维纳滤波恢复的图像共55页

合集下载

[PPT课件]现代信号处理-维纳和卡尔曼滤波

[PPT课件]现代信号处理-维纳和卡尔曼滤波

2.2 维纳滤波器的离散形式——时域解
2.2.2 维纳—霍夫方程
把k的取值代入(2.2.9)式, 得到:
当k=0时,h1rxx(0)+h2rxx(1)+…+hMrxx(M-1)=rxd(0) k=1时, h1rxx(1)+ h2rxx(0)+…+ hMrxx(M-2)= rxd(+1)

k=M-1时, h1rxx(M-1)+ h2rxx (M-2)+…+hMrxx(0)= rxd(M-1)
(2.2.10)

2.2 维纳滤波器的离散形式——时域解
2.2.2 维纳—霍夫方程 定义 T T h h1, h2 ,, hM , Rxd rxd (0), rxd (1),, rxd (M 1),
rxx (0) rxx (0) Rxx r ( M 1) xx
2.1 引 言
为了得到不含噪声的信号 s(n) ,也称为期望信号, 系统的期望输出用 yd(n)表示,yd(n)应等于信号的真值
若滤波系统的单位脉冲响应为 h(n) (如图 2.1.2 所示), s(n);系统的实际输出用y(n)表示,y(n)是s(n)的逼近或
估计,用公式表示为yd(n)=s(n), y(n) =
因此,维纳滤波器的传输函数H(z)的求解转化为 G(z)的求解。
x(n)
1 B( z)
(n )
G(z)
^ y(n)= s (n)
图 2.3.3 维纳滤波解题思路
2.3 离散维纳滤波器的Z域解
2.3.1 非因果维纳滤波器的求解
假设待求维纳滤波器的单位脉冲响应为 ω(n),期 望信号 d(n)=s(n) ,系统的输出信号 y(n)=s(n) , g(n) 是 G(z)的逆Z变换, 如图2.3.3所示。

【精选】图像处理-维纳滤波复原【PPT】PPT课件

【精选】图像处理-维纳滤波复原【PPT】PPT课件
图像处理-维纳滤波复原【PPT】
维纳滤波
逆滤波处理比较简单,但没有清楚地说 明如何处理噪声,而维纳滤波综合了退化函 数和噪声统计特性两个方面进行复原处理。
逆滤波方法不能完全恢复原始信号f(x,y),而只能
求出f(x,y)的一个估计值 ˆf x, y 。
希望找到一种方法,在有噪声条件下,从退化图像 g(x,y)复原出f(x,y)的估计值,该估计值符合一定的准 则。
1.储蓄存款
储 蓄 存 款
各考点细化及理解
考点一
收益
利息利=率本:金年X、利月
利率分:类
定流期动:性收:益转高化,为
1.由央行拟定,国活务期院:批收准益低、
2.贷款利率>存款利率 3. 调风节险存、贷款量—通—胀通货风胀币险、量:提购前
4率.实多际少收益条件适:费中当,最利过好率少,>不过通利多胀于不
“定存两年”相差( ) A.2 719.5元
D B.1 024.98元
C.960元
D.919.5元
80 000×2.85%×2-[80 000×2.25%+(80
000×2.25%)×2.25%]
各考点细化及理解
考点二
1.商业银行 中央银行
不为利润
我 国
债权人——借钱出去 债务人——借钱进来
业务

关于利率的那些事
2.利率作用
利 率 调 节 经 济
各考点细化及理解
考点一
经济过热
提高利率,减少市
经济滞缓
降低利率,增加市
对点训练
1.某商业银行一年和两年定期存款利率分别是2.
,存款到期不取,银行会自动将利息并入本金再转
陈医生有80 000元现金,考虑到可能的应急需要,

威纳滤波图像复原

威纳滤波图像复原

用维纳滤波进行图像复原摘要在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。

由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。

为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。

图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目。

图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。

本文利用维纳滤波进行图像的复原,效果明显。

一、 实验原理维纳滤波复原:维纳滤波就是最小二乘滤波,它是使原始图像(),f x y 与其恢复图像()ˆ,f x y 之间的均方误差最小的复原方法。

对图像进行维纳滤波主要是为了消除图像中存在的噪声,对于线性空间不变系统,获得的信号为()()()(),,,,g x y f h x y d d n x y αβαβαβ+∞+∞-∞-∞=--+⎰⎰(12-29)为了去掉(),g x y 中的噪声,设计一个滤波器(),m x y ,其滤波器输出为()ˆ,f x y ,即()()()ˆ,,,fx y g m x y d d αβαβαβ+∞+∞-∞-∞=--⎰⎰(12-30)使得均方误差式()(){}{}22ˆm in ,,e E fx y f x y ⎡⎤=-⎣⎦(12-31)成立,其中()ˆ,f x y 称为给定(),g x y 时(),f x y 的最小二乘估计值。

设(),f S u v 为(),f x y 的相关函数(),f R x y 的傅立叶变换,(),n S u v 分别为(),n x y 的相关函数(),n R x y 的傅立叶变换,(),H u v 为冲激响应函数(),h x y 的傅立叶变换,有时也把(),f S u v 和(),n S u v 分别称为(),f x y 和(),n x y 的功率谱密度,则滤波器(),m x y 的频域表达式为()()()()()()22,1,,,,,n f H u v M u v S u v H u v H u v S u v =+(12-32)于是,维纳滤波复原的原理可表示为()()()()()()()22,1ˆ,,,,,,n f H u v F u v G u v S u v H u v H u v S u v ⎡⎤⎢⎥⎢⎥=⎢⎥+⎢⎥⎣⎦(12-33)对于维纳滤波,由上式可知,当(),0H u v =时,由于存在()(),,n f S u v S u v 项,所以(),H u v 不会出现被0除的情形,同时分子中含有(),H u v 项,在(),0H u v =处,(),0H u v ≡。

图像复原_逆滤波复原法_维纳滤波复原法_去除由匀速运动引起的模糊讲解

图像复原_逆滤波复原法_维纳滤波复原法_去除由匀速运动引起的模糊讲解

(a)图像退化响应 (b)逆滤波器响应 (c)改进的逆滤波器响应
逆滤波复原法
二是:使H(u,v)具有低通滤波性质。
1 2 2 2 (u v ) D0 1 H (u, v) H (u, v) 2 2 2 0 (u v ) D0
逆滤波复原法
• (a)点光源f(x,y)。(b)退化图像g(x,y) • G(u,v)=H(u,v)F(u,v)H(u,v)
维纳滤波复原法
采用维纳滤波器的复原过程步骤如下: (1)计算图像g(x,y)的二维离散傅立叶变换 得到G(u,v)。 (2)计算点扩散函数hw(x,y)的二维离散傅立叶 变换。同逆滤波一样,为了避免混叠效应引起 的误差,应将尺寸延拓。 (3)估算图像的功率谱密度 Pf和噪声的谱密度 Pn。 (4) 计算图像的估计值 。 (5)计算 的逆付氏变换,得到恢复后 的图像 。
式中N为多项式的次数,aij和bij为各项系数。
几何校正
x a
可得
由水平方向均匀直线运动造成的图像模糊的模型及其恢 复用以下两式表示:
去除由匀速运动引起的模糊
沿水平方向匀速运动造成的模糊图像的恢复处理例子。 (a)是模糊图像,(b)是恢复后的图像。
去除由匀速运动引起的模糊
(a) 原始图像
(b) 模糊图像
(c) 复原图像
图像的几何校正
图像在生成过程中,由于系统本身具有非线性或拍摄角 度不同,会使生成的图像产生几何失真。几何失真一般分为 系统失真和非系统失真。系统失真是有规律的、能预测的; 非系统失真则是随机的。 当对图像作定量分析时,就要对失真的图像先进行精确 的几何校正(即将存在几何失真的图像校正成无几何失真的 图像),以免影响分析精度。基本的方法是先建立几何校正 的数学模型;其次利用已知条件确定模型参数;最后根据模 型对图像进行几何校正。通常分两步: ①图像空间坐标的变换; ②确定校正空间各像素的灰度值(灰度内插)。

11720817--维纳滤波实现的图像复原(案例)

11720817--维纳滤波实现的图像复原(案例)

基于维纳滤波实现的图像复原(案例)(1) 图像复原技术图像复原也称图象恢复,是图象处理中的一大类技术。

所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。

图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。

从数学上来说,图像复原的主要目的是在假设具备退化图像g 及退化模型函数H 和n 的某些知识的前提下,估计出原始图像f 的估计值f ˆ,f ˆ估计值应使准则 最优(常用最小)。

如果仅仅要求某种优化准则为最小,不考虑其他任何条件约束,这种复原方法称为非约束复原。

(2)维娜滤波复原算法采用维纳滤波是假设图像信号可近似看成为平稳随机过程的前提下,按照使原始图像和估计图像之间的均方误差达到最小的准则函数来实现图像复原的。

它一种最小均方误差滤波器。

[][]g H R sR H H g H Q sQ H H f T n f T T T T 111---+=+= (1)设 Rf 是 f 的相关矩阵:}{T f ff E R = (2)Rf 的第 ij 元素是E{fi fj},代表 f 的第 i 和第 j 元素的相关。

}{T f nn E R = (3)设 Rn 是n 的相关矩阵:根据两个象素间的相关只是它们相互距离而不是位置的函数的假设,可将Rf 和Rn 都用块循环矩阵表达,并借助矩阵W 来对角化:1-=WAW R f (4)1-=WBW R n (5)fe(x, y)的功率谱,记为Sf (u, v) ;ne(x, y)的功率谱,记为Sn(u, v)。

D 是1个对角矩阵,D(k, k) = λ(k),则有:1-=WDW H(6)定义:nf T R R Q Q 1-= (7) 代入:g H Q sQ H H fT T T 1][ˆ-+= (8) 两边同乘以W –1,有:g H R sR H H f T nf T 11][ˆ--+= (9) 最后整理得: ),(),(/),(),(),(),(1),(ˆ22v u G v u S v u S v u H v u H v u H v u F f ⎥⎥⎦⎤⎢⎢⎣⎡+=η (10)(3)MATLAB 仿真及结果仿真中使用的是自己的图片xiaohui.jpgf=imread('C:\Documents and Settings\Administrator\桌面\仿真\xiaohui.jpg'); %读图subplot(2,2,1);imshow(f);title('(A )原始图像'); %显示原始图像PSF=fspecial('motion',7,45); %对图像进行7个像素点,45度角的模糊建模gb=imfilter(f,PSF,'circular'); % 创建一个已知PSF 的退化图像g=imnoise(gb,'gaussian',0,0.0001);%加入均值为0,方差为0.0001的噪声subplot(2,2,2);imshow(g);title('(B )加燥和运动模糊图像');Sn=abs(fft2(noise)).^2; % 噪声功率谱nA=sum(Sn(:))/prod(size(noise)); % 噪声平均能量Sf=abs(fft2(f)).^2; % 图像功率谱fA=sum(Sf(:))/prod(size(f)); % 图像平均能量R=nA/fA; %计算常数比率fr1=deconvwnr(g,PSF,R); %使用常数比率的维纳滤波复原NCORR=fftshift(real(ifft2(Sn))); %噪声自相关函数ICORR=fftshift(real(ifft2(Sf))); %图像自相关函数fr2=deconvwnr(g,PSF,NCORR,ICORR); %使用自相关函数的维纳滤波复原subplot(2,2,3);imshow(fr1);title('(C)常数比率维娜滤波复原');subplot(2,2,4);imshow(fr2);title('(D)自相关函数维娜滤波复原');(4)小结1.维纳滤波最优实施的条件是:要求已知模糊地系统函数,噪声功率谱密度(或自相关函数),原图像功率谱密度(或自相关函数)。

维纳滤波图像复原

维纳滤波图像复原
❖ 1)一般原理 µf h1g g n
Fµ G N
❖ 2)去卷积(反H 滤H波)
问题:H函数有许多零点,N较大时影响复原效
3 经典复原滤波器
❖ 3)维纳去卷积(维纳反滤波)
(1)一维维纳去卷积
❖ MSE最小即滤波器最优的充分必要条件:维纳滤波
器 噪使 声得 )M输 的o u入 互 相/输PP关xx出s函uu的数互。相关函数等于信号/(信号+
❖ 1)无约束复原
(1)反滤波(去卷积)
nS5tepg1线:降H质f性模型代的噪数声项复为 原
j
0
4 1 1 1 1 3
1
j
1
j
2
6
2
2
j
2
2
2
j
4 离散情况下降质分析
Step1: 进行对角化
❖ 5)Q对g 角H化f 在g 降W质DW模1 f型W中1的g 应DW用1 f
对 角
Step2 : 等价傅立叶变换

左式中第k个元素
与 傅
G k
1
M 1
j 2 ik
gie M
Gu
2)邻域处理(空间滤波增强)
❖ 一阶梯度法 ❖ 二阶拉普拉斯法
3)频域处理
❖ 低通滤波
1 概述
4)伪彩色增强
❖ 灰度分层映射 ❖ 频域映射
5)形态学处理
❖ 腐蚀 ❖ 膨胀 ❖ 击中击不中
6)图像增强应用
❖ 图像平滑和去噪:邻域平均、邻域加权平均、多幅
1 概述
图像增强与复原的区别
❖ 图像增强:不考虑图像降质的原因,只将图像中感 兴趣的特征突出,而衰减不需要的特征。改善后的 图像不一定要逼近原图像。

维纳滤波器图像处理

维纳滤波器图像处理

维纳滤波器及其在图像处理中的应用摘要图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。

退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。

所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。

维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。

本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。

实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效果。

关键词:维纳滤波;图像复原;运动模糊;退化图像AbstractDue to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image,restoration of motion blurred images, and the result shows, SNR noise of the autocorrelation function for image restoration must be taken into consideration when restoring degraded images in a noise. Key words:Wiener Filter; motion blurred;degraded image;image restoration概述图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。

第9章维纳滤波PPT课件

第9章维纳滤波PPT课件
于是维纳-霍夫方程变为:
t
R x s(t) h (t)R x x ()d, t
21.12.2023
.
23
做变量替换,t-=,t-=,得到:
R x s() 0 h ()R x x( )d ,0
或:
R x s() 0 h ()R x x( )d ,0
此时:
L M S R s s(0 ) 0h ()R x s()d
21.12.2023
.
31
H(ej)
0 1
Sss()
Sss()Snn()
Sss() 0,Snn() 0 Sss() 0,Snn() 0
Sss() 0,Snn() 0
21.12.2023
.
32
H(ej) 1
Sss(ej) Snn(ej)
0
非因果维纳滤波器的幅频特性
21.12.2023
.
33
例9.4 设信号的自相关函数是: R ss(m ) 0 .8 m m 0 , 1 , 2 , 噪声是白色的
E [d(t)d ˆ(t)]2m in
• 又限定估计 dˆ ( t ) 是由观察x(t)经线性滤波
器h(t)得出的:
d ˆ(t)x(t)*h(t)tf x()h(t)d t0
21.12.2023
.
11
最优线性均方估计的选取原则是使估计
误差 e(t)d(t)dˆ(t) 与所有的观察值
x(), ∊[t0,tf]正交,也就是说,如果 对每一个 ∊[t0,tf]都有:
21.12.2023
.
17
由于Rss‘(t)是奇函数,所以Rss‘(0)=0 把上式化简得到:
R ss (a ) a R ss (0 ) 0 R s's ( a ) b R s's'( 0 ) 0 故得到:

维纳维纳滤波实现模糊图像恢复知识讲解

维纳维纳滤波实现模糊图像恢复知识讲解

维纳维纳滤波实现模糊图像恢复维纳滤波实现模糊图像恢复摘要维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。

本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MATLAB函数来完成图像的复原。

关键词:维纳函数、图像复原一、引言在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。

引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。

它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。

因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。

而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。

它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。

维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。

二、维纳滤波器的结构维纳滤波自身为一个FIR或IIR滤波器,对于一个线性系统,如果其冲击响应为()n h,则当输入某个随机信号)(nx时,Y(n)=∑-n )()(mnxmh式(1)这里的输入)()()(n v n s n x += 式(2)式中s(n)代表信号,v(n)代表噪声。

我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即)(ˆ)(y n sn = 式(3) 因而该系统实际上也就是s(n)的一种估计器。

这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。

维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。

维纳滤波复原原理维纳

维纳滤波复原原理维纳

维纳滤波法
运动模糊图像恢复程序
I=imread('abc.png'); figure(1);imshow(I,[]); title('原图像'); PSF=fspecial('motion',40,75); MF=imfilter(I,PSF,'circular'); noise=imnoise(zeros(size(I)),'gaussian',0,0.001); MFN=imadd(MF,im2uint8(noise)); figure(2);imshow(MFN,[]); title('运动模糊图像'); figure(3); imshow(deconvwnr(MFN,PSF),[]); title('维纳滤波复原')
(1)
对复原图象影响最小。因为图象和噪声的相关矩阵都是把图象当 作随机过程来研究,从而描述其统计特性的量,在这里最小二乘 方的最佳已经演变成均方误差最小准则下的最佳。 同样根据式(1)可求得频域维纳滤波公式如下 2 H ( u , v ) ˆ (u, v) 1 G F (u, v) H (u,v) H (u,v) 2 S n(u,v) S g (u,v)
课件名称:运动模糊图像复原 指导老师:刘红霞
设计人:张彦龙 陈廷川
运动模糊图像复原技术目的
图像复原技术也常被称为图像 恢复技术图像复原技术能够去除或 减轻在获取数字图像过程中发生的 图像质量下降(退化)问题,从而 使图像尽可能地接近于真实场景。
图像复原技术的应用
一方面,对地面上的成像系统来说,由于受到射线及 大气的影响,会造成图像的退化;另一方面,在太空 中的成像系统,由于宇宙飞船的速度远远快于相机 快门的速度,从而造成了运动模糊; 航空成像领域: 无人机、预警机、侦察机的成像侦察;巡航导弹地 形识别,侧视雷达的地形侦察等; 交通智能监控领域:电子眼(车速超过60km/小时); 公安领域: 指纹自动识别,手迹、人像、印章的鉴定识别,过 期档案文字的识别等,都与图像复原技术密不可分; 医学领域:图像复原技术也有着极其重要的作用, 如X光、CT等。

数字图像处理图像复原PPT课件

数字图像处理图像复原PPT课件


五 章
4. 中点滤波器
-
图 像 复 原 简 介
36
-
5.4.2 顺序统计滤波器

五 5. 修正后的阿尔法均值滤波器
章 图 像 复 原 简 介
mn-1,
37
-
5.4.3 自适应滤波器

五 • 自适应滤波器
章 图 像 复 原 简 介
38
5.4.3 自适应滤波器

五 章
1. 自适应、局部噪声消除滤波器
介 复原始图像的最优估值。
√图像复原技术可以使用空间域或频率域滤波器
实现。
7
5.2 图像退化/复原过程的模型
第 五 章

-


原 √ f(x,y)表示一幅输入图像
简 介
√ g(x,y)是f(x,y)产生的一幅退化图像 √ H表示退化函数
√ η(x,y )表示外加噪声
√给定g(x,y),关于退化函数H的一些知识和外加噪声项
g(x, y)


由于冲激的傅立叶变换为常数A,可得:


H(u,v) G(u,v)
A
64
第5章图像复原
退化函数
第 五 章

-





冲激特性的退化估计
(a) 一个亮脉冲
(b) 图像化的(退化的)冲激
65
第5章图像复原
5.6.2 退化函数
(3) 模型估计法 第
五 章
建立退化模型,模型要把引起退化的环境因素考虑在内.
15
-
5.3.1一些重要噪声的概率密度函数 (PDF)

五 4. 指数分布噪声

数字图像图像复原汇总

数字图像图像复原汇总
退化图像:由于各种原因,使得原清晰图像变 模糊,或者原图像没有达到应有的质量而形成 的降质图像。
5.0 概 述
图像恢复(复原): 使退化图像恢复本来面 目。
图像恢复过程及其关键:根据图像降质过程的 某些先验知识,建立“退化(降质)模型”, 运用和退化相反的过程,将退化图像恢复。
图像恢复准则:要用某一客观标准来度量,则 为某种准则下的最优估计。
5.1 退化模型
离散退化模型 为了方便计算,需要将各函数进行延拓,具体如下所示:
f (m,n) ;
fe(m, n)
0
;
0 m A1 且 0 n B 1 A m M 1 或 B n N 1
h(m,n) ; 0 m C 1 且 0 n D 1
he(m, n)
0
;
C m M 1 或 D n N 1
基本思路
高质量图像 图像 退化
研究退化模型 因果关系
退化了的图像 图像 复原
复原的图像
第12页
第13页
5.1 图像退化模型
以后讨论中对降质模型H作以下假设:
H是线性的
H k1 f1 x, y k2 f2 x, y k1Hf x, y k2Hf2 x, y
H是空间(或移位)不变的 对任一个f(x,y)和任一个常数α 和β都有: H f(x-α,y-β) = g(x-α,y-β) 就是说图像上任一点的运算结果只取决于该点的输入值, 而与坐标位置无关。
频域退化模型
5.1 退化模型
N(u,v)
F(u,v) • H(u,v) G(u,v)
图5.1.4 频域退化模型
相对于空域退化模型,在频域可利用DFT的快速算法FFT
计算,以加速求解。
F(u, v) = H(u, v) = G(u, v) =

维纳滤波图像恢复的理论分析与实现

维纳滤波图像恢复的理论分析与实现
g ( x, y ) 和 n ( x, y ) , 如式 ( 3 ) 所示 。 f ( 0, 0 ) f ( 0, 1 ) g ( 0, 0 ) g ( 0, 1 )
…f ( 0, N - 1 )
f =
…g ( 0, N - 1 ) … , - 1, 0 ) - 1, 1 ) … 1, N - 1 )
在大部分图像中 , 邻近的像素点是高度相关 的 , 而距离较远的像素其相关性却较弱 。由此 , 可 以认为典型的图像自相关函数通常随着与原点距离 的增加而下降 。由于图像的功率谱是其自相关函数 的傅里叶变换 , 可以认为图像的功率谱随着频率的 升高而下降 。也就是典型的相关矩阵只在主对角线 方向上有一条非零元素带 , 而在右上角和左下角的 区域将为零值 。
图 8 自相关函数恢复
Fig18 Restored w ith ACF
点扩展函数的问题 。维纳滤波是假设图像信号可以
第 6期
张德丰等 : 维纳滤波图像恢复的理论分析与实现
47
参考文献 :
[1] 阮秋琦 . 实用数字图像处理 [M ]. 北京 : 电子工业出
版社 , 2001.
[2] 崔屹 . 数字图像处理技术与应用 [M ]. 北京 : 电子工
最小 , 其中 ^ f ( x, y ) 叫做给定 g ( x, y ) 时 f ( x, y ) 的最 小二乘方估计 。 最小二乘方滤波器的传递函数表示形式 2 2 1 | H ( u, v) | M ( u, v) = ・ h ( u, v) | H ( u, v) 2 | 2 +Γ 式中 , Γ 是噪声对信号的功率密度比 , 它近似为一 个适当的常数 。
1 图像的退化模型与图像的矩阵表示
在实际应用中 , 通常都假定传输系统是线性系 统 , 原始图像 f ( x, y ) 通过系统 h ( x, y ) 。h ( x, y ) 是 综合所有退化因素得到的系统函数 , 称为成像系统 的冲激响应或者点扩展函数 ( PSF ) 。图 1 所示的 框图就是一个基本的退化模型 , g ( x, y ) 为实际得 到的退化图像 , n ( x, y ) 为噪声模型 。 根据图 1 所示图像退化框图 , 退化模型可以表 示为 : ( 1) g ( x, y ) = f ( x, y ) 3 h ( x, y ) + n ( x, y ) 但在实际应用中 , 处理的都是数字图像 , 所以对式 ( 1 )采用离散化形式进行表示 , 如式 ( 2 )所示

第5讲图像复原

第5讲图像复原
第5讲图像复原
当在图像中唯一存在的退化是噪声时,则退化 方程为:
g x ,yfx ,y n x ,y G u ,v F u ,v N u ,v
噪声项是未知的,从g(x,y)或G(u,v) 中减去它 们不是一个现实的选择。
第5讲图像复原
5.3.1 均值滤波器
算术均值滤波器 几何均值滤波器 谐波均值滤波器 逆谐波均值滤波器
第5讲图像复原
带通滤波器
带通滤波器执行与带阻滤波器想反的操作。
H bu p,v 1 H bu r,v
通常不在在一幅图像上直接执 行带通滤波器,这通常会消除 太多图像细节。
带通滤波器可以获取噪声模式, 从而帮助屏蔽噪声模式。
获取的噪声模式
第5讲图像复原
陷波滤波器
陷波滤波器阻止(或通过)事先定义的中心频率邻域 内的频率。
1
a
2
1 a2
注意,指数分布的概率密度函数是当b=1时爱尔兰概
率分布的特殊情况。
第5讲图像复原
均匀分布噪声
均匀分布噪声的概率密度:
pzb1a
0
azb 其他
概率密度函数的期望值和方差是:
ab
2
2 ba2
12
第5讲图像复原
脉冲(椒盐噪声)噪声
脉冲噪声的PDF是:
p z 0P Pba
最小值滤波器
fx,ymings,t s,tSxy
这种滤波器在发现图像中的最暗点时非常有用。
第5讲图像复原
中点滤波器
maxmin fx,y1
gs,t gs,t
2 s,t Sxy
s,t Sxy
这种滤波器结Байду номын сангаас了顺序统计和求均匀,对于高斯和均匀

维纳滤波恢复的图像57页PPT

维纳滤波恢复的图像57页PPT
55、 为 中 华 之 崛起而 读书。 ——周 恩来
维纳滤波恢复的图像
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
Hale Waihona Puke 谢谢!51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特

维纳滤波实现图像恢复

维纳滤波实现图像恢复
2 运动模糊恢复理论基础
数字图像去模糊是图像复原的一个重要的分支,从运动模糊自身的特点出发,本章介绍了图像复原所需要的理论知识,分析了运动模糊的退化模型,由于篇幅限制,略去退化模型中涉及到的傅里叶变换和点扩散函数,图像复原在第三章介绍并在第四章进行模拟仿真。
2.1 图像退化模型
在获取图像的过程中,存在很多导致图像退化的因素,比如:图像采集设备缺陷、手抖动、大气扰动等,均会造成图像的模糊。对模糊图像进行复原,关键是建立退化的数学模型,反演复原出清晰图像。图像的退化模型通常分为四种:
导致图像退化的因素中,运动模糊是最普遍存在的,会影响图像的细节信息,通常获取的图像并没有太多的先验知识,因此大量的研究工作主要集中在上述提到的第一类,即假设退化模型,反演得到清晰图像。经过数十年的研究,图像去模糊取得了很多成果。图像去模糊方法[6]分为两大类:一类是先求解点扩散函数,然后进行滤波复原;另一类是盲复原,即不求解PSF,直接进行图像复原。第一类图像复原,对单幅图像进行复原比较复杂,运动模糊过程中,大气干扰、外界噪声等都会在不同程度上导致图像退化,进而导致降质函数的估计不够准确,使得图像复原结果不尽人意。第二类图像复原,不直接求点扩散函数,在已有模糊图像基础上进行盲复原。1986年邹谋炎提出空间域迭代盲反卷积算法,将图像复原问题转换为二变量(图像x和点扩散函数h)多项式盲目分解,迭代时对所求的图像和点扩散函数进行正性限制和支持域限制。Ayers G.A和Dainty J.c.于1988年提出采用傅里叶变换进行迭代盲目反卷积。Davery B.L.k和Seldin J.H[7]于1990年采用维纳滤波实现频域估计。1995年邹谋炎对维纳滤波进行了改进,提出增量维纳滤波[8],减小了计算量。
论文分析了运动模糊产生的原因,建立其退化模型,对该模型中的点扩散函数进行估计,具体表现为模糊角度和模糊尺度估计,最后采用维纳滤波复原,完成整个图像去模糊过程。针对图像复原中产生的振铃效应,分析其产生的原因,在获取、传输、存储图像过程中,不可避免地引入噪声,因此Байду номын сангаас在图像预处理阶段通过haar小波去噪,以抑制振铃效应的产生。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档