立体几何中的探索性问题-存在型问题配套练习
专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。
空间距离及立体几何中的探索性问题
§7.8 空间距离及立体几何中的探索性问题学习目标1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件.知识梳理1.点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ =|AP →|2-|AQ →|2=a 2-(a·u )2.2.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =⎪⎪⎪⎪AP →·n |n |=⎪⎪⎪⎪⎪⎪AP →·n |n |=|AP →·n ||n |.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( × ) (2)点到直线的距离也就是该点与直线上任一点连线的长度.( × ) (3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( √ ) (4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( × ) 教材改编题1.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83 D.103答案 D解析 由条件可得P (-2,1,4)到α的距离为 |AP →·n ||n |=|(-1,-2,4)·(-2,-2,1)|3=103. 2.正方体ABCD -A 1B 1C 1D 1的棱长为2,则A 1A 到平面B 1D 1DB 的距离为( ) A. 2 B .2 C.22 D.322答案 A解析 由正方体性质可知,A 1A ∥平面B 1D 1DB ,A 1A 到平面B 1D 1DB 的距离就是点A 1到平面B 1D 1DB 的距离,连接A 1C 1,交B 1D 1于O 1(图略),A 1O 1的长即为所求,由题意可得A 1O 1= 12A 1C 1= 2. 3.已知直线l 经过点A (2,3,1)且向量n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,则点P (4,3,2)到l 的距离为________. 答案22解析 ∵P A →=(-2,0,-1),n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,∴点P 到l 的距离d =|P A →|2-(P A →·n )2=5-⎝⎛⎭⎫-2-222=22.题型一 空间距离例1 如图,在正三棱柱ABC -A 1B 1C 1中,各棱长均为4,N 是CC 1的中点.(1)求点N 到直线AB 的距离; (2)求点C 1到平面ABN 的距离. 解 建立如图所示的空间直角坐标系,则A (0,0,0),B (23,2,0),C (0,4,0),C 1(0,4,4), ∵N 是CC 1的中点,∴N (0,4,2). (1)AN →=(0,4,2),AB →=(23,2,0), 则|AN →|=25,|AB →|=4.设点N 到直线AB 的距离为d 1,则d 1=|AN →|2-⎝⎛⎭⎪⎪⎫ AN →·AB →||AB→2=20-4=4.(2)设平面ABN 的一个法向量为n =(x ,y ,z ), 则由n ⊥AB →,n ⊥AN →, 得⎩⎪⎨⎪⎧n ·AB →=23x +2y =0,n ·AN →=4y +2z =0,令z =2,则y =-1,x =33,即n =⎝⎛⎭⎫33,-1,2. 易知C 1N —→=(0,0,-2),设点C 1到平面ABN 的距离为d 2, 则d 2=|C 1N —→·n ||n |=|-4|433= 3.教师备选1.如图,P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD .若已知AB =3,AD =4,P A =1,则点P 到直线BD 的距离为________.答案135解析 如图,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0), D (0,4,0),则BP →=(-3,0,1),BD →=(-3,4,0), 故点P 到直线BD 的距离 d =|BP →|2-⎝ ⎛⎭⎪⎫BP →·BD →|BD →|2=10-⎝⎛⎭⎫952=135,所以点P 到直线BD 的距离为135.2.如图,已知△ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把△ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若BC =4.求直线DE 到平面PBC 的距离.解 如图,设DE 的中点为O ,BC 的中点为F ,连接OP ,OF ,OB , 因为平面PDE ⊥平面BCDE , 平面PDE ∩平面BCDE =DE , 所以OP ⊥平面BCDE .因为在△ABC 中,点D ,E 分别为AC ,AB 边的中点, 所以DE ∥BC .因为DE ⊄平面PBC ,BC ⊂平面PBC , 所以DE ∥平面PBC . 又OF ⊥DE ,所以以点O 为坐标原点,OE ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则O ()0,0,0,P ()0,0,3,B ()2,3,0, C ()-2,3,0,F ()0,3,0,所以PB →=()2,3,-3,CB →=()4,0,0. 设平面PBC 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PB →=2x +3y -3z =0,n ·CB →=4x =0,得⎩⎪⎨⎪⎧x =0,y =z ,令y =z =1, 所以n =(0,1,1). 因为OF →=(0,3,0),设点O 到平面PBC 的距离为d , 则d =||OF →·n|n |=32=62. 因为点O 在直线DE 上,所以直线DE 到平面PBC 的距离等于62. 思维升华 点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d = |P A →|2-(P A →·n )2.(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.跟踪训练1 (1)(多选)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E ,O 分别是A 1B 1,A 1C 1的中点,P 在正方体内部且满足AP →=34AB →+12AD →+23AA 1—→,则下列说法正确的是( )A .点A 到直线BE 的距离是55B .点O 到平面ABC 1D 1的距离为24C .平面A 1BD 与平面B 1CD 1间的距离为33D .点P 到直线AB 的距离为2536答案 BC解析 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),C 1(1,1,1),D 1(0,1,1),E ⎝⎛⎭⎫12,0,1,所以BA →=(-1,0,0),BE →=⎝⎛⎭⎫-12,0,1. 设∠ABE =θ,则cos θ=BA →·BE →|BA →||BE →|=55,sin θ=1-cos 2θ=255. 故点A 到直线BE 的距离d 1=|BA →|sin θ=1×255=255,故A 错误;易知C 1O —→=12C 1A 1—→=⎝⎛⎭⎫-12,-12,0, 平面ABC 1D 1的一个法向量DA 1—→=(0,-1,1), 则点O 到平面ABC 1D 1的距离 d 2=|DA 1—→·C 1O —→||DA 1—→|=122=24,故B 正确;A 1B —→=(1,0,-1),A 1D —→=(0,1,-1), A 1D 1—→=(0,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1B —→=0,n ·A 1D —→=0,所以⎩⎪⎨⎪⎧x -z =0,y -z =0,令z =1,得y =1,x =1,所以n =(1,1,1).所以点D 1到平面A 1BD 的距离 d 3=|A 1D 1—→·n ||n |=13=33.因为平面A 1BD ∥平面B 1CD 1,所以平面A 1BD 与平面B 1CD 1间的距离等于点D 1到平面A 1BD 的距离,所以平面A 1BD 与平面B 1CD 1间的距离为33,故C 正确; 因为AP →=34AB →+12AD →+23AA 1—→,所以AP →=⎝⎛⎭⎫34,12,23, 又AB →=(1,0,0),则AP →·AB →|AB →|=34,所以点P 到直线AB 的距离d 4=|AP →|2-⎝ ⎛⎭⎪⎫AP →·AB →|AB →|2=181144-916=56,故D 错误. (2)(2022·枣庄检测)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G 分别是AB ,CC 1的中点,则△D 1GF 的面积为________. 答案142解析 以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系(图略), 则D 1(0,0,2),G (0,2,1),F (1,1,0), FD 1—→=(-1,-1,2),FG →=(-1,1,1), ∴点D 1到直线GF 的距离 d =|FD 1—→|2-⎝⎛⎭⎪⎪⎫FD 1—→·FG → |FG →|2 =6-⎝⎛⎭⎫232=423.∴点D 1到直线GF 的距离为423, 又|FG →|=3,∴1D GF S △=12×3×423=142.题型二 立体几何中的探索性问题例2 (2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)求证:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1MA 1B 1的值. (1)证明 如图所示,取B 1C 1的中点F ′,连接DE ,EF ′,F ′C ,由于ABCD -A 1B 1C 1D 1为正方体,E ,F ′为中点,故EF ′∥CD , 从而E ,F ′,C ,D 四点共面, 平面CDE 即平面CDEF ′,据此可得,直线B 1C 1交平面CDE 于点F ′,当直线与平面相交时只有唯一的交点,故点F 与点F ′重合, 即点F 为B 1C 1的中点.(2)解 以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,不妨设正方体的棱长为2, 设A 1MA 1B 1=λ(0≤λ≤1), 则M (2,2λ,2),C (0,2,0),F (1,2,2),E (1,0,2), 从而MC →=(-2,2-2λ,-2),CF →=(1,0,2), FE →=(0,-2,0),设平面MCF 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧m ·MC →=-2x 1+(2-2λ)y 1-2z 1=0,m ·CF →=x 1+2z 1=0,令z 1=-1可得m =⎝⎛⎭⎫2,11-λ,-1(λ≠1),设平面CFE 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n ·FE →=-2y 2=0,n ·CF →=x 2+2z 2=0,令z 2=-1可得n =(2,0,-1), 从而m ·n =5,|m |=5+⎝⎛⎭⎫11-λ2,|n |=5,则cos 〈m ,n 〉=m ·n|m ||n |=55+⎝⎛⎭⎫11-λ2×5=53. 整理可得(λ-1)2=14,故λ=12⎝⎛⎭⎫λ=32舍去. 所以A 1M A 1B 1=12.教师备选(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由;若存在,求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D .因为三棱柱ABC -A 1B 1C 1的所有棱长都为2,所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt △B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6, 所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设在棱BB 1上存在点P 满足条件.以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3),因此BB 1—→=(0,1,3),AC →=(3,-1,0),AA 1—→=BB 1—→=(0,1,3),CB →=(-3,-1,0). 因为点P 在棱BB 1上,设BP →=λBB 1—→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1—→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1—→=0,得⎩⎨⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1).因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=|-23|5×3+(λ-1)2+3λ2=45,化简得16λ2-8λ+1=0, 解得λ=14,所以|BP →|=14|BB 1—→|=12,故BP 的长为12.思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 跟踪训练2 如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面DAC 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 如图,连接BD ,设AC 交BD 于点O ,连接SO .由题意知,SO ⊥平面ABCD ,以O 为坐标原点,以OB ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.设底面边长为a ,则高SO =62a ,于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0. 于是OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解 由题设知,平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面DAC 的一个法向量OS→=⎝⎛⎭⎫0,0,62a . 设平面P AC 与平面DAC 的夹角为θ, 则cos θ=|cos 〈OS →,DS →〉|=|OS →·DS →||OS →||DS →|=32,所以平面P AC 与平面DAC 夹角的大小为30°. (3)解 假设在棱SC 上存在一点E 使BE ∥平面P AC . 根据第(2)问知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →(0≤t ≤1), 因为B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,所以BC →=⎝⎛⎭⎫-22a ,22a ,0,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at . 又BE →·DS →=0, 得-a 22+0+64a 2t =0,则t =13,当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面P AC ,故BE ∥平面P AC .因此在棱SC 上存在点E ,使BE ∥平面P AC ,此时SE ∶EC =2∶1.课时精练1.如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,P A ⊥平面ABCD ,且P A =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图,则A (0,0,0),B (a,0,0),C (a ,a,0),D (0,3a ,0), P (0,0,a ).设F (0,m ,0),0≤m ≤3a ,则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ). ∵PC ⊥CF ,∴C F →⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0, ∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎪⎨⎪⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP →=(-a ,0,a ),BC →=(0,a ,0), AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎪⎨⎪⎧x 0=z 0,y 0=0. 取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,BC ⊂平面PBC , ∴AD ∥平面PBC ,∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .2.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且P A =2,E 为PD 的中点.(1)求证:P A ⊥平面ABCD ;(2)求直线PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面P AF 的距离为255若存在,确定点的位置;若不存在,请说明理由.(1)证明 因为四边形ABCD 为正方形,则BC ⊥AB ,CD ⊥AD , 因为PB ⊥BC ,BC ⊥AB ,PB ∩AB =B ,PB ,AB ⊂平面P AB , 所以BC ⊥平面P AB ,因为P A ⊂平面P AB ,所以P A ⊥BC ,因为PD ⊥CD ,CD ⊥AD ,PD ∩AD =D ,PD ,AD ⊂平面P AD , 所以CD ⊥平面P AD ,因为P A ⊂平面P AD ,所以P A ⊥CD , 因为BC ∩CD =C ,BC ,CD ⊂平面ABCD ,所以P A ⊥平面ABCD .(2)解 因为P A ⊥平面ABCD ,AB ⊥AD ,不妨以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (2,2,0),P (0,0,2),E (0,1,1), 设平面ACE 的法向量为m =(x ,y ,z ), 则AC →=(2,2,0),AE →=(0,1,1),PC →=(2,2,-2), 由⎩⎪⎨⎪⎧m ·AC →=2x +2y =0,m ·AE →=y +z =0,取y =1,可得m =(-1,1,-1), cos 〈m ,PC →〉=m ·PC →|m ||PC →|=23×23=13,所以直线PC 与平面ACE 所成角的正弦值为13.(3)解 设点F (2,t ,0)(0≤t ≤2),设平面P AF 的法向量为n =(a ,b ,c ), AF →=(2,t ,0),AP →=(0,0,2), 由⎩⎪⎨⎪⎧n ·AF →=2a +tb =0,n ·AP →=2c =0,取a =t ,则n =(t ,-2,0),所以点E 到平面P AF 的距离为d =|AE →·n ||n |=2t 2+4=255,因为t >0,所以t =1.因此,当点F为线段BC 的中点时,点E 到平面P AF 的距离为255.3.(2022·湖南雅礼中学月考)如图,在四棱台ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,AA 1=A 1B 1=12AB =1,∠ABC =60°,AA 1⊥平面ABCD .(1)若点M 是AD 的中点,求证:C 1M ⊥A 1C ;(2)棱BC 上是否存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13若存在,求线段CE 的长;若不存在,请说明理由.(1)证明 如图,取BC 的中点Q ,连接AQ ,AC , ∵四边形ABCD 为菱形,则AB =BC , ∵∠ABC =60°,∴△ABC 为等边三角形, ∵Q 为BC 的中点,则AQ ⊥BC , ∵AD ∥BC ,∴AQ ⊥AD ,由于AA 1⊥平面ABCD ,以点A 为坐标原点,以AQ ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (0,0,0),A 1(0,0,1),D 1(0,1,1),Q (3,0,0), C (3,1,0),C 1⎝⎛⎭⎫32,12,1,M (0,1,0),C 1M —→=⎝⎛⎭⎫-32,12,-1,A 1C —→=(3,1,-1),∴C 1M —→·A 1C —→=-32+12+(-1)2=0,∴C 1M ⊥A 1C .(2)解 如图,假设点E 存在,设点E 的坐标为(3,λ,0),其中-1≤λ≤1, AE →=(3,λ,0),AD 1—→=(0,1,1), 设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AD 1—→=0,即⎩⎨⎧3x +λy =0,y +z =0,取y =-3,则x =λ,z =3, ∴n =(λ,-3,3),平面ADD 1的一个法向量为m =(1,0,0), ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=|λ|λ2+6=13, 解得λ=±32,即CE =1-32或CE =1+32.因此,棱BC 上存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13,此时CE =1-32或CE =1+32.4.(2022·潍坊模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△P AD 是正三角形,CD ⊥平面P AD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求平面EFG 与平面ABCD 夹角的大小;(3)在线段P A 上是否存在点M ,使得直线GM 与平面EFG 所成的角为π6,若存在,求线段PM的长度;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,O 是AD 的中点, 所以PO ⊥AD .又因为CD ⊥平面P AD ,PO ⊂平面P AD , 所以PO ⊥CD .又AD ∩CD =D ,AD ,CD ⊂平面ABCD , 所以PO ⊥平面ABCD .(2)解 如图,连接OG ,以O 点为坐标原点,分别以OA ,OG ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (2,0,0),B (2,4,0), C (-2,4,0),D (-2,0,0),G (0,4,0),P (0,0,23),E (-1,2,3),F (-1,0,3), EF →=(0,-2,0),EG →=(1,2,-3), 设平面EFG 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·m =0,EG →·m =0,即⎩⎨⎧-2y =0,x +2y -3z =0,令z =1,则m =(3,0,1), 又平面ABCD 的法向量n =(0,0,1), 设平面EFG 与平面ABCD 的夹角为θ, 所以cos θ=|m ·n ||m ||n |=1(3)2+12×1=12,所以θ=π3,所以平面EFG 与平面ABCD 的夹角为π3.(3)解 不存在,理由如下: 假设在线段P A 上存在点M ,使得直线GM 与平面EFG 所成的角为π6,即直线GM 的方向向量与平面EFG 法向量m 所成的锐角为π3,设PM →=λP A →,λ∈[0,1], GM →=GP →+PM →=GP →+λP A →, 所以GM →=(2λ,-4,23-23λ),所以cos π3=|cos 〈GM →,m 〉|=324λ2-6λ+7,整理得2λ2-3λ+2=0, Δ<0,方程无解, 所以不存在这样的点M .。
高考数学立体几何空间几何中的探索性问题
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
立体几何中的探索性问题
平面B1BC1的法向量n2=(x2,y2,z2).
y
∴AA→→11CB1·n·n11==00,⇒43xy11-=40z,1=0,
x
∴取向量n1=(0,4,3).
直击高考
(2016·北京卷改编)如图,在三棱柱 ABC-A1B1C1 中,AA1C1C 是边 长为 4 的正方形.平面 ABC⊥平面 AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面 ABC;(2)求二面角 A1-BC1-B1 的余弦值;
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
解 (1)在△PAD中,PA=PD,O为AD中点, 所以PO⊥AD, 又侧面PAD⊥底面ABCD, 平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD. 又在直角梯形ABCD中,连接OC, 易得OC⊥AD,
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面 ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
cos〈P→B,O→A〉=|PP→→BB|·|OO→→AA|= 33. ∴直线 PB 与平面 POC 所成角的余弦值为 36.
z y
x
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面
ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
立体几何中的探索性题型
立体几何中的探索性题型1.(2010年3月广东省深圳市高三年级第一次调研考试理科)(本小题满分12分)如图5,已知直角梯形ACDE 所在的平面垂直于平面ABC ,90BAC ACD ∠=∠=︒,60EAC ∠=︒,AB AC AE ==.(1)在直线BC 上是否存在一点P ,使得//DP 平面EAB ?请证明你的结论; (2)求平面EBD 与平面ABC 所成的锐二面角θ的余弦值.:(1)线段BC 的中点就是满足条件的点P .…1分证明如下:取AB 的中点F 连结DP PF EF 、、,则AC FP //,AC FP 21=,取AC 的中点M ,连结EM EC 、, ∵AC AE =且60EAC ∠=︒, ∴△EAC 是正三角形,∴AC EM ⊥. ∴四边形EMCD 为矩形, ∴AC MC ED 21==.又∵AC ED //,………3分 ∴FP ED //且ED FP =,四边形EFPD 是平行四边形.……………………4分 ∴EF DP //,而EF ⊂平面EAB ,DP ⊄平面EAB ,∴//DP 平面EAB . ……………………6分 (2)(法1)过B 作AC 的平行线l ,过C 作l 的垂线交l 于G ,连结DG ,∵AC ED //,∴l ED //,l 是平面EBD 与平面ABC 所成二面角的棱.……8分∵平面EAC ⊥平面ABC ,AC DC ⊥,∴⊥DC 平面ABC , 又∵⊂l 平面ABC ,∴⊥l 平面DGC ,∴DG l ⊥,A BCDE PMFG∴DGC ∠是所求二面角的平面角.………………10分设a AE AC AB 2===,则a CD 3=,a GC 2=,∴a CD GC GD 722=+=, ∴772cos cos ==∠=GD GC DGC θ. ………12分(法2)∵90BAC ∠=︒,平面EACD ⊥平面ABC ,∴以点A 为原点,直线AB 为x 轴,直线AC 为y 轴,建立空间直角坐标系xyz A -,则z 轴在平面EACD 内(如图).设a AE AC AB 2===,由已知,得)0,0,2(a B ,)3,,0(a a E ,)3,2,0(a a D .∴)3,,2(a a a EB --=,)0,,0(a ED =, ………………………8分设平面EBD 的法向量为),,(z y x =n ,则⊥n 且⊥n ,∴⎩⎨⎧=⋅=⋅.0,0n n ∴⎩⎨⎧==--.0,032ay az ay ax 解之得⎪⎩⎪⎨⎧==.0,23y z x取2z =,得平面EBD 的一个法向量为)2,0,3(=n . ………………10分 又∵平面ABC 的一个法向量为)1,0,0(='n .77210020)3(120003,cos cos 222222=++⋅++⨯+⨯+⨯=>'<=θn n .……………… 2.如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ; (II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE , 并求点M 到OA ,OB 的距离.证明:(I )如图,连结OP ,以O 为坐标原点,分别以OB 、OC 、OP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -, 则()0,0,0,(0,8,0),(8,0,0),(0,8,0),O A B C -(0,0,6),(0,4,3),P E -()4,0,3F ,由题意得,()0,4,0,G 因(8,0,0),(0,4,3)OB OE ==-,因此平面BOE 的法向量为(0,3,4)n =,(4,4,3FG =--得0n FG ⋅=,又直线FG 不在平面BOE 内,因此有//FG 平面BOExyz(II )设点M 的坐标为()00,,0x y ,则00(4,,3)FM x y =--,因为FM ⊥平面BOE ,所以有//FM n ,因此有0094,4x y ==-,即点M 的坐标为94,,04⎛⎫- ⎪⎝⎭,在平面直角坐标系xoy中,AOB ∆的内部区域满足不等式组008x y x y >⎧⎪<⎨⎪-<⎩,经检验,点M 的坐标满足上述不等式组,所以在ABO ∆内存在一点M ,使FM ⊥平面BOE ,由点M 的坐标得点M 到OA ,OB 的距离为94,4. 3.(本小题满分14分)如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,侧棱PA⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点. (Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE⊥面PAC ,并求出N 点到AB 和AP 的距离..解:方法一、(1)设AC ∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角.在△AOE 中,AO=1,OE=,2721=PB ,2521==PD AE ∴.1473127245471cos =⨯⨯-+=EOA 即AC 与PB 所成角的余弦值为1473. (2)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6π=∠ADF .连PF ,则在Rt △ADF 中.33tan ,332cos ====ADF AD AF ADF AD DF设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC ,从而NE ⊥面PAC. ∴N 点到AB 的距离121==AP ,N 点到AP 的距离.6321==AF方法二、(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标为A (0,0,0)、B (3,0,0)、C (3,1,0)、D (0,1,0)、 P (0,0,2)、E (0,21,1), 从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则P BCDE,1473723||||cos ==⋅=PB AC θ∴AC 与PB 所成角的余弦值为1473. (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,O ,z ),则)1,21,(z x NE --=,由NE ⊥面PAC 可得, ⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(,从而N 点到AB 、AP 的距离分别为1,63. 4.(广东省江门市2010届高三数学理科3月质量检测试题)(本题满分14分)如图,棱锥P —A B C D 的底面A B C D 是矩形,PA ⊥平面A B C D ,PA =A D =2,B D =22. (Ⅰ)求点C 到平面PBD 的距离.(Ⅱ)在线段PD 上是否存在一点Q ,使CQ 与平面962,若存在,指出点Q (18)(Ⅰ)在R t △BAD 中,AD =2,BD =22,∴AB =2,ABCD 为正方形,因此BD ⊥AC . ∵P A =AB =AD =2,∴PB =PD =BD =22 ………2分 设C 到面PBD 的距离为d ,由PBD C BCD P V V --=,有1133BCD PBD S PA S d ∆∆⋅⋅=⋅⋅,即201111222sin 603232d ⨯⨯⨯⨯=⋅⋅⋅得332=d ………5分 (Ⅱ)如图建立空间直角坐标系 因为Q 在DP 上,所以可设(0<<=λλDP DQ 又()2,2,0-=DP ,()()()λλλλλ2,22,02,2,00,2,0-=-+=+=+=∴()λλ2,22,0-∴Q ,()()λλλλ,,122,2,2--=--=∴.………8分易求平面PBD 的法向量为()1,1,1=,………10分(应有过程) 所以设CQ 与平面PBD 所成的角为θ,则有:D22131,cos sin λθ+=⋅==nCQ n CQ n CQ ………12分所以有69221312=+λ,1612=λ,10<<λ , 41=∴λ………13分 所以存在且DP DQ 41=………14分 5.(2011惠州市一模本小题满分14分)如图6,在长方体1111ABCD A B C D -中,11,1AD AA AB ==>,点E 在棱AB 上移动,小蚂蚁从点A 沿长方体的表面爬到点1C ,所爬的最短路程为22。
专题4.5 立体几何中探索性问题(解析版)
一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④ 【解析】【分析】根据正方体的结构特征,利用线面位置关系的判定定理和性质定理,以及三角形的面积公式和投影的定义,即可求解,得到答案.【详解】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥, 且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NO B C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:13A M ==,根据对称性可知:1A M DM ==,又AD =1A DM 是等腰三角形,则1126A DMS==,故正确;④如图所示,设1AM aAC=,1A DM∆在平面1111DCBA内的正投影为111A D M∆,1A DM∆在平面11BB C C 内的正投影为12B CM∆,所以11111222A D MaS S∆==⨯=,12211222B CMaS S∆-===,当12S S时,解得:13a=,故正确.故答案为①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
高考数学二轮复习练习:专项限时集训2立体几何中的探索性与存在性问题
专项限时集训(二)立体几何中的探究性与存在性问题(对应学生用书第115 页)(限时:60 分钟)1.(本小题满分14 分)(南京市、盐城市2017 届高三第一次模拟)如图3,在直三棱柱ABC-A1B1C1 中,BC⊥AC,D,E 分别是AB,AC 的中点.图3(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.[证明] (1)由于D,E 分别是AB,AC 的中点,因此DE∥BC, 2 分又由于在三棱柱ABC-A1B1C1 中,B1C1∥BC,因此B1C1∥DE. 4 分又B1C1?平面A1DE,DE? 平面A1DE,因此B1C1∥平面A1DE. 6 分(2)在直三棱柱ABC-A1B1C1 中,CC1⊥底面ABC,又DE ? 底面ABC,因此CC1⊥DE .8 分又BC⊥AC,DE∥BC,因此DE⊥AC,10 分又CC1,AC? 平面ACC1A1,且CC1∩AC=C,因此DE⊥平面ACC1A1.12 分又DE ? 平面A1DE,因此平面A1DE⊥平面ACC1A1. 14 分2.(本小题满分14 分)如图 4 所示,已知在直四棱柱ABCD-A1B1C1D1 中,AD ⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.图4(1)求证:DB⊥平面B1BCC1;(2)设E 是DC 上一点,试确立 E 的地点,使得D1E∥平面A1BD,并说明原因.[解] (1)由于AB∥DC,AD⊥DC,因此AB⊥AD,在Rt△ABD 中,AB=AD=1,因此BD=2,易求BC=2, 4 分由于CD=2,因此BD⊥BC.又BD ⊥BB1,B1B∩BC=B,因此BD⊥平面B1BCC1. 6 分(2)DC 的中点为 E 点.如下图,连结BE,由于DE∥AB,DE=AB,因此四边形ABED 是平行四边形. 8 分因此AD∥BE.又AD ∥A1D1,因此BE∥A1D1,10 分因此四边形A1D1EB 是平行四边形,因此D1E∥A1B. 12 分由于D1E?平面A1BD,因此D1E∥平面A1BD .14 分3.(本小题满分14 分)(苏北四市(淮安、宿迁、连云港、徐州)2017 届高三上学期期中)如图5, 在正三棱柱ABC-A1B1C1 中,已知D,E 分别为BC,B1C1 的中点,点 F 在棱CC1 上,且EF⊥C1D.求证:图5(1)直线A1E∥平面ADC1;(2)直线EF⊥平面ADC1.【导学号:56394093】[证明] (1)连结ED,由于D,E 分别为BC,B1C1 的中点,因此B1E∥BD 且B1E=BD,因此四边形B1BDE 是平行四边形, 2 分因此BB1∥DE 且BB1=DE,又BB1∥AA1 且BB1=AA1,因此AA1∥DE 且AA1=DE,因此四边形AA1ED 是平行四边形, 4 分因此A1E∥AD,又由于A1E?平面ADC1,AD? 平面ADC1,因此直线A1E∥平面ADC1.7 分(2)在正三棱柱ABC-A1B1C1 中,BB1⊥平面ABC,又AD ? 平面ABC,因此AD⊥BB1,又△ABC 是正三角形,且 D 为BC 的中点,因此AD⊥BC,9 分又BB1,BC? 平面B1BCC1,BB1∩BC=B,因此AD⊥平面B1BCC1,又EF ? 平面B1BCC1,因此AD⊥EF,11 分又EF ⊥C1D,C1D,AD? 平面ADC1,C1D∩AD=D,因此直线EF⊥平面ADC1.14 分4.(本小题满分14 分)(镇江市2017 届高三上学期期末)在长方体ABCD -A1B1C1D1 中,AB=BC 1=EC=AA1.2图6(1)求证:AC1∥平面BDE;(2)求证:A1E⊥平面BDE .[证明] (1)连结AC 交BD 于点O,连结OE.在长方体ABCD-A1B1C1D1 中,四边形ABCD 为正方形,点O 为AC 的中点, 2 分1AA1∥CC1 且AA1=CC1,由EC=AA1,则EC=2 12CC1,即点E 为CC1 的中点,于是在△CAC1 中,AC1∥OE. 4 分又由于OE? 平面BDE,AC1?平面BDE .因此AC1∥平面BDE . 6 分(2)连结OA1,依据垂线定理,可得OA1⊥DB,OE⊥DB,OA1∩OE=O,∴平面A1OE⊥DB. 可得A1E⊥DB. 8 分∵E 为CC1 的中点,设AB=BC=EC=11=a,2AA∴BE=2a,A1E=3a,A1B=5a,∵A1B2=A1E2+BE2,∴A1E⊥EB. 12 分∵EB? 平面BDE,BD? 平面BDE,EB∩BD=B,∴A1E⊥平面BDE . 14 分5.(本小题满分16 分)(苏北四市(徐州、淮安、连云港、宿迁)2017 届高三上学期期末)如图7,在四棱锥E-ABCD 中,平面EAB⊥平面ABCD,四边形ABCD 为矩形,EA⊥EB,点M ,N 分别是AE,CD 的中点.图7求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC .[证明] (1)取BE 中点F,连结CF,MF ,1又M 是AE 的中点,因此MF 綊2AB,又N 是矩形ABCD 边CD 的中点,因此NC 綊12AB,因此MF 綊NC,因此四边形MNCF 是平行四边形, 4 分因此MN ∥CF,又MN ?平面EBC,CF? 平面EBC,因此MN ∥平面EBC .8 分(2)在矩形ABCD 中,BC⊥AB,又平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC? 平面ABCD ,因此BC⊥平面EAB,12 分又EA ? 平面EAB,因此BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC? 平面EBC,因此EA⊥平面EBC .16 分6.(本小题满分16 分)(无锡市2017 届高三上学期期末)在四棱锥P-ABCD 中,底面ABCD 为矩形,AP⊥平面PCD,E,F 分别为PC,AB 的中点.求证:图8(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD .[证明] (1)∵AP⊥平面PCD,CD? 平面PCD ,∴AP⊥CD.∵ABCD 为矩形,∴AD⊥CD, 2 分又∵AP∩AD=A,AP? 平面PAD,AD? 平面PAD,∴CD⊥平面PAD,4 分∵CD? 平面ABCD,∴平面PAD⊥平面ABCD . 6 分(2)连结AC、BD 交于O,连结OE,OF.∵ABCD 为矩形,∴O 为AC 中点,∵E 为PC 中点,∴OE∥PA.∵OE ?平面PAD,PA? 平面PAD,∴OE∥平面PAD,10 分同理OF∥平面PAD,12 分∵OE∩OF=O,∴平面OEF∥平面PAD,14 分∵EF ? 平面OEF,∴EF∥平面PAD . 16 分7.(本小题满分16 分)(扬州市2017 届高三上学期期末)如图9,在四棱锥P-ABCD 中,底面ABCD 是矩形,点E、F 分别是棱PC 和PD 的中点.图9(1)求证:EF ∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD .【导学号:56394094】[证明] (1)由于点E、F 分别是棱PC 和PD 的中点,因此EF∥CD,又在矩形ABCD 中,AB∥CD,因此EF∥AB, 3 分又AB ? 平面PAB,EF ?平面PAB,因此EF∥平面PAB . 6 分(2)在矩形ABCD 中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD? 平面ABCD,因此CD⊥平面PAD,又AF ? 面PAD,因此CD⊥AF.①由于PA=AD 且F 是PD 的中点,因此AF ⊥PD,②由①②及PD? 平面PCD,CD? 平面PCD,PD∩CD=D,因此AF⊥平面PCD .16 分。
立体几何中地探索性问题
立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟] 如图所示,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________,就有MN ∥平面B 1BDD 1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M 位于线段FH 上(答案不唯一) [解析] 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,FH ∩HN =H ,DD 1∩BD =D ,∴平面FHN ∥平面B 1BDD 1,故只要M ∈FH ,则MN ⊂平面FHN ,且MN ∥平面B 1BDD 1.2.如图所示,在正方体ABCD A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.解:(1)如图所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .(2分)又在正方体ABCD A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.(4分)设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23,(5分)即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(6分)(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥PABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥APDE的体积;(2)AC边上是否存在一点M,使得PA∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.又∵ABCD 是矩形, ∴AD ⊥CD . ∵PD ∩CD =D , ∴AD ⊥平面PCD ,∴AD 是三棱锥A PDE 的高. ∵E 为PC 的中点,且PD =DC =4, ∴S △PDE =12S △PDC =12×⎝ ⎛⎭⎪⎫12×4×4=4. 又AD =2,∴V A -PDE =13AD ·S △PDE =13×2×4=83.(2)取AC 中点M ,连接EM ,DM ,∵E 为PC 的中点,M 是AC 的中点,∴EM ∥PA . 又∵EM ⊂平面EDM ,PA ⊄平面EDM , ∴PA ∥平面EDM . ∴AM =12AC = 5.即在AC 边上存在一点M ,使得PA ∥平面EDM ,AM 的长为 5.4.如图所示,在三棱锥P ABC 中,点D ,E 分别为PB ,BC 的中点.在线段AC 上是否存在点F ,使得AD ∥平面PEF ?若存在,求出AF FC的值;若不存在,请说明理由.解:假设在AC 上存在点F ,使得AD ∥平面PEF , 连接DC 交PE 于G ,连接FG ,如图所示.∵AD ∥平面PEF ,平面ADC ∩平面PEF =FG ,∴AD ∥FG .又∵点D ,E 分别为PB ,BC 的中点,∴G 为△PBC 的重心,∴AF FC =DG GC =12.故在线段AC 上存在点F ,使得AD ∥平面PEF ,且AF FC =12.5.[2016·北京卷] 如图,在四棱锥P ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC . (1)求证:DC ⊥平面PAC .(2)求证:平面PAB ⊥平面PAC .(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由.解:(1)证明:因为PC ⊥平面ABCD , 所以PC ⊥DC . 又因为DC ⊥AC , 所以DC ⊥平面PAC .(2)证明:因为AB ∥DC ,DC ⊥AC , 所以AB ⊥AC .因为PC ⊥平面ABCD , 所以PC ⊥AB ,所以AB ⊥平面PAC , 所以平面PAB ⊥平面PAC .(3)棱PB 上存在点F ,使得PA ∥平面CEF .证明如下: 取PB 的中点F ,连接EF ,CE ,CF .因为E 为AB 的中点, 所以EF ∥PA .又因为PA ⊄平面CEF ,所以PA ∥平面CEF .6.[2016·四川卷] 如图,在四棱锥P ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)证明:平面PAB ⊥平面PBD .解:(1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD ,从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD ,所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .7. [2016·阳泉模拟] 如图74110,在四棱锥P ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(1)求证:AC ⊥PD .(2)在线段PA 上是否存在点E ,使BE ∥平面PCD ?若存在,求出PE PA的值;若不存在,请说明理由.解:(1)证明:∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊥CD ,AC ⊂平面ABCD ,∴AC ⊥平面PCD ,∵PD ⊂平面PCD ,∴AC ⊥PD .(2)在线段PA 上存在点E ,使BE ∥平面PCD ,且PE PA =13.下面给出证明:∵AD =3,BC =1,∴在△PAD 中,分别取PA ,PD 靠近点P 的三等分点E ,F ,连接EF ,BE ,CF .∵PE PA =PF PD =13,∴EF ∥AD ,且EF =13AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF , ∴四边形BCFE 是平行四边形,∴BE ∥CF ,又∵BE ⊄平面PCD ,CF ⊂平面PCD , ∴BE ∥平面PCD .8.(10分)[2016·河南中原名校联考] 如图所示,在四棱锥S ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.(1)证明:平面SBD ⊥平面SAD .(2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD ?请证明你的结论.(3)求四棱锥S ABCD 的体积.解:(1)证明:∵△SAD 是等边三角形, ∴AD =SD =2,又BD =23,AB =4,∴AD 2+BD 2=AB 2,∴BD ⊥AD ,又∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD . ∴BD ⊥平面SAD .又BD ⊂平面SBD ,∴平面SBD ⊥平面SAD .(2)当E 为SC 的三等分点,即ES =2CE 时,结论成立. 证明如下:连接AC 交BD 于点H ,连接EH .∵CD ∥AB ,CD =12AB ,∴CH HA =12=CEES,∴HE ∥SA .又SA ⊄平面EBD ,HE ⊂平面EBD , ∴SA ∥平面EBD .(3)过S 作SO ⊥AD ,交AD 于点O . ∵△SAD 为等边三角形,∴O 为AD 的中点,∴SO = 3.易证得SO ⊥平面ABCD ,∴V 四棱锥S ABCD =13S 梯形ABCD ·SO .∵S 梯形ABCD =12×(2+4)×3=33,∴V 四棱锥S ABCD =3.二、探索垂直关系1.如图所示,在三棱锥P ABC 中,已知PA ⊥底面ABC ,AB ⊥BC ,E ,F 分别是线段PB ,PC 上的动点,则下列说法错误的是( )A .当AE ⊥PB 时,△AEF 一定为直角三角形 B .当AF ⊥PC 时,△AEF 一定为直角三角形C .当EF ∥平面ABC 时,△AEF 一定为直角三角形D .当PC ⊥平面AEF 时,△AEF 一定为直角三角形答案:B [解析] 已知PA ⊥底面ABC ,则PA ⊥BC ,又AB ⊥BC ,PA ∩AB =A , 则BC ⊥平面PAB ,BC ⊥AE .当AE ⊥PB 时,又PB ∩BC =B ,则AE ⊥平面PBC ,则AE ⊥EF ,A 正确.当EF ∥平面ABC 时,又EF ⊂平面PBC ,平面PBC ∩平面ABC =BC ,则EF ∥BC ,故EF ⊥平面PAB ,则AE ⊥EF ,故C 正确.当PC ⊥平面AEF 时,PC ⊥AE ,又BC ⊥AE ,PC ∩BC =C ,则AE ⊥平面PBC ,则AE ⊥EF ,故D 正确.用排除法可知选B.2.如图所示,在三棱柱ABC A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案:a 或2a [解析] 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.当CF ⊥DF 时,设AF =x ,则A 1F =3a -x .由Rt △CAF ∽Rt △FA 1D ,得AC A 1F =AF A 1D ,即2a 3a -x =x a,整理得x 2-3ax +2a 2=0,解得x =a或x =2a .3.如图所示,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.答案:①②③ [解析] 由题意知PA ⊥平面ABC ,∴PA ⊥BC .又AC ⊥BC ,PA ∩AC =A ,∴BC ⊥平面PAC ,∴BC ⊥AF .∵AF ⊥PC ,BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB ,AF ⊥BC .又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF ,∴PB ⊥EF .故①②③正确.4.如图所示,已知长方体ABCD A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点.(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1DAD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.解析:(1)证明:∵E 为线段AD 1的中点,F 为线段BD 1的中点,∴EF ∥AB . ∵EF ⊄平面ABCD ,AB ⊂平面ABCD , ∴EF ∥平面ABCD . (2)当D 1DAD=2时,DF ⊥平面D 1MB . ∵ABCD 是正方形, ∴AC ⊥BD . ∵D 1D ⊥平面ABC , ∴D 1D ⊥AC . ∴AC ⊥平面BB 1D 1D , ∴AC ⊥DF .∵F ,M 分别是BD 1,CC 1的中点, ∴FM ∥AC . ∴DF ⊥FM . ∵D 1D =2AD , ∴D 1D =BD .∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1) (2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE⊄平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.∴DE⊥平面A1DC.而A1F⊂平面A1DC,(6分)∴DE⊥A1F.又∵A1F⊥CD,CD∩DE=D,∴A1F⊥平面BCDE,又BE⊂平面BCDE,∴A1F⊥BE.(9分)(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCDA1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF⊂平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴∠ABG=∠DAE.∴AE⊥BG.又∵BG∩FG=G,∴AE⊥平面BFG.又BF⊂平面BFG,∴AE⊥BF.(3)存在.取CC1中点P,即为所求.连接EP,AP,C1D,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF⊂平面A1EF,DM⊄平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F⊂平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF⊂平面BCD,所以EF⊥平面A1BD.因为A1B⊂平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
立体几何中的探索性问题
立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟]如图所示,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________,就有MN∥平面B1BDD1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD=D,∴平面FHN∥平面B1BDD1,故只要M∈FH,则MN?平面FHN,且MN∥平面B1BDD1.2.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:(1)如图所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.(2分),ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.(4分(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG?平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.又∵ABCD是矩形,又AD=2,∴V A-PDE=AD·S△PDE=×2×4=.(2)取AC中点M,连接EM,DM,∵E为PC又∵EM?平面EDM,P A?平面EDM,∴P A∥平面EDM.∴AM=AC=.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为.4.如图所示,在三棱锥P-ABC中,点D,E分别为PB,BC的中点.在线段AC上是否存在点F,使得AD∥平面PEF?若存在,求出的值;若不存在,请说明理由.解:假设在AC上存在点F,使得AD∥平面PEF,连接DC交PE于G,连接FG,如图所示.∵AD∥平面PEF,平面ADC∩平面PEF=FG,∴AD∥FG.又∵点D,E分别为PB,BC的中点,∴G为△PBC的重心,∴==.故在线段AC上存在点F,使得AD∥平面PEF,且=.5.[2016·北京卷]如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC.(2)求证:平面P AB⊥平面P AC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.解:(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB,所以AB⊥平面P AC,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.证明如下:取6(1)(2)所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面P AB,CM?平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线(2)证明:由已知,P A⊥AB,P A⊥CD.因为AD∥BC,BC=AD,所以直线AB与CD相交,所以P A⊥平面ABCD,从而P A⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD,所以四边形BCDM是平行四边形,所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD?平面PBD,所以平面P AB⊥平面PBD.7.[2016·阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.(1)求证:AC⊥PD.(2)在线段P A上是否存在点E,使BE∥平面PCD?若存在,求出的值;若不存在,请说明理由.解:(1)证明:∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,∴AC⊥平面PCD,∵PD?平面PCD,∴AC⊥PD.(2)在线段P A上存在点E,使BE∥平面PCD,且=.下面给出证明:∵AD=3,BC=1,∴在△P AD中,分别取P A,PD靠近点P的三等分点E,F,连接EF,BE,CF.∵==,∴EF∥AD,且EF=AD=1.又∵BC∥AD,∴BC∥EF,且BC=EF,∴四边形BCFE是平行四边形,∴BE∥CF,又∵BE?平面PCD,CF?平面PCD,∴BE∥平面PCD.8.(10分)[2016·河南中原名校联考]如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD,AB∥DC,△SAD 是等边三角形,且SD=2,BD=2,AB=2CD=4.(1)证明:平面SBD⊥平面SAD.(2)若E是SC上的一点,当E点位于线段SC上什么位置时,SA∥平面EBD?请证明你的结论.(3)求四棱锥S-ABCD的体积.解:(1)证明:∵△SAD是等边三角形,∴AD=SD=2,又BD=2,AB=4,=AD.∴V四棱锥S-ABCD=S梯形ABCD·SO.∵S梯形ABCD=×(2+4)×=3,∴V四棱锥S-ABCD=3.二、探索垂直关系1.如图所示,在三棱锥P-ABC中,已知P A⊥底面列说法错误的是()A.当AE⊥PB时,△AEF一定为直角三角形B.当AF⊥PC时,△AEF一定为直角三角形C.当EF∥平面ABC时,△AEF一定为直角三角形D.当PC⊥平面AEF时,△AEF一定为直角三角形答案:B[解析]已知P A⊥底面ABC,则P A⊥BC,又AB⊥BC,P A∩AB=A,则BC⊥平面P AB,BC⊥AE.当AE⊥PB时,又PB∩BC=B,则AE⊥平面PBC,则AE⊥EF,A正确.当EF∥平面ABC时,又EF?平面PBC,平面PBC∩平面ABC=BC,则EF∥BC,故EF⊥平面P AB,则AE⊥EF,故C正确.当PC⊥平面AEF时,PC⊥AE,又BC⊥AE,PC∩BC=C,则AE⊥平面PBC,则AE⊥EF,故D正确.用排除法可知选B.2.如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案:a或2a[解析]由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF 即可.当CF⊥DF时,设AF=x,则A1F=3a-x.由Rt△CAF∽Rt△F A1D,得=,即=,整理得x2-3ax+2a2=0,解得x=a或x=2a.3.如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案:①②③[解析]由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.4.如图所示,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.(1)求证:EF∥平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF⊥平面D1MB?并说明理由.解析:(1)证明:∵E为线段AD1的中点,F为线段BD1的中点,∴EF∥AB.∵EF?平面ABCD,AB?平面ABCD,∴EF∥平面ABCD.(2)当=时,DF⊥平面D1MB.∴FM∥AC.∴DF⊥FM.∵D1D=AD,∴D1D=BD.∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)(2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE?平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.如图,分别取A1C,A1B的中点P,Q,则PQ∥BC又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF?平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC 于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF?平面A1EF,DM?平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F?平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF?平面BCD,所以EF⊥平面A1BD.因为A1B?平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
立体几何中的探索性问题
立体几何中的探索性问题(总12页)-CAL-FENGHAI.-(YICAI)-Company One 1■CAL■本页仅作为文档封面.使用请直接删除立体几何中的探索性问题一、探索平行关系1.[2016 •枣强中学模拟]如图所示,在正四棱柱凡Q中,E, F, G,〃分别是棱CG, GD、D.D、兀的中点,川是虑的中点,点"任四边形叭¥及其内部运动,则M只需满足条件,就有〃平而Ba*(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HX, FH, FM,则FH〃DD“ HN〃BD, FHnHN=H, DD2BD=D, 平而FHN〃平面B】BDD” 故只要MeFH,则MNu 平而FHN,且MN〃平而B;BDD:.2.如图所示,在正方体ABCD-A^aa中,E是棱勿:的中点.(1)求直线亦和平而ABBA所成的角的正弦值;(2)在棱GA上是否存在一点F,使氏尸〃平面凡庞证明你的结论.解:⑴如图所示,取的中点M连接册翩因为疋是皿的中点,四边形迦凡为正方形,所以EM//AD.(2分)又在正方体ABCD AxB.GD中,血?丄平而ABBA,所以則丄平而ABBA从而血为直线亦在平而磁儿上的射影,AEBM为庞用1平而邂凡所成的角.(4分)设正方体的棱长为2,则EM=AD=2.亦=费+2讦尸=3・EM 9于是,在Rt△宓#中,sinZ旳片亦=亍(5分)2即直线亦和平而磁也所成的角的正弦值为亍(6分)(2)在棱GA上存在点尸,使3尸〃平而4眩事实上,如图(b)所示,分别取和G?的中点尸,G、连接5只EG、BG. Cg FG.因AD"B3BC、且凡2=BC,所以四边形A..BCD、是平行四边形,因此RC//AiB.又E G分别为AQ,少的中点,所以EG” DC从而EG" Ab这说明凡,B, G,尸四点共面.所以瑟平而应宓(8分)因四边形GCDD、呂B..BCC:皆为正方形,F, G分别为GA和Q的中点,所以FG//GC//&.B.且FG=GC=RB.因此四边形3财是平行四边形,所以&FHBG、(10 分)而5丙平而入BE. BGci平而A,BE.故氏尸〃平而凡宓(12分)Ai D,3・如图,四棱锥P-ABCD中,刊丄平而ABCD.底而ABCD为矩形,PD=DC=\> AD= 2,疋为FC的中点.(1)求三棱锥A-PDE的体积:(2)£Q边上是否存在一点必使得用〃平而皿了若存在,求出的长;若不存在,请解析:(1):•刃丄平而救P, :.PDLAD.又•: ABCD是矩形,:.ADLCD.•: PDQCD=D.:.ADL平而PCD、:.出?是三棱锥ArPDE的高.•••£为PC的中点,且PD=DC=\.S:\ne= :\rx=E X X 1 X 4j = 4. 又AD=2.1 1 8⑵取M中点•也连接則,DM, YE为PC的中点,〃是M的中点…••曰〃用. 又V£Jit=平而EDM.Q1G平而ED如化用〃平而EDM.:.AM=^AC=^i.即在川Q边上存在一点%使得丹〃平而旦必川/的长为仗.4.如图所示,在三棱锥尸・磁中,点刀,E分别为丹,證的中点.在线段川6•上是否存在AF斤使得出?〃平而PEF,连接%交朋于G连接尬点尸,使得肋〃平而财若存在,求出丘的值;若不存在,请说明理由.9:AD//平而昭;平而ADCn平而PEF= FG,:.AD//FG.又•.•点Q, E分别为丹,BC的中点、:.G为△磁的重心,.:芬=券=*・故在线段上存月尸1在点斤使得初〃平面亦且丘 =了・5.[2016 •北京卷]如图,在四棱锥户・月万e中,FC丄平而ABCD, AB//DC. DCLAC.(1)求证:ZT丄平而用C(2)求证:平面用3丄平而QIC(3)设点£为初的中点,在棱丹上是否存在点尸,使得用〃平而狞说明理由.解:(D证明:因为尸Q丄平而馭D 所以PCLDC.又因为DCLAC.所以%丄平面用C(2)证明:炭为 AB〃 DC, DC LAC. 所以AB±AC.因为PQ丄平面所以PC丄肋.所以曲丄平而用G所以平而加丄平而QIC(3)棱丹上存在点尸,使得刊〃平而亦证明如下: 取丹的中点斤连接朋CE、CE因为疋为曲的中点,所以EF//PA.又因为加平面亦所以刃〃平而狞6.[2016 •四川卷]如图,在四棱锥P・丽CD中,PA丄CD, AD//BC. ZADC= ZPAB= 90°, BC=CD=^AD.(1)在平而验内找一点M,使得直线G/〃平而并说明理由;(2)证明:平面用万丄平而磁・解:⑴取棱肋的中点肌胆平而加?),点“即为所求的一个点.理由如卜•:因为肋〃处BC^-AD.所以BC//AM.且證=&肌所以四边形汽畑是平行四边形,从而CM//AB.又邂平而PAB.平而PAB.所以平而PAB.(说明:取棱刃的中点用则所找的点可以是直线JfV上任意一点)P(2)证明:由已知,用丄用丄m因为AD//BC,證=£肋,所以直线AB与切相交,所以丹丄平而ABCD,从而PAJLBD. 因为肋〃必BC=^AD.所以證〃J偽且BC=MD,所以四边形万GW是平行四边形,所以B.V=CD=^AD,所以助丄又ABOAP=A.所以加丄平而加又平面PBD.所以平而用5丄平而PBD.7.[2016 •阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC//AD. 5(7=1,初=3, AC LCD.且平而加丄平而MGZ(1)求证:ACA-PD.PF(2)在线段用上是否存在点E使氐•〃平而加若存在,求出吕的值;若不存在,请PA说明理由.解:(1)证明:•••平面尸G?丄平而ABCD.平而pea平而ABCD= CD、AC LCD. Mt平而ABCD, :.ACL 平而•: Pg平而PCD、:.ACLPD.PE 1(2)在线段刃上存在点仅使亦〃平而加,且士=#下而给岀证明:^AD=Z, BC=1.•••在△用Z?中,分别取用,刃靠近点尸的三等分点伐尺连接丽BE. CF.•翌 =丄=匹•叼=空=看 :.HE//SA.又S 幻平而PE PF 11 ':盲苛勺:・EF 〃也且吩严1.又 9:BC//AD.:・BC 〃 EF 、RBC=EF\•••四边形心是平行四边形,:・BE 〃 CF 、又TS 皮平PCD. G 匕平而RD:.BE//平而尸GZ8. (10分)[2016 •河南中原名校联考]如图所示,在四棱锥S ■馭P 中,平而旳门丄平面 ABCD. AB//DC. △S3是等边三角形,且 SD=2、ED=2© AB=2CD=4.(1) 证明:平而如丄平而5>切・(2) 若疋是SC 上的一点,当厅点位于线段SC 上什么位置时,旳〃平面磁请证明你的 结论.(3)求四棱锥&ABCD 的体积.解:(1)证明HSAD 是等边三角形,:.AD=SD=2,又 BD=2品 J5=4,:.AD^BD=AB,:・BD 丄AD,又I 平而SADL 平面ABCD.平而SADC\平而ABCD=AD. :・BDL 平而SAD.又BX 平而SBD 、•••平而迦丄平面SAD.⑵当疋为SC 的三等分点,即厉=2炉时,结论成立. 证明如下:连接川Q 交助于点忆连接皿1V CD//AB. CD=:AB,•• SA// 平而 EBD.3)过S 作S0丄肋,交AD 于点0・••△SQ 为等边三角形,••0为出?的中点,:.SO=\(3•易证得SO 丄平而ABCD. _1 ―*. V I 'MKW s ASO )=^S ABCD • SO.•* -S'«fiu-^cx»=0 X (2+4) X 寸3 = 3寸2,:y PUWW $・如>=3.二.探索垂直关系1.如图所示,在三棱锥磁中,已知刃丄底而MG AB±BC. E>尸分别是线段丹, FQ上的动点,则下列说法错误的是()A.当肚丄丹时,HAEF—氾为直角三角形B・当处丄PQ时,HAEF—能为直角三角形C.当疔〃平而磁时,\AEFTE为直角三角形D.当尸C丄平而遁■时.HAEF—矩为直角三角形答案:B [解析]已知用丄底而则用丄反;又AB丄BC. PAC\AB=A. 则必7丄平而如,BCLAE.当AELPB时,又PBCBC=B,则肚丄平而丹G则血丄〃;A正确.当刃%平而月氏时,又决平而丹G平而PBCn平而月必=万G则疔〃万G故疗丄平而用万,则月尸丄也故C正确.当PC1平而月时,PCLAE.又BCLAE. PCC\BC=C.则血丄平面PBC.则AELEF. 故D正确.用排除法可知选B.2. ____________________________________________________________________ 如图所示,在三棱柱ABGA^G中,侧棱必丄底而馭;底而是以/遊为直角的等腰直角三角形,AC=2a,脛= 3a,。
立体几何的探索性问题
立体几何的探索性问题【典例1】【2021·六盘山高级中学高三一模】如图,在直角梯形ABCD 中,AB //DC ,∠ABC =90°,AB =2DC =2BC ,E 为AB 的中点,沿DE 将△ADE 折起,使得点A 到点P 位置,且PE ⊥EB ,M 为PB 的中点,N 是BC 上的动点(与点B ,C 不重合).(1)求证:平面EMN ⊥平面PBC ;(2)是否存在点N ,使得二面角B ﹣EN ﹣M 6N 点位置;若不存在,说明理由.【思路引导】(1)根据题意,先证明EM ⊥平面PBC ,再利用面面垂直的判定定理,证明结论;(2)以E 为原点,EB ,ED ,EP 分别为x ,y ,z 轴建立空间直角坐标系,设PE =EB =2,设N (2,m ,0),求出平面EMN 的法向量,利用夹角公式求出m ,得到结论.【典例2】【2020届江西省赣州市高三上学期期末考试】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论;(2)求二面角A EC D --的余弦值.【思路引导】(1)容易判断出点F 为EA 的中点,根据中位线定理得到//OF EC ,再根据线面平行的判定定理证明即可;(2)根据题目给出的数据,找出两两垂直的关系,建立空间直角坐标系,利用向量法求出二面角A EC D --的余弦值.【典例3】【北京市昌平区2020届高三期末】如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ;(Ⅱ)求证:BD ⊥平面P AB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由.【思路引导】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ;(Ⅱ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】在三棱锥P —ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC =23,E 、G 分别为PC 、P A 的中点.(1)求证:平面BCG ⊥平面P AC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求AN NC的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值【思路引导】(1)由BC PA ⊥,BG PA ⊥,得PA ⊥平面BCG ,即可得到本题的结论;(2)由N 为线段AC 一点,可设为(2,23,0)AN AC λλλ==-,得(22,23,2)PN λλ=--,又由,PN BE ⊥可确定λ的取值,从而可得到本题答案;(3)求出平面PBN 的法向量(,,)n x y z =,然后套入公式||sin ||||BE n BE n θ⋅=⋅,即可得到本题答案.【典例5】【2021山东省实验中学高三期末检测】如图,四棱锥P ABCD -中,PA ⊥面ABCD ,ABCD 是直角梯形,AD DC ⊥,//AB DC ,112AB AD DC ===,PA AB =.设平面PAB 与平面PDC 的交线为l .(Ⅰ)若E 为PC 的中点,在直线l 上找一点F 使得EF ⊥面ABE ,确定F 的位置并证明你的结论;(Ⅱ)Q 为l 上的点,求平面QBC 与平面PAD 所成二面角的正弦值的最小值.【思路引导】(Ⅰ)首先可证AB ⊥面PAD ,再证//AB 面PCD ,即可得到//l AB ,建立空间直角坐标系,设()0,,1F a ,由EF ⊥面ABE ,即可得到0,0,EF AB EF AE ⎧⋅=⎨⋅=⎩,从而得到方程,解得即可.(Ⅱ)求出平面QBC 、PAD 的法向量,设平面QBC 与平面PAD 所成二面角为θ,则cos cos ,AB n θ=,则221sin 123b b θ=--+,根据二次函数的性质计算可得;【典例6】【2021江苏省南京市高三月考】如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由.【思路引导】(1)由于图形是正方体,建立空间直角坐标系很方便,所以要求线面角,在建立空间直角坐标系后分别求出1OD 以及平面CDE 的法向量再运用公式计算即可; (2)先假设存在点E ,再求平面CDE 的法向量和平面CD 1O 的法向量,根据平面垂直就可以计算出结果.【典例7】【2021河北省石家庄市高三期末考试】如图,在四棱锥P ABCD -中,线段AC 的中点为O ,PO ⊥平面ABCD ,AB BC ⊥,AD CD ⊥,23AB AD BD ===,6AP =.(1)证明:平面APB ⊥平面PBD .(2)线段PD 上是否存在点Q (不含端点),使得二面角A CQ P --的余弦值为25?若存在,求出线段PQ 的长;若不存在,请说明理由. 【思路引导】(1)先利用条件和三角形全等得到BD AC ⊥,再由OP ⊥平面ABCD 得到BD OP ⊥,从而得BD ⊥平面ACP ,进而得BD AP ⊥,然后利用数量关系和勾股定理得⊥PE AP ,从而得AP ⊥平面BDP ,进而得平面APB ⊥平面PBD ;(2)结合(1),以E 为坐标原点,建立恰当的空间直角坐标系,设PQ PD λ→→=,01λ<<,求出两个平面的法向量,利用向量的夹角公式建立关于λ的等式,解出λ的值即可得解.【针对训练】1.【2021·山西太原市·高三期末】如图,在三棱锥P ABC -中,2PA PB ==,5AC BC PC ===,2AB =,点D ,E 分别为AB ,PC 的中点.(1)证明:平面PAB ⊥平面ABC ;(2)设点F 在线段BC 上,且BF FC λ=,若二面角C AE F --的大小为45°,求实数λ的值.【思路引导】(1)要证平面PAB ⊥平面ABC ,只需证明PD ⊥平面ABC ,通过勾股定理可知PD CD⊥,即可证明;(2)已知二面角的角度,求参数的值,建立出平面直角坐标系,借助法向量即可.2.【四川省棠湖中学2020届高三月考】如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.【思路引导】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.3.【2021河南省许昌市高三第一次质量预测】如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=30°,PD⊥平面ABCD,AD=2,点E为AB上一点,且AEmAB=,点F为PD中点.(1)若12m =,证明:直线AF ∥平面PEC ; (2)是否存在一个常数m ,使得平面PED ⊥平面PAB ?若存在,求出m 的值;若不存在,说明理由.【思路引导】(1)首先取PC 的中点M ,连接FM ,EM ,根据三角形中位线性质和已知得到//FM AE ,FM AE =,从而得到四边形AEMF 为平行四边形,//AF EM ,再根据线面平行的判定即可证明//AF 平面PEC .(2)由题知:要使平面PED ⊥平面PAB ,只需AB DE ⊥,从而得到cos303AE AD ==,即可得到32AE m AB ==.4.【2020届四川省巴中市高三第一次诊断】如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.(1)求证:PN 平面ABCD ;(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由.【思路引导】(1)先证明AB ⊥平面PAD ,可得平面ABCD ⊥平面PAD ,由面面垂直的性质可证PN 平面ABCD (2)取BC 中点E ,连接PE ,DE ,根据平行四边形可得,BN DE 线线平行,即可证明线面平行.5.【2021湖北省武汉市高三4月联考检测】如图,在直角梯形ABCD 中,//AD BC ,90BAD ∠=,且12AB BC AD ==,E 是AD 的中点,将ABE 沿BE 折起到SBE 的位置,使平面SBE ⊥平面BCDE .(1)求二面角--B SC D 的正弦值;(2)在直线SB 上是否存在点P ,使PD ⊥平面SBC ?若存在,请求出点P 所在的位置;若不存在,请说明理由.【思路引导】(1)先证明,,OB OS OC 两两垂直,以O 为原点,OB 、OC 、OS 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,求出平面SBC 的一个法向量,平面SCD 的一个法向量,利用向量夹角公式即可求解;(2)假设直线SB 上存在点P ,使得PD ⊥平面SBC ,不妨设(),0,1P a a -,由1//PD n 利用坐标表示求a 的值,即可求解.6.【2020届广东省东莞市高三期末调研测试】如图,在四棱锥S ABCD -中,已知四边形ABCD 是边长为2的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC 的面积为1.(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;(2)在棱SD 上是否存在一点P 使得二面角P AC D --的余弦值为5?若存在,求出点P 的位置;若不存在,说明理由.【思路引导】(1)利用等腰三角形“三线合一”证明SD ⊥平面PAC ,进而证明平面SCD ⊥平面PAC ; (2)分别以,,OB OC OS 为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -,设SP SD λ=,利用平面的法向量求二面角,进而计算得到λ即可7.【2021·江苏省部分重点中学阶段性考试】如图,四边形ABCD 是边长为2的正方形,,AP PD =将三角形PAD 沿AD 折起使平面PAD ⊥平面ABCD .(1)若M 为PC 上一点,且满足BM PD ⊥,求证:PD AM ⊥;(2)若二面角B PC D --的余弦值为105-,求AP 的长. 【思路引导】(1)先由面面垂直得到,PD AB ⊥然后证明PD ⊥面,ABM 从而得到PD AM ⊥;(2)取AD 中点О,以О为坐标原点,分别以,,OA AB OP 方向为,,x y z 轴正方向,建立如图所示的空间直角坐标系,用向量法求AP .8.【河南省开封市五县2020届模拟】如图,AC 是O 的直径,点B 是O 上与A ,C 不重合的动点,PO ⊥平面ABC .(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之;(2)请判断,当点B 在O 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由. 【思路引导】(1)由题可推出平面ACP ⊥平面ABC ,故OB AC ⊥时,即可推出OB ⊥平面PAC ,进而得出结论;(2)假设存在点B 满足题意,即可推出BC ⊥平面PAB ,进而有BC BP ⊥,又由题可推得BP PC =,故PBC ∠为锐角,这与BC BP ⊥矛盾,故不存点B 使得BC AP ⊥.参考答案【典例1】【2021·六盘山高级中学高三一模】如图,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC=2BC,E为AB的中点,沿DE 将△ADE折起,使得点A到点P位置,且PE⊥EB,M为PB的中点,N是BC上的动点(与点B,C不重合).(1)求证:平面EMN⊥平面PBC;(2)是否存在点N,使得二面角B﹣EN﹣M 6N点位置;若不存在,说明理由.【思路引导】(1)根据题意,先证明EM⊥平面PBC,再利用面面垂直的判定定理,证明结论;(2)以E为原点,EB,ED,EP分别为x,y,z轴建立空间直角坐标系,设PE=EB=2,设N(2,m,0),求出平面EMN的法向量,利用夹角公式求出m,得到结论.【解析】(1)证明:由PE ⊥EB ,PE ⊥ED ,EB ∩ED =E , 所以PE ⊥平面EBCD ,又BC ⊂平面EBCD , 故PE ⊥BC ,又BC ⊥BE ,故BC ⊥平面PEB , EM ⊂平面PEB ,故EM ⊥BC , 又等腰三角形PEB ,EM ⊥PB , BC ∩PB =B ,故EM ⊥平面PBC , EM ⊂平面EMN , 故平面EMN ⊥平面PBC ;(2)假设存在点N ,使得二面角B ﹣EN ﹣M的余弦值6. 以E 为原点,EB ED EP ,,分别为x ,y ,z 轴建立空间直角坐标系,设PE =EB =2,设N (2,m ,0),B (2,0,0),D (0,2,0), P (0,0,2),C (2,2,0),M (1,0,1),(1,0,1)EM =,(2,0,0)EB =,(2,,0)EN m =,设平面EMN 的法向量为(,,)p x y z =,由.0.20m EM x z m EN x my ⎧=+=⎨=+=⎩,令x m =,得(,2,)p m m =--, 平面BEN 的一个法向量为(001)n =,,, 故()()222006cos ,2001p n mp n p nm m ⋅+-===⨯+-+-⨯++解得:m =1,故存在N 为BC 的中点.【典例2】【2020届江西省赣州市高三上学期期末考试】如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且,EB CB ED CD ==.(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【思路引导】(1)容易判断出点F 为EA 的中点,根据中位线定理得到//OF EC ,再根据线面平行的判定定理证明即可;(2)根据题目给出的数据,找出两两垂直的关系,建立空间直角坐标系,利用向量法求出二面角A EC D --的余弦值. 【详解】(1)存在点F ,点F 为EA 的中点证明:当点F 为EA 的中点时,连结AC 交BD 于O , ∵平行四边形ABCD ,∴O 为AC 的中点, 连结OF ,则//OF EC ,∵FO ⊂平面BDF ,EC ⊂/平面BDF ,∴//EC 平面FBD .(2)∵4,2EB CB AD ED CD AB ======,60BAD ∠=︒∴23BD =222BE BD ED =+,222BC BD DC =+,∴BD ED ⊥,BD DC ⊥ 又∵平面EBD ⊥平面ABD ,∴ED ⊥平面ABCD ,BD ⊥平面ECD ,以DB 为x 轴,DC 为y 轴,DE 为z 轴,如图建系:D xyz -则(0,0,0)D ,(23,2,0)A -,(0,2,0)C ,(0,0,2)E ,(23,0,0)B ∴(23,4,0)AC =-,(23,2,2)AE =- ∴(23,0,0)DB =为平面ECD 的一个法向量, 令平面ACD 的一个法向量为(,,)n x y z =,∴234023220n AC x y n AE x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩取2x =,3y =3z =∴平面ACD 的一个法向量为(2,3,3n =, 令二面角A EC D --为θ,由题意可知θ为锐角, 则||4310cos |cos ,|||||2310n DB n DB n DB θ⋅=<>===⋅⨯. 【典例3】【北京市昌平区2020届高三期末】如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD⊥PD;(Ⅱ)求证:BD⊥平面P AB;(Ⅲ)在棱PD上是否存在点M,使CM∥平面P AB,若存在,确定点M的位置,若不存在,请说明理由.【思路引导】(Ⅰ)由题意可得CD⊥平面P AD,从而易得CD⊥PD;(Ⅱ)要证BD⊥平面P AB,关键是证明BD AB⊥;(Ⅲ)在棱PD上存在点M,使CM∥平面P AB,且M是PD的中点.【详解】(Ⅰ)证明:因为P A⊥平面ABCD,CD⊂平面ABCD,所以CD⊥P A.因为CD⊥AD,PA AD A⋂=,所以CD⊥平面P AD.因为PD⊂平面P AD,所以CD⊥PD.(II)因为P A⊥平面ABCD,BD⊂平面ABCD,所以BD⊥P A.在直角梯形ABCD中,12BC CD AD==,由题意可得2AB BD BC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面P AB.(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 证明:取P A 的中点N ,连接MN ,BN ,因为M 是PD 的中点,所以12MN AD . 因为12BCAD ,所以MN BC .所以MNBC 是平行四边形, 所以CM ∥BN .因为CM ⊄平面P AB , BN ⊂平面P AB . 所以//CM 平面P AB .【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】在三棱锥P —ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC =23,E 、G 分别为PC 、P A 的中点.(1)求证:平面BCG ⊥平面P AC ;(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求ANNC的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【思路引导】(1)由BC PA ⊥,BG PA ⊥,得PA ⊥平面BCG ,即可得到本题的结论;(2)由N 为线段AC 一点,可设为(2,0)AN AC λλ==-,得(22,2)PN λ=--,又由,PN BE ⊥可确定λ的取值,从而可得到本题答案;(3)求出平面PBN 的法向量(,,)n x y z =,然后套入公式||sin ||||BE n BE n θ⋅=⋅,即可得到本题答案.【详解】(1) 因为PB ⊥平面ABC ,BC ⊂平面ABC ,所以PB BC ⊥, 又AB BC ⊥,ABBP B =,所以BC ⊥平面PAB ,则BC PA ⊥①,又2AB PB ==,PAB ∆为等腰直角三角形,G 为斜边PA 的中点,所以BG PA ⊥②, 又BG BC B ⋂=,所以PA ⊥平面BCG ,因PA ⊂平面PAC , 则有平面BCG ⊥平面 PAC ;(2)分别以,,BA BC BP 为,,x y z 轴,建立空间直角坐标系,那么(2,0,0),(0,0,2),A C P BE =,因此(AC =-,(2,0,2)PA =-,设(2,0)AN AC λλ==-,那么(22,2)PN λ=--,由PN BE ⊥,得0PN BE ⋅=,解得13λ=. 因此13AN AC =,因此12AN NC =; (3)由(2)知4(2)3PN =-,设平面PBN 的法向量为(,,)n x y z =,则0,0n PN n BP ⋅=⋅=,即204203z xy z =⎧⎪⎨-=⎪⎩, 令x =2y =-,0,z =因此(3,2,0)n =-, 设直线BE 与平面PBN 所成角为θ,那么2sin 72BE n BE nθ⋅===⨯⋅.【典例5】【2021山东省实验中学高三期末检测】如图,四棱锥P ABCD -中,PA ⊥面ABCD ,ABCD 是直角梯形,AD DC ⊥,//AB DC ,112AB AD DC ===,PA AB =.设平面PAB 与平面PDC 的交线为l .(Ⅰ)若E 为PC 的中点,在直线l 上找一点F 使得EF ⊥面ABE ,确定F 的位置并证明你的结论;(Ⅱ)Q 为l 上的点,求平面QBC 与平面PAD 所成二面角的正弦值的最小值.【思路引导】(Ⅰ)首先可证AB ⊥面PAD ,再证//AB 面PCD ,即可得到//l AB ,建立空间直角坐标系,设()0,,1F a ,由EF ⊥面ABE ,即可得到0,0,EF AB EF AE ⎧⋅=⎨⋅=⎩,从而得到方程,解得即可.(Ⅱ)求出平面QBC 、PAD 的法向量,设平面QBC 与平面PAD 所成二面角为θ,则cos cos ,AB n θ=,则221sin 123b b θ=--+,根据二次函数的性质计算可得;【解析】(Ⅰ)因为PA ⊥面ABCD ,AB 面ABCD ,所以PA AB ⊥,又四边形ABCD是直角梯形,AD DC ⊥,//AB DC ,所以AD AB ⊥,因为,AD PA ⊂面PAD ,AD PA A ⋂=. 因此AB ⊥面PAD .因为//AB CD ,AB ⊄面PCD ,CD ⊂面PCD , 所以//AB 面PCD .又AB面PAB ,面PAB ⋂面PCD l =,所以//l AB .以A 为坐标原点,分别以AD ,AB ,AP 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,设()0,0,0A ,()0,1,0B ,()1,2,0C ,()0,0,1P ,11,1,22E ⎛⎫ ⎪⎝⎭,()0,,1F a ,()0,1,0AB =,11,1,22AE ⎛⎫= ⎪⎝⎭,11,1,22EF a ⎛⎫=-- ⎪⎝⎭.若存在一点F 使得EF ⊥面ABE ,则0,0,EF AB EF AE ⎧⋅=⎨⋅=⎩即()10,1110,44a a -=⎧⎪⎨-+-+=⎪⎩ 解得1a =,F 的坐标为()0,1,1,则F 在直线l 上且与点P 之间的距离为1.(Ⅱ)由(Ⅰ)知()0,0,0A ,()0,1,0B ,()1,2,0C ,()1,0,0D ,()0,0,1P ,()0,,1Q b ,()1,1,0BC =,()0,1,1BQ b =-.()0,1,0AB =是平面PAD 的一个法向量.设(),,n x y z =是平面QBC 的法向量,则0,0,n BC n BQ ⎧⋅=⎨⋅=⎩即()()()(),,1,1,00,,,0,1,10,x y z x y z b ⎧⋅=⎪⎨⋅-=⎪⎩ 得()0,10.x y y b z +=⎧⎨-+=⎩,可取()1,1,1n b =--,设平面QBC 与平面PAD 所成二面角为θ,所以cos cos ,1AB n ABn AB nθ⋅===+=.则2221sin1cos 123b b θθ=-=--+,又()2223122b b b -+=-+≥,所以22111sin 112322b b θ=-≥-=-+.因为sin0θ≥,所以sin θ≥所以平面QBC 与平面PAD 所成二面角的正弦值的最小值为2. 【典例6】【2021江苏省南京市高三月考】如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由.【思路引导】(1)由于图形是正方体,建立空间直角坐标系很方便,所以要求线面角,在建立空间直角坐标系后分别求出1OD 以及平面CDE 的法向量再运用公式计算即可; (2)先假设存在点E ,再求平面CDE 的法向量和平面CD 1O 的法向量,根据平面垂直就可以计算出结果.【解析】(1)不妨设正方体的棱长为2.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz , 则D (0,0,0),D 1(0,0,2),C (0,2,0),O (1,1,0). 因为E 为OD 1的中点, 所以E 11(,,1)22. 则1OD =(-1,-1,2),11(,,1)22DE =,DC =(0,2,0). 设p =(x 0,y 0,z 0)是平面CDE 的法向量,则00p DE p DC ⎧⋅=⎨⋅=⎩,即0000111022220x y z y ⎧++=⎪⎨⎪=⎩, 取x 0=2,则y 0=0,z 0=-1,所以p =(2,0,-1)为平面CDE 的一个法向量. 设直线OD 1与平面CDE 所成角为θ, 所以sin θ=|cos 〈1OD ,p 〉|=11||||||OD p OD p ⋅=15, 即直线OD 1与平面CDE(2)存在,且点E 为线段OD 1上靠近点O 的三等分点.理由如下. 假设存在点E ,使得平面CDE ⊥平面CD 1O .同第(1)问建立空间直角坐标系,易知点E 不与点O 重合,设1D E EO λ=,λ∈[0,+∞),OC =(-1,1,0),1OD =(-1,-1,2). 设m =(x 1,y 1,z 1)是平面CD 1O 的法向量,则100m OC m OD ⎧⋅=⎪⎨⋅=⎪⎩,即11111020x y x y z -+=⎧⎨--+=⎩,取x 1=1,则y 1=1,z 1=1,所以m =(1,1,1)为平面CD 1O 的一个法向量. 因为1D E EO λ=,所以点E 的坐标为2(,,)111λλλλλ+++,所以2(,,)111DE λλλλλ=+++.设n =(x 2,y 2,z 2)是平面CDE 的法向量,则00n DE n DC ⎧⋅=⎨⋅=⎩,即22222011120x y z y λλλλλ⎧++=⎪+++⎨⎪=⎩, 取x 2=1,则y 2=0,z 2=2λ-,所以n =(1,0,)2λ-为平面CDE 的一个法向量.因为平面CDE ⊥平面CD 1O ,所以m n ⊥. 则0m n ⋅=,所以102λ-=,解得2λ=.所以当12D EEO=,即点E 为线段OD 1上靠近点O 的三等分点时,平面CDE ⊥平面CD 1O .【典例7】【2021河北省石家庄市高三期末考试】如图,在四棱锥P ABCD -中,线段AC 的中点为O ,PO ⊥平面ABCD ,AB BC ⊥,AD CD ⊥,23AB AD BD ===,6AP =.(1)证明:平面APB ⊥平面PBD .(2)线段PD 上是否存在点Q (不含端点),使得二面角A CQ P --的余弦值为25?若存在,求出线段PQ 的长;若不存在,请说明理由.【思路引导】(1)先利用条件和三角形全等得到BD AC ⊥,再由OP ⊥平面ABCD 得到BD OP ⊥,从而得BD ⊥平面ACP ,进而得BD AP ⊥,然后利用数量关系和勾股定理得⊥PE AP ,从而得AP ⊥平面BDP ,进而得平面APB ⊥平面PBD ;(2)结合(1),以E 为坐标原点,建立恰当的空间直角坐标系,设PQ PD λ→→=,01λ<<,求出两个平面的法向量,利用向量的夹角公式建立关于λ的等式,解出λ的值即可得解. 【解析】(1)设BD AC E ⋂=,连接PE .AB BC ⊥,AD CD ⊥,AB AD =,ABC ADC ∴≌,则DAE BAE ∠=∠,又23AB AD BD ===BD AC ∴⊥. 由OP ⊥平面ABCD 可得BD OP ⊥,AC OP O =,AC ,OP ⊂平面ACP ,BD ∴⊥平面ACP .又AP ⊂平面ACP ,BD AP ∴⊥.23AB AD BD ===6AP ,3AE ∴=,24AC OA ==,222OP AP AO -,3PE =,222AP PE AE ∴+=,PE AP ∴⊥.又BD PE E ⋂=,BD ,PE ⊂平面BDP ,AP ∴⊥平面BDP .AP ⊂平面APB ,∴平面APB ⊥平面PBD .(2)存在满足条件的点P .理由如下:作//Ez OP ,以E 为坐标原点,EB ,EC 所在直线分别为x ,y 轴建立如图所示的空间直角坐标系E xyz -,则(0,3,0)A -,(0,2P -,(0,1,0)C ,()3,0,0D -, (0,4,0)AC →∴=,()3,1,0DC →=,(2AP →=,(3,1,2PD →=-,(0,2EP →=-.设PQ PD λ→→=,01λ<<,则()3,22AQ AP PD λλλλ→→→=+=+. 设平面ACQ 的法向量为()111,,m x y z →=,则1111403(2)(22)0m AC y m AQ x y z λλλ⎧⋅==⎪⎨⋅=-+++=⎪⎩, 得10y =,令122x λ,得13z λ,则)223m λλ→=为平面ACQ 的一个法向量.设平面CDP 的法向量为()222,,n x y z →=,则2222230320n DC x y n PD x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩, 令21x =-,得23y 26z =(13,6n →=-为平面CDP 的一个法向量, 即平面CQP 的一个法向量为(13,6n →=-.2|422|2cos ,554210||||m nm m m n λλλ→→→→→→⋅-∴〈〉===-+⋅⋅ 整理得220810λλ--=,12λ∴=或110λ=-(舍去).此时162PQ PD ==. ∴线段PD 上存在点Q 使得二面角A CQ P --的余弦值为25,此时6PQ =.【针对训练】1.【2021·山西太原市·高三期末】如图,在三棱锥P ABC -中,2PA PB ==,5AC BC PC ===,2AB =,点D ,E 分别为AB ,PC 的中点.(1)证明:平面PAB ⊥平面ABC ;(2)设点F 在线段BC 上,且BF FC λ=,若二面角C AE F --的大小为45°,求实数λ的值.【思路引导】(1)要证平面PAB ⊥平面ABC ,只需证明PD ⊥平面ABC ,通过勾股定理可知PD CD ⊥,即可证明;(2)已知二面角的角度,求参数的值,建立出平面直角坐标系,借助法向量即可.【解析】(1)证明:连接CD ,∵2PA PB ==2AB =,D 为AB 的中点,∴PD AB ⊥,1PD =,同理可得CD AB ⊥,2CD =,∵2225PC PD CD =+=,∴PD CD ⊥, ∵ABCD D =,∴PD ⊥平面ABC ;∴PD ⊂平面PAB ,∴平面PAB ⊥平面ABC ;(2)以D 为坐标原点,向量DB ,DC ,DP 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系D xyz -,由题意得(0,0,0)D ,(1,0,0)A -,(0,2,0)C ,(0,0,1)P ,(1,0,0)B ,10,1,2⎛⎫ ⎪⎝⎭E , ∵BF FC λ=,∴22,,011AF AB BF λλλλ+⎛⎫=+=⎪++⎝⎭,设()111,,m x y z =是平面ACE 的一个法向量,则00m AE m AC ⎧⋅=⎨⋅=⎩,∴1111110220x y z x y ⎧++=⎪⎨⎪+=⎩, 令11y =-,则1122x z =⎧⎨=-⎩,∴(2,1,2)m =--,设()222,,n x y z =是平面AEF 的一个法向量,则00n AE n AF ⎧⋅=⎨⋅=⎩,∴2222210222011x y z x y λλλλ⎧++=⎪⎪⎨+⎪+=⎪++⎩,令2(2)y λ=-+,则22242x z λλ=⎧⎨=-⎩,∴(2,2,42)n λλλ=---,∵二面角A DF P --的大小为45°, ∴22cos 45cos ,2||91220m n m n m n λλ︒⋅=<>===-+‖,∴2λ=或23λ=-(舍去). 2.【四川省棠湖中学2020届高三月考】如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (II)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 【思路引导】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值. 解:(Ⅰ)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC=ED. 所以四边形BCDE 是平行四边形. 从而CM ∥EB.又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE.(说明:延长AP 至点N ,使得AP=PN ,则所找的点可以是直线MN 上任意一点) (Ⅱ)方法一:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A , 所以CD ⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=2 2.在Rt△PAH中,PH=22PA AH+=322,所以sin∠APH=AHPH=13.方法二:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)设平面PCE的法向量为n=(x,y,z),由0,{0,n PEn EC⋅=⋅=得20,{0,x zx y-=+=设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα=||nAPn AP⋅⋅=22221322(2)1=⨯+-+.所以直线PA与平面PCE所成角的正弦值为13.3.【2021河南省许昌市高三第一次质量预测】如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=30°,PD⊥平面ABCD,AD=2,点E为AB上一点,且AEmAB=,点F为PD中点.(1)若12m =,证明:直线AF ∥平面PEC ; (2)是否存在一个常数m ,使得平面PED ⊥平面PAB ?若存在,求出m 的值;若不存在,说明理由.【思路引导】(1)首先取PC 的中点M ,连接FM ,EM ,根据三角形中位线性质和已知得到//FM AE ,FM AE =,从而得到四边形AEMF 为平行四边形,//AF EM ,再根据线面平行的判定即可证明//AF 平面PEC .(2)由题知:要使平面PED ⊥平面PAB ,只需AB DE ⊥,从而得到cos303AE AD ==,即可得到3AE m AB ==. 【解析】(1)取PC 的中点M ,连接FM ,EM ,如图所示:因为F ,M 分别为PD ,PC 的中点,所以//FM CD ,12FM CD =. 因为12AE AB =,所以E 为AB 的中点,所以//AE CD ,12AE CD =. 所以//FM AE ,FM AE =.所以四边形AEMF 为平行四边形,所以//AF EM , 因为AF ⊄平面PEC ,EM ⊂平面PEC , 所以直线//AF 平面PEC . (2)存在一个常数3m =,使得平面PED ⊥平面PAB ,理由如下: 要使平面PED ⊥平面PAB ,只需AB DE ⊥, 因为2AB AD ==,30DAB ∠=, 所以cos303AE AD ==又因为PD ⊥平面ABCD ,PD AB ⊥,PD DE D =,所以AB ⊥平面PDE ,因为AB平面PAB ,所以平面PDE ⊥平面PAB , 所以3AE m AB ==. 4.【2020届四川省巴中市高三第一次诊断】如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.(1)求证:PN 平面ABCD ;(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由.【思路引导】(1)先证明AB ⊥平面PAD ,可得平面ABCD ⊥平面PAD ,由面面垂直的性质可证PN 平面ABCD (2)取BC 中点E ,连接PE ,DE ,根据平行四边形可得,BN DE 线线平行,即可证明线面平行.【详解】(1)由底面ABCD 是矩形,知AB AD ⊥,AB PA ⊥又PA AD A ⋂=,,PA AD ⊂平面PADAB ∴⊥平面PAD又AB 平面ABCD∴平面ABCD ⊥平面PAD由PA PD =,N 是棱AD 的中点得:PNAD 平面ABCD 平面PAD AD = , PN ⊂平面PADPN ∴⊥平面ABCD(2)在棱BC 上存在点E ,使得//BN 平面DEP ,且E 为BC 的中点.证明如下:如图取BC 中点E ,连接PE ,DE在矩形ABCD 中,//ND BE ,ND BE =∴四边形BNDE 是平行四边形//BN DE ∴BN ⊄平面DEP ,DE ⊂平面DEP//BN 平面DEP .5.【2021湖北省武汉市高三4月联考检测】如图,在直角梯形ABCD 中,//AD BC ,90BAD ∠=,且12AB BC AD ==,E 是AD 的中点,将ABE 沿BE 折起到SBE 的位置,使平面SBE ⊥平面BCDE .(1)求二面角--B SC D 的正弦值;(2)在直线SB 上是否存在点P ,使PD ⊥平面SBC ?若存在,请求出点P 所在的位置;若不存在,请说明理由.【思路引导】(1)先证明,,OB OS OC 两两垂直,以O 为原点,OB 、OC 、OS 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,求出平面SBC 的一个法向量,平面SCD 的一个法向量,利用向量夹角公式即可求解;(2)假设直线SB 上存在点P ,使得PD ⊥平面SBC ,不妨设(),0,1P a a -,由1//PD n 利用坐标表示求a 的值,即可求解.【解析】(1)取BE 的中点O ,由题意可得四边形ABCE 是正方形,则SO BE ⊥,CO BE ⊥,又因为平面SBE ⊥平面BCDE ,平面SBE ⋂平面BCDE BE =,SO ⊂平面SBE ,CO ⊂平面BCDE ,所以SO ⊥平面BCDE ,CO ⊥平面SBE ,所以SO CO ⊥,可得,,OB OS OC 两两垂直,以O 为原点,OB 、OC 、OS 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系, 不妨设2SB SE ED BC ====2BE CD ==,则()0,0,1S ,()1,0,0B ,()0,1,0C ,()2,1,0D -,()1,0,1SB =-,()1,1,0BC =-,设平面SBC 的一个法向量为()1111,,x n y z =,则11111100n SB x z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩, 令11x =,则11y =,11z =,所以()11,1,1n =,设平面SCD 的一个法向量为()2222,,n x y z =,()0,1,1SC =-,()2,1,1SD =--则2222222020n SC y z n SD x y z ⎧⋅=-=⎪⎨⋅=-+-=⎪⎩,令21y =可得21z =,20x =,所以()20,1,1n = 记二面角--B SC D 的平面角为θ, 则12126cos 32n n n n θ⋅===⨯⋅263sin 133θ⎛⎫=-= ⎪ ⎪⎝⎭,所以二面角--B SC D 的正弦值为33. (2)假设直线SB 上存在点P ,使得PD ⊥平面SBC ,不妨设(),0,1P a a -,所以()2,1,PD a a =--,又因为()11,1,1n =,由1//PD n 得21111a a --==,无解, 故不存在点P ,使PD ⊥平面SBC .6.【2020届广东省东莞市高三期末调研测试】如图,在四棱锥S ABCD -中,已知四边形ABCD 是边长为2的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC 的面积为1.(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;(2)在棱SD 上是否存在一点P 使得二面角P AC D --5P 的位置;若不存在,说明理由.【思路引导】(1)利用等腰三角形“三线合一”证明SD ⊥平面PAC ,进而证明平面SCD ⊥平面PAC ; (2)分别以,,OB OC OS 为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -,设SP SD λ=,利用平面的法向量求二面角,进而计算得到λ即可【详解】(1)∵点S 在底面ABCD 上的射影为点O ,∴SO ⊥平面ABCD ,∵四边形ABCD 2,∴2AC =,∵三角形SAC 的面积为1,∴1212SO ⨯⨯=,即1SO =,∴2SC =∵2CD =,点P 是SD 的中点,∴CP SD ⊥,同理可得AP SD ⊥,又因为AP CP P =,,AP CP ⊂平面PAC ,∴SD ⊥平面PAC ,∵SD ⊂平面SCD ,∴平面SCD ⊥平面PAC(2)存在,如图,连接OB ,易得,,OB OC OS 两两互相垂直,分别以,,OB OC OS 为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -,则()()()()0,1,0,0,1,0,0,0,1,1,0,0A C S D --,假设存在点P 使得二面角P AC D --的5, 不妨设SP SD λ=,∵点P 在棱SD 上,∴01λ≤≤, 又()1,0,1SD =--,∴(),0,SP λλ=--,∴(),0,1P λλ--,(),1,1AP λλ=-∴-,()0,2,0AC =,设平面PAC 的法向量为(),,n x y z =,则00n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,∴()1020x y z y λλ⎧-++-=⎨=⎩, 令z λ=,可得1x λ=-,∴平面PAC 的一个法向量为()1,0,n λλ=-,又平面ACD 的一个法向量为()0,0,1OS =,二面角P AC D --5, ∴()225cos ,1OS nOS n OS n λλλ⋅===⋅-+即23210λλ+-=,解得13λ=或1-(舍) 所以存在点P 符合题意,点P 为棱SD 靠近端点S 的三等分点7.【2021·江苏省部分重点中学阶段性考试】如图,四边形ABCD 是边长为2的正方形,,AP PD =将三角形PAD 沿AD 折起使平面PAD ⊥平面ABCD .(1)若M 为PC 上一点,且满足BM PD ⊥,求证:PD AM ⊥;(2)若二面角B PC D --的余弦值为105-,求AP 的长. 【思路引导】(1)先由面面垂直得到,PD AB ⊥然后证明PD ⊥面,ABM 从而得到PD AM ⊥;(2)取AD 中点О,以О为坐标原点,分别以,,OA AB OP 方向为,,x y z 轴正方向,建立如图所示的空间直角坐标系,用向量法求AP .【解析】()1证明:因为面PAD ⊥面,ABCD 面PAD 面,ABCD AD AB =⊂面,ABCD ,AB AD ⊥所以AB ⊥面,PAD又PD ⊂面,PAD所以,PD AB ⊥又,PD BM AB BM B ⊥⋂=,所以PD ⊥面,ABM又AM ⊂面,ABM所以PD AM ⊥;()2取AD 中点О,连结OP ,因为,AP PD =所以OP AD ⊥.又平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .以О为坐标原点,分别以,,OA AB OP 方向为,,x y z 轴正方向,建立如图所示的空间直角坐标系,设,OP a =则有()()()()1,2,0,1,2,0,1,0,0,0,0,B C D P a --,可得()()()2,0,0,0,2,0,,,12CB CD CP a ==-=-,设()111,,m x y z =为平面PBC 的一个法向量则有00m CB m CP ⎧⋅=⎨⋅=⎩即11112020x x y az =⎧⎨-+=⎩ 不妨令1y a =,则()0,,2m a =,设()222,,n x y z =为平面PCD 的一个法向量,则有00n CD n CP ⎧⋅=⎨⋅=⎩即22222020y x y az -=⎧⎨-+=⎩不妨令2x a =,则(),0,1n a =-, 因为105m nm n =⋅可得221041a a =++解得1a =, 所以112AP =+=8.【河南省开封市五县2020届模拟】如图,AC 是O 的直径,点B 是O 上与A ,C 不重合的动点,PO ⊥平面ABC .。
立体几何中的探索性问题27536
立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟] 如图所示,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________,就有MN ∥平面B 1BDD 1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M 位于线段FH 上(答案不唯一) [解析] 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,FH ∩HN =H ,DD 1∩BD =D ,∴平面FHN ∥平面B 1BDD 1,故只要M ∈FH ,则MN ⊂平面FHN ,且MN ∥平面B 1BDD 1.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.解:(1)如图所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .(2分)又在正方体ABCD -A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.(4分)设正方体的棱长为2, 则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23,(5分)即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(6分)(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD ⊥平面ABCD ,∴PD ⊥AD . 又∵ABCD 是矩形, ∴AD ⊥CD . ∵PD ∩CD =D , ∴AD ⊥平面PCD ,∴AD 是三棱锥A -PDE 的高. ∵E 为PC 的中点,且PD =DC =4, ∴S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4. 又AD =2,∴V A -PDE =13AD ·S △PDE =13×2×4=83.(2)取AC 中点M ,连接EM ,DM ,∵E 为PC 的中点,M 是AC 的中点,∴EM ∥P A . 又∵EM ⊂平面EDM ,P A ⊄平面EDM , ∴P A ∥平面EDM . ∴AM =12AC = 5.即在AC 边上存在一点M ,使得P A ∥平面EDM ,AM 的长为 5.4.如图所示,在三棱锥P - ABC 中,点D ,E 分别为PB ,BC 的中点.在线段AC 上是否存在点F ,使得AD ∥平面PEF ?若存在,求出AFFC的值;若不存在,请说明理由.解:假设在AC 上存在点F ,使得AD ∥平面PEF , 连接DC 交PE 于G ,连接FG ,如图所示.∵AD ∥平面PEF ,平面ADC ∩平面PEF =FG , ∴AD ∥FG .又∵点D ,E 分别为PB ,BC 的中点,∴G 为△PBC 的重心,∴AF FC =DG GC =12.故在线段AC上存在点F ,使得AD ∥平面PEF ,且AF FC =12.5.[2016·北京卷] 如图,在四棱锥P - ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC . (1)求证:DC ⊥平面P AC .(2)求证:平面P AB ⊥平面P AC .(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.解:(1)证明:因为PC ⊥平面ABCD , 所以PC ⊥DC . 又因为DC ⊥AC , 所以DC ⊥平面P AC .(2)证明:因为AB ∥DC ,DC ⊥AC , 所以AB ⊥AC .因为PC ⊥平面ABCD , 所以PC ⊥AB , 所以AB ⊥平面P AC , 所以平面P AB ⊥平面P AC .(3)棱PB 上存在点F ,使得P A ∥平面CEF .证明如下: 取PB 的中点F ,连接EF ,CE ,CF .因为E 为AB 的中点, 所以EF ∥P A .又因为P A ⊄平面CEF ,所以P A ∥平面CEF .6.[2016·四川卷] 如图,在四棱锥P - ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .解:(1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面P AB ,CM ⊄平面P AB , 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD ,从而P A ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD , 所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .7. [2016·阳泉模拟] 如图7-41-10,在四棱锥P ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(1)求证:AC ⊥PD .(2)在线段P A 上是否存在点E ,使BE ∥平面PCD ?若存在,求出PEP A 的值;若不存在,请说明理由.解:(1)证明:∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊥CD ,AC ⊂平面ABCD ,∴AC ⊥平面PCD , ∵PD ⊂平面PCD ,∴AC ⊥PD .(2)在线段P A 上存在点E ,使BE ∥平面PCD ,且PE P A =13.下面给出证明:∵AD =3,BC =1,∴在△P AD 中,分别取P A ,PD 靠近点P 的三等分点E ,F ,连接EF ,BE ,CF . ∵PE P A =PF PD =13,∴EF ∥AD ,且EF =13AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF , ∴四边形BCFE 是平行四边形,∴BE ∥CF ,又∵BE ⊄平面PCD ,CF ⊂平面PCD , ∴BE ∥平面PCD .8.(10分)[2016·河南中原名校联考] 如图所示,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.(1)证明:平面SBD ⊥平面SAD . (2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD ?请证明你的结论.(3)求四棱锥S -ABCD 的体积.解:(1)证明:∵△SAD 是等边三角形, ∴AD =SD =2,又BD =23,AB =4,∴AD 2+BD 2=AB 2,∴BD ⊥AD ,又∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD . ∴BD ⊥平面SAD .又BD ⊂平面SBD ,∴平面SBD ⊥平面SAD .(2)当E 为SC 的三等分点,即ES =2CE 时,结论成立. 证明如下:连接AC 交BD 于点H ,连接EH .∵CD ∥AB ,CD =12AB ,∴CH HA =12=CEES,∴HE ∥SA .又SA ⊄平面EBD ,HE ⊂平面EBD , ∴SA ∥平面EBD .(3)过S 作SO ⊥AD ,交AD 于点O . ∵△SAD 为等边三角形,∴O 为AD 的中点,∴SO = 3.易证得SO ⊥平面ABCD ,∴V 四棱锥S -ABCD =13S 梯形ABCD ·SO . ∵S 梯形ABCD =12×(2+4)×3=33,∴V 四棱锥S - ABCD =3.二、探索垂直关系1.如图所示,在三棱锥P - ABC 中,已知P A ⊥底面ABC ,AB ⊥BC ,E ,F 分别是线段PB ,PC 上的动点,则下列说法错误的是( )A .当AE ⊥PB 时,△AEF 一定为直角三角形 B .当AF ⊥PC 时,△AEF 一定为直角三角形C .当EF ∥平面ABC 时,△AEF 一定为直角三角形D .当PC ⊥平面AEF 时,△AEF 一定为直角三角形答案:B [解析] 已知P A ⊥底面ABC ,则P A ⊥BC ,又AB ⊥BC ,P A ∩AB =A , 则BC ⊥平面P AB ,BC ⊥AE .当AE ⊥PB 时,又PB ∩BC =B ,则AE ⊥平面PBC ,则AE ⊥EF ,A 正确.当EF ∥平面ABC 时,又EF ⊂平面PBC ,平面PBC ∩平面ABC =BC ,则EF ∥BC ,故EF ⊥平面P AB ,则AE ⊥EF ,故C 正确.当PC ⊥平面AEF 时,PC ⊥AE ,又BC ⊥AE ,PC ∩BC =C ,则AE ⊥平面PBC ,则AE ⊥EF ,故D 正确.用排除法可知选B.2.如图所示,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案:a 或2a [解析] 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.当CF ⊥DF 时,设AF =x ,则A 1F =3a -x .由Rt △CAF ∽Rt △F A 1D ,得AC A 1F =AF A 1D ,即2a 3a -x =xa,整理得x 2-3ax +2a 2=0,解得x=a 或x =2a .3.如图所示,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.答案:①②③ [解析] 由题意知P A ⊥平面ABC ,∴P A ⊥BC .又AC ⊥BC ,P A ∩AC =A ,∴BC ⊥平面P AC ,∴BC ⊥AF .∵AF ⊥PC ,BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB ,AF ⊥BC .又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF ,∴PB ⊥EF .故①②③正确.4.如图所示,已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F为线段BD 1的中点.(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1DAD 的比值为多少时,DF ⊥平面D 1MB ?并说明理由.解析:(1)证明:∵E 为线段AD 1的中点,F 为线段BD 1的中点,∴EF ∥AB .∵EF⊄平面ABCD,AB⊂平面ABCD,∴EF∥平面ABCD.(2)当D1DAD=2时,DF⊥平面D1MB.∵ABCD是正方形,∴AC⊥BD.∵D1D⊥平面ABC,∴D1D⊥AC.∴AC⊥平面BB1D1D,∴AC⊥DF.∵F,M分别是BD1,CC1的中点,∴FM∥AC.∴DF⊥FM.∵D1D=2AD,∴D1D=BD.∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)(2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE⊄平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.∴DE⊥平面A1DC.而A1F⊂平面A1DC,(6分)∴DE⊥A1F.又∵A1F⊥CD,CD∩DE=D,∴A1F⊥平面BCDE,又BE⊂平面BCDE,∴A1F⊥BE.(9分)(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF⊂平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴∠ABG=∠DAE.∴AE⊥BG.又∵BG∩FG=G,∴AE⊥平面BFG.又BF⊂平面BFG,∴AE⊥BF.(3)存在.取CC1中点P,即为所求.连接EP,AP,C1D,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF⊂平面A1EF,DM⊄平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F⊂平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF⊂平面BCD,所以EF⊥平面A1BD.因为A1B⊂平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
高考满分数学压轴题16 立体几何中探索性问题(可编辑可打印)
一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥,立体几何中探索性问题且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则122162322326A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
立体几何探索性问题
专题:立体几何中的探索性问题:熟练使用几何法和向量法课堂例题:1.在三棱柱ABC - 111A B C 中,A 1A ⊥平面ABC ,AC=3,BC=4,AB=5,A 1A =4.(1)在AB 上是否存在点D 使得1AC ⊥CD? (2)在AB 上是否存在点D 使得1AC ∥平面1C D B2.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .3.已知几何体EFG -ABCD 如图所示,其中四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,点M 在边DG 上.问:是否存在点M ,使得直线MB 与平面BEF 所成的角为45°,若存在,试求点M 的位置;若不存在,请说明理由.4.如图,四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2,若棱AA 1上存在一点P ,使得A P=λ1PA ,当二面角A -B 1C 1-P 的大小为30°时,求实数λ的值.5.如图,五面体ABCDE 中,正∆ABC 的边长为1,AE ⊥平面ABC ,CD ∥AE ,且CD=12AE .(I)设CE 与平面ABE 所成的角为α,AE=(0),k k >若[,],64ππα∈求k 的取值范围;(Ⅱ)在(I)和条件下,当k 取得最大值时,求平面BDE 与平面ABC 所成角的余弦值听课反思:课后练习:1.如图甲所示,三棱锥P ABC -的高8,3,30,PO AC BC AC B M N ===∠=︒、分别在BC 和PO 上,且,2((0,3])CM x PN x x ==∈,图乙中的四个图像大致描绘了三棱锥N A M C -的体积V 与x 的变化关系,其中正确的是( )2. 若A (1,-2,1),B (4,2,3),C (6,-1,4),则△ABC 的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形 4.已知n m ,是两条不同直线,α、β是两个不同平面,下列命题中的假命题是( )A.若n m n m //,,//则=⋂βααB.若αα⊥⊥n m n m 则,,//C.若βαβα//,,则⊥⊥m mD.若βαβα⊥⊂⊥则,,m m5.在半径为R 的半球内有一内接圆柱,则这个圆柱的体积的最大值是( )A39R39R33R D 349R π6.在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,若在这个四棱锥内放一球.求此球的最大半径 .7.右图是一个空间几何体的三视图,则该几何体的表面积是 .8.如图,侧棱垂直底面的三棱柱111A B C A B C -中,A B A C ⊥,13AA AB AC ++=,(0)AB AC t t ==>,P 是侧棱1A A 上的动点.(Ⅰ)试求三棱锥1P BC C -的体积V 取得最大值时的t 值;3()A. B. C. D.6433.2O ABC O B O C AO B AO C O A BC πππππ=∠=∠=空间四边形中,,,则异面直线、所成角的大小为 侧视俯视(Ⅱ)若二面角1A BC C --的平面角的余弦值为10,试求实数t 的值.9.已知正方形A B C D 的边长为2,AC BD O = .将正方形A B C D 沿对角线BD 折起,使A C a =,得到三棱锥ABCD -,如图所示.(Ⅰ)当2a =时,求证:AO BCD ⊥平面;(Ⅱ)当二面角A B D C --的大小为120 时,求二面角A B C D --的正切值.10.如图,在梯形A B C D 中,//A B C D ,1,60AD D C C B ABC ===∠=,四边形AC FE为矩形,平面A C F E ⊥平面A B C D ,1C F =. (I )求证:B C ⊥平面A C F E ;(II )点M 在线段E F 上运动,设平面M A B 与平面F C B 所成二面角的平面角为(90)θθ≤,试求co s θ的取值范围.C1CA(第8题)。
专题2.2 立体几何中的探索性与存在性问题测试卷-2017年高考数学二轮复习资料江苏版 含解析 精品
1. (南京市、盐城市2017届高三第一次模拟)如图,在直三棱柱111ABC A B C -中,BC AC ⊥,D ,E 分别是AB ,AC 的中点.(1)求证:11B C ∥平面1A DE ; (2)求证:平面1A DE ⊥平面11ACC A .证明:(1)因为D,E分别是AB ,AC 的中点,所以//DE BC , ...............2分又因为在三棱柱111ABC A B C -中,11//B C BC ,所以11//B C DE . ...............4分又11B C ⊄平面1A D E ,DE ⊂平面1A D E,所以11B C ∥平面1A D E. .............6分2. (南通、泰州市2017届高三第一次调研测)如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)直线PA ∥平面BDE ; (2)平面BDE ⊥平面PCD .(2)因为OE ∥PA ,PA PD ⊥,所以OE PD ⊥. ………………………………8分因为OP OC =,E 为PC 的中点,所以OE PC ⊥. (10)分又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC PD P = ,所以OE ⊥平面PCD . (12)分又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD . ……………………14分3. (苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图,在正三棱柱111ABC A B C -中,已知D ,E 分别为BC ,11B C 的中点,点F 在棱1CC 上,且1EF C D ⊥.求证:(1)直线1A E ∥平面1ADC ; (2)直线EF ⊥平面1ADC .【证明】(1)连结ED ,因为D ,E 分别为BC ,11B C 的中点,所以1B E BD ∥且1B E BD =,所以四边形1B BDE 是平行四边形,…………………2分 所以1BB DE ∥且1BB DE =,又11BB AA ∥且11BB AA =, 所以1AA DE ∥且1AA DE =,所以四边形1AA ED 是平行四边形,…………………4分 所以1A E AD ∥,又因为11A E ADC ⊄平面,1AD ADC ⊂平面,所以直线1A E ∥平面1ADC .…………………………………………………7分4.(镇江市2017届高三上学期期末)在长方体1111D C B A A B C D -中,121AA EC BC AB ===. (1)求证://1AC 平面BDE ; (2)求证:⊥E A 1平面BDE .证明:(1)连结AC 交BD 于点O ,连结OE .在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 长方形,点O 为AC 的中点, ……2分1AA ∥1CC 且11AA CC =,由112EC AA =,则112EC CC =, 即点E 为1CC 的中点,于是在1CAC △中,1AC ∥OE . ……4分 又因为OE ⊂平面BDE ,1AC / 平面BDE .所以1AC ∥平面BDE . ……6分5.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图,在四棱锥E ABCD -中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA EB ⊥,点,M N 分别是,AE CD 的中点.求证:(1)直线MN ∥平面EBC ;(2)直线EA ⊥平面EBC .证明:(1)取BE 中点F ,连结CF ,MF ,又M 是AE 的中点,所以12MF AB =∥,又N 是矩形ABCD 边CD 的中点,所以12NC AB =∥,所以MF NC =∥, 所以四边形MNCF 是平行四边形,…4分 所以MN CF ∥,又MN ⊄平面EBC ,CF ⊂平面EBC ,所以MN ∥平面EBC .………………………………………………………7分6. (无锡市2017届高三上学期期末)在四棱锥P ABCD -中,底面ABCD 为矩形,AP ⊥平面PCD ,E,F 分别为PC,AB 的中点.求证: (1)平面PAD ⊥平面ABCD ; (2)//EF 平面PAD .7.(扬州市2017届高三上学期期末)如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.(1)求证:EF∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.。
专题12 立体几何中探索性问题(原卷版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB . 【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =.(Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒? 3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC =12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G 为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.7.(2018•全国模拟)如图,在四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,112AD AB BC ===,PD ⊥平面ABCD ,PD ,M 为PC 上的动点.(Ⅰ)当M 为PC 的中点时,在棱PB 上是否存在点N ,使得//MN 平面PDA ?说明理由; (Ⅰ)BDM ∆的面积最小时,求三棱锥M BCD -的体积.8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.。
立体几何中的探索性问题-存在型问题配套练习
立体几何中的探索性问题-存在型问题配套练习福州第三中学陈增1. 如图,在三棱锥P−ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.(1)证明:平面PBE⊥平面PAC.(2)在BC上是否存在一点F,使AD//平面PEF?说明理由.2. 如图,在三棱锥V−ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<π2).(1)求证:平面VAB⊥平面VCD;(2)当角θ在(0,π2)上变化时,求直线BC与平面VAB所成的角的取值范围.PCBA立体几何中的探索性问题-存在型问题配套练习参考答案福州第三中学陈增1.解:(1)证明:∵PA⊥底面ABC,BE⊂平面ABC,∴PA⊥BE.又△ABC是正三角形,E是AC的中点,∴BE⊥AC,又PA∩AC=A.∴BE⊥平面PAC.又BE⊂平面PBE,∴平面PBE⊥平面PAC.(2)存在满足条件的点F,且F是CD的中点.理由:∵E、F分别是AC、CD的中点,∴EF//AD.而EF⊂平面PEF,AD⊄平面PEF,∴AD//平面PEF.2.解:(1)证明:因为AC=BC=a,所以△ACB是等腰三角形.又D是AB的中点,所以CD⊥AB.又VC⊥底面ABC,所以VC⊥AB.于是AB⊥平面VCD.又AB⊂平面VAB,所以平面VAB⊥平面VCD.(2)在平面VCD内过点C作CH⊥VD于H,则由(1)知CH⊥平面VAB.连接BH,于是∠CBH就是直线BC与平面VAB所成的角.在Rt△CHD中,易知CH=√22asinθ.设∠CBH=φ,在Rt△BHC中,CH=asinφ,所以√22sinθ=sinφ.因为0<θ<π2,所以0<sinθ<1,0<sinφ<√22.又0<φ<π2,所以0<φ<π4.即直线BC与平面VAB所成角的取值范围为(0,π4).。
专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d .以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1AC ∴⊥平面1ABC , 又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD 时,平面与DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC =12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(2)BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a 3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ,即1CE =-(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD,M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又MD⊂平面PDC,可得BD MD⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD .则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
第一关 以立体几何中探索性问题为背景的解答题-(解析版)
压轴解答题第一关 以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.类型1 以“平行”为背景的存在判断型问题典例1如图,四棱锥S ABCD -的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC SD ⊥;(2)若SD ⊥平面PAC ,求二面角P AC S --的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得//BE 平面PAC ?若存在,求:SC SE 的值;若不存在,试说明理由. 【答案】(1)证明见解析(2)3π(3)当:3:2SC SE =时,//BE 平面PAC 【解析】(1)线面垂直的判定定理及性质定理即可得证;(2)以O 为坐标原点,建立空间直角坐标系,由二面角的向量公式即得解;(3)由,[0,1]CE tCS t =∈,可得226(1BE t ⎛⎫=-- ⎪ ⎪⎝⎭,再利用0BE DS ⋅=即得解 (1)连接AC ,BD 交于O ,连接SO ,由题意知SO AC ⊥,在正方形中,BD AC ⊥,又BD SO O ⋂=,,BD SO ⊆平面SBD ,AC ∴⊥平面SBD 又SD ⊆平面SBD ,所以AC SD ⊥(2)由题知SO ⊥平面ABCD ,以O 为坐标原点,,,OB OC OS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -,设底面边长为a ,则高62SO a =,则60,0,2S a ⎛⎫ ⎪ ⎪⎝⎭, 2,0,02D a ⎛⎫- ⎪ ⎪⎝⎭, 20,,02C a ⎛⎫ ⎪ ⎪⎝⎭, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为26,0,22DS a a ⎛⎫= ⎪ ⎪⎝⎭, 平面SAC 的一个法向量为2,0,02OD a ⎛⎫=- ⎪ ⎪⎝⎭, 则212cos ,2222a DS OD DS OD DS ODa a ⋅===⋅⋅, 又二面角P AC S --为锐角,则二面角P AC S --的大小为3π. (3)在棱SC 上存在一点E ,使得//BE 平面PAC , 由(2)知平面PAC 的一个法向量26,0,22DS a a ⎛⎫= ⎪ ⎪⎝⎭, 又260,,22CS a a ⎛⎫=- ⎪ ⎪⎝⎭,22,,022BC a a ⎛⎫=- ⎪ ⎪⎝⎭ 设,[0,1]CE tCS t =∈,则226,(1),222⎛⎫=+=+=-- ⎪ ⎪⎝⎭BE BC CE BC tCS a a t at 因为//BE 平面PAC ,所以0BE DS ⋅=,所以2213022a a t -+=,解得13t =.故当:3:2SC SE =时,//BE 平面PAC【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面 ∴面由(1)可知,面且 故面面类型2 以“垂直”为背景的存在判断型问题典例2如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为,PA BD 中点,2PA PD AD ===.(1)求证://EF 平面PBC ;(2)求二面角E DF A --的余弦值;(3)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由. 【答案】(1)证明见解析;(215(3)不存在;理由见解析. 【解析】(1)作AB 的中点H ,连接,EH FH ,先利用面面平行的判定定理,证明出平面//EFH 平面PBC ,进而根据面面平行的性质证明出//EF 平面PBC ;(2)作EI 垂直AD 于I ,作IJ DB J ⊥=,连接EJ ,作AD 中点O ,连接OP ,先证出EJI ∠为二面角E DF A --的平面角,进而求得JI 和EJ ,最后在直角三角形中求得cos EJI ∠;(3)先假设存在点G ,建立空间直角坐标系,求得平面EFD 的一个法向量,表示出PC →和CG →,根据向量共线的性质建立等式对λ求解. 【详解】(1)作AB 的中点H ,连接,EH FH , ∵在PAB △中,,E H 为中点, ∴//EH PB ,∵EH ⊄平面PBC ,PB ⊂平面PBC , ∴//EH 平面PBC ,同理可证明//FH 平面PBC ,∵EH ⊂平面EFH ,FH ⊂平面EFH ,EH FH H =,∴平面//EFH 平面PBC , ∵EF ⊂平面EFH , ∴//EF 平面PBC ;(2)作EI 垂直AD 于I ,作IJ DB J ⊥=,连接EJ ,作AD 中点O ,连接OP , ∵PA PD =, ∴OP AB ⊥, ∵EI AB ⊥, ∴//EI OP , ∵E 为中点,∴132EI OP ==1142AE AB ==,∵侧面PAD ⊥底面ABCD , ∴EI ⊥底面ABCD , ∵IJ DB ⊥, ∴EI DB ⊥,∴EJI ∠为二面角E DF A --的平面角, ∵,90ADB JIB DJI DAB ∠=∠∠=∠=, ∴DJI ∽ADB △,∴DI JIDB AB=,32222JI =, ∴322JI =∴2293158422EJ JI EI =+=+=, ∴31522cos 51522JI EJI EJ ∠===, 即二面角E DF A --的余弦值为155;(3)不存在.假设存在,连接,AC BD ,交于点F ,EF 为平面EDF 和平面PAC 的交线, 以O 为原点,,,OA OF OP 分别为xyz 轴建立空间直角坐标系,则A (1,0,0),B (1,2,0),C (﹣1,2,0),D (﹣1,0,0), (3P ,132E ⎛ ⎝⎭,F (0,1,0), 设()111,,G x y z ,则()111,1,FG x y z →=-, 设平面EFD 的一个法向量是()000,,x n y z →=,∵0000033022n DF x y n DE x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 即00003y x z x =⎧⎪⎨=-⎪⎩,令01x =,则()1,1,3n →=--, ∵因为GF ⊥平面EDF , ∴FG n λ→→=,∴1x λ=,11y λ-=-,13z λ=-,∵GC →,PC →共线,()1,2,3PC →=--,()1111,2,CG x y z →=+-, ∴11112123x y z +---==, ∴113123λλλ+-----==,无解, 故在棱PC 上不存在一点G ,使得GF ⊥平面EDF .【举一反三】如图,在直角梯形ABCD 中,//AD BC ,90BAD ︒∠=,且12AB BC AD ==,E 是AD 的中点,将ABE 沿BE 折起到SBE 的位置,使平面SBE ⊥平面BCDE .(1)求二面角B SC D --的正弦值;(2)在直线SB 上是否存在点P ,使PD ⊥平面SBC ?若存在,请求出点P 所在的位置;若不存在,请说明理由. 【答案】(1)33;(2)不存在点P ,证明见解析. 【解析】(1)在图1中,设2AB BC ==,4AD =,//AD BC ,90BAD ∠=︒,E 是AD 的中点,则四边形AECB 为正方形, BE AC ∴⊥,在图2中,设BE 中点为O ,BE OS ⊥,平面SBE ⊥平面BCDE ,SO ∴⊥平面BCDE ,以O 为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴,建立空间直角坐标系,则2B 0,0),(0S ,02),(2E 0,0),(0C 2,0),(22D -2,0), 则有(2SB =,0,2),(0SC =2,2),(22SD =-2,2), 设平面SBC 的法向量(n x ,y ,)z ,则220220n SB x z n SC y z ⎧⋅=-=⎪⎨⋅==⎪⎩,取(1n =,1,1),设平面SCD 的法向量(m a =,b ,)c ,则22022220m SC b c m SD a b c ⎧⋅=-=⎪⎨⋅=-+-=⎪⎩,取(0m =,1,1), 26cos ,332m n ==⨯, 则二面角B SC D --的正弦值为33. (2)假设在直线SB 上是存在点P ,使PD ⊥平面SBC ,且BP BS λ=,则(32DP DB BP =+=,2-,0)(2λ+-,0,2)(322λ=-,2-,2)λ, 平面SBC 的法向量(1n =,1,1),∴//DP n ,32222λλ∴-=-=,方程无解, ∴假设不成立,∴在直线SB 上不存在点P ,使PD ⊥平面SBC .类型3 以“角”为背景的探索性问题典例3 在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答如图,在五面体ABCDE 中,已知___________,AC BC ⊥,//ED AC ,且22AC BC ED ===,3DC DB ==.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 543BF BC 的值;若不存在,说明理由.【来源】山西省运城市2022届高三上学期期末数学(理)试题 【答案】(1)证明见解析;(2)存在;34BF BC =.【解析】(1)若选①,取AC 中点G ,BC 中点O ,AB 中点H ,可证得四边形EDCG 为平行四边形,从而利用勾股定理和平行关系证得AC CD ⊥,由线面垂直和面面垂直判定得到平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ;若选②,取BC 中点O ,AB 中点H ,由线面垂直和面面垂直的判定可证得平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ;若选③,取BC 中点O ,AB 中点H ,根据长度和平行关系可证得四边形DEHO 为平行四边形,由此确定12EH AB =,得到AE BE ⊥,结合AE BE =可得2BE =,从而利用勾股定理和平行关系证得AC BD ⊥,由线面垂直和面面垂直判定得到平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ; 三个条件均可说明,,DO OH BC 两两互相垂直,则以O 为坐标原点可建立空间直角坐标系,利用面面垂直的向量证明方法可证得结论;(2)假设存在满足题意的点()()0,,011F t t -≤≤,利用二面角的向量求法可构造方程求得12t =-,由此可确定F 点位置,得到BFBC的值. (1)若选①,取AC 中点G ,BC 中点O ,AB 中点H ,连接,,EG DO OH ,//ED AC ,12CG AC ED ==,∴四边形EDCG 为平行四边形,//EG CD ∴, 3EG ∴=112AG AC ==,2AE =,222AG EG AE ∴+=,AG EG ∴⊥, 又//CD EG ,AC CD ∴⊥,又AC BC ⊥,BC CD C ⋂=,,BC CD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,BD CD =,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;若选②,AC BD ,AC BC ⊥,BC BD B =,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 中点O ,AB 中点H ,连接,DO OH ,BD CD =,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;若选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,3DC BD ==DO BC ∴⊥,又2BC =,2DO ∴= ,O H 分别为,BC AB 中点,1//2OH AC ∴,又1//2ED AC ,//OH ED ∴,∴四边形DEHO 为平行四边形,2EH DO ∴==AC BC ⊥,2AC BC ==,22AB ∴=12EH AB ∴=,AE BE ∴⊥, EAB EBA ∠=∠,2∴==BE AE ,222BD DE BE ∴+=, BD DE ∴⊥,又//DE AC ,AC BD ∴⊥,又AC BC ⊥,BCBD B =,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,又DO BC ⊥,DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直,则以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,则()2,1,0A -,()0,1,0B ,(2E ,()2,2,0AB ∴=-,(1,2BE =-,DO ⊥平面ABC ,∴平面ABC 的一个法向量()0,0,1m =;设平面ABE 的法向量()1111,,x n y z =,则111111122020AB n x y BE n x y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令11x =,解得:11y =,10z =,()11,1,0n ∴, 10m n ∴⋅=,即1m n ⊥,∴平面ABE ⊥与平面ABC .(2)设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABE 543, 由(1)得:(1,,2EF t =-,(2AE =-, 设平面AEF 的法向量()2222,,n x y z =,则222222222020AE n x y z EF n x ty z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩,令21y =,则212t x +=,)2214t z -=,)2211,1,24t t n ⎛⎫-+∴= ⎪ ⎪⎝⎭;()11,1,0n ∴()12122212115432cos ,112128t n n n n n n t t ++⋅∴<>===⋅-+⎛⎫⋅++ ⎪⎝⎭化简可得:221370t t --=,解得:12t =-或7t =(舍),10,,02F ⎛⎫∴- ⎪⎝⎭,32BF ∴=,34BF BC ∴=;综上所述:在线段BC 上存在点F ,满足34BF BC =,使得平面AEF 与平面ABE 543. 【举一反三】如图,四边形ABCD 为梯形,//AD BC ,BM AD ⊥于M ,CN AD ⊥于N ,45A ∠=︒,44AD BC ==,2AB =,现沿CN 将CDN △折起,使ADN △为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN 、DC 分别交于E 、F .(1)求证:EF DA ⊥;(2)在棱DN 上(不含端点)是否存在点E ,使得直线DB 与平面BMEF 所成角的正弦值为34,若存在,请确定E 点的位置;若不存在,说明理由. 【来源】山东省德州市2021届高三一模数学试题【答案】(1)证明见解析;(2)存在,E 为棱DN 上靠近N 点的四等分点. 【解析】(1)证明:因为BM AD ⊥,CN AD ⊥,所以//BM CN , 在四棱锥D ABCN -中,CN ⊂平面CDN ,BM ⊄平面CDN , 所以//BM 平面CDN .又平面BMEF ⋂平面CDN EF =,所以//BM EF . 因为平面ADN ⊥平面ABCN 且交于AN ,BM AN ⊥, 所以BM ⊥平面ADN ,即EF ⊥平面ADN , 又DA ⊂平面ADN ,所以EF DA ⊥.(2)解:存在,E 为棱DN 上靠近N 点的四等分点. 因为DA DN =,1AM MN ==, 连接DM ,所以DM AN ⊥,又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN , 如图建立空间直角坐标系{};,,M MA MB MD ,(3D ,()0,1,0B ,()0,0,0M ,()1,0,0N -,()0,1,3DB =-,()0,1,0BM =-,(3ND =,设()01NE ND λλ=<<,则()3E λλ-,()3ME λλ=-, 设平面BMEF 的一个法向量(),,n x y z =,则00BM n ME n ⎧⋅=⎪⎨⋅=⎪⎩,即()0130y x z λλ-=⎧⎪⎨-=⎪⎩,不妨令3x λ=,则1z λ=-,()3,0,1n λλ=-,设直线DB 与平面BMEF 所成的角为α,则有 ()()22313sin cos ,4231n DB n DB n DBλαλλ-⋅====+-, 解得14λ=或12-(舍), 所以14NE ND =,即在棱DN 上存在点E ,使得直线DB 与平面BMEF 所成角的正弦值为34,E 为棱DN 上靠近N 点的四等分点.【精选名校模拟】1.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11ABB A ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成的角为6π,请问在线段1A C 上是否存在点E ,使得二面角A BE C --的大小为23π,若存在请求出E 的位置,不存在请说明理由. 【答案】(1)证明见解析(2)存在,点E 为线段1A C 中点 【解析】(1)通过作辅助线结合面面垂直的性质证明BC ⊥侧面11A ABB ,从而证明结论;(2)建立空间直角坐标系,求出相关点的坐标,再求相关的向量坐标,求平面EAB 的法向量,利用向量的夹角公式求得答案. (1)证明:连接1AB 交1AB 于点D ,因1AA AB =,则1AD A B ⊥由平面1A BC ⊥侧面11A ABB ,且平面1A BC侧面111A ABB A B =,得AD ⊥平面1A BC ,又BC ⊂平面1A BC ,所以AD BC ⊥.三棱柱111ABC A B C -是直三棱柱,则1AA ⊥底面ABC ,所以1AA BC ⊥. 又1AA AD A =,从而BC ⊥侧面11A ABB ,又AB 侧面11A ABB ,故AB BC ⊥.(2)由(1).AD ⊥平面1A BC ,则ACD ∠直线AC 与平面1A BC 所成的角, 所以6π∠=ACD ,又2AD =,所以22,2AC BC ==假设在线段1A C 上是否存在一点E ,使得二面角A BE C --的大小为23π, 由111ABC A B C -是直三棱柱,所以以点A 为原点,以AC 、1AA 所在直线分别为x ,z 轴,以过A 点和AC 垂直的直线为y 轴,建立空间直角坐标系A xyz -,如图所示,则()10,0,2A ,()()122,0,0,(220),2,2,2C B B ,,且设()1101A E AC λλ=≤≤,1(22,0,2)AC =- , 得()22,0,22E λλ-所以()22,0,22AE λλ=-,()2,2,0AB =设平面EAB 的一个法向量()1,,n x y z =,由1AE n ⊥,1AB n ⊥得:22(22)0220x z x y λλ⎧+-=⎪⎨+=⎪⎩ ,取121,1,1n λλ⎛⎫=- ⎪ ⎪-⎝⎭, 由(1)知1AB ⊥平面1A BC ,所以平面CEB 的一个法向量()12,2,2AB =,所以111122221|1|cos322222()1AB n AB n λπλλλ⋅-===⨯+-,解得12λ=,∴点E 为线段1A C 中点时,二面角A BE C --的大小为23π. 2.已知四棱锥E —ABCD 中,四边形ABCD 为等腰梯形,AB ∥DC ,AD =DC =2,AB =4,△ADE 为等边三角形,且平面ADE ⊥平面ABCD .(1)求证:AE ⊥BD ;(2)是否存在一点F ,满足EF EB λ= (0<λ≤1),且使平面ADF 与平面BCE 所成的锐二面角的余弦值65.若存在,求出λ的值,否则请说明理由. 【来源】湖北省八市2021届高三下学期3月联考数学试题 【答案】(1)证明见解析;(2)存在12λ=使得平面ADF 与平面BCE 65. 【解析】(1)取AB 的中点G ,连接DG ,1,//2BG AB CD BG CD ==,∴四边形BCDG 是平行四边形,2DG BC AG AD ====,ADG ∴为等边三角形,1,2DG AB ABD =∴△是直角三角形,AD BD ∴⊥,平面ADE ⊥平面ABCD ,BD ⊂平面ABCD ,AD =平面ADE平面ABCD , BD ∴⊥平面ADE ,AE ⊂平面ADE ,AE BD ∴⊥(2) F 为EB 中点即可满足条件.取AD 的中点H ,连接EH ,则EH AD ⊥,取AD 的中点H ,连接EH ,平面ADE ⊥平面ABCD ,EH ⊂平面EAD ,所以EH ⊥平面ABCD ,3,23,EH BD ==如图建立空间直角坐标系D xyz -,则()()()()(0,0,0,2,0,0,0,23,0,3,0,1,03D A B C E -,,则()()()()2,0,0,1,3,0,1,23,3,,23,3,CB EB EF E D B A λλλλ===--==--()1333,DF λλλ=-设平面ADF 的法向量为111(,,)m x y z =,平面BCE 的法向量为222(,,)n x y z = .由00DF m DA m ⎧⋅=⎨⋅=⎩,得())111112333020x y z x λλλ⎧-++=⎪⎨=⎪⎩,取()0,12m λλ=-,; 由00CB n EB n ⎧⋅=⎨⋅=⎩,得22222302330x y x y z ⎧=⎪⎨-+-=⎪⎩,取()3,1,3n =-.于是, 216|65|cos ,|13521m n m n m nλλλλ-+⋅〈〉===⋅⋅-+ 解得1=2λ或1=-3λ(舍去)所以存在12λ=使得平面ADF 与平面BCE 所成的锐二面角的余弦值为6513. 3.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,22PA PD ==24DC AD AB ===,AB AD ⊥,//AB CD ,平面PAD ⊥平面ABCD ,E 为棱PB 上一点.(1)在平面PAB内能否作一条直线与平面PAD垂直?若能,请画出直线并加以证明;若不能,请说明理由;(2)若13PEPB=时,求直线AE与平面PBC所成角的正弦值.【来源】甘肃省2020-2021学年高三第一次高考诊断理科数学试卷【答案】(1)答案见解析;(2)14 7.【解析】(1)过E作//EF AB,交棱PA于F,EF为所求作的直线,因为平面PAD⊥平面ABCD,且AB AD⊥,所以AB⊥平面PAD,又因为//EF AB,所以EF⊥平面PAD.(如证明AB⊥平面PAD、或寻找PB上任意一点作平行线、垂线都可)(2)取AD中点O,BC中点M,连接OM,则OM⊥平面PAD,以O为坐标原点,OA所在直线为x轴,OM所在直线为y轴,OP所在直线为z轴,建立空间直角坐标系.则可得(2,0,0)A ,(2,2,0)B ,(2,4,0)C -,(0,0,2)P ,则(2,2,2)PB =-,(4,2,0)BC =-.设平面PBC 的法向量为(,,)n x y z =,易得020n PB x y z n BC x y ⎧⋅=+-=⎨⋅=-+=⎩,不妨取(1,2,3)n =.因为13PE PB =,所以224,,333E ⎛⎫ ⎪⎝⎭,所以424,,333AE ⎫⎛=- ⎪⎝⎭ 设AE 与平面PBC 所成角为θ,则14sin 7||||AE n AE n θ⋅==.所以AE 与平面PBC 所成角的正弦值为147. 4.如图.在三棱锥P ABC -中,PAB △为正三角形,O 为PAB △的重心,PB AC ⊥,60ABC ∠=︒,2BC AB =.(1)求证:平面PAB ⊥平面ABC ;(2)在棱BC 上是否存在点D ,使得直线//OD 平面PAC ?若存在,求出BDDC的值;若不存在.说明理由.【答案】(1)证明见解析;(2)存在,2BDDC=. 【解析】(1)设AB m =,则2BC m =,在ABC 中,由余弦定理,得222423AC m m m m =+-=. 因为22224AB AC m BC +==,所以AC AB ⊥. 因为AC PB ⊥,AB PB B ⋂=, 所以AC ⊥平面PAB . 因为AC ⊂平面ABC , 所以平面PAB ⊥平面ABC . (2)如图所示:取PA 的中点E ,连接BE ,CE ,则点O 在BE 上, 在平面BCE 内过点O 作CE 的平行线交BC 于点D . 因为//OD CE ,OD ⊄平面PAC ,CE ⊂平面PAC , 所以//OD 平面PAC . 因为O 为PAB △的重心, 所以:2:1BO OE =, 又::BD DC BO OE =, 所以2BDDC=, 所以在棱BC 上存在点D ,使得直线//OD 平面PAC ,此时2BDDC=. 5.在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD ,3DAB π∠=,2AD =,1AM =,E 为AB 的中点.(Ⅰ)求证://AN 平面MEC .(Ⅱ)求ME 与平面MBC 所成角的正弦值:(Ⅲ)在线段AM 上是否存在点P ,使二面角P EC D --的大小为3π?若存在,求出AP 的长;若不存在,请说明理由.【来源】天津市第十四中学2021届高三下学期开学考试数学试题 【答案】(Ⅰ)证明见解析;(Ⅱ)68;(Ⅲ)不存在,理由见解析. 【解析】证明:(Ⅰ)设CM 与BN 交于F ,连接EF , 由已知得四边形BCNM 是平行四边形, 所以F 是BN 的中点. 因为E 是AB 的中点, 所以//AN EF , 又EF ⊂平面MEC ,AN ⊄平面MEC ,所以//AN 平面MEC .(Ⅱ)由于四边形ABCD 是菱形,3DAB π∠=,E 是AB 的中点,可得DE AB ⊥. 又ADNM 是矩形,平面ADNM ⊥平面ABCD , 平面ADNM平面ABCD AD =,∴DN ⊥平面ABCD ,如图建立空间直角坐标系D-xyz , 则()0,0,0D ,)3,0,0E,()0,2,0C ,3,1,1)M -,3,1,0)B ,()0,0,1N ;设平面MBC 的法向量为1(,,)n x y z = (0,2,1)MB =-,(3,1,0)BC =-), 1100MB n BC n ⎧⋅=⎪⎨⋅=⎪⎩, ∴2030y z x y -=⎧⎪⎨+=⎪⎩, ∴1(1,3,23)n =,(0,1,1)ME =-,11136cos ,8||||24ME n ME n ME n ⋅-<>===-⋅∴ME 与平面MBC 6; (Ⅲ)设3,1,)P h -,(3,2,0)CE =-,()0,1,EP h =-, 设平面PEC 的法向量为1(,,)n x y z =,则110CE n EP n ⎧⋅=⎪⎨⋅=⎪⎩,∴3200x y y hz ⎧-=⎪⎨-+=⎪⎩,令3y h =,∴1(2,3,3)n h h =,又平面ADE 的法向量2(0,0,1)n =,122211231cos ,27|||3|n n n n n h n ⋅<>===+解得,377h =, ∵3717>, ∴在线段AM 上不存在点P ,使二面角P EC D --的大小为3π. 6.如图,在四棱台1111ABCD A B C D -中,底面四边形ABCD 为菱形,111112AA A B AB ===,60ABC ∠=.1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:11C M AC ⊥; (2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【来源】安徽省六校教育研究会2021届高三下学期2月第二次联考理科数学试题【答案】(1)证明见解析;(2)存在,且312CE =-. 【解析】(1)取BC 中点Q ,连接AQ 、1A C 、AC , 因为四边形ABCD 为菱形,则AB BC =,60ABC ∠=,ABC ∴为等边三角形,Q 为BC 的中点,则AQ BC ⊥,//AD BC ,AQ AD ∴⊥,由于1AA ⊥平面ABCD ,以点A 为坐标原点,以AQ 、AD 、1AA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.则()0,0,0A 、()10,0,1A 、()10,1,1D、()3,0,0Q 、()3,1,0C、131,,122C ⎛⎫⎪ ⎪⎝⎭、()0,1,0M ,131,,122C M ⎛⎫=-- ⎪ ⎪⎝⎭,()13,1,1AC=-,()211311022C M AC ∴⋅=-++-=,11C M A C ∴⊥;(2)假设点E 存在,设点E 的坐标为)3,,0λ,其中11λ-≤≤,()3,,0AE λ=,()10,1,1AD =,设平面1AD E 的法向量为(),,n x y z =,则100n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩,即30x y y z λ+=+=⎪⎩,取3y =-x λ=,3z =(,3,3n λ=-,平面1ADD 的一个法向量为()1,0,0m =,所以,21cos ,3+6m n m n m nλλ⋅<>===⋅,解得32λ=±,又由于二面角1E AD D --为锐角,由图可知,点E 在线段QC 上,所以32λ=,即312CE =-.因此,棱BC 上存在一点E ,使得二面角1E AD D --的余弦值为13,此时312CE =-. 7.边长为1的菱形ABCD 中,60ABC ∠=︒,沿AC 折叠后,二面角B AC D --的平面角为α.(1)设BC 与平面ADC 所成角为β32sin αβ=; (2)折叠过程中,是否存在2,23ππα⎛⎫∈⎪⎝⎭,使得平面ABD ⊥平面CBD . 【来源】浙江省丽水高中发展共同体2020-2021学年高三上学期期末联考数学试题 【答案】(1)证明见解析;(2)存在.【解析】(1)在菱形ABCD 中,AC DE ⊥,AC BE ⊥,因为DE BE E ⋂=,且,DE BE ⊂平面BDE ,所以AC ⊥平面BDE , 在BDE 中,过点B 作BH DE ⊥, 又因为BH ⊂平面BDE ,所以BH AC ⊥, 又由DEAC E =,所以BH ⊥平面ACD ,可得BCH ∠为BC 与平面ADC 所成角, 则3BH α=,3sin sin BH BCH BC βα=∠==, 32sin αβ=.(2)由对称性且ABD △、CBD 为等腰三角形,取BD 中点为G ,可得,AG BD CG BD ⊥⊥,则AGC ∠为平面ABD 与平面CBD 所成二面角的平面角,在AGC 中,由余弦定理,可得223332cos 3sin 4442BD αα=+-⨯=, 所以3sin2BD α=,22231sin 42AG CG α=-=, 当222AG CG AC +=时,平面ABD ⊥平面BDC ,即当232(1sin )142α-=,也即3sin 23α=时,平面ABD ⊥平面BDC ,由于163294<<,所以423παπ<<,故存在α,使得平面ABD ⊥平面CBD .8.如图,在三棱锥P ABC -中,2,4,23AB PB BC PA PC AC ======.(1)平面PAC ⊥平面ABC ;(2)点D 是棱BC 上一点,BD BC λ=,且二面角B PA D --与二面角C PA D --的大小相等,求实数λ的值. 【来源】江苏省泰州市2021-2022学年高三上学期期末数学试题 【答案】(1)证明见解析(2)25【解析】(1)作辅助线PO AC ⊥ ,垂足为O ,接着证明PO BO ⊥,根据面面垂直的判定定理可证明结论; (2)建立空间直角坐标系,求出相关点的坐标,进而求得相关向量的坐标,分别求出平面ABP , APD 的法向量,根据题意,利用向量的夹角公式列出相应的等式,解得答案.(1)证明:如图,作PO AC ⊥ ,垂足为O ,因为23PA PC AC ===,故O 是AC 的中点,且3PO =,由222222(23)16AB AC BC +=+==,可知AB AC ⊥ , 所以22437BO AB AO ++ , 则2227916BO PO PB +=+== ,故PO BO ⊥, 又0BOAC =,且,BO AC ⊂平面ABC ,故PO ⊥平面ABC ,而PO ⊂平面P AC , 所以平面PAC ⊥平面ABC .(2)如图,以O 为坐标原点,过点O 作和AB 平行的直线作为x 轴,以OC,OP 分别为y ,z 轴建立空间直角坐标系,则(0,3,0),(2,3,0),3,0),(0,0,3)A B C P - ,由BD BC λ=得(2,3,0)BD λ=-,且01λ<< ,故(22,33,0)D λλ-, 所以(2,0,0),(0,3,3),(22,3,0)AB AP AD λλ===-, 设平面ABP 的法向量为(,,)m x y z = ,则20330m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩,令3y =,则可取(0,3,1)m =- , 设平面APD 的法向量为(,,)n a b c =,则(22)230330n AD a b n AP b c λλ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令3y =,则可取6(,3,1)22n λλ-=--, 平面CP A 的法向量可取为(1,0,0)k = ,由二面角B PA D --与二面角C PA D --的大小相等可得:22226|||4|22662()(3)1)()(3)1)(2222λλλλλλ--=--++++-- ,解得25λ=,符合题意, 故实数λ的值为25.9.如图,在三棱台ABC -A 1B 1C 1中,底面△ABC 是等腰三角形,且BC =8,AB =AC =5,O 为BC 的中点.侧面BCC 1B 1为等腰梯形,且B 1C 1=CC 1=4,M 为B 1C 1中点.(1)证明:平面ABC ⊥平面AOM ;(2)记二面角A -BC -B 1的大小为θ,当θ∈[6π,2π]时,求直线BB 1平面AA 1C 1C 所成角的正弦的最大值. 【来源】江苏省扬州市2021-2022学年高三上学期期末数学试题【答案】(1)证明见解析;(2)35.【解析】(1)利用线面垂直的判定定理及面面垂直的判定定理即证;(2)设直线BB 1与平面AA 1C 1C 所成的角为α,利用坐标法可求2sin 34cos 25sin αθθ=⎛⎫-+ ⎪⎝⎭, 然后利用导函数求最值即得.(1)∵△ABC 是等腰三角形,O 为BC 的中点, ∴BC ⊥AO ,∵侧面BCC 1B 1为等腰梯形,M 为11B C 的中点,∴BC ⊥MO .∵MO ∩AO =O ,MO ,AO &#ξΦ0XX;平面AOM , ∴BC ⊥平面AOM , ∵BC &#ξΦ0XX;平面ABC , ∴平面ABC ⊥平面AOM . (2)在平面AOM 内,作ON ⊥OA ,∵平面ABC ⊥平面AOM ,平面ABC ∩平面AOM =OA ,ON &#ξΦ0XX;平面AOM , ∴ON ⊥平面ABC , 以OB ,OA ,ON 分别为x 轴、y 轴,z 轴,建立如图所示的空间直角坐标系. ∵MO ⊥BC ,AO ⊥BC ,∴∠AOM 为二面角1A BC B --的平面角,即∠AOM =θ,∴A (0,3,0),B (4,0,0),C (-4,0,0),M (0,23cos θ,23sin θ),C 1(-2,23cos θ,23sin θ),B 1(2,23cos θ,23sin θ),∴1BB =(-2,3θ,3θ),设平面AA 1C 1C 的法向量为n =(x ,y ,z ),其中CA =(4,3,0),1CC =(2,3θ,3θ),所以100CA n CC n ⎧⋅=⎨⋅=⎩,即430223230x y x y z θθ+=⎧⎪⎨+⋅+⋅=⎪⎩,则可取343cos 3,3sin n θθ⎛-=- ⎝, 设直线BB 1与平面AA 1C 1C 所成的角为α,则sin α=|cos <1BB ,n >|234cos 25sin θθ⎛⎫-+ ⎪⎝⎭设f (θ)=34cos sin θθ-,θ∈[6π,2π],则243cos ()0sin f θθθ'-=>, ∴f (θ)在[6π,2π]上单调递增, ∴f (θ)∈[-23,3],即34cos 23,3sin θθ-⎡⎤∈-⎣⎦ ∴[]234cos 0,12sin θθ⎛⎫-∈ ⎪ ⎪⎝⎭, ∴()max 3sin 5α=. ∴直线BB 1平面AA 1C 1C 所成角的正弦的最大值为35.10.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,//AB CD ,24AB AD PA CD ====,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在;25PH PC =. 【解析】(1)先证明AB ⊥平面PAD ,进而得到CD ⊥面PAD ,得出CD AG ⊥,再根据条件证明AG PD ⊥,最后根据线面垂直的判定定理得到结论;(2)建立空间直角坐标系,设PH k PC →→=,求出两个平面的法向量,进而根据面面垂直求出k . 【详解】(1)因为PA ⊥平面ABCD ,所以PA AB ⊥,又AD AB ⊥,AD PA A ⋂=,所以AB ⊥平面PAD ,又//AB CD ,所以CD ⊥面PAD ,AG ⊂面PAD ,CD AG ⊥.又PA AD =,G 为PD 的中点,所以AG PD ⊥,而PD DC D ⋂=,所以AG ⊥平面PCD .(2)以A 为坐标原点,,,AD AB AP →→→所在方向分别为x ,y ,z 轴正方向建立空间直角坐标系,如图,则()0,0,0A ,()0,4,0B ,()4,2,0C ,()4,0,0D ,()0,0,4P ,()0,2,2F ,()2,0,2G .所以()4,2,4PC →=-,设PH k PC →→=(01k ≤≤),所以()4,2,4PH k k k →=-,则H ()4,2,44k k k -+,所以()42,2,42GH k k k →=--+,()2,2,0FG →=-,设平面GHF 的法向量为(),,n x y z →=,则0n GH →→⋅=,0n FG →→⋅=,即()()422420220k x ky k z x y ⎧-++-+=⎨-=⎩,令21x k =-,则()21,21,31n k k k →=---, 由(1)可知()2,0,2AG →=为平面PCD 的一个法向量,若平面GHF ⊥平面PCD ,则0n AG →→⋅=,即21310k k -+-=,解得25k =. 即25PH PC =时平面GHF ⊥平面PCD . 11.如图,点O 是正方形ABCD 两对角线的交点,DE ⊥平面ABCD ,BF ⊥平面ABCD ,2AB BF DE ==,M 是线段EF 上一点,且2MF ME =.(1)证明:三棱锥M ACF -是正三棱锥;(2)试问在线段DF (不含端点)上是否存在一点N ,使得//CN 平面ABF .若存在,请指出点N 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)不存在,理由见解析. 【解析】(1)根据正三棱锥的定义即可证明;(2)利用反证法,由//CD 平面ABF ,假设存在这样的点N ,使得//CN 平面ABF ,推出平面CDF //平面ABF ,与平面CDF 和平面ABF 是相交平面矛盾,即可求解.【详解】解:(1)证明:设22AB BF DE a ===, 则22AF FC AC a === ∴AFC △是正三角形, 如图所示:连接FO ,EO ,2OD OB a =,∴3OE a =,6OF a =,3EF a =,在OEF 中,由222OE OF EF +=知:OE OF ⊥. 又DE ⊥平面ABCD ,DE AC ∴⊥,∵AC BD ⊥,BD DE D ⋂=, ∴AC ⊥平面DOE , ∴AC OE ⊥. 又,AC OF ⊂平面ACF ,AC OF O ⋂=,∴OE ⊥平面ACF ,在线段OF 上取点G ,使得:1:2OG GF =,则点G 是AFC △的重心,也就是AFC △的中心, 连接MG ,则MG//OE , ∴MG ⊥平面ACF ,∴三棱锥M ACF -是正三棱锥; (2)∵平面CDF 与平面ABF 有公共点F , 故平面CDF 与平面ABF 是相交平面, ∵//CD AB ,CD ⊂/平面ABF ,AB 平面ABF ,∴//CD 平面ABF ,假设存在这样的点N ,使得//CN 平面ABF , ∵点N 与点D 不重合,∴CD 与CN 是相交直线, 又//CD 平面ABF ,//CN 平面ABF ,且CD ⊂平面CDF ,CN ⊂平面CDF ,∴平面CDF //平面ABF ,这与平面CDF 和平面ABF 是相交平面矛盾, ∴不存在一点N ,使得//CN 平面ABF .12.已知正四棱柱1111ABCD A B C D -中,2AB =,14AA =.(1)求证:1BD A C ⊥;(2)求二面角11A A C D --的余弦值;(3)在线段1CC 上是否存在点P ,使得平面11A CD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)105-;(3)存在,113CP PC =. 【解析】(1)因为四棱柱1111ABCD A B C D -是正四棱柱,所以1AA ⊥平面ABCD ,BD AC ⊥, 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 因为1AA AC A =,所以BD ⊥平面1A AC ,因为1AC ⊂平面1A AC ,所以1BD A C ⊥. (2)如图,以D 为原点建立空间直角坐标系D xyz -,则()12,0,4A ,()0,2,0C ,()10,0,4D ,()0,0,0D ,()2,2,0B ,()10,2,4C , ()112,0,0D A =,()10,2,4D C =-,()2,2,0DB =,因为BD ⊥平面1A AC ,所以()2,2,0DB =是平面1AA C 的法向量, 设平面11A D C 的法向量()111,,n x y z =,则11100n D A n D C ⎧⋅=⎪⎨⋅=⎪⎩,即1110240x y z =⎧⎨-=⎩,令11z =,则12y =,()0,2,1n =,故10522cos ,n DB DB DB n n⋅⋅===⋅因为二面角11A A C D --是钝二面角,所以二面角11A A C D --的余弦值为105-. (3)设222,,P x y z 为线段1CC 上一点,1λCP PC ,0λ≥, 因为222,2,CPx y z ,1222,2,4PC x y z ,1λCP PC ,所以()()222222,2,,2,4x y z x y z λ-=---, 则20x =,22y =,24λ1λz ,40,2,1P λλ⎛⎫ ⎪+⎝⎭,4λ0,2,1λDP, 设平面PBD 的法向量333,,mx y z ,则00m DP m DB ⎧⋅=⎨⋅=⎩,即33334201220y z x y λλ⎧+⋅=⎪+⎨⎪+=⎩,令31y =,则11,1,2m λλ+⎛⎫=-- ⎪⎝⎭, 若平面11A CD ⊥平面PBD ,则0m n ⋅=,即1202λλ+-=,解得13λ=,故当113CP PC =时,平面11A CD ⊥平面PBD . 13.如图,四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,1BC CD ==,2AB =.PBC 是等边三角形,平面PBC ⊥平面ABCD ,点M 在棱PC 上.(1)当M 为棱PC 中点时,求证:AP BM ⊥;(2)是否存在点M 使得二面角D MB C --的余弦值为34,若存在,求CM 的长;若不存在,请说明理由.【来源】陕西省西安市西北工业大学附属中学2021-2022学年高三上学期第六次适应性训练理科数学试题 【答案】(1)证明见解析;(2)存在,23CM =. 【解析】(1)要证明线线垂直,先证明线面垂直,由垂直关系证明BM ⊥平面APC ;(2)点P 作PO BC ⊥交BC 于点O ,由面面垂直可知OP ⊥平面ABCD ,再以点O 为原点,建立空间直角坐标系,设(01)CM tCP t =<<,并表示点M 的坐标,分别求平面DMB 和平面MBC 的法向量,利用法向量表示二面角公式3|cos ,|4||||a b a b a b ⋅<>==,求解. 【详解】证明:()1连结AC ,由题意,底面ABCD 是等腰梯形且2,1AB BC CD ===, 则3ABC π∠=,由余弦定理知3AC =,222AC BC AB ∴+=,,2ACB π∴∠=AC BC ∴⊥平面PBC ⊥平面ABCD ,平面PBC 平面ABCD BC =,AC ∴⊥平面PBC ,BM ⊂平面PBC ,AC ∴⊥BM ,M 为棱PC 中点,且PBC 是等边三角形, BM PC ∴⊥,又PC AC C ⋂=,BM ∴⊥平面APC ,AP BM ∴⊥.()2假设存在点M 使得二面角D MB C --的余弦值为34. 由题意过点P 作PO BC ⊥交BC 于点O , 平面PBC ⊥平面ABCD ,PO ∴⊥平面ABCD ,取AB 中点E ,连结OE ,则//OE CA , 由()1知OE ⊥平面PBC ,所以以O 为原点,以,,OC OE OP 所在直线为,,x y z 轴建立如图所示的空间直角坐标系Oxyz .31(0,0,0),(,0,0),2O P C ∴1(,0,0)2B -,3D , 设(01)CM tCP t =<<, 则13()2t M -.133(,)2t DM --=,33(,2DB =- 设平面DMB 的一个法向量为(,,)a x y z =,则 13302t a DM x y +⋅=-= 3302a DB x y ⋅=-=,令3x =则3y =-,2t z t -=2(3,3,)t a t-∴=- 易知平面MBC 的一个法向量为(0,1,0)b =,则223|cos ,|422||||39()12()a b a b t t a b tt⋅<>====--+++, 则22()4t t -=,22t t -=-,即23t =,22||||33CM CM CP ===. 【点睛】方法点睛:求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,求得对应平面的法向量之间夹角的余弦值,再判断锐二面角或钝二面角,确定结果,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,利用垂直关系和二面角的定义,找到二面角对应的平面角,再求出二面角平面角的大小,这种解法的关键是找到平面角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的探索性问题-存在型问题配套练习
福州第三中学陈增
1. 如图,在三棱锥P−ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.
(1)证明:平面PBE⊥平面PAC.
(2)在BC上是否存在一点F,使AD//平面PEF?说明理由.
2. 如图,在三棱锥V−ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<π
2
).
(1)求证:平面VAB⊥平面VCD;
(2)当角θ在(0,π
2)上变化时,求直线BC与平面VAB所成的角的取值范围.
P
C
B
A
立体几何中的探索性问题-存在型问题配套练习参考答案
福州第三中学陈增
1.解:(1)证明:∵PA⊥底面ABC,BE⊂平面ABC,
∴PA⊥BE.
又△ABC是正三角形,E是AC的中点,
∴BE⊥AC,又PA∩AC=A.
∴BE⊥平面PAC.
又BE⊂平面PBE,∴平面PBE⊥平面PAC.
(2)存在满足条件的点F,且F是CD的中点.
理由:∵E、F分别是AC、CD的中点,
∴EF//AD.
而EF⊂平面PEF,AD⊄平面PEF,
∴AD//平面PEF.
2.解:(1)证明:因为AC=BC=a,所以△ACB是等腰三角形.又D是AB的中点,所以CD⊥AB.
又VC⊥底面ABC,所以VC⊥AB.
于是AB⊥平面VCD.又AB⊂平面VAB,
所以平面VAB⊥平面VCD.
(2)在平面VCD内过点C作CH⊥VD于H,则由(1)知CH⊥平面VAB.连接BH,
于是∠CBH就是直线BC与平面VAB所成的角.
在Rt△CHD中,易知CH=√2
2
asinθ.
设∠CBH=φ,在Rt△BHC中,CH=asinφ,
所以√2
2
sinθ=sinφ.
因为0<θ<π
2,所以0<sinθ<1,0<sinφ<√2
2
.
又0<φ<π
2,所以0<φ<π
4
.
即直线BC与平面VAB所成角的取值范围为(0,π
4
).。