人教备战中考数学备考之相似压轴突破训练∶培优 易错 难题篇及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得
解得
∴抛物线解析式为:y= x2−x−1
∴抛物线对称轴为直线x=- =1
(2)解:存在
使四边形ACPO的周长最小,只需PC+PO最小
∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.
设过点C′、O直线解析式为:y=kx
∴k=-
∴y=- x
则P点坐标为(1,- )
(3)解:当△AOC∽△MNC时,
如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E
∵∠ACO=∠NCD,∠AOC=∠CND=90°
∴∠CDN=∠CAO
由相似,∠CAO=∠CMN
∴∠CDN=∠CMN
∵MN⊥AC
∴M、D关于AN对称,则N为DM中点
设点N坐标为(a,- a-1)
由△EDN∽△OAC
∴ED=2a
∴点D坐标为(0,- a−1)
∵N为DM中点
∴点M坐标为(2a,a−1)
把M代入y= x2−x−1,解得
a=4
则N点坐标为(4,-3)
当△AOC∽△CNM时,∠CAO=∠NCM
∴CM∥AB则点C关于直线x=1的对称点C′即为点N
由(2)N(2,-1)
∴N点坐标为(4,-3)或(2,-1)
【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
(3)分情况讨论:当△AOC∽△MNC时,延长MN交y轴于点D,过点N作NE⊥y轴于点E,由∠ACO=∠NCD,∠AOC=∠CND=90°得出∠CDN=∠CAO,再证明∠CDN=∠CMN,根
据MN⊥AC,可得出M、D关于AN对称,则N为DM中点,设点N坐标为(a,- a-1),根据△EDN∽△OAC,得出点D、M的坐标,然后将点M的坐标代入抛物线的解析式求出a的值,即可得出点N的坐标;当△AOC∽△CNM时,∠CAO=∠NCM,得出CM∥AB 则点C关于直线x=1的对称点C′即为点N,就可求出点N的坐标。
2.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.
(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,求,请证明你的结论;
(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则 =________;
(3)如图3,若 =k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)
【答案】(1)解:如图1中,作PG⊥AC于G,PH⊥BC于H,
∵AC=BC,∠ACB=90°,且D为AB的中点,
∴CD平分∠ACB,
∵PG⊥AC于G,PH⊥BC于H,
∴PG=PH,
∵∠PGC=∠PHC=∠GCH=90°,
∴∠GPH=∠MPN=90°,
∴∠MPH=∠NPG,
∵∠PHM=∠PGN=90°,
∴△PHM∽△PGN,
∴ =1
(2)
(3)解:如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,
易证△PMH∽△PGN,
∴,
∵,
∴,
∵DT∥PG,DK∥PH,
∴,
∴,
∴
【解析】【解答】解:(2)如图2中,作PG⊥AC于G,PH⊥BC于H,
∵∠PGC=∠PHC=∠GCH=90°,
∴∠GPH=∠MPN=90°,
∴∠MPH=∠NPG,
∵∠PHM=∠PGN=90°,
∴△PHM∽△PGN,
∴,
∵△PHC∽△ACB,PG=HC,
∴,
故答案为:;
【分析】(1)作PG⊥AC于G,PH⊥BC于H,根据已知条件可证△PHM和△PGN的两角对应相等,进而可得△PHM∽△PGN,由相似三角形的对应边成比例即可求出。(2)作PG⊥AC于G,PH⊥BC于H,由两角对应相等,可得△PHM∽△PGN,由相似三角形的对应
边成比例可得 = ,由两角对应相等,可得△PHC∽△ACB,又PG=HC,相似三角形的对应边成比例及等量代换即可求出。(3)作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,由两角对应相等,△PHM∽△PGN,由相似三角形的对应边成比例可得
= ,由△ A C D 和△ B C D的面积比及已知条件可得,再由垂直于同一条直线的两
条直线平行可得DT∥PG,DK∥PH,根据平行线分线段成比例定理可得= = ,再根据比例的基本性质即可求出的值。
3.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=________.