2020年高考数学经典题题精选三角函数解答题.docx

合集下载

2020年高考试题:三角函数

2020年高考试题:三角函数

D、 3 2
单调递增区间的零点(与 x 的交点)横坐标为 3 2k , k Z 。 2
题目已知图中单调递增区间的零点横坐标为 4 ( 4 ) 3 2k
9
9 62
4 9
4 3
2k
( 4 3
2k
)
(
9 4
)
3
9 2
k

分类讨论:
(1)当 k
0 时:
3 T
2 | |
2 3
;选项中无此答案
t
t
ymin
1 1 1
2 ;两者综合得到:
ymin

y sin x 是奇函数 sin(x) sin x 。
3
f (x) sin x 1 f (x) sin(x) 1 sin x 1
sin x
sin( x)
sin x
(sin x 1 ) f (x) f (x) f (x) 是奇函数 f (x) 关于原点对称。 sin x
2
2
3
3
3( 3 sin 1 cos ) 1 3(cos sin sin cos ) 1
2
2
6
6
3 sin( ) 1 sin( ) 1
3

6
6 33
训练六:2020 年高考文科数学新课标Ⅲ卷第 12 题:已知函数 f (x) sin x 1 ,则(

sin x
A、 f (x) 的最小值为 2
2 (1800 3600 (1 k),3600 3600 (1 k)) 2 为第三、四象限角
sin 2 0 。
训练五:2020 年高考文科数学新课标Ⅲ卷第 5 题:已知 sin sin( ) 1,则 sin( ) ( )

2020高考—三角函数(解答+答案)

2020高考—三角函数(解答+答案)

2020年高考——三角函数1.(20全国Ⅰ文18)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ABC △的面积;(2)若sin A C ,求C .2. (20全国Ⅱ文17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.3.(20全国Ⅱ理 17)ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.4.(20新高考Ⅰ17)在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.5.(20天津16)(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值.6.(20浙江18)(本题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2sin 0b A =. (Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.7.(20江苏16)(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.8.(20全国Ⅱ理21)(12分)已知函数f (x )= sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性; (2)证明: 33()f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .9.(20北京17)(本小题13分)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.参考答案:1.解:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒,解得2c =-(舍去),2c =,从而a =ABC △的面积为12sin1502⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin sin(30)sin(30)A C C C C =︒-=︒+,故sin(30)C ︒+=而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒.2.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -.由(1)知23B C π+=,所以2sin sin()33B B ππ--.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形.3.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+4.解:方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.5.(Ⅰ)解:在ABC △中,由余弦定理及5,a b c ===222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,4C a c ===,可得sin sin 13a C A c ==.(Ⅲ)解:由a c <及sin A =cos A == 进而2125sin 22sin cos ,cos 22cos 113A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.6.(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =, 由题意得π3B =. (Ⅱ)由πA B C ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2.7.解:(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯8.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x xx =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.9.。

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。

2020年新高考数学新题型三角函数典型选择试题答案分析与解答(11页)

2020年新高考数学新题型三角函数典型选择试题答案分析与解答(11页)

2020年新高考数学新题型三角函数典型选择试题新题型三角函数试题多项选择题1.(2019春•中山市校级月考)有下列四种变换方式,其中能将正弦曲线sin y x =的图象变为sin(2)4y x π=+的图象的是( ) A .横坐标变为原来的12,再向左平移4π B .横坐标变为原来的12,再向左平移8π C .向左平移4π,再将横坐标变为原来的12 D .向左平移8π,再将横坐标变为原来的12. 【分析】根据函数sin()y A x ωϕ=+的图象变换规律,逐一变换即可. 【解答】解:A .sin y x =横坐标变为原来的12,再向左平移4π,得sin[2()]sin(2)42y x x ππ=+=+,故A 不正确;B .sin y x =横坐标变为原来的12,再向左平移8π,得sin[2()]sin(2)84y x x ππ=+=+,故B 正确; C .sin y x =向左平移4π,再将横坐标变为原来的12,得sin(2)4y x π=+,故C 正确; D .sin y x =向左平移8π,再将横坐标变为原来的12,得sin(2)8y x π=+,故D 不正确. 故选:BC .2.(2019春•市中区校级月考)在ABC ∆中,根据下列条件解三角形,其中有两解的是( ) A .10b =,45A =︒,70C =︒ B .45b =,48c =,60B =︒ C .14a =,16b =,45A =︒D .7a =,5b =,80A =︒【分析】在ABC ∆中,已知a ,b 和角A 时,A 为锐角,则由正弦定理可得当sin b A a b <<时,三角形有两解,由此逐项判断即可得解.【解答】解:选项B 满足sin60c b c ︒<<,选项C 满足sin45b a b ︒<<,所以B ,C 有两解, 对于选项A ,可求18065B A C =︒--=︒,三角形有一解, 对于选项D ,由sin sin b AB a=g ,且b a <,可得B 为锐角,只有一解,三角形只有一解.3.(2019春•辽宁期中)已知函数1()sin()23f x x π=-,那么下列式子恒成立的是( )A .(2)(2)f x f x ππ+=-B .10()()3f x f x π-=C .5()()6f x f x π-= D .5()()3f x f x π-=- 【分析】根据三角函数的解析式,逐一判断各个等式是否成立,从而得出结论. 【解答】解:Q 函数1()sin()23f x x π=-,2(2)sin()23x f x ππ∴+=+,42(2)sin()sin()2323x x f x πππ-=-=+,故A 成立.105()sin()sin()sin()33233223x x x f x πππππ∴-=--=--=-,故B 成立.55()sin()sin()()61223122x xf x f x ππππ∴-=--=-≠,故C 不成立. 55()sin()cos ()36232x xf x f x πππ-=--=≠,故D 不成立. 故选:AB .4.(2019春•薛城区校级月考)已知曲线1:2sin C y x =,2sin()36x y π=+,则下列结论正确的是( )A .把1C 上所有的点向右平移6π个单位长度,再把所有图象上各点的横坐标缩短到原来的13倍(纵坐标不变),得到曲线2C B .把1C 上所有点向左平移6π个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线2CC .把1C 上各点的横坐标缩短到原来的13倍(纵坐标不变),再把所得图象上所有的点向左平移6π个单位长度得到曲线2CD .把1C 上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移2π个单位长度,得到曲线2C【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,得出结论. 【解答】解:已知曲线1:2sin C y x =,2:2sin()36x C y π=+,故把1C 上所有点向左平移6π个单位长度,可得2sin()6y x π=+的图象, 再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线2C ,2sin()36x y π=+的图象,把1C 上各点的横坐标伸长到原来的3倍(纵坐标不变),可得12sin 3y x =的图象;再把所得图象上所有的点向左平移2π个单位长度,得到曲线2:2sin()36x C y π=+的图象,故D 正确. 故选:BD .5.(2018秋•沾化区校级月考)已知α是第三象限角,则2α可能是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【分析】因为α是第三象限角,所以3222k k πππαπ+<<+,k Z ∈,3224k k παπππ∴+<<+,k Z ∈,再讨论k 的奇偶可得.【解答】解:因为α是第三象限角,所以3222k k πππαπ+<<+,k Z ∈, 3224k k παπππ∴+<<+,k Z ∈, 当k 为偶数时,2α是第二象限角;当k 为奇数时,2α是第四象限角, 故选:BD .6.已知()2cos()12f x x πω=+,x R ∈,又1()2f x =,2()0f x =,且12||x x -的最小值是53π,则ω的值为( ) A .310-B .53C .310 D .53-【分析】根据题意可得12||x x -的最小值即4T 为53π,进而求出T ,则ω可得. 【解答】解:由题可得543T π=,故254||3ππω=,所以310ω=±. 故选:AC .7.函数()sin()(0f x x ωϕω=+>,||)2πϕ<的最小正周期为π,且其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象( ) A .关于点(6π-,0)中心对称 B .关于直线512x π=对称 C .关于点(3π,0)中心对称 D .关于直线12x π=对称【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,三角函数的奇偶性,求出()f x 的解析式,再根据三角函数图象的对称性,得出结论.【解答】解:Q 函数()sin()(0f x x ωϕω=+>,||)2πϕ<的最小正周期为2ππω=,2ω∴=,且其图象向右平移6π个单位后得到的函数为sin(2)3y x πϕ=-+的图象, 再根据所得函数为奇函数,可得3πϕ=,()sin(2)3f x x π∴=+.当6x π=-时,()0f x =,则()f x 的图象关于点(6π-,0)中心对称,故A 成立;当512x π=时,1()2f x =-,不是最值,故函数()f x 的图象不关于直线512x π=对称,故B 不成立; 当3x π=时,()0f x =,故函数()f x 的图象关于点(3π,0)对称,故C 成立; 当12x π=时,()1f x =,是最大值,故函数()f x 的图象不关于直线12x π=对称,故D 成立,故选:ACD .8.已知函数()sin(2)(0)f x x ϕπϕ=+-<<,将函数()f x 图象向左平移3π个单位长度后所得的函数图象过点(0,1)P ,则函数()sin(2)(f x x ϕ=+ )A .在区间[,]63ππ上单调递减B .在区间[,]63ππ上单调递增C .在区间[,]36ππ-上单调递减D .在区间5[6π-,2]3π-上单调递增 【分析】根据条件先求出()f x 解析式为()sin(2)6f x x π=-,进而求出单调区间即可.【解答】解:函数()f x 图象向左平移3π个单位长度后的解析式为2()sin[2()]sin(2)33f x x x ππϕϕ=++=++, 由题得2(0)sin()13f πϕ=+=,解得6πϕ=-,所以()sin(2)6f x x π=-, 令222262k x k πππππ-+-+剟,解得[6x k ππ∈-+,]()3k k Z ππ+∈,即为函数()f x 的单调增区间;令3222262k x k πππππ+-+剟,解得[3x k ππ∈+,5]()6k k Z ππ+∈,即为函数()f x 的单调减区间. 所以当0k =时,[6x π∈-,]3π时单调递增,B 符合; 当1k =-时,52[,]63x ππ∈--时单调递增,D 符合; 故选:BD .9.若4sin5α=,且α为锐角,则下列选项中正确的有()A.4tan3α=B.3cos5α=C.8cos5Sinαα+=D.1cos5Sinαα-=-【分析】由已知利用同角三角函数基本关系式可求cosα,tanα的值,即可计算得解.【解答】解:4 sin5α=Q,且α为锐角,3cos5α∴==,故B正确,4sin45tan3cos35ααα∴===,故A正确,4378sin cos5555αα∴+=+=≠,故C错误,4311sin cos5555αα∴-=-=≠-,故D错误.故选:AB.10.已知扇形的周长是6cm,面积是22cm,下列选项正确的有()A.圆的半径为2B.圆的半径为1C.圆心角的弧度数是1D.圆心角的弧度数是2【分析】由题意及弧长的面积公式可得226122r rrαα+=⎧⎪⎨=⎪⎩,进而得解.【解答】解:设扇形半径为r,圆心角弧度数为α,则由题意得226122r rrαα+=⎧⎪⎨=⎪⎩,解得:14rα=⎧⎨=⎩,或21rα=⎧⎨=⎩,可得圆心角的弧度数是4,或1.故选:ABC.11.在ABC∆中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.2222cosa b c bc A=+-B.sin sina Bb A=C.cos cosa b C c B=+D.cos cos sina Bb A C+=【分析】在A中,由余弦定理可得正确;在B中,由正弦定理可得结论,正确;在C中由余弦定理整理得2222a a =,可得正确;在D 中,由余弦定理可得错误,即可得解.【解答】解:由在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,知: 在A 中,由余弦定理得:2222cos a b c bc A =+-,故A 正确; 在B 中,由正弦定理得:sin sin a bA B=, sin sin a B b A ∴=,故B 正确;在C 中,cos cos a b C c B =+Q ,∴由余弦定理得:22222222a b c a c b a b c ab ac+-+-=⨯+⨯, 整理,得2222a a =,故C 正确;在D 中,由余弦定理得222222cos cos sin 22a c b b c a a B b A a b c C ac bc+-+-+=⨯+⨯=≠,故D 错误. 故选:ABC .12.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若sin sin sin (34A B Ck k ==为非零实数),则下列结论正确的是( )A .当5k =时,ABC ∆是直角三角形B .当3k =时,ABC ∆是锐角三角形 C .当2k =时,ABC ∆是钝角三角形D .当1k =时,ABC ∆是钝角三角形【分析】由题意根据正弦定理,余弦定理逐一判断各个选项即可得解. 【解答】解:对于A ,当5k =时,sin sin sin 534A B C==,根据正弦定理不妨设5a m =,3b m =,4c m =,显然ABC ∆是直角三角形; 对于B ,当3k =时,sin sin sin 334A B C==,根据正弦定理不妨设3a m =,3b m =,4c m =, 显然ABC ∆是等腰三角形,2222222991620a b c m m m m +-=+-=>, 说明C ∠为锐角,故ABC ∆是锐角三角形; 对于C ,当2k =时,sin sin sin 234A B C==,根据正弦定理不妨设2a m =,3b m =,4c m =, 可得2222222491630a b c m m m m +-=+-=-<,说明C ∠为钝角,故ABC ∆是钝角三角形; 对于D ,当1k =时,sin sin sin 134A B C==,根据正弦定理不妨设a m =,3b m =,4c m =, 此时a b c +=,不等构成三角形,故命题错误. 故选:ABC .13.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形【分析】A .在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;B .在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误; C .在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin2sin2A B =,得到22A B =或222A B π=-即可判断出正误;D .在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【解答】解:对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确;对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>Q ,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =, sin2sin2A B ∴=,A Q ,(0,)B π∈,22A B ∴=或222A B π=-, A B ∴=或2A B π+=,ABC ∴∆是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确. 故选:ABD .14.下列四个选项正确的有( ) A .75-︒角是第四象限角 B .225︒角是第三象限角 C .475︒角是第二象限角D .315-︒是第一象限角【分析】直接找出各对应角的终边所在象限得答案. 【解答】解:对于A 如图1所示,75-︒角是第四象限角;对于B 如图2所示,225︒角是第三象限角;对于C 如图3所示,475︒角是第二象限角; 对于D 如图4所示,315-︒角是第一象限角. 故选:ABCD .15.下列关于函数tan()3y x π=+的说法正确的是( )A .在区间5(,)66ππ-上单调递增B .最小正周期是πC .图象关于(,0)4π成中心对称D .图象关于直线6x π=成轴对称【分析】利用正切函数的单调性以及周期性对称性判断选项的正误即可. 【解答】解:令232k x k πππππ-<+<+,解得566k x k ππππ-<<+,k Z ∈,显然5(,)66ππ-满足上述关系式,故A 正确;易知该函数的最小正周期为π,故B 正确; 令32k x ππ+=,解得23k x ππ=-,k Z ∈,任取k 值不能得到4x π=,故C 错误;正切函数曲线没有对称轴,因此函数tan()3y x π=+的图象也没有对称轴,故D 错误.故选:AB .16.将函数()cos(2)3f x x π=-的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,则下列判断正确的是( ) A .曲线()y g x =关于直线3x π=对称B .曲线()y g x =关于点(6π-,0)对称C .函数()g x 在(0,)3π上单调递增D .函数()g x 在5(6π,5)3π上单调递减 【分析】利用三角函数的图象变换,结合三角函数的简单性质,判断选项的正误即可.【解答】解:将函数()cos(2)3f x x π=-的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==-的图象,令3x π=,求得()1g x =,故曲线()y g x =关于直线3x π=对称,故A 正确;令6x π=-,求得()0g x =,故曲线()y g x =关于点(3π,0)对称,故B 正确; 在(0,)3π上,(33x ππ-∈-,0),函数()g x 单调递增,故C 正确;在5(6π,5)3π上,(32x ππ-∈,3)2π,函数()g x 没有单调性,故D 错误, 故选:ABC .17.关于x 的函数()sin()f x x ϕ=+有以下四个选项,错误的有( ): A .对任意的ϕ,()f x 都是非奇非偶函数 B .存在ϕ,使()f x 是偶函数 C .存在ϕ,使()f x 是奇函数 D .对任意的ϕ,()f x 都不是偶函数. 【分析】利用赋值法判断函数的奇偶性即可.【解答】解:0ϕ=时,()sin f x = x ,是奇函数,A 错误,B 正确;2πϕ=时,()cos f x = x 是偶函数,C 正确,显然D 错误;故选:AD .18.对于函数()sin f x x x =+,给出下列选项其中不正确的是( ) A .函数()f x 的图象关于点(,0)6π对称B .存在(0,)3πα∈,使()1f α=C .存在(0,)3πα∈,使函数()f x α+的图象关于y 轴对称D .存在(0,)3πα∈,使()(3)f x f x αα+=+恒成立【分析】利用两角和与差的三角函数化简函数的解析式,利用正弦函数的对称性,函数的值域对称轴判断选项的正误即可.【解答】解:函数()sin 2sin()3f x x x x π==+,对于A :函数()2sin()3f x x π=+,当6x π=时,2sin()263ππ+=,不能得到函数()f x 的图象关于点(,0)6π对称.A ∴不对.对于:(0,)3B πα∈,可得2(,)333πππα+∈,()f α∈,不存在()1f α=;B ∴不对.对于C :函数()f x α+的对称轴方程为:32x k x ππαπ++=+,可得6x k ππα=+-,当0k =,6πα=时,可得图象关于y 轴对称.C ∴对.对于:()(3)D f x f x αα+=+说明2α是函数的周期,函数()f x 的周期为2π,故απ=,∴不存在(0,)3πα∈,使()(3)f x f x αα+=+恒成立,D ∴不对. 故选:ABD .19.已知θ是锐角,那么下列各值中,sin cos θθ+不能能取得的值是( ) A .4.3B .3.4C .5.3D .1.2【分析】由题意利用两角和差的三角公式化简sin cos θθ+,再利用正弦函数的定义域和值域,求得它的范围,从而得出结论.【解答】解:02πθ<<Q ,3(,)444πππθ∴+∈,又sin cos θ+ )4πθθ=+,∴sin()124πθ<+„,1sin ∴< cos θ+ θ„故选:BCD .20.已知函数2()2sin cos 2sin f x x x x =-,给出下列四个选项,正确的有( ) A .函数()f x 的最小正周期是πB .函数()f x 在区间5[,]88ππ上是减函数C .函数()f x 的图象关于点(,0)8π-对称D .函数()f x 的图象可由函数2y x =的图象向右平移8π个单位,再向下平移1个单位得到. 【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性、图象的对称性,函数sin()y A x ωϕ=+的图象变换规律,得出结论.【解答】解:2()sin 22sin 11sin f x x x =-+-=Q 2cos x + 21)14x x π-+-.对于A :因为2ω=,则()f x 的最小正周期T π=,结论正确.对于B :当5[,]88x ππ∈时,32[,]422x πππ+∈,则sin x 在5[,]88ππ上是减函数,结论正确. 对于C :因为()18f π-=-,得到函数()f x 图象的一个对称中心为(8π-,1)-,结论不正确.对于D :函数()f x 的图象可由函数2y x =的图象向左平移8π个单位再向下平移1个单位得到,结论不正确.故正确结论有A ,B ,故选:AB .。

2020年高考试题三角函数汇编【题目+答案版】

2020年高考试题三角函数汇编【题目+答案版】

2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③(5)【2020全国高考(浙江卷)第13题】已知tttt=2,则ttt2t=______;tan(t−t4)=______.(6)【2020全国高考(江苏卷)第10题】将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.(7)【2020全国高考(江苏卷)第18题】在△ttt中,角A、B、C的对边分别为a、b、t.已知t=3,t=√2,t=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ttt=−45,求tan∠ttt的值.(8)【2020全国高考I卷(理)第16题】如图,在三棱锥t−ttt的平面展开图中,tt=1,tt=tt=,AB AC,AB AD,ttt=,则ttt=__________.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______.(10) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.(11) 【2020全国高考(上海卷)第18题】已知函数t (t )=sin tt ,t >0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f 2(x)+√3f(−x)f(π2−x),x ∈[0,π4],求g(x)的值域.(12) 【2020全国高考(天津卷)第16题】在△ttt 中,角A ,B ,C 所对的边分别为a ,b ,t .已知t =2√2,t =5,t =√13. (1)求角C 的大小; (2)求sin A 的值;(3)求sin (2t +t4)的值.(13) 【2020全国高考I 卷(文)第18题】∆ttt 的内角t ,t ,t 的对边分别为t ,t ,t ,已知t =150∘.(1)若a =√3c ,b =2√7,求∆ABC 的面积;(2)若sinA +√3sinC =√22,求C .(14) 【2020全国高考II 卷(理)第16题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(1) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.(15) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.(16)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√3;8(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t.4t【答案】2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22解:∵sin (t+t3)=12sin t+√32cos t,∴sin t+sin (t+t3)=32sin t+√32cos t=√3sin (t+t6)=1得sin (t+t6)=√33故选:B.(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.【答案】A【解析】解:t=t(t)=ttttt+tttt,则t(−t)=−ttttt−tttt=−t(t),∴t(t)为奇函数,函数图象关于原点对称,故排除B,D,当t=t时,t=t(t)=ttttt+tttt=−t<0,故排除B,故选:A.先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2解:∵2tan t−tan (t+t4)=2tan t−tan t+11−tan t=7,∴2tan t(1−tan t)−(tan t+1)=7−7tan t,整理得(tan t−2)2=0,∴tan t=2,故选D.(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.(5) 【2020全国高考(浙江卷)第13题】已知tttt =2,则ttt2t =______;tan (t −t4)=______. 【答案】−35 13【解析】解:tttt =2,则ttt2t =cos 2t −sin 2t cos 2t +sin 2t=1−tan 2t 1+tan 2t =1−41+4=−35.tan (t −t4)=tttt −tan t41+ttttttt t4=2−11+2×1=13. 故答案为:−35;13.利用二倍角公式以及同角三角函数基本关系式求解第一问,利用两角和与差的三角函数转化求解第二问.本题考查二倍角公式的应用,两角和与差的三角函数以及同角三角函数基本关系式的应用,是基本知识的考查.(6) 【2020全国高考(江苏卷)第10题】将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.解:因为函数t =3ttt (2t +t4)的图象向右平移t6个单位长度可得t (t )=t (t −t6)=3ttt (2t −t 3+t 4)=3ttt (2t −t12),则t =t (t )的对称轴为2t −t12=t2+tt ,t ∈t ,即t =7t 24+tt2,t ∈t ,当t =0时,t =7t24, 当t =−1时,t =−5t24, 所以平移后的图象中与y 轴最近的对称轴的方程是t =−5t24, 故答案为:t =−5t 24.(7) 【2020全国高考(江苏卷)第18题】在△ttt 中,角A 、B 、C 的对边分别为a 、b 、t .已知t =3,t =√2,t =45°. (1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ttt =−45,求tan ∠ttt 的值.【答案】解:(1)因为t =3,t =√2,t =45°.,由余弦定理可得:t =√t 2+t 2−2tttttt =√9+2−2×3×√2×√22=√5,由正弦定理可得t tttt =ttttt ,所以tttt =t t⋅ttt45°=√2√5⋅√22=√55,所以tttt =√55;(2)因为cos ∠ttt =−45,所以sin ∠ttt =√1−cos 2∠ttt =35, 在三角形ADC 中,易知C 为锐角,由(1)可得tttt =√1−sin 2t =2√55,所以在三角形ADC 中,sin ∠ttt =sin (∠ttt +∠t )=sin ∠tttttt ∠t +cos ∠tttttt ∠t =2√525,因为∠ttt ∈(0,t2),所以cos ∠ttt =√1−sin 2∠ttt =11√525,所以tan ∠ttt =sin ∠ttt cos ∠ttt=211.(8) 【2020全国高考I 卷(理)第16题】如图,在三棱锥t −ttt 的平面展开图中,tt =1,tt =tt =,AB AC ,ABAD ,ttt =,则ttt =__________.解:由已知得tt =√2tt =√6, ∵t 、E 、F 重合于一点,∴tt =tt =√3,tt =tt =√6, ∴ △ttt 中,由余弦定理得,∴tt =tt =1, ∴在△ttt 中,由余弦定理得.故答案为.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______. (10) 【答案】16 132(11) 【解析】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6, ∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.(12) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.【答案】解:(1)∵2t sin t =√3t , ∴2sin t sin t =√3sin t , ∵sin t ≠0, ∴sin t =√32, ,∴t =t3,(2)∵△ttt 为锐角三角形,t =t3, ∴t =2t3−t ,,△ttt 为锐角三角形,,,解得, ,,∴cos t+cos t+cos t的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三角函数的化简,三角函数的性质,考查了运算求解能力和转化与化归能力,属于中档题.(1)根据正弦定理可得sin t=√32,结合角的范围,即可求出,(2)根据两角和差的余弦公式,以及利用正弦函数的性质即可求出.(13)【2020全国高考(上海卷)第18题】已知函数t(t)=sin tt,t>0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f2(x)+√3f(−x)f(π2−x),x∈[0,π4],求g(x)的值域.【答案】解:(1)由于t(t)的周期是4t,所以t=2t4t =12,所以t(t)=sin12t.令sin12t=12,故12t=2tt+t6或2tt+5t6,整理得t=4tt+t3或t=4tt+5t3.故解集为{t|t=4tt+t3或t=4tt+5t3,t∈t}.(2)由于t=1,所以t(t)=sin t.所以t(t)=sin2t+√3sin(−t)sin(t2−t)=1−cos2t2−√32sin2t=−√32sin2t−12cos2t+12=12−sin(2t+t6).由于t∈[0,t4],所以t6≤2t+t6≤2t3.故−1≤−sin(2t+t6)≤−12,故−12≤t(t)≤0.所以函数t(t)的值域为[−12,0].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【2020全国高考(天津卷)第16题】在△ttt中,角A,B,C所对的边分别为a,b,t.已知t=2√2,t=5,t=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin(2t+t4)的值.【答案】解:(1)由余弦定理以及a=2√2,b=5,c=√13,则cosC=a2+b2−c22ab =2×22×5=√22,∵C∈(0,π),∴C=π4;(2)由正弦定理,以及C=π4,a=2√2,c=√13,可得sinA= asinCc=2√2×√22√13=2√1313;(3)由a<c,及sinA=2√1313,可得cosA=√1−sin2A=3√1313,则sin2A=2sinAcosA=2×2√1313×3√1313=1213,∴cos2A=2cos2A−1=513,∴sin(2A+π4)=√22(sin2A+cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(1)根据余弦定理即可求出C的大小;(2)根据正弦定理即可求出sin A的值;(3)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.(14)【2020全国高考I卷(文)第18题】∆ttt的内角t,t,t的对边分别为t,t,t,已知t=150∘.(1)若a=√3c,b=2√7,求∆ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得t2=t2+t2−2tt cos t,即28=3t2+t2−2√3t2cos150∘,解得t=4,所以t=4√3,所以t△ttt=12tt sin t=12×4√3×4×12=4√3.(2)因为t=180∘−t−t=30∘−t,所以sin t+√3sin t=sin(30∘−t)+√3sin t=12cos t+√32sin t=sin(30∘+t)=√22,因为t>0°,t>0°,所以0°<t<30°,所以30°<30°+t<60°,所以30°+t=45°,所以t=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.(15) 【2020全国高考II 卷(理)第17题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(2) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.【答案】解:(1)在▵ttt 中,设内角A ,B ,C 的对边分别为a ,b ,c , 因为sin 2t −sin 2t −sin 2t =sin t sin t ,由正弦定理得,t 2−t 2−t 2=tt ,即t 2+t 2−t 2=−tt , 由余弦定理得,cos t =t2+t 2−t 22tt =−12,因为0<t <t ,所以t =2t 3. (2)由(1)知,t =2t3,因为tt =3,即t =3,由余弦定理得,t 2=t 2+t 2−2tt cos t ,所以9=t 2+t 2+tt =(t +t )2−tt , 由基本不等式可得tt ≤(t +t )24,所以9=(t +t )2−tt ≥34(t +t )2,所以t +t ≤2√3(当且仅当t =t =√3时取得等号), 所以▵ttt 周长的最大值为3+2√3.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题. (1)直接利用正余弦定理即可求解;(2)利用余弦定理与基本不等式即可求解.(16) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.【答案】【解答】解:(1)∵cos2(t2+t)+cos t=54,化简得cos2t−cos t+14=0,解得cos t=12,∵t是tttt的内角,故t=t3.(2)证明:∵t−t=√33t,t=t3,由正弦定理可得sin t−sin t=√33sin t=12,又t=t−t−t=2t3−t,∴sin(2t3−t)−sin t=12,化简可得√32cos t−12sin t=12,即可得cos(t+t6)=12,又t∈(0,2t3),得t+t6∈(t6,5t6),故可得t+t6=t3,即t=t6,故t+t=t3+t6=t2,∴tttt是直角三角形.【解析】本题考查了正弦定理的应用以及两角和差的正余弦公式的应用,考查了诱导公式和辅助角公式,属于中档题.(1)利用诱导公式和同角的三角函数关系对已知式进行化简,得到cos t=12,再结合A为三角形的一内角,即可求出角A;(2)利用正弦定理把t−t=√33t中的边化成角,得到sin t−sin t=√33sin t=12,再结合t+t=2t3,对式子进行化简,最后结合辅助角公式以及角C的范围,求出角C,即可证得三角形为直角三角形.(17)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√38;(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t4t.【答案】解:(1)t(t)=sin2t⋅sin2t=2sin2t⋅sin t⋅cos t =2sin3t⋅cos tt′(t)=2[sin2t(3cos2t−sin2t)]=2sin2t⋅(√3cos t+sin t)⋅(√3cos t−sin t)=−8sin2t⋅sin(t+t3)⋅sin(t−t3)所以对于f’(t)有:当t∈(0,t3)时,t′(t)>0;当t∈[t3,23t]时,t′(t)≤0;当t∈(2t3,t)时t′(t)>0。

2020年高考理科数学《三角函数》题型归纳与训练含答案解析

2020年高考理科数学《三角函数》题型归纳与训练含答案解析

2020年高考理科数学《三角函数》题型归纳与训练【题型归纳】题型一 三角函数的概念、诱导公式及同角关系式例1 (1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .(-12,32)B .(-32,-12) C .(-12,-32)D .(-32,12) (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为________. 【答案】(1)A (2)-34【解析】(1)设Q 点的坐标为(x ,y), 则x =cos 2π3=-12,y =sin 2π3=32.∴Q 点的坐标为(-12,32).(2)原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义, 得tan α=y x =-34,∴原式=-34.【易错点】诱导公式和三角函数定义不熟练【思维点拨】(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等. 题型二 三角函数的图象及应用例1已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结正确的是( ).A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】(1) 1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭. 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x ,根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D. 【易错点】函数图像水平方向平移容易出错 【思维点拨】平移变换理论 (1)平移变换:①沿x 轴平移,按“左加右减”法则; ②沿y 轴平移,按“上加下减”法则. (2)伸缩变换:①沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的 倍(纵坐标y 不变); ②沿y 轴伸缩时,纵坐标y 伸长(A>1)或缩短(0<A<1)为原来的A 倍(横坐标x 不变). 2.注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.例2函数sin 21cos xy x=-的部分图像大致为( ).【答案】C【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当x =π时,0y =,排除D ;当1x =时,sin 21cos 2y =>-,排除A.故选C.【易错点】函数图形判断通过过排除法 【思维点拨】例3函数f(x)=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3【答案】A【解析】 (1)因为T 2=11π12-5π12,所以T =π.又T =2πω(ω>0),所以2πω=π,所以ω=2.又2×5π12+φ=π2+2kπ(k ∈Z ),且-π2<φ<π2,故φ=-π3.【易错点】求φ时,容易忽略讨论k 【思维点拨】题型三 三角函数性质例1 (1)已知函数f(x)=sin(ωx +φ)+3cos(ωx +φ)(ω>0,0<|φ|<π2)为奇函数,且函数y =f(x)的图象的两相邻对称轴之间的距离为π2.(1)求f(π6)的值;(2)将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递增区间.【答案】(1)f(π6)=2sin π3=3(2)[kπ-π12,kπ+5π12](k ∈Z ).【解析】(1)f(x)=sin(ωx +φ)+3cos(ωx +φ) =2[12sin(ωx +φ)+32cos(ωx +φ)]=2sin(ωx +φ+π3).因为f(x)为奇函数,所以f(0)=2sin(φ+π3)=0,又0<|φ|<π2,可得φ=-π3,所以f(x)=2sin ωx ,由题意得2πω=2·π2,所以ω=2.故f(x)=2sin 2x. 因此f(π6)=2sin π3= 3.(2)将f(x)的图象向右平移π6个单位后,得到f(x -π6)的图象,所以g(x)=f(x -π6)=2sin[2(x -π6)]=2sin(2x -π3).当2kπ-π2≤2x -π3≤2kπ+π2(k ∈Z ),即kπ-π12≤x≤kπ+5π12(k ∈Z )时,g(x)单调递增,因此g(x)的单调递增区间为[kπ-π12,kπ+5π12](k ∈Z ).【易错点】 【思维点拨】题型四三角函数范围问题例1函数()23sin 0,42f x x x x ⎛π⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是 . 【答案】1【解析】()2233πsin 1cos 0442f x x x x x x ⎛⎫⎡⎤=+-=--∈ ⎪⎢⎥⎣⎦⎝⎭,,令cos x t =且[]01t ∈,,214y t =-+21t ⎛=-+ ⎝⎭,则当t =时,()f x 取最大值1. 【易错点】换元之后转化为二次函数在定区间上的定义域及最值 【思维点拨】 例2函数()cos sin =2+fx x x 的最大值为 .【解析】2()21f x +=【易错点】【思维点拨】辅助角公式运用 例3【2017年Ⅲ】函数()1ππsin cos 536f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( ). A .65B .1C .35D .15【答案】A 【解析】11()sin sin sin sin 5362533f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=++-+=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6sin 53x π⎛⎫+ ⎪⎝⎭.故选A. 【易错点】本题属于中档题,基础差一点的学生在解题思路方面可能会存在一定问题,三角恒等变换中公式的选择对于学生来说是一个难点,对于老师教学来说是一个重点,选择合适的公式能起到事半功倍的效果!【思维点拨】题型五三角函数求值问题 例1已知π0,2α⎛⎫∈ ⎪⎝⎭,tan 2α=,则πcos 4α⎛⎫-= ⎪⎝⎭ .【解析】由tan 2sin 2cos ααα==得 又22sin cos 1αα+=,所以21cos 5α=.因为0,2απ⎛⎫∈ ⎪⎝⎭,所以cos 5α=,sin 5α=.因为cos cos cos sin sin 44αααππ⎛⎫-=π+ ⎪⎝⎭,所以cos 4525210πα⎛⎫-=+⨯= ⎪⎝⎭. 【易错点】【思维点拨】例2(1)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625(2)sin 20cos10cos160sin10-=( )A .-B C .12- D .12【答案】(1)A (2)12【解析】(1)由sin 3tan cos 4ααα==,22cos sin 1αα+=,得3sin 5α=,4cos 5α=或3sin 5α=-, 4cos 5α=-,所以24sin 22sin cos 25ααα==,则2164864cos 2sin 2252525αα+=+=,故选A(2)原式=1sin 20cos10cos 20sin10sin(2010)sin 302+=+==【易错点】 【思维点拨】例3已知函数f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x. (1)求f(x)的最小正周期和最大值; (2)讨论f(x)在⎣⎡⎦⎤π6,2π3上的单调性.【答案】(1)f(x)的最小正周期为π,最大值为2-32,(2)f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减【解析】 (1)f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos xsin x -32(1+cos 2x)=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x≤5π12时, f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x≤2π3时, f(x)单调递减.综上可知,f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 【易错点】【思维点拨】解答技巧,方法策略等 题型六 简单的三角恒等变换 例1(2018·新疆第二次适应性检测)cos10(13tan 30)cos50︒+︒︒的值是________.【答案】2【解析】依题意得cos 10°1+3tan 10°cos 50°=cos 10°+3sin 10°cos 50°=2sin 10°+30°cos 50°=2sin 40°sin 40°=2.【易错点】【思维点拨】解答技巧,方法策略等 例2已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.【答案】(1)-3(2)1【解析】(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.【易错点】 【思维点拨】解三角函数的给值求值问题的基本步骤 (1)先化简所求式子或所给条件; (2)观察已知条件与所求式子之间的联系; (3)将已知条件代入所求式子,化简求值. 例3若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π4【答案】A【解析】选A ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π,∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255,又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2,∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又α+β∈⎣⎡⎦⎤5π4,2π,所以α+β=7π4. 【易错点】 【思维点拨】对于给值求角问题,通过先求角的某个三角函数值来求角,在选取函数时,遵循以下原则: (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,选正弦或余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦函数较好.【巩固训练】题型一 三角函数的概念、诱导公式及同角关系式1. 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,P y 是角θ终边上一点,且sin θ=则y = . 【答案】-8.【解析】由tan ⎝⎛⎭⎫π4-θ=1-tanθ1+tanθ=12,得tanθ=13,∴sinθcosθ=sinθcosθsin 2θ+cos 2θ=tanθtan 2θ+1=1319+1=310.故填310. 2. (1)已知tan α=2,求值: ①2sin α-3cos α4sin α-9cos α;②4sin 2α-3sin αcos α-5cos 2α.(2)已知θ∈(0,π),且sin θ+cos θ=13,求sin θ-cos θ的值.【答案】(1)①-1②1(2)173【解析】(1)①2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.②4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.(2)∵sin θ+cos θ=13,∴(sin θ+cos θ)2=1+2sin θcos θ=19,∴sin θcos θ=-49.∵θ∈(0,π),θ∈⎝⎛⎭⎫π2,θ, ∴sin θ>0>cos θ,sin θ-cos θ>0.由(sin θ-cos θ)2=1-2sin θcos θ=1+89=179,得sin θ-cos θ=173.3.若cos(π-α)=53且α∈⎝⎛⎭⎫π2,π,则sin(π+α)=( ) A .-53B .-23C .-13D .±23【答案】B【解析】cos (π-α)=-cos α=53,∴cos α=-53. 又∵α∈⎝⎛⎭⎫π2,π,∴sin α=1-cos 2α=1-⎝⎛⎭⎫-532=23, ∴sin (π+α)=-sin α=-23,故选B .题型二 三角函数图像1.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( A ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移 π12个单位 D .向左平移π4个单位【答案】A【解析】因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎫3x -π4的图象. 2.函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),则f(x 1+x 2)=( )A .1B .12C .22D .32【答案】D【解析】 观察图象可知,A =1,T =π,∴ω=2,f(x)=sin(2x +φ). 将⎝⎛⎭⎫-π6,0代入上式得sin ⎝⎛⎭⎫-π3+φ=0. 由|φ|<π2,得φ=π3,则f(x)=sin ⎝⎛⎭⎫2x +π3.函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),∴x 1+x 22=π12, ∴x 1+x 2=π6,∴f(x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32,故选D . 3.已知函数f(x)=2sin ⎝⎛⎭⎫2ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f(x)在区间⎣⎡⎦⎤0,π2上的单调性. 【答案】(1) ω=1(2) f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减.【解析】 (1)因为f(x)=2sin ⎝⎛⎭⎫2ωx +π4的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1. (2)因为f(x)=2sin ⎝⎛⎭⎫2x +π4. 若0≤x≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x≤π8时,f(x)单调递增; 当π2<2x +π4≤5π4,即π8<x≤π2时,f(x)单调递减. 综上可知,f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减. 题型三 三角函数性质1. 已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .⎣⎡⎦⎤12,54 B .⎣⎡⎦⎤12,34 C .⎣⎡⎦⎤0,12 D .[0,2]【答案】A【解析】由π2<x<π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4.又y =sin x 在⎝⎛⎭⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A .2.设函数f(x)=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称C .f(x +π)的一个零点为x =π6D .f(x)在⎝⎛⎭⎫π2,π单调递减 【答案】D【解析】根据函数解析式可知函数f(x)的最小正周期为2π,所以函数一个周期为-2π,A 项正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 项正确;f(x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f(x +π)=0,所以C 项正确;函数f(x)=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,23π上单调递减,在⎝⎛⎭⎫23π,π上单调递增,故D 项不正确,故选D .3.已知函数①y =sin x +cos x ,②y =22sin xcos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称 B .两个函数的图象均关于直线x =-π4对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .将函数②的图象向左平移π4个单位得到函数①的图象【答案】C【解析】函数①y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,②y =22·sin xcos x =2sin 2x ,由于①的图象关于点⎝⎛⎭⎫-π4,0中心对称,②的图象不关于点⎝⎛⎭⎫-π4,0中心对称,故A 项不正确;由于函数①的图象不可能关于直线x =-π4对称,故B 项不正确;由于这两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数,故C 项正确;将函数②的图象向左平移π4个单位得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4的图象,而y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4≠2sin ⎝⎛⎭⎫x +π4,故D 项不正确,故选C .题型四三角函数范围问题1.已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 .【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x -2.令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π.因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.2.已知y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,7π6,求y 的最大值与最小值之和. 【答案】238【解析】 ∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x) =2⎝⎛⎭⎫sin x -142+78, ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.故函数的最大值与最小值的和为2+78=238.3.已知函数f(x)=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称. (1)求ω,φ的值; (2)求f(x)的单调递增区间;(3)若x ∈⎣⎡⎦⎤-3π4,π2,求f(x)的最大值与最小值, 【答案】(1)ω=23.(2) ⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z (3) 函数f(x)的最大值为1,最小值为0. 【解析】(1)因为f(x)=sin(ωx +φ)是R 上的偶函数,所以φ=π2+kπ,k ∈Z ,且0≤φ≤π,则φ=π2,即f(x)=cos ωx.因为图象关于点M ⎝⎛⎭⎫34π,0对称, 所以ω×34π=π2+mπ,m ∈Z ,ω=23+4m3,又0<ω<1,所以ω=23.(2)由(1)得f(x)=cos 23x ,由-π+2kπ≤23x≤2kπ,且 k ∈Z 得,3kπ-3π2≤x≤3kπ,k ∈Z ,所以函数的递增区间是⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z . (3)因为x ∈⎣⎡⎦⎤-3π4,π2,所以23x ∈⎣⎡⎦⎤-π2,π3, 当23x =0时,即x =0,函数f(x)的最大值为1, 当23x =-π2时,即x =-3π4,函数f(x)的最小值为0.题型五三角函数求值问题 1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A .3π4B .5π4C .7π4D .5π4或7π4【答案】 C【解析】∵α,β为钝角,sin α=55,cos β=-31010,∴cos α=-255,sin β=1010, ∴cos(α+β)=cos αcos β-sin αsin β=22>0. 又α+β∈(π,2π),∴α+β∈⎝⎛⎭⎫3π2,2π,∴α+β=7π4. 2.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值. 【答案】(1)f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z )(2) 【解析】 (1)f(x)=cos 2ωx +3sin 2ωx =2sin ⎝⎛⎭⎫2ωx +π6,(2)43-310由于直线x =π3是函数f(x)=2sin ⎝⎛⎭⎫2ωx +π6的图象的一条对称轴,所以sin ⎝⎛⎭⎫2π3ω+π6=±1,因此2π3ω+π6=kπ+π2(k ∈Z ),解得ω=32k +12(k ∈Z ),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎫x +π6.由2kπ-π2≤x +π6≤2kπ+π2(k ∈Z ),得2kπ-2π3≤x≤2kπ+π3(k ∈Z ), 所以函数f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z ). (2)由题意可得g(x)=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +2π3+π6,即g(x)=2cos x 2, 由g ⎝⎛⎭⎫2α+π3=2cos ⎣⎡⎦⎤12⎝⎛⎭⎫2α+π3=2cos ⎝⎛⎭⎫α+π6=65,得cos ⎝⎛⎭⎫α+π6=35, 又α∈⎝⎛⎭⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎫α+π6=45, 所以sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6=sin ⎝⎛⎭⎫α+π6cos π6-cos ⎝⎛⎭⎫α+π6sin π6=45×32-35×12=43-310.3.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6的值. 【答案】-3+23 【解析】 cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6 =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α-sin 2⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α-⎣⎡⎦⎤1-cos 2⎝⎛⎭⎫π6-α =-33-⎝⎛⎭⎫1-13=-3+23. 题型六 简单的三角恒等变换1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则cos 2α=( ) A .1 B .-1 C.12D .0【答案】选D【解析】 ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α,即⎝⎛⎭⎫12-32sin α=-⎝⎛⎭⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.2.计算cos 10°-3cos -100°r(1-sin 10°)=________(用数字作答).【答案】2【解析】cos 10°-3cos -100°r(1-sin 10°)=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2sin 40°=2sin10°+30°r(2sin 40°)=2.3.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β=________.【答案】π3【解析】由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,由0<β<α<π2,得0<α-β<π2,又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2α-β=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06三角函数及解三角形2020年高考真题1. [2020年高考全国I卷理数】设函数f(x) = cos(®x + -)在[-”,兀]的图像大致如下图,则/(%)的最小正6周期为9 64兀3兀C. —D.兰3 2【答案】C【解析】由图可得:函数图象过点( 4 兀1T \将它代入函数/(兀)可得:cosl一- •<« + —1 = 0,又[-普,o]是函数/(兀)图象与x轴负半轴的第一个交点,十.I 4兀兀兀5 e 3所以-亍0+丁丐,解得r •2K _ 2兀_ 4兀所以函数/(%)最小正周期为=T=T=T2故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2. [2020 年高考全国I 卷理数】已知cc G (0,7i),且3COS2Q-8COSQ =5 ,贝0 sin^z =A. B.【答案】A又 a e (0, n),.'. sin a = Jl-cos? a =•故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解 能力,属于基础题.3.【2020年高考全国II 卷理数】若a 为第四象限角,则B. cos2a<0D. sin2a<0 【答案】D【解析】方法-:由。

为第四象限角,可得亍2炽“<2卄2炽从Z,所以 3兀 + 4k 兀 < 2a < 4兀 + 4-kn, e Z此时2a 的终边落在第三、四象限及V 轴的非正半轴上,所以sin2a<0,故选:D.兀方法二:当& =——时,cos 2a = cos 由a 在第四象限可得:sin a <0, cos a > 0 ,则由2 a 蕃1 aaz Qz < ,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转 化能力和计算求解能力.C. sin2a>0>0,选项B 错误;<0,选项A 错误;【解析】3cos2a-8cosa = 5 ,得6cos 2tz-8coscr-8 = 0 -【答案】A2【解析】在ABC中,cosC = —, AC = 4, BC = 3, 3根据余弦定理:AB2 =AC2+BC2-2AC BC COS C,7AB- =42+32-2X4X3X-,3可得AB2 = 9,即AB — 3 ,… AB2+BC2-AC2 9 + 9-16 1由cos B = ------------------------- = ------------ =—,2ABBC2x3x3 9故cos B =—.9故选:A.5. [2020年高考全国III卷理数】已知2tan^-tan(0+ —)=7,则tan^=A. -2B. -1【答案】D【解析】2 tan - tan | ^ + — | = 7 , z. 2tan^~ tan^ + ^ =7 ,I 4 丿 1 - tan令/ = tan&,/Hl,则2/—土 = 7,整理得严_4/ + 4 = 0,解得t = 2,即tan6» = 2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(兀Day).历史上,求圆周率兀的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的方法是:当正整数"充分大时,计算单位圆的内接正6“边形的周长和外切正6“边形(各边均与圆相切的正6“边形)的周长,将它们的算术平均数作为2兀的近似值.按照阿尔•卡西的方法,兀的近似值的表达式是2 71 、[/ — 71 -- 当“一 2571 6 _ 时,y = —1 二 2x^ + ^ = —+ 2^(^ e Z),3n < .30° 30°) 6n < .30° 30°) A. sin —— + tan ----- B. sin —— + tan ----- 1 n n 丿 I n n ) 3n (.60° 60°) 6n (.60° < 60°) c. sin ---- + tan ----- D. sin ----- + tan ----- I nn 丿 I nn ) 【答案】A 360° 60° 30° 【解析】单位圆内接正6〃边形的每条边所对应的圆周角为一 =——,每条边长为2sin —, nx6 n n 30° 所以,单位圆的内接正6〃边形的周长为12nsin ——, n30° 30° 单位圆的外切正6n 边形的每条边长为2tan —,其周长为12〃tan —, n n30° 30° 12nsin ----- 12ntan ---------.・.* 二 ----- n --------------- n _ 2( 30° 30°则 7i = 3n\ sin------ + tan --- I n n故选:A.【点睛】本题考查圆周率兀的近似值的计算,根据题意计算出单位圆内接正6〃边形和外切正6〃边形的 周长是解答的关键,考查计算能力,属于中等题.7. [2020年新高考全国I 卷】下图是函数y 二sin (亦+卩)的部分图像,贝!j sin (亦+卩)=【答案】BC=6“ sin 竺+ tan 竺, I n n ) A. sin(x + f)¥亠)【解析】由函数图像可知:- = -7T —— 2 3 71 _71 6~2 27T 则血=—=—=2,所以不选A, T 71 B.解得:cp 二 Ikn + 彳兀(£ e Z ),即函数的解析式为:y = sin| 2x + —TT + 2A ;7Z - | = sin| 2x + —+ —| = cos| 2x + — | = sin| — -2x I 3 丿(6 2丿(6丿(3 (\5/r而 cos I 2x + — I — - cos( — 2x) 故选:BC.【点睛】已知fix) =Asin(a}x +^)(A>0, e>0)的部分图象求其解析式时,A 比较容易看图得出,困难的 是求待定系数e 和0常用如下两种方法:竺即可求出e ;确定y 时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标xo,则令 exo+0 = O(或 a )xo+<p=7t'),即可求出 <p.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出co 和<p, 若对A, e 的符号或对°的范围有要求,则可用诱导公式变换使其符合要求.&【2020年高考全国I 卷理数】如图,在三棱锥P ABC 的平面展开图中,AC=1, AB = AD =也,佔丄AC, AB±AD, ZCAE=30°,贝0 cosZFCB= _______________ .【答案】4【解析】 AB 丄AC, AB = j3, AC = E由勾股定理得BC = V A B 2+AC 2 = 2 ‘71 F(P)同理得 BD =品,:.BF = BD = ^,在△4CE 中,AC = 1, AE = AD =运,ZCAE = 30 ,由余弦定理得 CF = 3+^2—240 AEcos30 =l + 3-2xlxV3x —= 1, 2:.CF = CE = 1,在 BCF 中,BC = 2, BF =愿,CF = 1,CF~ + BC 2 -BF 2由余弦定理得cos ZFCB = 七——2CFBC故答案为:—. 4【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.【2020年高考全国III 卷理数】16.关于函数f (x) =sinx ——-—有如下四个命题: sinx®f (%)的图像关于y 轴对称.®f (x)的图像关于原点对称.1T®f (X )的图像关于直线x=3对称.®f (X )的最小值为2.其中所有真命题的序号是 __________ .【答案】②③所以,函数/(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数/(X )的定义域为[x\x^kn,k^Z^ ,定义域关于原点对称, / ( -x) = sin (-%) + —r = - sin x - -— = -fsinx + -^―] = -/(%),sin (—兀) sinx I sinx)所以,函数/(x)的图象关于原点对称,命题②正确;1 + 4-6 2x1x2 【解析】对于命题①,A 7C \ . (7C ] 1(2 丿(2 ) .(7i' 7' 7 sm —+ x12所以,函数/(x)的图象关于直线x = |对称,命题③正确;对于命题④,当一7i<x<0时,sinx<0,贝J f(x} = sinx + — <0< 2 , sinx命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.JT 210.【2020年高考江苏】已知sin2(-+ <?) = -,则sin2a 的值是▲.4 3【解析】Qsin2(—+ cr) = (-^cosa-\——sin a)2 = —(1 + sin 2a)4 2 2 21 2 1— (1 + sin 2a) = —sin 2a =—2 3 3故答案为:-3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数/(x) = sin(x+^) + cosx的最大值为2,则常数0的一个取值为 _______________IT TT【答案辽(2唸+亍心均可)【解析】因为 (兀)=cos ©sin 兀 +(sin 0 + 1)cos 兀=Jcos? 0 +(sin 0 + 1)2 sin (兀+ 0), 所以Jcos?(p + (sin(p +1『=2,解得sin0 = l,故可取^ = ~-7T7T故答案为:-(2^ + -,^eZ 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数 学运算能力,属于基础题.1T12. [2020 年高考浙江】已知 tan& = 2,则 cos2& = _______ , tan(6>-一) = ______ .3 1【答案】V 巧cos 2 0-sin 2 0 _ 1-tan 2 _ 1 -22cos 2 ^ + sin 2 0 1 + tan 2 0 1 + 223 1故答案为: 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13. [2020年高考江苏】将函数y = 3sin(2x +^)的图象向右平移夕个单位长度,则平移后的图象中与y 轴最 4 6近的对称轴的方程是▲ • 【答案】2-峯 24V/ 'j I r jl【解析】y — 3sin[2(x ---- ) —] = 3 sin(2x ------ ) 6 4 12小 TC TC , , x 7 TT k/C 7 x2x ------ — —F k 兀G Z)x — ----------- 1 ---- (k G Z) 12 2 24 2当k = -1时兀=——• 24故答案为:x =———24 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14. [2020年新高考全国I 卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔 及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧与直线BC 的切点,四边 形 DEFG 为矩形,BC 丄DG,垂足为 C, tanZODC= - , BH//DG , EF=12 cm, DE=2 cm, A 到直线5DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 ___________ cm 2.【解析】cos 20 = cos 2 0 - sin 2 0 = tan <9-1 l + tan& 2-11 + 2【答案】4 + »兀 2【解析】设05 = OA=r,由题意AM = AN = 1, EF = \2,所以NF = 5,因为 AP = 5,所以 ZAGP = 45\因为 BH//DG,所以 ZAH0 = 45°,因为AG 与圆弧4B 相切于A 点,所以Q4丄4G,即AOAH 为等腰直角三角形;在直角△0QD 中,0Q = 5_^r ,DQ = l-—r ,2 2因为 tanZ0DC = -^ = |,所以 21- —r = 25-^r , DQ 5 22 解得 r = 2A /2 ;等腰直角MAH 的面积为恥》2屈2尽4;I 所以阴影部分的面积为S] + S?—㊁兀=4 +三-•故答案为:4 + T.扇形A0B 的面积S 2 = =3乃,【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020 年高考全国II 卷理数】/XABC 中,sin2A —sin2B—sin2C= sinBsinC.(1)求A;(2)若BC=3,求zMBC周长的最大值.【解析】(1)由正弦定理和已知条件得BC2-AC2-AB2^AC AB,①由余弦定理得BC2 = AC2 +AB2- 2AC AB cos A,②由①,②得cos A =—.22兀因为0<4<兀,所以A =—.3(2)由正弦定理及(1)得上匕=少-=-?£ = 2巧,sin B sin C sin A从而AC = 2A/3 sin B , AB = 2^3 sin(兀一A - B) = 3 cos B一A/3 sin B.故BC + 4C + AB = 3 + 7^sinB + 3cosB = 3 + 2V^sin(B + ¥).X0<B<-,所以当B =-时,AABC周长取得最大值3 + 2^3-3 616.[2020年高考江苏】在A ABC中,角A, B, C的对边分别为°, b, c,已知a = 3,c =迈,B = 45。

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

2020年高考数学试题解析分项版 专题5 三角函数 理

2020年高考数学试题解析分项版 专题5 三角函数 理

2020年高考试题解析数学(理科)分项版05 三角函数一、选择题:1. (2020年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )0 (B)33(C) 1 (D) 33.(2020年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦(C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知sin()sin(2)πϕπϕ+>+,即sin 0ϕ<,所以72,6k k Z πϕπ=+∈,代入()sin(2)f x x ϕ=+,得7()sin(2)6f x x π=+,由7222262k x k πππππ-++剟,得563k x k ππππ--剟,故选C.4.(2020年高考辽宁卷理科4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2A=2a 则ba=( ) (A) 23 (B) 22 (C) 3 (D)2 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2A=2sinA ,即sinB (sin 2A+cos 2A )=2sinA ,故sinB=2sinA ,所以2ba=; 5.(2020年高考辽宁卷理科7)设sin 1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭6.(2020年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()42πβ-=cos()2βα+= (A 3(B )3(C 53 (D )6【答案】 C 【解析】:()()2442βππβαα+=+--Q cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++ 132263435333+=+== 故选C 7. (2020年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A54-B 53-C 32D 43 9. (2020年高考天津卷理科6)如图,在△ABC 中,D 是边AC 上的点,且,23,2AB AD AB BD BC BD ===,则sin C 的值为( )A .33 B .36 C .63 D .66【答案】D【解析】设BD a =,则由题意可得:2,BC a = 32AB AD a ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅22232432()a a a ⨯-⨯=13,所以sin A =21cos A -=223,在△ABC中,由正弦定理得,sin sin AB BCC A=,所以32sin 223aC a =,解得sin C =6,故选D. 10.(2020年高考湖北卷理科3)已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:B解析:由3sin cos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2020年高考陕西卷理科6)函数()cos f x x x =-在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y x =,2cos y x =,则它们的图像如图故选B12.(2020年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 843- (C)1 (D) 23解析:选A 。

2020年三角函数部分高考题(带答案)

2020年三角函数部分高考题(带答案)

作者:败转头作品编号44122544:GL568877444633106633215458 时间:2020.12.13三角函数部分高考题1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .23.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x4.若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 6.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c <<7.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π8.已知cos (α-6π)+sin α=的值是则)67sin(,354πα-(A )-532 (B )532 (C)-54 (D) 54 9.(湖北)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C. π1211 D. 1112π- 10.函数2()sin 3sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C ) A.1 B.132+ C.32D.1+311.函数f(x)=sin 132cos 2sin x x x---(02x π≤≤) 的值域是B(A )[-2,02] (B)[-1,0] (C )[-2,0](D )[-3,0]12.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为AA.2πB.πC.-πD.-2π 13.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )4 14.若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21- (D )2- 15.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2C. 1/2D. 1/316.0203sin 702cos 10--=( C )A.12B.2C. 2D.217.函数f (x )=3sin x +sin(π2+x )的最大值是 218.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π. 19.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .10 20.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π 21.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.14322.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.23.在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··········· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ···························· 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =.所以sin 11sin 2AB A BC C ⨯==. ························10分24.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=.(Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 25.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。

2020全国卷高考专题:三角函数和解三角形

2020全国卷高考专题:三角函数和解三角形

05三角函数和解三角形1.(2020•北京卷)2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似值可得出结果.【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.2.(2020•北京卷)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.3.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin 2C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, 4S =. 【解析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin ,sin A B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果. 【详解】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.4.(2020•全国1卷)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A . 10π9 B .7π6 C . 4π3D . 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.5.(2020•全国1卷)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( ) AB .23C .13D【答案】A 【解析】用二倍角余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.6.(2020•全国2卷)若α为第四象限角,则( ) A. cos 2α>0 B. cos 2α<0C. sin 2α>0D. sin 2α<【答案】D【解析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.7.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sinC. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+ 【解析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.8.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C.12D.23【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案. 【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯, 可得29AB = ,即3AB =,由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A. .【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 9.(2020•全国3卷)已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2 B. –1C. 1D. 2【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.(2020•全国3卷)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.11.(2020•江苏卷)已知2sin()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】直接按照两角和正弦公式展开,再平方即得结果. 【详解】221sin ())(1sin 2)42παααα+=+=+121(1sin 2)sin 2233αα∴+=∴=,故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.12.(2020•江苏卷)将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=-【解析】先根据图象变换得解析式,再求对称轴方程,最后确定结果. 【详解】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈,当1k =-时524x π=-,故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.13.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)sin C =;(2)2tan 11DAC ∠=.【解析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【详解】(1)由余弦定理得2222cos 92235b a c ac B =+-=+-⨯=,所以b =由正弦定理得sin sin sin sin c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5ADC ∠==.由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以cos 5C == 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅34555525⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以cos DAC ∠==.所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题. 14.(2020•新全国1山东)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果. 【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A , 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭,故选:B C. 【点睛】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.15.(2020•新全国1山东)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析【解析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由sin 3sin AB 可得:ab=(),0a b m m ==>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =.选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==.选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=c =1;若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.(2020•天津卷)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是 A . ① B . ①③C . ②③D . ①②③【答案】B【解析】对所给选项结合正弦型函数的性质逐一判断即可. 【详解】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.17.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===.(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)sin A =;(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)直接利用余弦定理运算即可; (Ⅰ)由(Ⅰ)及正弦定理即可得到答案;(Ⅰ)先计算出sin ,cos ,A A 进一步求出sin 2,cos 2A A ,再利用两角和的正弦公式计算即可.【详解】(Ⅰ)在ABC中,由5,a b c ===及余弦定理得222cos 22a b c C ab +-===,又因为(0,)C π∈,所以4C π;(Ⅰ)在ABC 中,由4Cπ,a c ==及正弦定理,可得sin sin a C A c=== (Ⅰ)由a c <知角A为锐角,由sin A =cos A= 进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.17.(2020•浙江卷).已知tan 2θ=,则cos2θ=________;πtan()4θ-=______. 【答案】 (1).35 (2). 13【解析】利用二倍角余弦公式以及弦化切得cos2θ,根据两角差正切公式得tan()4πθ-【详解】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.18.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )32⎤⎥⎝⎦ 【解析】(I )首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B 的大小; (II )结合(1)的结论将含有三个角的三角函数式化简为只含有∠A 的三角函数式,然后由三角形为锐角三角形确定∠A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是13,22⎛⎤⎥ ⎝⎦.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.10.(2020•上海卷)已知()=sin (0)f x x ωω>. (1)若f (x )的周期是4π,求ω,并求此时1()2f x =的解集; (2)已知=1ω,2g()()()()2x f x x f x π=+--,0,4x π⎡⎤∈⎢⎥⎣⎦,求g (x )的值域. 【答案】(1)1=2ω,5|=44,33x x x k x k k Z ππππ⎧⎫∈+=+∈⎨⎬⎩⎭或;(2)1-,02⎡⎤⎢⎥⎣⎦。

三角函数—高考真题文科数学分项汇编(解析版)

三角函数—高考真题文科数学分项汇编(解析版)

y
f
(x)的图象.
其中所有正确结论的序号是
A.①
B.①③
【答案】B
C.②③
D.①②③
2
【解析】因为 f (x) sin(x ),所以周期T 2 2,故①正确;
3
f ( ) sin( ) sin5 1 1,故②不正确;
2
23
62
将函数 y sin x的图象上所有点向左平移 个单位长度,得到 y sin(x )的图象,
2
D.2
【答案】C
sin x
【解析】 f (x)
tan x 1 tan2 x
cos 1(sin
x sin xcos x 1sin2x,
x) 2
2
cos x
故所求的最小正周期为T 2π π,故选 C. 2
【名师点睛】函数 y Asin(x ) B(A 0, 0)的性质:
(1) ymax=B+A,ymin B A.
对应的函数为
gx.若
g
π4
2
,则
f
3π 8
A.−2
B. 2
C. 2
D.2
【答案】C
【解析】∵ f (x)为奇函数,∴ f (0) Asin 0,=kπ,k Z,k 0, 0;
∵ f x的最小正周期为π,T

π,∴
2,
∴ g(x) Asin 1x Asin x,
2
又 g(π) 2,∴ A 2,
f x max
3
2
5 2
4,故选
B.
【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质, 在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.

(最新实用)2020年高考数学(理)热点专练05 三角函数及解三角形(解析版)

(最新实用)2020年高考数学(理)热点专练05 三角函数及解三角形(解析版)

热点05 三角函数与解三角形【命题趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内。

鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点。

考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用。

本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升。

【知识点分析以及满分技巧】三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题,ABCD 选项中特殊点的带入简单方便,正确率比较高。

总额和性的问题一般采用换元法转化成最基本的函数问题去解答。

对于三角函数有关恒等变换的题目应注重公式的变形。

解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件。

【考查题型】选择题,填空,(解答题21题)(两小一大或者是三小)【限时检测】(建议用时:90分钟)1.(2019·安徽芜湖一中高三开学考试)∆ABC 的三个内角A 、B 、C 所对的边分别为a b c ,,,B A a sin sin 2cos b A + ,则ba=( )A .B .CD 【答案】D 【解析】 【分析】由正弦定理与同角三角函数的平方关系,化简等式得A B =sin sin ,从而得到b =可得答案. 【详解】∵∵ABC 中,B A a sin sin 2cos b A +∵根据正弦定理,得22sin sin sin cos A B B A A +=可得22sin sin cos B A B A +=()∵22sin cos A B +,∵sin B A ,得b a ,可得ba .故选:D . 【名师点睛】本题考查了正弦定理、同角三角函数的基本关系等知识,属于基础题.2.(2019·石嘴山市第三中学高考模拟(理))在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += )2224S b a c =+-,则B ∠= A .90︒ B .60︒ C .45︒ D .30︒【答案】D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2224S b a c =+-,得1sin 2cos 2ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选:D 【名师点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.3.(2019·山东高考模拟(理))如图所示,函数26y x π⎛⎫=+ ⎪⎝⎭的部分图象与坐标轴分别交于点,,D E F ,则DEF ∆的面积等于( )A .4π B .2π C .πD .2π【答案】A 【解析】在26y x π⎛⎫=+ ⎪⎝⎭中,令0x =,得16y π==,故1OD =;又函数26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为2T π=,所以2EF π=.∵1112224DEF S EF OD ππ∆=⋅⋅=⨯⨯=.选A . 4.(2019·霍邱县第一中学高三月考(理))在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( ) A .2a b = B .2b a = C .2A B = D .2B A =【答案】A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.5.(2019·黑龙江鹤岗一中高三月考(理))锐角∵ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则asinAb的取值范围是( )A.⎝⎭B.⎝⎭C.12⎛ ⎝⎭D.12⎫⎪⎪⎝⎭【答案】D 【解析】 【分析】由2B A =、倍角公式和正弦定理得12a b cosA =,故sin 12a A tanAb =,根据ABC ∆是锐角三角形可得64A ππ<<,于是可得所求范围.【详解】 ∵2B A =,∵sin 22B sin A sinAcosA ==, 由正弦定理得2b acosA =, ∵12a b cosA=, ∵sin 122a A sinA tanAb cosA ==. ∵ABC ∆是锐角三角形,∵02022032A B A C A ππππ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,解得64A ππ<<,1tanA <<,∵11622tanA <<.即sin a Ab 的值范围是12⎫⎪⎪⎝⎭. 故选:D 【名师点睛】本题考查正弦定理和正切函数的图象性质,易错点是A 的取值范围,属于中档题. 6.(2019·河南南阳中学高三月考(理))若是的重心,a ,b ,c 分别是角的对边,若3G G GC 03a b c A +B +=u u u r u u u ru u ur r ,则角( )A .90oB .60oC .45oD .30o【答案】D 【解析】试题分析:由于是的重心,,,代入得,整理得,,因此,答案D.考点:1、平面向量基本定理;2、余弦定理的应用.7.(2019·四川成都七中高考模拟(理))设a ,b ,c 分别是ABC V 的内角A ,B ,C 的对边,已知()()()()sin sin sin b c A C a c A C ++=+-,设D 是BC 边的中点,且ABC V 的,则()AB DA DB ⋅+u u u r u u u r u u u r等于( )A .2B .4C .4-D .2-【答案】A 【解析】 【分析】利用三角形内角和定理可得()()()sinB sin sin b c a c A C +=+-.由正弦定理可得b 2+c 2﹣a 2=bc ,由余弦定理可得cosA=12,结合范围A∵(0,π)可得A 的值,结合ABC ∆的面积求得bc,将()•AB DA DB +u u u v u u u v u u u v 利用向量加减法运算转化为•AB AC u u u v u u u v ,即可求得结果.【详解】∵()()()()sin sin sin b c A C a c A C ++=+-,,∵由正弦定理可得:()()b a c b c a c +=+-(),整理可得:=-bc ,-a +c b 222∵由余弦定理可得:cosA=12-,∵由A∵(0,π),可得:A=23π,又ABC ,即1223bcsin π=,∴bc=4又()()()••AB DA DB DB DA DA DB +=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v =2DB u u u v-2DA u u u v =24CB u u u v -()24AB AC +u u uv u u u v =()24AB AC -u u u v u u u v -()24AB AC+u u u v u u u v =44AB AC•-u u u v u u u v=•AB AC -u u u v u u u v A =-bc cos 故选A.【名师点睛】本题主要考查了向量加减法的运算、数量积的运算,综合运用了正弦定理,余弦定理,三角形面积公式,考查了转化思想和计算能力,属于中档题.8.(2018·河北衡水中学高考模拟(理))已知函数()sin cos f x x x =,则下列说法错误的是( )A .()f x 的图象关于直线2x π=对称B .()f x 在区间35[,]44ππ上单调递减 C .若12()()f x f x =,则124x x k ππ+=+(k Z ∈)D .()f x 的最小正周期为2π 【答案】C 【解析】∵()sin cos f x x x ==12,22,12,22sin x k x k k Zsin x k x k πππππππ⎧<≤+⎪⎪∈⎨⎪-+<≤+⎪⎩,故函数的图象关于直线2+πx=k π,k∵Z 对称,故A 正确; )(x f 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增,故B 正确;函数|)(x f |的周期为2π,若|f (x1)|=|f (x2)|,则+k π=x x 21(k∵Z ),故C 错误;)(x f 的周期为2π中,故D 正确;故选:C .9.(2019·安徽高考模拟(理))已知函数()sin()f x x ωϕ=+,其中0>ω,||2πϕ…,4π-为()f x 的零点:且()4f x f π⎛⎫ ⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎛⎫ ⎪⎝⎭-上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C 【解析】 【分析】 先根据x 4π=为y =f (x )图象的对称轴,4x π=-为f (x )的零点,判断ω为正奇数,再结合f (x )在区间1224,ππ⎛⎫-⎪⎝⎭上单调,求得ω的范围,对选项检验即可. 【详解】由题意知函数()()024f x sin x x ππωϕωϕ⎛⎫=+≤= ⎪⎝⎭>,, 为y =f (x )图象的对称轴,4x π=-为f (x )的零点,∵214n +•22ππω=,n ∵Z ,∵ω=2n +1. f (x )在区间1224,ππ⎛⎫- ⎪⎝⎭上有最小值无最大值,∵周期T ≥(2412ππ+)8π=,即28ππω≥,∵ω≤16.∵要求ω的最大值,结合选项,先检验ω=15, 当15ω=时,由题意可得4,154-πφπφπ==+×k ,函数为)4-15sin()(πx x f y == 在区间1224,ππ⎛⎫-⎪⎝⎭上,x 154π-∵(32π-,38π),此时)(x f 在x 2π=-时取得最小值,∵ω=15满足题意. 则ω的最大值为15,故选:C . 【名师点睛】本题考查的知识点是正弦型函数的图象和性质,考查了分析转化的能力,难度较大.10.(2019·四川高考模拟(理))在直角坐标系中,如果相异两点()(),,,A a b B a b --都在函数y=f(x)的图象上,那么称,A B 为函数()y f x =的一对关于原点成中心对称的点(,A B与,B A 为同一对).函数()7cos ,02log ,0x x f x x x π≤⎧=⎨⎩>的图象上关于原点成中心对称的点有( ) A .1对 B .3对C .5对D .7对【答案】C 【解析】 【分析】函数()7,02log ,0cos x x f x x x π⎧≤⎪=⎨⎪>⎩的图象上关于原点成中心对称的点的组数,就是y cos,02x x π=≤与()7y log ,0x x =--<图象交点个数,利用数形结合可得结果.【详解】因为7y log ,0x x =>关于原点对称的函数解析式为()7y log ,0x x =--<,所以函数()7,02log ,0cos x x f x x x π⎧≤⎪=⎨⎪>⎩的图象上关于原点成中心对称的点的组数, 就是y cos,02x x π=≤与为()7y log ,0x x =--<图象交点个数,同一坐标系内,画出y cos,02x x π=≤与()7y log ,0x x =--<图象,如图,由图象可知,两个图象的交点个数有5个,7,02log ,0cos x x x x π⎧≤⎪⎨⎪>⎩的图象上关于原点成中心对称的点有5组,故选C. 【名师点睛】本题主要考查三角函数与对数函数的图象与性质,以及数形结合思想、转化与划归思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题11.(2019·河南高考模拟(理))在ABC ∆中,22sin sin sin 24A B A B -+=,4AC =,6ABC S ∆=,则BC =______.【答案】【解析】 【分析】先化简已知三角等式得4C π=,再根据6ABC S ∆=得BC 的值.【详解】由已知得:()21cos 4sin sin 2A B A B --+=⎡⎤⎣⎦,化简得2cos cos 2sin sin A B A B -+=,故()cos 2A B +=-, 所以34A B π+=, 从而4C π=,由4AC =,14sin 624ABC S BC π∆=⋅⋅=,得BC =故答案为:【名师点睛】本题主要考查三角恒等变换和三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.(2019·河南高考模拟(理))如图,设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,cos cos sin a C c A b B +=,且.6CAB π∠=若点D 是ABC V 外一点,2DC =,3DA =,则当四边形ABCD 面积最大值时,sin D =____.【解析】分析:由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知等式可得2sin()sin sin 1.2A CB B B π+=⇒=∴=,根据范围B∵(0,π),可求B 的值.由余弦定理可得AC 2=13﹣12cosD ,由∵ABC为直角三角形,可求,2ABC S AC =, S ∵BDC =3sinD,由三角函数恒等变换的应用可求四边形的面积为()+3sin D D D φ=-+利用三角函数化一公式得到最值时的角C 值.详解: cosC cos sin a c A b B +=,由正弦定理得到2sin()sin sin 1.2A CB B B π+=⇒=∴=在三角形ACD 中由余弦定理得到21312cos AC D =-,三角形ABC 的面积为21248AC AC AC D ⨯==()+3sin D D D φ=-+当三角形面积最大时,sin()1,sin cos 7D D φφ-====故答案为:7【名师点睛】:本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.13.(2018·全国高考模拟(理))已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222sin ,02a b bc A A π=+<<,则tan 4tan A B -的最小值为__________.【答案】12- 【解析】分析:由余弦定理结合222sin a b bc A =+可得tan tan 2tanAtanB A B -=,从而把两元问题转化为一元问题4tanAtan 4tan tanA 2tanA 1A B -=-+,然后利用均值不等式即可求出tan 4tan A B -的最小值.详解:由余弦定理2222bccosA a b c =+-及222sin a b bc A =+,得22bccosA 2sin c bc A -=即c 2bcosA 2sin b A -=,再由正弦定理,得sinC 2sinBcosA 2sinBsinA -=,即sin A B 2sinBcosA 2sinBsinA +-=,即sinAcosB cosAsinB 2sinBsinA -=,所以tan tan 2tanAtanB A B -=,所以tanAtan 2tanA 1B =+,所以()4tanA 12551tan 4tan tanA 2tanA 12tanA 122tanA 1222A B -=-=++-≥=-++ ,当且仅当()122tanA 122tanA 1+=+,即1tan 2A =时等号成立, 所以tan 4tan AB - 的最小值为12-故答案为:12-【名师点睛】:在用基本不等式求最值时,应具备三个条件:一正二定三相等.∵一正:关系式中,各项均为正数;∵二定:关系式中,含变量的各项的和或积必须有一个为定值;∵三相等:含变量的各项均相等,取得最值.14.(2018·河北衡水中学高考模拟(理))已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,则下列四个论断中正确的是__________.(把你认为是正确论断的序号都写上)∵若sin cos A Ba b =,则4B π=;∵若4B π=,2b =,a =∵若a ,b ,c 成等差数列,sin A ,sin B ,sin C 成等比数列,则ABC △为正三角形; ∵若5a =,2c =,ABC △的面积4ABC S =△,则3cos 5B =. 【答案】∵∵ 【解析】∵由正弦定理可得tan 1B =,又(0,)B π∈,所以4B π=,正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020 年高考数学经典题题精选三角函数解答题求函数 y=sinx+cosx+1的最 及取得最 相x 的 .解:由 y=sinx +cosx +1得 y=2 sin(x+4 )+1 ⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∴ y max =2 +1⋯⋯⋯⋯⋯⋯ 4 分y min =- 2 +1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分由 x+4=2k π+2得 x=2k π+(k ∈ Z)即 x=2k π+4(k ∈ Z) , y取最大 2 +1⋯⋯⋯⋯⋯ 94分由 x+=2k π-2即 x=2k π- 3y 取最小 1-2 ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分441.已知函数 f ( x)2a cos 2 x b sin x cos x, 且 f (0) 2, f (3 ) 1 3 .22( 1)求 f ( x ) 的最大 与最小 ;( 2)若 f ( ) 0, a (0,2 ), 求 的 .解:(1)由 f (0)=2 a =2,得 a =1 , f ( )1 a3 , 2 ⋯⋯⋯⋯( 3 分)243∴ f ( x )=2cos 2x +2sin x cos x =sin2 x +cos2 x +1=2 sin(2x) 1 ⋯⋯⋯⋯( 5 分)4∴ f ( x ) 的最大 是2 1,最小 是 12 . ⋯⋯⋯⋯⋯⋯( 6 分)( 2)∵ f () 0, 得 2 sin( 2) 1 0sin( 2) 2, . ⋯⋯( 8 分)44224 2k或 2 4 2k5 , k Z44k或k, kZ(10分 )42( 0,2 ),2 或3 或 3 或 7 (12分 ).2 442.已知函数 f ( x)a sin x cos x3acos 2 x3 a b.(a0)2( 1) x R ,写出函数的 减区 ;( 2)x [0, ], f x3,求 数 a, b的 .( ) 的最小 是- 2,是大 是2解:( 1) f ( x)a(sin x cos x3 cos 2 x3 ) b2a (1sin 2x3 1 cos2 x3 ) b = a sin( 2x ) b ⋯⋯⋯⋯4 分22 23a0, x R, f ( x) 的 减区 是 [ k5 , k11]( kZ ) ⋯⋯⋯⋯ 6 分12 12( 2)x [ 0, ] 2x[ 0, ] 2x3[ , 2] ⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分23 3sin( 2x) [ 3 ,1]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分32∴函数 f ( x) 的最小 是3 a b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分2最大 a b 3 ⋯⋯⋯ 11 分解得 a 2,b 32 ⋯⋯ 12 分3.求函数 ysin 2 x sin xcos(6 x)的周期和 增区 .解ysin 2 x sin x(coscos x sin sin x)663sin 2x3sin x cos x3(1 cos2x) 3sin 2 x224 43 (3sin 2x 3 3 3) . ⋯⋯ 6 分44 cos2x)sin(2 x2 4423∴函数的周期T.⋯⋯⋯⋯⋯⋯ 8 分25当2k ≤ 2x≤2k,即 k( k ∈ Z) 函数≤ x ≤ k235 21212增加,即函数的增区 是[ k] (k ∈Z) .⋯⋯ 12分, k12124.已知函数 f ( x)5sin x cos x 5 3 cos 2 x 5 32(Ⅰ)求 f(x) 的最小正周期;(Ⅱ)求 f(x) 的 增区 .解:(Ⅰ)f (x) 5sin x cos x5 3 cos 2 x5 325sin 2x 5 31cos2x5 3 2 225 sin 2x 5 3 cos2x25(sin 2x cos3 cos2x sin)35sin(2x3 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴最小正周期 T=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分2(Ⅱ)由 意,解不等式22k2x32 2k ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分5得kxk( k Z )12125f ( x) 的 增区 是 [k k ]( kZ ) ⋯⋯⋯⋯⋯⋯ 12 分12 ,125.已知函数f ( x)3 2 cos 2 x 8sin4 x , 求 f ( )的定 域,判断它的奇偶性,并求其cos2xx域 .解: f ( x)32(1 sin 2 x) 8sin 4 x12sin 2 x 8sin 4 xcos 2xcos2x(1 4 sin 2 x)(1 2 sin 2 x)4 sin 2x1.分cos2x( 4 )由 cos2x0,得 2x k, 解得 x k , k z224所以函数的定义域为 { x | x R, 且 xk , k 分24因为 的定义域关于原点对称 , 且 f ( x)f ( x),f ( x)是偶函数分f ( x).(9 )又f ( x) 4sin 2 x 1,且 xk , kz2 4f ( x)的值域为 { y |1y 5,且 y 3}.(12分 )6.已知函数f ( ) 2sin 2x sin 2 x 1,x.xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)在 定的坐 系中画出函数f (x) 在 [0, ] 上的 象 .解:( I ) f ( x)2sin 2 x sin 2x 1sin 2x(1 2sin 2 x)sin 2 x cos2x=2 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分x,所以当 2x2k, 即xk 3 (k Z ) , f ( x) 的最大 2 .R428即 f (x) 取得最大x 的集合 { x | xk3 , k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( II ) 象如下 所示: ( 卷 注意以下3 点)1.最小 f (3)2 ,8最小 f (7)2 . ⋯⋯⋯⋯⋯⋯ 10 分82.增区 [ 0,3 ], [ 7 , ];3 8 78减区 [, ] ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分8 83. 象上的特殊点: ( 0,- 1),(4 ,1),(,1), (3, 1), ( ,1) ⋯⋯⋯ 14 分24[ 注: 象上的特殊点 两个扣1 分,最多扣2 分 ]7.已知函数 ysinx3 cos x, x R.22( 1)求 y 取最大 相 的x 的集合;( 2) 函数的 象 怎 的平移和伸 可以得到y sin x( xR) 的 象 .解: y 2sin(x). ⋯⋯ 4 分23(1)当y 最大2.x { x | x 4k3 , k Z} ⋯⋯ 8 分( 2)把 y2sin(x3) 象向右平移2 ,再把每个点的 坐村 原来的 1,横坐232不 . 然后再把每个点的横坐 原来的1, 坐 不 , 即可得到 y sin x 的2象⋯⋯ 12 分8.已知函数f ( ) 4 sin 2 x 2sin 2 x 2,x .xR( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大x 的集合;( 2)求 :函数f (x) 的 象关于直x8称( 1)解: f (x) 2sin 2x 2sin 2x 22 sin 2x 2(12 sin 2 x) 2 sin 2x 2cos 2x=22 sin(2x) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4所以 f ( x) 的最小正周期是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分xR ,所以当 2x2k ,即x k3Z ) , f ( x) 的最大 2 2 .4(k28即 f (x) 取得最大x 的集合 { x | xk3, k Z} ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分8( 2) 明:欲 函数f ( x) 的 象关于直x称,只要 明 于任意x R ,8有 f (x) f (8x) 成立即可 .8f (x) 2 2 sin[2(x)4] 2 2 sin(2x)2 2 cos 2x;882f (x) 22 sin[ 2(8x)]2 2 sin(2 x) 2 2 cos2 x.842f (x) f (8x).8从而函数 f ( x) 的 象关于直 x称 . ⋯⋯ 14 分8[ 注:如果学生用f () 2 2( f ( x))min ;8或求出所有的 称 方程,然后x是其中一条, ( 2)中扣去 2 分]89. 已知定 在区[,2] 上的函数 yf (x) 的 象关于直x称,36当 x [2 ] ,函数 f (x) A sin( x) ( A 0 ,0 ,) ,其 象如,2632所示 .y(1)2] 的表达式;求函数 y f ( x) 在 [,13(2) 求方程 f ( x)2?的解 .?o 6?2xx6( 1)当x[, 2 ]时,函数 f ( x)Asin(x) ( A 0 ,0 ,22),观察图象易得:63A 1 , 1 ,3,即 x[6,2] 时,函数 f ( x)sin( x3),由函数 y f ( x) 的图象3关于直线x6对称得, x[,6] 时,函数 f ( x)sin x .∴ f ( x)sin(x 3 )x[ 6,23].sin x x[, 6 )( 2 )当x[, 2]时,由 sin( x3)2得, x34或3x12或x5;当632412 x[,6 ] 时,由sin x22得, x34或 x4. ∴方程 f (x)22的解集为 {34, 4 ,12,125}10.已知函数 f ( x)sin( x)cos( x) 的定义域为R,(1)当0 时,求f (x)的单调区间;( 2)若(0, ),且 sin x0,当为何值时, f ( x) 为偶函数.解:(1)0 时, f (x)sin x cos x 2 sin( x)4当 2k x2k,即2k 3x2k( k Z )时f (x)24244单调递增;当 2k2x42k3,即 2k4x2k5( k Z )时f (x) 24单调递减;( 2)若f(x) 偶函数,则 sin( x)c os( x)sin(x)cos(x)即 sin( x)sin( x)cos(x)cos( x) =0 2sin x cos2sin xsin02sin x(cos sin)02 cos()04Q(0,)4,此时, f (x) 是偶函数.。

相关文档
最新文档