五年级数学奥数讲义-位值原理与数的进制(学生版)

合集下载

五年级奥数春季班第11讲 位值原理

五年级奥数春季班第11讲 位值原理

位值原理模块一、位值原理的认识例1.填空:(1)365= ×100+ ×10+ ×1;20220=2× 2× +2× ;(2)aaa= ;abc= ;aabb= ;+++=a× +b× +c× +d× ;(3)abcd abc ab aab= a× +b× +1× +2× +3× +4(4)1234=ab× +12× +34× ;解:(1)365=3×100+6×10+5×1;20220=2×10000+2×100+2×10;(2)aaa=a×100+a×10+a;abc=a×100+b×10+c;aabb=a×1000+a×100+b×10+b;+++=a×1111+b×111+c×11+d×1;(3)abcd abc ab aab= a×100000+b×10000+1×1000+2×100+3×10+4(4)1234=ab×10000+12×100+34×1;例2.(1)用数字1、2、3各一个可以组成三位数,所有这样的三位数之和是;(2)三个不同的非零数字a、b、c共可以组成6个不同的三位数,这六个三位数之和一定是的倍数;(3)三个互不相同的数字,可以组成6个不同的三位数,知道这6个三位数的和是2886,那么这三个数字的和为;这六个三位数中最小可能值是;这六个三位数中最大可能值是。

解:(1)用数字1、2、3各一个可以组成6个三位数,在个位上有2个1、2个2、2个3,个位上的数字和是12;同样十位上的数字和也是12,百位上的数字和也是12,于是这六个数的和是111×12=1332;(2)由第(1)问的答案可以知道,这六个三位数的和一定是222的倍数;(3)三个互不相同的数字,可以组成6个不同的三位数,所以三个数字都不是0,2886÷222=13,13=1+3+9,所以这六个三位数中最小的可能是139,最大的是931.模块二、位值原理的完全拆分例3.一个两位数,是它各个数位数字和的(1)9倍,求这个两位数;(2)5倍,求这个两位数;(3)7倍,求这个两位数 ; 解:(1)设这个两位数为ab =10a +b , 10a +b =9(a +b ),所以a =8b ,b =1,a =8,所以ab =81。

五年级奥数位值原理

五年级奥数位值原理

位值原理知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。

位值原理与数的进制

位值原理与数的进制

位值原理与数的进制位值原理是指在其中一进位制数中,每一位的权值是逐位递增的,即从低位到高位,每一位的权值所代表的数值是上一位权值的进位操作,通常以10进制作为例子进行说明。

数的进制则是指用多少个不同的数位来表示一个数的概念。

常见的进制有二进制、八进制、十进制和十六进制等。

一、位值原理(以十进制为例)在十进制中,每一位的数值是上一位的数值乘以10的权值次方。

即从右到左,第1位权值为10^0=1,第2位权值为10^1=10,第3位权值为10^2=100,第4位权值为10^3=1000,以此类推。

例如,数值5274在十进制中,表示为:5*10^3+2*10^2+7*10^1+4*10^0即:5000+200+70+4=5274二、数的进制1.二进制:使用0和1来表示数值。

每一位的权值是上一位权值的2倍。

例如,数值1011表示为:1*2^3+0*2^2+1*2^1+1*2^0即:8+0+2+1=112.八进制:使用0到7的八个不同数位来表示数值。

每一位的权值是上一位权值的8倍。

例如,数值231表示为:2*8^2+3*8^1+1*8^0即:128+24+1=1533.十六进制:使用0到9的十个数位和A到F的六个字母来表示数值。

每一位的权值是上一位权值的16倍。

例如,数值ABC表示为:10*16^2+11*16^1+12*16^0即:2560+176+12=2748三、进制转换在进制转换中,下面的方法可以用来将一个数从一种进制转换为另一种进制:1.从十进制转换为其他任意进制:使用除数取余法将十进制数依次除以进制数,直到商为0为止,将每次的余数逆序排列即可得到结果。

2.从其他进制转换为十进制:将每一位数的权值乘以对应的进制数,再将结果相加即可得到十进制数。

3.在其他任意进制之间转换时,可以先将数值转换为十进制,再由十进制转换为目标进制。

四、应用场景不同的进制在计算机科学和信息技术中有着广泛的应用。

其中,二进制在计算机内部用于数据的存储和处理,八进制和十六进制则常用于表示和调试二进制数,简化了长二进制数的书写方式。

(小学奥数)位值原理

(小学奥数)位值原理

5-7-1.位值原理教學目標1.利用位值原理的定義進行拆分2.巧用方程解位值原理的題知識點撥位值原理當我們把物體同數相聯系的過程中,會碰到的數越來越大,如果這種聯繫過程中,只用我們的手指頭,那麼到了“十”這個數,我們就無法數下去了,即使象古代墨西哥尤裏卡坦的瑪雅人把腳趾也用上,只不過能數二十。

我們顯然知道,數是可以無窮無盡地寫下去的,因此,我們必須把數的概念從實物的世界中解放出來,抽象地研究如何表示它們,如何對它們進行運算。

這就涉及到了記數,記數時,同一個數字由於所在位置的不同,表示的數值也不同。

既是說,一個數字除了本身的值以外,還有一個“位置值”。

例如,用符號555表示五百五十五時,這三個數字具有相同的數值五,但由於位置不同,因此具有不同的位置值。

最右邊的五表示五個一,最左邊的五表示五個百,中間的五表示五個十。

但是在奧數中位值問題就遠遠沒有這麼簡單了,現在就將解位值的三大法寶給同學們。

希望同學們在做題中認真體會。

1.位值原理的定義:同一個數字,由於它在所寫的數裏的位置不同,所表示的數值也不同。

也就是說,每一個數字除了有自身的一個值外,還有一個“位置值”。

例如“2”,寫在個位上,就表示2個一,寫在百位上,就表示2個百,這種數字和數位結合起來表示數的原則,稱為寫數的位值原理。

2.位值原理的表達形式:以六位數為例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法寶:(1)最簡單的應用解數字謎的方法列豎式(2)利用十進位的展開形式,列等式解答(3)把整個數字整體的考慮設為x,列方程解答例題精講模組一、簡單的位值原理拆分【例 1】一個兩位數,加上它的個位數字的9倍,恰好等於100。

這個兩位數的各位數字的和是。

【例 2】學而思的李老師比張老師大18歲,有意思的是,如果把李老師的年齡顛倒過來正好是張老師的年齡,求李老師和張老師的年齡和最少是________?(注:老師年齡都在20歲以上)【例 3】把一個數的數字順序顛倒過來得到的數稱為這個數的逆序數,比如89的逆序數為98.如果一個兩位數等於其逆序數與1的平均數,這個兩位數是________.【例 4】幾百年前,哥倫布發現美洲新大陸,那年的年份的四個數字各不相同,它們的和等於16,如果十位數字加1,則十位數字恰等於個位數字的5倍,那麼哥倫布發現美洲新大陸是在西元___________年。

小学奥数知识点拨 精讲试题 位值原理.学生版

小学奥数知识点拨 精讲试题 位值原理.学生版

【巩固】有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是 2886,求所有这样的 6 个三位数中最小 的三位数的最小值.
【例 24】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是 3330, 则这六个三位数中最小的可能是几?最大的可能是几?
5-7-1.位值原理.题库
5-7-1.位值原理.题库
学生版
page 6 of 10
【例 31】记四位数 abcd 为 X ,由它的四个数字 a,b,c,d 组成的最小的四位数记为 X ,如果 X X * 999 ,
那么这样的四位数 X 共有_______个.
【例 32】9000 名同学参加一次数学竞赛,他们的考号分别是 1000,1001,1002,…9999.小明发现他的考号是
【例 34】一个三位数除以 11 所得的商等于这个三位数各位数码之和,求这个三位数是多少?
模块三、巧用方程解位值原理
【例 35】有一个两位数,如果把数码 1 加写在它的前面,那么可以得到一个三位数,如果把 1 写在它的后面, 那么也可以得到一个三位数,而且这两个三位数相差 414,求原来的两位数。
5-7-1.位值原理.题库
【巩固】把 5 写在某个四位数的左端得到一个五位数,把 5 写在这个四位数的右端也得到一个五位数,已知 这两个五位数的差是 22122,求这个四位数。
5-7-1.位值原理.题库
学生版
page 8 of 10
【例 39】 如果把数码 5 加写在某自然数的右端,则该数增加 A1111 ,这里 A 表示一个看不清的数码,求这 个数和 A。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

小学奥数数论位值原理知识点

小学奥数数论位值原理知识点

小学奥数数论位值原理知识点【篇一】1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个"位置值"。

例如"2",写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三*宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答4、位置原理重难点:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答【篇二】位置原理例题:例1.a、b、c是1——9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?解答:组成六个数之和为:10a+b+10a+c+10b+a+10b+c+10c+a+10c+b=22a+22b+22c=22(a+b+c)很显然,是22倍例2.一个三位数,它等于抹去它的首位数字之后剩下的两位数的4倍于25之差,求这个数。

解答:设它百位数字为a,十位数字为b,个位数字为c则100a+10b+c=4(10b+c)化简得5(20a-6b+5)=3c因为c为正整数,所以20a-6b+5是3的倍数又因为0≤c≤9所以0≤3c/5≤5.4所以0≤20a-6b+5=3c/5≤5.4所以3c/5=3即c=5所以20-6b+5=3化简得3b-1=10a按照同样的分析方法,3b-1是10的倍数,解得b=7最后再算出10a=3*7-1=20则a=2所以答案为275。

【篇三】练习题1.有一类三位数,它的各个数位上的数字之和是12,各个数位上的数字之积是30,所有这样的三位数的和是多少2.一个两位数,各位数字的和的5倍比原数大4,求这个两位数.3.一个三位数除以11所得的商等于这个三位数各位数码之和,求这个三位数.4.将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数.5.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.6.将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.7.将四位数的数字顺序重新排列后,可以得到一些新的四位数.现有一个四位数码互不相同,且没有0的四位数M,它比新数中最大的小3834,比新数中最小的大4338.求这个四位数.。

五年级奥数专题 数的进制(学生版)

五年级奥数专题 数的进制(学生版)

学科培优 数学 “数的进制” 学生姓名授课日期 教师姓名授课时长 知识定位 所谓二进制,就是只用0与1两个数字,在计数与计算时必须是“满二进一”。

即每两个相同的单位组成一个和它相邻的较高的单位(所以任意一个二进制只需要“0”与“1”表示就够了)。

例如:2在二进制中是10;3写成二进制数是11;4写成二进制数便是100,那么5呢?应该是101随着科学计数的发展,数字电子计算机的使用日益普遍,计算器内部进行的运算就使用的是二进制数。

我们经常和计算器打交道,应该懂一些二进制方面的知识。

知识梳理一、二进制按照“逢二进一”的法则,很容易得到一下两种进制的数字的对照表: 十进制 二进制 十进制 二进制 1 2 3 4 5 6 7 8 1 10 11 100 101 110 111 1000 9 10 11 12 13 14 15 16 100110101011110011011110111110000二进制的最大优点是:每个数的各个数位上只有两种状态——0或1。

这样,我们便可以通过简单的方法,例如白与黑、虚与实、负与正、点与划、小与大、暗与亮等等手段加以表示。

当然,二进制也有不足,同一个数在二进制中要比在十进制中位数多得多。

二、十进制与二进制的互相转化当我们写上一个数目1997时,实际上意味着我们使用了“十进制”数,即也就是说:1997中含有一个1000,九个100,九个10与七个1.199111000910091071=⨯+⨯+⨯+⨯在上表中可以看到,二进制数10表示十进制2;二进制数100表示十进制数4;二进制数1000表示十进制数8;二进制数10000表示十进制数16;……可以看出规律:二进制数100000应该表示十进制数32,……。

那么我们写下一个二进制数10110,则应表示它含有一个16,一个4与一个2,也就是明白了上面所说的两点,则二进制与十进制之间的转化的道理就容易懂了。

为了叙述的方便,我们约定:用表示括号内写的是二进制数,如;用表示括号中写的数是十进制数,如。

【奥赛】小学数学竞赛:位值原理.学生版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:位值原理.学生版解题技巧 培优 易错 难

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

小学奥数位值原理

小学奥数位值原理

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】学而思杯,4年级,第5题【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】学而思杯,5年级,第3题【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

5-7-1数值原理与数的进制-题库学生版

5-7-1数值原理与数的进制-题库学生版

5-7位置原理与数的进制教学目标本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。

通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。

并学会在其它进制中位值原理的应用。

从而使一些与数论相关的问题简单化。

知识点拨一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

二、数的进制我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n,我们有n0=1。

n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

进制间的转换:如右图所示。

八进制十进制二进制十六进制例题精讲模块一、位置原理【例 1】某三位数abc和它的反序数cba的差被99除,商等于______与______的差;【巩固】ab与ba的差被9除,商等于______与______的差;【巩固】ab与ba的和被11除,商等于______与______的和。

五年级奥数第50讲 进位制与位值原理-

五年级奥数第50讲 进位制与位值原理-
【例4】 (★★★★) 在7进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
【例5】 (★★★★) 在6进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
1
二、位值原理
【例6】 (★★★) 将一个四位数的数字顺序颠倒过来,得到一个新 的四位数(这个数也叫原数的反序数),新数比原 数大8802 。求原来的四位数。
例3答案:① (11100)2 ② (11000000)2 ③ (500)10 例4答案:248
④ (13121)8
例5答案:22
)2
一、进位制 2.咱要了解的进位制: ⑴本质:n进制就是逢n进一 ⑵n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 3.会变身的进位制:n进制和十进制的相互转化
【例3】 (★★★) ① (101)2(1011)2 (11011)2 ( )2 ② (11000111)2 (10101)2 (11)2 ( )2 ③ (3021)4 (605)7 ( )10 ④ (63121)8 (1247)8 (16034)8 (26531)8 (1744)8 ( )2
进位制与位值原理
一、进位制 1.缤纷多彩的进位制:
六十 进制 二十 进制
二进 制 … … 十六 进制
五进 制 十二 进制
【例1】 (★★★) 把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16。
【例2】 (★★★) ⑴把85化成二进制数。 ⑵ (567)10 ( )8 ( )5 (
【例7】 (★★★) 有3个不同的数字,用它们组成6个不同的三位数, 如果这6个三位数的和是1554 ,那么这3个数字分 别是_。

五年级上奥数第15讲 位值原理(一)

五年级上奥数第15讲 位值原理(一)

五秋第15讲 位值原理(一)一、教学目标位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示 2个一,写在百位上,就表示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

位值原理的表达形式: 以五位数为例:100001000100101abcde a b c d e =⨯+⨯+⨯+⨯+⨯二、例题精选【例1】 有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。

求原来的两位数。

【巩固1】有一个三位数,它的个位数字是3,如果把3移到百位,其余两位依次改变,所得的新数与原数相差171,求原来的三位数。

【例2】 一个两位数,各位数字的和的5倍比原数大6,求这个两位数。

【巩固2】在一个两位数前面写上3,所得的三位数比原来的两位数的5倍少32,求这个两位数。

【例3】 试用位值原理说明:一个三位数和它的反序数(比如123和321)之差,结果一定是9的倍数。

【巩固3】试用位值原理证明:任意一个三位数减去它的各个数位的数字之和后,必能被9整除。

【比如123-(1+2+3)的结果 可以被9整除】【例4】 a ,b ,c 是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c )的多少倍?(提示:六个数分别是abc 、cb a 、bac 、bca 、b ca 、a c b )【巩固4】用1、2、3可以组成的六个没有重复数字的三位数,这六个数的平均数是多少?【例5】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802。

求原来的四位数。

【例6】 *育才小学的学生人数是一个三位数,平均每班有36人,统计员提供的学生的总人数比实际总人数少180人。

原来他在记录时粗心地把三位数的百位数字和十位数字对调了。

数论(5)位值,进制5

数论(5)位值,进制5

教 案教师:__ __ 学生:_ 上课时间: 学生签字:____________数论(五) 位值原则与数的进制【知识点概述】一、位值原则:1.位值原则的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原则。

2.位值原则的代数表达:以六位数为例:10000010000100010010abcdef a b c d e f =⨯+⨯+⨯+⨯+⨯+二、数的进制:我们通常所用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的奇数单位分别是1231,2,2,2,...,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:5432102(100110)120202121202=⨯+⨯+⨯+⨯+⨯+⨯注意,对于任意自然数n,我们有01n =。

N 进制的运算法则是“逢n 进一,借一当n ”.n 进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的,再计算括号外的。

【例1】(难度级别※)三位数abc和它的反序数cba的差被99除,商等于____ 与____ 的差。

【例2】(难度级别※※)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是 .【例3】(难度级别※※)有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数。

【例4】(难度级别※※※)有一个三位数,把它的个位数移到百位上,百位和十位上的数码相应后移一位成了一个新的三位数,原三位数的2倍恰好比新三位数大1,求原来的三位数。

小学五年级逻辑思维学习—位值原理与数的进制

小学五年级逻辑思维学习—位值原理与数的进制

小学五年级逻辑思维学习—位值原理与数的进制知识定位本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。

通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。

并学会在其它进制中位值原理的应用。

从而使一些与数论相关的问题简单化。

知识梳理一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

二、数的进制我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)=1×25+0×24+0×23+1×22+1×21+0×20。

2二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n,我们有n0=1。

n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。

例题精讲【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。

【题目】如果ab×7= ,那么ab等于多少?【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

小学五年级奥数课件 进位制与位值原理

小学五年级奥数课件 进位制与位值原理
①原式=(110111)2-(11011)2 =(11100)2
②原式=(11000111)2-(111)2 =(11000000)2
例题【三】(★ ★ ★)
① (101) 2 ×(1011)2-(11011)2-(11011)2=(11100)2 ② (11000111)2-(10101)2÷(11)2=(11000000)2 ③ (3021)4 +(605)7 =(500)10 ④ (63121)8 -(1247)8 -(16034)8-(26531)8-(1744)8 =(13121)8
2、n进制计算: ⑴ 同进制下,可以直接计算. (2)不同进制,借助十进制转换计算 3、位值原理 ⑴ 借助数位,按数位进行计算. ⑵ 根据具体位置特征进行估算.
(2)(2BA)12=2×122-B×121+A×12 =2×144+11×12+10×1 =288+132+10 =288+142 =(430)10
(1) 4×82+6×81+3×8 =4×64+6×8+3×1 =256+45+3 =256+51
=(307)10
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
(2009)10=(111110011001)2
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.

小学奥数数论讲义 15-进制与位值原理强化篇

小学奥数数论讲义 15-进制与位值原理强化篇

今日关键1. n 进制运算2. n 进制3. 位值原理【例 1】(63121)8-(1247)8-(16034)8-(26531)8-(1744)8=( )8。

【巩固】在八进制中,1234-456-322= 。

【例 2】⑴(101)2⨯(1011)2-(11011)2=( )2;⑵(11000111)2-(10101)2÷(11)2=( )2;⑶(3021)4+(605)7=( )10。

【巩固】⑴(1101)2⨯(1111)2-(101)2= ;⑵(4023)5+(542)8=( )10。

【例 3】在几进制中有125⨯125=16324?【巩固】算式1534⨯25=43214是几进制数的乘法?【例 4】有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数。

将这两个三位数和一个四位数相加等于3600。

求原来的两位数。

进制与位值原理逢n 进1 借1当n 位值原理 十进制 除n 取余法【巩固】在一个两位质数的两个数字之间,添上数字6以后,所得三位数比原数大870,那么原质数是。

【例 5】(第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是。

【巩固】(迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数。

〖答案〗【例 1】13121【巩固】234【例 2】⑴11100,⑵11000000,⑶500 【巩固】⑴10111110,⑵867【例 3】七进制【巩固】八进制【例 4】14【巩固】97【例 5】1,2,4【巩固】139。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“位值原理与数的进制”
学生姓名授课日期
教师姓名授课时长
本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握
的知识要点。

通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。

并学会在其它进制中位值原理的应用。

从而使一些与数论相关的问题简单化。

一、位值原理
位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字
和数位结合起来表示数的原则,称为写数的位值原理。

二、数的进制
我们常用的进制为十进制,特点是“逢十进一”。

在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。

比如二进制,八进制,十六进制等。

二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。

因此,二进制中只用两个数字0和1。

二进制的计数单位分别是1、21、22、23、……,
=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)
2
×25+0×24+0×23+1×22+1×21+0×20。

二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。

注意:对于任意自然数n,我们有n0=1。

n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号
内的。

【试题来源】
【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。

【试题来源】
【题目】如果ab×7= ,那么ab等于多少?
【试题来源】
【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?
【试题来源】
【题目】用1,9,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?
【试题来源】
【题目】a,b,c分别是0~9中不同的数码,用a,b,c共可组成六个三位数字,如果其中五个数字之和是2234,那么另一个数字是几?
【题目】在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍。

求出所有这样的三位数。

【试题来源】 【题目】已知1370,abcd abc ab a abcd +++=求,求1370,abcd abc
ab a abcd +++=求。

【试题来源】
【题目】如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A 。

【试题来源】
【题目】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”。

例如,99就是一个巧数,因为9×9+(9+9)=99。

可以证明,所有的巧数都是两位数。

请你写出所有的巧数。

【试题来源】
【题目】将四位数的数字顺序重新排列后,可以得到一些新的四位数。

现有一个四位数码互不相同,且没有0的四位数M ,它比新数中最大的小3834,比新数中最小的大4338。

求这个四位数。

【题目】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数。

又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数。

【试题来源】
【题目】计算:①(234)
7+(656)
7
;②(111001)2×(1011)2
【试题来源】
【题目】将二进制数(11010.11)2化为十进制数为多少?
【试题来源】
【题目】二进制数10101011110011010101101转化为8进制数是多少?
【试题来源】
【题目】将二进制数11101001.1011转换为十六进制数。

【答案】E9.B。

【解析】在转换为高于9进制的数时,遇到大于9的数用字母代替,如:A代表10、B代表11、C代表12、D代表13……。

根据取四合一法,二进制11101001.1011转换为十六进制为E9.B。

【题目】某数在三进制中为12120120110110121121,则将其改写为九进制,其从左向
右数第l位数字是几?
【试题来源】
【题目】现有1克,2克,4克,8克,16克的砝码各1枚,问在天平上能称多少种不
同重量的物体?
【试题来源】
【题目】在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
【试题来源】
【题目】N是整数,它的b进制表示是777,求最小的正整数b,使得N是十进制整数的四次方.
【试题来源】
【题目】试求(22006-1)除以992的余数是多少?
【试题来源】
【题目】有一个两位数,如果把数码1加写在它的前面,那么可得到一个三位数,如果把1加写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数。

【试题来源】
【题目】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802。

求原来的四位数。

【试题来源】
【题目】某校的学生总数是一个三位数,平均每个班35人。

统计员提供的学生总数比实际总人数少270人。

原来,他在记录时粗心地将这个三位数的百位与十位的数字对调了。

这个学校学生最多是多少人?
【试题来源】
【题目】把下列各数转换成十进位制数:(1)(21012)3, (2)(3702)8, (3)(7215)12
【试题来源】
【题目】八进制的abc与七进制的cba相等,求a、b、c。

【试题来源】
【题目】一袋花生共有2004颗,一只猴子第一天拿走一颗花生,从第二天起,每天拿走的都是以前各天的总和.
①如果直到最后剩下的不足以一次拿走时却一次拿走,共需多少天?
②如果到某天袋里的花生少于已拿走的总数时,这一天它又重新拿走一颗开始,按原规律进行新的一轮.如此继续,那么这袋花生被猴子拿光的时候是第几天?
数学文化小故事:“0”的来历
大约1500年前,欧洲的数学家们是不知道用“0”的。

他们使用罗马数字。

罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。

在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。

他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。

过了一段时间,这件事被当时的罗马教皇知道了。

当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。

教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。

就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。

后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

相关文档
最新文档