5 图J5-1-6 图J5-1-76.如图J5-1-6,AB是⊙O的弦,OC⊥AB于点C,若AB=8 cm,OC=3 cm,则⊙O的半径为________cm.7.如图J5-1-7,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=______.8.如图J5-1-8,在⊙O的接四边形ABCD中,若∠BCD=110°,则∠BOD=______度.图J5-1-8 图J5-1-9 9.如图J5-1-9,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,若BD=BC,则∠D=________度.答题卡题号123 4答案5.________8.________ 9.________三、解答题(共14分)10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图J5-1-10,污水水面宽度为60 cm,水面至管道顶距离为10 cm,问:修理人员应准备径多大的管道?图J5-1-10基础知识反馈卡·5.2时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是( )A B CD2.如图J5-2-1,四边形ABCD接于⊙O,若∠C=30°,则∠A的度数为( )图J5-2-1A.36°B.56°C.72°D.144°3.若线段OA=3,⊙O的半径为5,则点A与⊙O的位置关系为( )A.点在圆外 B.点在圆上 C.点在圆 D.不能确定4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( )A.相切 B.相离 C.相离或相切 D.相切或相交5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )A.与x轴相交,与y轴相切 B.与x轴相离,与y 轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y 轴相离6.如图J5-2-2,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )图J5-2-2A.3 cmB.4 cmC.6 cmD.8 cm二、填空题(每小题4分,共12分)7.如图J5-2-3,PA,PB是⊙O是切线,A,B为切点,AC 是⊙O的直径,若∠BAC=25°,则∠P=________度.图J5-2-3 图J5-2-4 图J5-2-5 8.如图J5-2-4,在Rt△ABC中,∠C=90°,AC=6,BC =8,则△ABC的切圆半径r=________.9.如图J5-2-5,点P是⊙O外一点,PA是⊙O的切线,切点为A,⊙O的半径OA=2 cm,∠P=30°,则PO=______cm.答题卡题号12345 6答案三、解答题(共14分)10.如图J5-2-6,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD;(2)△ABC≌△ODB.图J5-2-6基础知识反馈卡·5.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.在半径为12的⊙O中,60°圆心角所对的弧长是( )A.6π B.4π C.2π D.π2.一条弦分圆周为5∶4两部分,则这条弦所对的圆周角的度数为( )A.80° B.100° C.80°或100° D.以上均不正确3.如图J5-3-1,半径为1的四个圆两两相切,则图中阴影部分的面积为( )A.4-π B.8-π C.2(4-π) D.4-2π图J5-3-1 图J5-3-2 图J5-3-34.如图J5-2-2是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )A.60° B.90° C.120° D.180°5.如图J5-3-3,PA,PB是⊙O的切线,切点是A,B,已知∠P=60°,OA=3,那么∠AOB所对的弧的长度为( ) A.6π B.5π C.3π D.2π二、填空题(每小题4分,共16分)6.圆锥底面半径为12,母线长为2,它的侧面展开图的圆心角是______.7.正多边形的一个角为120°,则该多边形的边数为________.8.已知扇形的半径为3 cm,扇形的弧长为π cm,则该扇形的面积是________cm2,扇形的圆心角为________度.9.如图J5-3-4,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是________.图J5-3-4答题卡题号1234 5答案6.________8.________ ________ 9.________三、解答题(共14分)10.如图J5-3-5,⊙O的半径为1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).图J5-3-5基础知识反馈卡·6.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列图形中,是轴对称图形的有( )①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2个B.3个C.4个D.5个2.下列几种运动属于平移的有( )①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车.A.2种 B.3种C.4种 D.5种3.如图J6-1-1,特别行政区区徽是由五个同样的花瓣组成的,它可以看作是由其中一个花瓣通过怎样的变化而得到的( )A.平移 B.对称C.旋转 D.先平移,后旋转图J6-1-1 图J6-1-24.如图J6-1-2,△ABC与△A′B′C′关于点O成中心对称,下列结论不成立的是( )A.OC=OC′ B.OA=OA′C.BC=B′C′ D.∠ABC=∠A′C′B′5.下列既是轴对称图形又是中心对称图形的是( )A B C D二、填空题(每小题4分,共16分)6.正五角星的对称轴的条数是________.7.如图J6-1-3,△ABC按逆时针方向旋转一定的角度后到达△AB′C′的位置,则旋转中心是点________,旋转角度是________度.图J6-1-3 图J6-1-4 图J6-1-5 8.如图J6-1-4,△ABC中,AB=AC=14 cm,D是AB的中。
中考数学数与式专题知识训练50题-含答案
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为( )A .35.510⨯B .35510⨯C .45.510⨯D .55.510⨯2.2021年“国庆”假期,某景点共接待游客77600人次,77600用科学记数法表示为( ) A .277610⨯B .47.7610⨯C .377.610⨯D .40.77610⨯3.比﹣2大5的数是( ) A .﹣7 B .﹣3C .3D .74.“1625的算术平方根是45”,用式子表示为( )A .±45B ±45C 45D .45 5.2021年5月11日,第七次全国人口普查主要数据结果公布,数据显示,全国人口共141178万人,比2010年增加7206万人,数据“7206万”用科学记数法表示正确的是( ) A .0.7206×108B .7.206×108C .7.206×107D .72.06×1076.下列根式中,属于最简二次根式的是( ).A B C D 7.下列运算中,错误的是( )A =B 1697=-=C .D 3=8.下列各式中,正确的是( )AB .C D .9a 能取到的最小值为( ) A .0B .1C .2D .2.510.(2x +1)(2x -1)等于( ) A .4x 2-1B .2x 2-1C .x 2-1D .2x 2+111.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列选项正确的是( )A .c a >B .c a b a b c -=-+-C .0a b c ++=D .a b a c b c -=---12.下列式子一定是二次根式的是( )AB C D 13.在实数0、π、2273.1010010001中,无理数的个数有( ) A .1个B .2个C .3个D .4个14.如图,被阴影覆盖的可能是下面哪一个数( )AB C D .以上都不对15.若x <0,1x x-=1x x +的值为( )A .﹣3B .﹣1C .1D .316.如果()2210x a x x b +=-+,那么a.b 的值分别为( ) A .2;4B .5;-25C .-2;25D .-5;2517.下列运算正确的是( ) A .325a a a +=B .236a a a ⋅=C .23356()a b a b =D .236()a a =18.下列说法:①相反数等于本身的数只有0;①若||||||a b a b ,则0ab <;①一列数:-2,4,-8,16,-32…按规律.第n 个数为2n -;①|8||2|12x x -++=,则10x =.其中正确的说法的个数是( )A .1B .2C .3D .419.数轴上点A 表示的数为B A 、B 之间表示整数的点有( ) A .21个B .20个C .19个D .18个20.已知.(a +b )2=9,ab = -112,则a 2+b2的值等于( )A .84B .78C .12D .6二、填空题21.某餐厅3月份营业额是2万元,税率是5%,应缴纳营业税( )元. 22.将0.000 001 22用科学记数法表示为___.238,则x 的值是________________. 24.计算:322m m m-+=_______. 25.已知2x y -=,则221122x xy y -+=___________.26.据不完全统计,今年“十一”黄金周期间,某风景区累计接待游客138.3万人次,138.3万用科学记数法可表示为__________. 27.已知x =2,|y |=5,且x >y ,则x +y =_________.28.一潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为________米. 29.化简:22816x x +=-______. 30.(-a 3b )2=________.31.在计算:“11103--”时,甲同学的做法如下:在上面的甲同学的计算过程中,开始出错的步骤是______(写出错误所在行.....的序号),这一步依据的运算法则应当:同号两数相加,_____________________________. 32.多项式2x 3y +与多项式x y -的差是______.33.若 a b ,且 a 、b 是两个连续的整数,则 ab =___________.34.12的相反数是_____;122-的倒数是_____. 35.已知,a b 互为相反数,,c d 互为倒数,21,||2x y ==,则19992()a b x cd y ++--的值 ______________36.计算:30(2)(15)π---= ______________ 37.4(3)-的底数是________.38.数据0.0005用科学记数法表示为______.39.很多代数公式都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式等.【提出问题】如何用表示几何图形面积的方法计算:3333123n ++++=?【规律探究】观察下面表示几何图形面积的方法:【解决问题】请用上面表示几何图形面积的方法写出3333123n ++++=______=______(用含n 的代数式表示); 【拓展应用】根据以上结论,计算:3333246(2)n ++++的结果为________.40.已知下列各数: 3.14-,24,27+,172-,516,0.01-,0其中整数有____个.三、解答题 41.计算(1)(2x 2y )3•(-3xy 2)÷6xy(2)2a 2(3a 2-2a +1)+4a 342.计算:2020(1)|1-+43.(﹣8)57×0.12555. 44.计算:(1)12(18)(7)15--+--; (2)11112462⎛⎫+-⨯ ⎪⎝⎭45.计算:[](2)(3)5(3)(71)2-⨯----+--÷.46.先化简,再求值:23(1)(1)(1)x x x x x +-+-+,其中x=2.47.计算: (). 48.计算:(1)-12019+(-3)3+①-5①÷15(2)(-24)×(16+114-0.75) 49.先化简,再求值:22151939x x x x x x --⎛⎫÷- ⎪---⎝⎭,其中2sin601x =︒+. 50.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1. ①(a ﹣b )2≥0,(b ﹣1)2≥0,①当a =b =1时,代数式M 有最小值1. 请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ; (2)若代数式M =214a +2a +1,求M 的最小值;(3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值.参考答案:1.C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:55000=5.5×104. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.B【分析】根据科学记数法的定义即可得. 【详解】解:4776007.7610=⨯, 故选:B .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 3.C【分析】直接利用有理数的加法运算法则计算得出答案. 【详解】解:比﹣2大5的数是:﹣2+5=3. 故选:C .【点评】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键. 4.C【详解】1625的算术平方根是45, 45. 故选C. 5.C【分析】根据科学记数法的表示形式即可完成. 【详解】7206万=72060000=7.206×107 故选:C【点睛】本题考查了科学记数法,用科学记数法表示绝对值大于1的数,其形式为10n a ⨯,其中110a ≤<,n 为正整数,且n 是原数的整数数位与1的差.6.D【分析】根据最简二次根式的定义:①被开方数不含有分母,①被开方数不含有能开得尽方的因数或因式,逐个判断即可.【详解】A,不是最简二次根式,故本选项不符合题意;B =C =,不是最简二次根式,故本选项不符合题意;D 故选:D【点睛】本题考查了最简二次根式,熟记最简二次根式的定义是解此题的关键. 7.B【分析】按照二次根式的加减乘除运算法则计算.【详解】A =B =C 、D 3,正确; 故选:B.【点睛】本题考查二次根式的运算法则,熟练掌握基本法则是关键. 8.C【分析】根据平方根和算术平方根的定义解答即可.【详解】解:A 2=,原计算错误,不符合题意;B 、,原计算错误,不符合题意;C ==3,正确,符合题意;D ==3,原计算错误,不符合题意;故选:C .【点睛】本题考查平方根和算术平方根,熟练掌握平方根和算术平方根的定义是解题关键. 9.C【分析】根据二次根式的定义求出a 的范围,再得出答案即可.a-2≥0, 即a≥2,所以a 能取到的最小值是2, 故选C .【点睛】本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键. 10.A【详解】根据平方差公式可得:(2x +1)(2x -1)=4x 2-1,故选A. 11.D【分析】先根据数轴上a ,b ,c 的位置关系得出303a b c <-<<<<,再结合各个选项逐一分析即可得出答案.【详解】解:由数轴可知:303a b c <-<<<<c a ∴<,A 选项错误,不符合题意; c a c b b a -=-+-,B 选项错误,不符合题意;根据数轴关系不能得出0a b c ++=,C 选项错误,不符合题意;a b b a -=-,a c c a -=-,b c c b -=-a cbc ∴--- ()c a c b =--- c a c b =--+b a a b =-=-,D 选项正确,符合题意;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上的点离原点的距离判断绝对值的大小.也考查了整式的加减运算. 12.D【分析】根据二次根式有意义的条件:被开方数是非负数,据此解题.【详解】解:A ,当2x 10-+<时,二次根式无意义,故A 不正确; B ,当x 0<时,二次根式无意义,故B 不正确;C ,当2x 10-<时,二次根式无意义,故C 不正确;D ,2x 10+>D 正确,故选:D .【点睛】本题考查二次根式的定义,涉及二次根式有意义的条件,是基础考点,难度较易,掌握相关知识是解题关键. 13.B【详解】无理数是无限不循环小数,根据无理数的定义可得在实数0、π、2273.1010010001中,π故选B. 14.B【分析】根据图中阴影部分可知,这个无理数在1到3之间,结合选项进行排除即可.【详解】解:①21-<-,23<,3>,① 故选:B .【点睛】本题主要考查的是估算无理数的大小,根据平方根的定义,对选项中的无理数进行正确的估算是解决本题的关键. 15.A【分析】结合题意,根据完全平方公式的性质计算,得x 221x +的值;再结合完全平方公式的性质计算,即可得到答案.【详解】①x 1x-=, ①(x 1x-)2=5,①x 2﹣221x +=5,①x 221x +=7, ①x 2+221x +=9, ①(x 1x +)2=9,①x 1x+=±3,①x <0, ①10x< ①x 1x +<0,①x 1x+=-3,故选:A .【点睛】本题考查了完全平方公式的知识;解题的关键是熟练掌握完全平方公式的性质,从而完成求解. 16.D【分析】已知等式左边利用完全平方公式展开,再利用多项式相等的条件求出a 与b 的值即可.【详解】已知等式整理得:x 2+2ax+a 2=x 2-10x+b , 可得2a=-10,a 2=b , 解得:a=-5,b=25, 故选D .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 17.D【分析】利用合并同类项,同底数幂乘法,幂的乘方与积的乘方逐一计算验证即可. 【详解】A 选项中,32a a +中的两个项不是同类项,不能合并,因此A 中计算错误; B 选项中,23235a a a a +⋅==,因此B 中计算错误; C 选项中,23369()a b a b =,因此C 中计算错误; D 选项中,23236()a a a ⨯==,因此D 中计算正确; 故选D.【点睛】本题考查了合并同类项及幂的运算,熟记同类项的概念和幂的运算的性质是解题18.A【分析】利用相反数的定义对①进行判断;根据值的意义对①进行判断;根据数列的规律对①进行判断;运用验证法可对①进行判断.【详解】解:①相反数等于本身的数只有0,所以①正确;①若||||||a b a b ,则0ab ≤,所以①错误;①一列数:-2,4,-8,16,-32…按规律.第n 个数为(2)n -,所以①错误;①当x=10时,|8||2||108||102|1412x x -++=-++=≠,所以①错误;正确的说法只有1个,故选:A .【点睛】本题考查了相反数的定义,绝对值的性质以及数的规律,综合性较强,有一定的难度.19.C【分析】先设AB 之间的整数是x ,于是-105<x <77,而-11<105<-10,8<77<9,从而可求-11<x <9,进而可求A 、B 之间整数的个数.【详解】解:设A 、B 之间的整数是x ,那么x -11<-10,8<9,①-11<x <9,AB 之间的整数有19个.故选C .【点睛】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.20.C【详解】解:根据完全平方式()2222a b a ab b ±=±+可由(a +b )2=9,ab = -112知a 2+b 2=(a +b )2-2ab =9+3=12故选C.【分析】用营业额乘以税率即可算出营业税.【详解】解:依题意得,应缴纳营业税为:20000×5%=1000(元).故答案是:1000.【点睛】本题考查有理数的乘法,正确理解题意是解题的关键.22.61.2210-⨯.【分析】根据科学记数法的定义和负整数指数幂的性质,即可得到答案.【详解】0.000 00122611.22 1.22101000000-=⨯=⨯. 故答案为:61.2210-⨯.【点睛】本题主要考查绝对值小于1的数的科学记数法,掌握科学记数法的形式10n a ⨯(110a ≤<,n 为整数),是解题的关键.23.65【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8①x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.24.3【分析】同分母的分式的加减运算:分母不变,把分子相加减,再约分即可. 【详解】解:3223223 3.m m m m m m m 故答案为:3 【点睛】本题考查的是同分母分式的加减运算,掌握“同分母分式的加减运算的运算法则”是解本题 关键.25.2 【分析】先把221122x xy y -+变形为21()2x y -,再整体代入求解即可.【详解】①222221111(2)()2222x xy y x xy y x y -+=-+=-,①当2x y -=时,原式21222=⨯=.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.26.1.383×106【分析】先将138.3万还原成1383000,再根据科学记数法表示出来即可.【详解】解:138.3万=1383000=1.383×106,故答案为:1.383×106.【点睛】本题考查了科学记数法,知道任何绝对值大于10的数都可以表示为10n a ⨯的形式(其中110a ≤<,n 为整数),正确确定a 的值与n 的值是解题的关键.27.-3【分析】根据有理数的加法运算以及绝对值的性质即可求出答案.【详解】解:①x =2,|y |=5,①x =2,y =5或x =2,y =-5,①x >y ,①x =2,y =-5,①x +y =2-5=-3,故答案为:-3.【点睛】本题考查有理数的加法,解题的关键是熟练运用有理数的加法运算,本题属于基础题型.28.-50【分析】根据题意列出算式,计算即可得到结果.【详解】根据题意得:−80+30=−50(米),则鲨鱼所在的高度为−50米.故答案为−50.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法法则是解答本题的关键. 29.24x - 【分析】根据最简分式的概念,先将分子分母分别进行因式分解,使分子分母不含有公因式即可得出答案.【详解】解:原式2(4)2(4)(4)4x x x x +==+--. 故答案为:24x -. 【点睛】本题考查了分式的化简,把分子分母因式分解,然后确定有无公因式是解题的关键.30.a 6b 2##b 2a 6【分析】根据幂的乘方和积的乘方的运算法则进行计算求解.【详解】解:()()2233262a b a b a b -=-=. 故答案为:a 6b 2.【点睛】本题考查了幂的乘方和积的乘方的运算法则.理解运算法则是解答关键. 31. ①; 取相同的符号,并把绝对值相加【分析】减去两个有理数,相当于加上这两个数的相反数的和. 【详解】解:1110322-- 1110(3)22=+-- 10(4)=+-6=故①步错.故答案为:①,取相同的符号,并把绝对值相加.【点睛】本题考查有理数加减运算,熟练掌握运算法则是解题的关键.32.x 4y +【分析】直接利用多项式的加减运算法则计算得出答案.【详解】多项式2x 3y +与多项式x y -的差是:()2x 3y x y +--2x 3y x y =+-+x 4y =+.故答案为x 4y +.【点睛】此题主要考查了多项式,正确掌握多项式的加减运算法则是解题关键. 33.8【分析】由被开方数7 的范围,进而求出a 与b 的值,代入原式计算即可解答.【详解】① ,①2<3,①a 、b 是两个连续的整数,①a =2,b =3,①ab =23=8.故答案为8.【点睛】此题考查估算无理数的大小,难度不大.34. 12- 25【详解】试题解析:12的相反数是12-; 11522222-==,52的倒数是25,故122-的倒数是25. 考点:1.相反数;2.倒数.35.-4【分析】利用相反数,倒数的定义,平方根的定义,零指数幂的运算以及绝对值的性质,求出a+b ,cd ,x ,y 的值,代入原式计算即可得到结果.【详解】解:①21,||2x y ==,①1,2x y =±=±,又易知0,1a b cd +==故原式=()()()0199921124±+--±=-. 故答案为:-4【点睛】此题考查了代数式求值,相反数,倒数,平方根的定义,零指数幂的运算及绝对值的性质,熟练掌握各自的定义是解本题的关键.36.11【分析】根据算术平方根、乘方、零次幂的性质计算即可求解.【详解】解:30(2)(15)π---=4×5-8-1=20-8-1=11,故答案为:11.【点睛】本题考查了算术平方根、乘方、零次幂,熟练掌握运算法则是解本题的关键. 37.3-【分析】根据乘方的定义解答即可,求n 个相同因数a 的积的运算叫做乘方,其中a 叫做底数,n 叫做指数.【详解】4(3)-的底数是3-,故答案为:3-.【点睛】本题考查了有理数乘方的概念,熟练掌握其概念内容是解题的关键. 38.5510⨯﹣【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0005=5510⨯﹣故答案为5510⨯﹣.【点睛】此题考查科学记数法—表示较小的数,解题关键在于掌握其一般形式.39.规律探究26;解决问题2(123)n +++⋅⋅⋅+;22(1)4n n +;拓展应用222(1)n n +或432242n n n ++.【分析】规律探究:计算333123++=36=大正方形面积,然后直接求大正方形面积即可; 解决问题:3333123n +++⋯+转化为大正方形面积,其边长为1+2+3+…+n ,再求面积化简即可;拓展应用:()33332462n +++⋯+提公因式8转化为8(3333123n +++⋯+),再用规律计算即可【详解】解:规律探究:333123++=1+8+27=36=大正方形面积=()221+2+3=6; 故答案为:62解决问题:由上面表示几何图形的面积探究知,()23333123123n n +++⋯+=+++⋯+,又(1)1232n n n ++++⋯+=, 2223333(1)(1)12324n n n n n ++⎡⎤∴+++⋯+==⎢⎥⎣⎦; 故答案为:222(1)(123),4n n n ++++⋯+; 拓展应用:()33333333324622123n n +++⋯+=⨯+++⋯+⎡⎤⎣⎦, 223333(1)1234n n n ++++⋯+=, ()()()223233332432124622212424n n n n n n n n +∴+++⋯+=⨯=+=++. 故答案为:222(1)n n +或432242n n n ++.【点睛】本题考查实践探索问题,仔细观察图形与算式的关系,发现规律为立方数的和等于最大正方形面积,再利用面积公式求是解题关键.40.3【分析】根据整数的定义从所给的数中找出符合题意的数即可【详解】解:整数有24,+27,0;故答案为3.【点睛】此题考查了有理数的分类,用到的知识点是正数、非正数、整数的定义,在解答时要注意不要漏数.41.(1)-4x 6y 4;(2)6a 4+2a 2.【分析】(1)先根据指数幂的运算性质对等式进行分别运算,再进行乘除运算,即可得到答案;(2)先进行多项式与单项式的乘法运算,再进行加法运算,即可得到答案.【详解】解:(1)原式=8x 6y 3•(-3xy 2)÷6xy =-4x 6y 4;(2)原式=6a 4-4a 3+2a 2+4a 3=6a 4+2a 2.【点睛】本题考查指数幂的乘除运算和多项式与单项式的混合运算,解题的关键是熟练掌握指数幂的乘除运算和多项式与单项式的混合运算.42【分析】根据实数的性质进行化简即可求解.【详解】解:2020(1)|1-+1122=-+=【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.43.-64【分析】把57(8)-拆成255(8)(8)-⨯-,把550.125化成551()8,先用55551(8)()8-⨯,再与2(8)-进行乘法运算. 【详解】原式255551(8)(8)()8=-⨯-⨯ 255551(8)(8)()8⎡⎤=-⨯-⨯⎢⎥⎣⎦ 2(8)(1)=-⨯-64=-.【点睛】本题考查考查幂的乘方与积的乘方以及同底数幂的乘法,解题关键是把57(8)-拆成255(8)(8)-⨯-,把550.125化成551()8,运用积的乘方化简运算. 44.(1)8(2)1-【分析】(1)根据有理数的加减法可进行求解;(2)利用乘法分配律进行求解即可.【详解】(1)解:12(18)(7)15--+--1218(7)(15)=++-+-8=;(2)解:原式1111212123261462.【点睛】本题主要考查有理数的加减法及乘法运算,熟练掌握各个运算法则是解题的关键.45.-6【分析】去括号,再进行混合运算即可.【详解】解:[](2)(3)5(3)(71)2-⨯----+--÷[]653(8)2=-++-÷684=--6=-.【点睛】本题考查有理数的混合运算.掌握有理数的混合运算法则是解答本题的关键. 46.221x -,7.【分析】根据乘法公式和单项式乘以多项式法则先化简,再代入求值即可.【详解】解:原式=22331x x x x -+-+=221x -;当x=2时,原式=2221⨯-=7.【点睛】本题考查整式的混合运算—化简求值,掌握运算法则正确计算是解题关键.476 【分析】根据二次根式的性质,分母有理化,利用平方差公式进行化简,计算求值即可;【详解】解:-()=[2-2]【点睛】本题考查了二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,以及运算法则.48.(1)-3;(2)-16【分析】(1)先计算乘方以及去绝对值,进行有理数的除法运算,再进行有理数的加法运算即可;(2)先把小数化为分数,再进行分配律计算即可.【详解】解:(1)原式=-1-27+5÷15=-3;(2)原式=15324+24+24-644⎛⎫⨯⨯⨯ ⎪⎝⎭(-)(-)(-)=-4-30+18=-16 故答案为(1)-3;(2)-16.【点睛】本题考查了有理数的加减乘除混合运算以及乘方运算,熟练掌握运算法则是解题的关键.49.11x - 【分析】先计算括号内的分式减法,再计算分式除法,然后计算特殊角的正弦值得出x 的值,最后代入求解即可.【详解】原式()()()()()()1(3)51333333x x x x x x x x x x ⎡⎤-+-=÷-⎢⎥+-+-+-⎢⎥⎣⎦ ()()()()1(3)(51)3333x x x x x x x x -+--=÷+-+-()()()()21213333x x x x x x x --+=÷+-+- ()()()()()2113333x x x x x x --=÷+-+- ()()()()()2331331x x x x x x +--=⋅+--11x =-当2sin 601211x =︒+==时,原式=. 【点睛】本题考查了分式的化简求值、特殊角的正弦值等知识点,掌握分式的运算法则是解题关键.50.(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)①a 2+4a+4=(a+2)2故答案为4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ①M 的最小值为﹣3(3)①a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,①(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,①a ﹣b =0,b ﹣1=0,2c ﹣1=0①a=b=1,1c=2,①a+b+c=122.【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.答案第16页,共16页。
中考数学基础训练50试题
中考根底训练50制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
时间是:30分钟你实际使用分钟班级姓名学号成绩一、选择题:1.函数y=11+x中,自变量算的取值范围是 .2.据国家统计局统计,2021年第一季度国内消费总值约为43 300亿元,用科学记数法表示43 300亿元是亿元.3.如图,AB∥CD,∠B=680,∠E=200,那么∠D的度数为 .(第3题)4.某班a名同学参加植树活动,其中男生b名(b<a).假设只由男生完成,每人需植树15棵;假设只由女生完成,那么每人需植树棵.5,-2,3,x,3,-2,假设每个数据都是这组数据的众数,那么这组数据的平均数是 .6. 等腰三角形的腰长是6cm,底边长是8cm,那么以各边中点为顶点的三角形的周长是 . 7.请写出一个开口向上,与y轴交点纵坐标为-1,且经过点(1,3)的抛物线的解析式 .8.某把学生的纸笔测试、理论才能两项成绩分别按60%、40%的比例计入学期总成绩.小明理论才能这一项成绩是81分,假设想学期总成绩不低于90分,那么纸笔i贝9试的成绩至少是分.9.右图是一单位拟建的大门示意图,上部是一段直径为10米的圆弧形,下部是矩形ABCD,其中AB=3.7米,BC=6米,那么AD的中点到BC的间隔是 .10.直线y=k-4与y 轴相交所成的锐角的正切值为12,那么k 的值是 . 11.在△ABC 中,AB>BC>AC ,D 是AC 的中点,过点D 作直线z ,使截得的三角形与原三角形相似,这样的直线L 有 条.二、选择题 12.以下运算正确的选项是( ) (A)4=±2 (B)2-3=-6 (C)x 2·x 3=x 6 (D)(-2x)4=16x 413.在以下四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)14.在△ABC 中,∠C=900,BC=2,sinA=23,那么边AC 的长是( ) (A) 5 (B)3 (C)43(D)13 15.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )(A)14 (B)15 (C)16 (D)1716.如图,△ABC 中,∠B=900,AB=6,BC=8,将△ABC 沿DE 折叠,使点C 落在AB 边上的C ′处,并且C ′D∥BC,那么CD 的长是( )(A)409 (B)509 (C)154 (D)25417.有2名男生和2名女生,王教师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )(A)14 (B)13 (C)12 (D)2319.为了奖励进步较大的学生,某班决定购置甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购置这些钢笔需要花60元;经过协商,每种钢笔单价下降l元,结果只花了48元,那么甲种钢笔可能购置( )(A)11支 (B)9支 (C)7支〔D〕5支20.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有( )(A)3对 (B)4对 (C)5对 (D)6对三、解答题:先化简 (1+1x-1)÷xx2-1,再选择一个恰当的x值代人并求值.制卷人:打自企;成别使;而都那。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年中考数学基础训练50 套试题班级姓名学号成绩
一、选择题
1. 2 的相反数是()
A. 2 B .- 2
1
D . 2 C.
2. y=(x - 1)2+ 2 2
的对称轴是直线()
A A. x= -1
B .x=1 C. y=- 1 D .y=1
3.如图, DE 是ABC 的中位线,则ADE与ABC 的
面积之比是() D E A. 1:1 B .1:2 C. 1:3 D . 1:4
B C
4.右图是一块手表,早上 8 时的时针、分针的位置如图所示,
那么分针与时针所成的角的度数是()
A. 60° B .80°
C. 120° D .150°
5.函数y 1 中自变量 x 的取值范围是()
x 1
A. x≠- 1 B .x> - 1 C. x≠ 1 D. x≠ 0 6.下列计算正确的是()
A. a2· a3=a6 B. a3÷ a=a3 C. (a2)3=a6 D. (3a2)4=9a4 7.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形 B .圆C.梯形 D .平行四边形8.右边给出的是2004 年 3 月份的日历表,任意日一二三四五六
圈出一竖列上相邻的三个数,请你运用方程思想来研 1 2 3 4 5 6
究,发现这三个数的和不可能是()7 8 9 10 11 12 13 14 15 16 17 18 19 20
A. 69 B. 54 21 22 23 24 25 26 27
C. 27 D. 40 28 29 30 31 9.相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm 和 17cm,则这两圆的圆心距为()
A. 7cm B. 16cm C. 21cm D .27cm
10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只
好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是
行驶路程s(米 ) 关于时间t( 分 )的函数图像,那么符合这个同学行驶情况的图像大致是
()
A B C D
2 2
的两实根的平方和等于 11,k 的取值是()11.已知方程 x +(2k+1)x+k -2=0
A.- 3 或 1 B .- 3 C. 1 D .3
12.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在 A 、B、C 三人之外; (2)C 作案时总得有 A 作从犯;
(3)B 不会开车。
在此案中能肯定的作案对象是()
A.嫌疑犯 A B .嫌疑犯 B C.嫌疑犯 C D.嫌疑犯 A 和 C
二、填空题
13.写出一个 3 到 4 之间的无理数。
北14.分解因式:a3- a= 。
15.如图,在甲、乙两地之间修一条笔直的公路,
从甲地测得公路的走向是北偏东48°。
甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公
路的走向是南偏西度。
乙北
甲
16.请写出一个开口向上,对称轴为直线x=2 ,且与 y 轴的交点坐标为(0, 3)的抛物线的解析式。
17.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm,圆心角为 240°的扇形铁皮制作的,再用一块圆形铁皮做底。
请你帮他计算这块铁皮的半径为cm。
三、解答题
18.解方程:
6 3
1 1
x2 x 1。